工學碩士 學位論文

Implementation of Column Subtraction Approach for Set Packing Problem

指導教授 金 是 和

2000年 2月

韓國海洋大學校 大學院

海事輸送科學科

黃 喜 秀

本 論文 黄喜秀 工學碩士 學位論文 認准 .

主審 趙誠哲 印

副審 朴鎭洙 印

副審 金是和 印

2000年 2月

韓國海洋大學校 大學院

海事輸送科學科

黃 喜 秀

目 次

Abstract

	2
	2
	_
	4
	_
	-
	5
<u></u>	8
e	14
	29
	29
ł	-33
	-37
	-41
	43
	49
	-50

Implementation of Column Subtraction Approach for Set Packing Problem

Hee-Su, Hwang

Department of Maritime Transportation Science Graduate School of Korea Maritime University

Abstract

Set problems to be made up of special formulation among IP optimization models have various applications. One of them, ship scheduling problem has developed into set packing problem and made a key role in success of shipping management.

A great number of efforts have been made to build not only relevant optimization models, but also decision support system for ship scheduling problem. But no means are available to estimate the efficiency of those algorithms applicable to the optimization model.

This paper aims at implementing column subtraction algorithm applied to set packing problem, especially to ship scheduling problem.

A brief experiment shows that column subtraction algorithm works well with the problem, a decision support system which written by OOP computes for the efficiency of column subtraction algorithm compared to branch- and- bound algorithm and gives chance to test various algorithms.

1

1.1

```
가
                                                                      가
                                              가
                   (Set Problems)
      Balas (1976)가
                                                                      (crew
scheduling),
                      (truck deliveries),
                                                       (tanker routing),
                 (ship scheduling),
                                               (information retrieval),
             (switching circuit design),
                                                   (stock cutting),
       (assembly line balancing),
                                                         (capital equipment
decision),
                           (location of emergency units),
(political districting)
   A = (a_{ij})
                0-1
                                                           1
                                         m \times n , e
                                    가
     m \times 1
                                          (weights)
                                                                 1 \times n
                  , c
                   (SC)
                               Min
                                       \{ cx / Ax \}
                                                      e, x [0, 1]
                   (SPK)
                                       \{ cx / Ax \}
                                                      e, x [0, 1]
                               Max
                   (SPT)
                                       \{ cx / Ax = e, x [0, 1] \}
                               Min
                          j가 가
                                           가
                                                                         W
               A
       A
   가
                         )
      , LP-
         , Genetic Algorithm
```

, 가 가 .

1.2

, 0- 1

, LP-

"branch- and- bound" . ,

, 가

- 3 -

, "branch- and- bound"

가 ·

1.3

1 2

, LP. 3
"branch- and- bound"

. 4

2

"polynomially	bounded"	, P-	
NP(Nondeterminis	stic Polynomi	al)-	가
. NP-	NP- complet	e	
. NP-complete	NP-	가	
, NP-complete			
"polynomially bounded"		, NP-complete	가
P- 가			
	NP-	,	
NP- complete			
(Se	et Packing),	(Set Partitioning	s), (Set
Covering) ,	(Set	Problems)	
, ,			(SPK)
(SPT)	0-1		,
1	(tight)	,	(SC)
1		(loose) .	
(SPK)	(SPT)	(SC)	
	,	LP-	
Harche (1994)	(Colu	mn Subtraction)	
2.1			
Kim(1999)			
,			
•	LP-	가	

- 5 -

Kim 2.1.1 (Implicit Enumeration) 0 1 가 (Tree search) 가 (LP-Relaxation) 2.1.2 LP-LP-가 LP 가 가 A가 "totally unimodular" LP-LP-가 . Appelgren(1969) 가 98% "primal" LP-"dual" "simplex" (cutting plane) . LP-(Tree search) (Branch and bound) (Column Subtraction) (Lagrangean relaxation) 2.1.3

- 6 -

LP-

가

optimization",	"multiplier	adjus	tment"				"subgra	dient
	가							,
가								
				•	,			
				P-			,	
LP-					"dual he	uristic"		
adjustment"					"dual	ascent"	"mult	iplier
2.1.4	(1	Netwo	ork Re	laxati	on)			
				"com	oinatorial	optimizat	tion"	
				"comb	inatorial	optimizati	on"	
		dden	netwo	rk)				"side
constraints"	가				"bound"		,	"side
			LP-	•				
가 .					,			
LP-							,	가

- 7 -

2.1.5 Genetic Algorithm

```
"Genetic Algorithm"(GA)
                                                           가
                   . GA
                           1975
                                 Holland
                                                      가
                                                    가 ,
                                            가
 (gene)
                                                               가
                                             가
  GA
                                                         가
        (selection),
                      (crossover),
                                         (mutation)
     (genetic operations)
                                                 가
     (chromosome)
      가
                   가
                                     (solutions)
                 가
"generational approach"
                                가
"steady-state approach"가 . GA
                                             가-
  2.2
  20
                                         (Liner operation),
   (Tramp operation),
                                                               가
                                        (Industrial operation)
         (ship scheduling)
```

.

2.2.1 Appelgren(1969, 1971)

Dantzig Fulkerson(1954) 가 . Dantzig Fulkerson 가 j i x i j가 Dantzig Fulkerson Laderman (1966)(Ship routing problem) Laderman 가 . Whiton(1967) 가 가 , Laderman "rounding off" Dantzig Bellmore(1968) Fulkerson . Bellmore 가 (utility) . Bellmore 가 가 (*e*) 가 (e, f) a(e, f) = (e) - (f) - v(e, f)

 G^*

2.2.2 Appelgren

Appelgren(1969, 1971)

Appelgren

(Set Partitioning)

(Set Packing)

$$a_{ijk} = \begin{cases} 1, & k7 \nmid i \\ 0, & . \end{cases}$$

 $v_{ij} = i j$

$$x_{ij} = \begin{cases} 1, & i & j \\ 0, & . \end{cases}$$

$$Max \sum_{i} \sum_{j} \sum_{N(i)} v_{ij} x_{ij}$$

s. t.

$$\sum_{j} \sum_{N(i)} x_{ij} = 1, i$$

$$\sum_{i} \sum_{N(i)} a_{ijk} x_{ij} \le 1 (\sum_{i} \sum_{N(i)} a_{ijk} x_{ij} = 1), j$$

 $x_{ij} = \{0, 1\},\$

Appelgren 가 가

2.2.3 Appelgren Hartley(1974) McKay Bellmore (1971)가 Appelgren Brown (1987)Appelgren(1969) (bulk cargo) Fisher Rosenwein(1989) Appelgren(1969) Fisher Resenwein $Brow\, n$ (1987)가 Kim(1999) 가 가 Appelgren (SPK-1) (SPK-2) (1) (SPK-1)

- 11 -

(SPK-1)

Kim(1999)

- 12 -

(SPK-2)

Kim(1999)

```
[ ]
q_{ijk} = \begin{cases} 1, & i \end{cases}
p_k = k
h_{ij} = j
J_i = i
x_{ij} = \begin{cases} 1, & i \text{ if } j \\ 0, & . \end{cases}
[ (SPK-2)]
Min \sum_{i} \sum_{j} h_{ij} x_{ij} - \sum_{k} (1 - \sum_{j} \sum_{i} q_{ijk} x_{ij}) p_{k}
        \sum_{j=J_i} x_{ij} \leq 1,
\sum_{j}\sum_{j}q_{ijk}x_{ij} \leq 1,
   x_{ij} = \{0, 1\}, j J_i,
                     (SPK-2)
                      . Kim
                                              (SPK-2)
                                                 가 ,
[ ]
q_{ijk} = \begin{cases} 1, & i \text{7} \text{h} & j \\ 0, & . \end{cases}
p_k = k
h_{ij} =
```

[(SPT)]
$$Min \sum_{i} \sum_{j} h_{ij} x_{ij} + \sum_{i} L_{i} y_{i} + \sum_{k} p_{k} z_{k}$$
s. t.
$$\sum_{j} J_{i} x_{ij} + y_{i} = 1, \qquad i$$

$$\sum_{i} \sum_{j} q_{ijk} x_{k} + z_{k} = 1, \qquad k$$

$$x_{ij} = \{0, 1\}, j J_{i}, \qquad i$$

Kim

MoDiSS

2.3 Harche (1994)

.

Harche (1994)

2.3.1

(SPK)

Maximize cx

```
(P)
                        Ax
                                e
                              [0, 1]
                        \boldsymbol{x}
                                               LP-
                                                                        (RSPK:
Relaxed Set Packing Problem)
                  Max dv
                                                          (1)
                (P') \qquad (A, I)v = e
                                                          (2)
                         v 0
                                                          (3)
     , \quad d = (cj, 0) \qquad 7 \qquad 1 \times (m+n)
                                                    . (for j = 1, ..., n)
        v = (x, y)T \qquad m \times 1
          v_{j} = xj \text{ (for } j = 1, ..., n),
            v_{n+i} = yi \text{ (for } i = 1, ..., m).
                                             yi \quad v_{n+i} = yi
            "slack variable"
        I = m \times m
                         (generality)
                                            , A
                                           , cj > 0 (for j = 1, ..., n)
  (element)가 0
가
                                                             "simplex"
   (SPK)
                 (RSPK)
   (RSPK) "simplex"
                                           T
   T(0) "dual feasible"
                                         , f
                                                                          "dual
                                                T(f)
pivot", T(k) (for k = 1, ..., f-1)
      (SPK)
                                                (variable fixing)
가
```

```
v_{r(j)} \geq 1
                                                (4)
          T(k) (for k = 0, ..., f) j
    , vr(j)
                                                 v r(j) = 1
       (4)
                                                 . "simplex"
           가
                                                   가
      (4)
        , j \quad k \quad (j \quad k)
                                                   (4)
      , (SPK) 가 ,
2
                                                           가
  [ ]
  S = \{r(jI), \dots, r(jh)\}  (4) 7
                  ( ) 	 t_{i, n+1}^{(k)}
            T(k)
                    t_{i, n+1}^{(k)} - \sum_{r(j)} t_{ij}^{(k)} (5)
        . T_s^{(k)} , T_s^{(k)} (SPK) S-
  < 1> [Harche (1994)]
  1) T_{s}^{(k)}
                          v_{r(j)} \left( \begin{array}{ccc} , \ r(j) & S \end{array} \right) \qquad \qquad 1 \qquad \qquad .
  2) T (k)
                            v_{r(j)} = 1 \quad (\quad , r(j) \quad S)
  < > [Harche (1994)]
  1) (4)
                    -v_{r(j)} \le -1
                                               (6)
```

```
가
      T*(k) .
                            v_{r(j)} S
                                              1
                             (5)
                                              T(\mathbf{k})
                                                       (
          , T*(k)
                                                                )
        . T_s^{(k)}
                              h
                                                        T*(k)
                     "dual pivot"
  2) 1)
                                                      ( )
v_{r(j)} S
                                   , 1
                                             가
  < 2> [Harche (1994)]
  T_{s}^{(f)} SPK S-
  1) T_s^{(f)} "dual feasible" .
  2) T_{s}^{(f)}
  3) T_s^{(f)} 7\rightharpoonup "primal infeasible",
                                           "dual pivot"
  "primal feasibility"
          (true lower bound)
  < > [Harche (1994)]
  1)
  2) T s "dual feasible"
                                          가 .
                      T \int_{s}^{(f)}
                                 ( )
  3)
                                     T_{s}^{(f)} "primal"
   가
                        "primal feasble" "primal feasble"
                                        , "dual pivot"
         "dual simplex"
"primal feasibility"가
                                                           가
 . T_{s}^{(f)}
```

.

j

< 3> [Harche (1994)] (SPK) T(f)n< > [Harche (1994)] $Q = Q^{(1)} Q^{(2)}$ T(f)Q(1)Q(2) $v_{r(j)} \quad Q^{(2)}$ $T(f) \qquad v_{r(j)}$ T(f) $v_{r(j)}$ $v_{r(j)} = 1$ < 1> 1) 2.3.2 LP Sethi (1984) "pivot and probe" (PAPA) , LP-"simplex" 20 40% 가 , LP-가 (DFS: Depth First Search), "simplex" (tree node) . , LP ZUB $C_1^* \leq C_2^* \leq \ldots \leq C_n^*$ L $= \{1, 2, ..., n\}$ LP "greedy heuristic" (SPK) ZLB $|Z_{\mathit{UB}}$ - $Z_{\mathit{LB}}|$ < 1 "greedy heuristic" (SPK) $, |Z_{UB} - C_j^*| \leq Z_{LB}$ "bounding test"

L

L

```
가 가 . ,
                      L "subtraction"
               . |Z_{\mathit{UB}} - C_{j}^{*}| \leq Z_{\mathit{LB}}
j
                                            . \quad \left|Z_{UB} - C_{j}^{*}\right| > Z_{LB}
                 "subtraction"
            "simplex"
                                                j 1
"subtraction" .
                                                (SPK)
                         . Z*
                                                            ZLB
= Z*
                L
                             "subtraction"
                                                  가 (SPK)
        가
                                    가
                                                   가
              가
                                                       . 가
                                            L
                                                         "tree
                가
                                                       가
가
          "bounding test"
node"
                                  가
                                                       . 가
                     (node)
                                                       가 (tree
                      1 0
level)
                      "s implex"
  1
                                가
 1
                                          "backtrack"
                      가
"backtrack" .
                                   L
                         가
            가
                                         가
         가
                 가
  1)
(true lower bound) .
                 가
  2)
                                                     ZUB
                  가
                                          가
  3)
```

```
T(i, j) . T(i, j) m+1 n+1
      LP
    フト , n+1
                            , m+1
     T(m+1, n+1)
                                       . ZUB
                                                 T(m+1,
                               , "heuristic"
n+1)
     가
                         ZIB . "heuristic"
           ZLB = -\infty
                                (m+1) \times n , \nearrow E(i, j)
      E . LIFO(last in, first out)
(DFS: Depth First Search) .
                                            가
[ 0] (Heuristic ) "heuristic"
ZIB . ZUB - ZIB = 0 [ 6] . "heuristic"
                  ZLB = -\infty
                              . T
ZUB - ZLB
  [ 1] ( ) i = 1, ..., m+1 E(i, j) = T(i, n+1) .
  scol = 1, index = 1, acol = point(1) [ 2]
  [ 2] ( ) scol = scol + 1 . i = 1, ..., m+1
  E(i, scol) = E(i, scol-1) - T(i, scol)
  save\ index(scol) = index,\ index = index + 1
 [ 3] ( ) i = 1, ..., m+1 E(i, j)7 , ZIB [ 5] .
  [ 4] .
  [ \qquad \qquad 4] \quad ( \qquad \qquad ) \qquad \qquad index \ > \ n \qquad [ \qquad \ 5] \qquad \qquad . \ \ acol \ \ =
point(index) . E(m+1, scol) - T(m+1, scol) ZIB
                    [ 2] .
  5] .
```

```
5] ( ) index = save\_index(scol) + 1, scol = scol - 1
       . \qquad scol > 0 \qquad [ \qquad 4]
                                                         [
                                                               6]
  [ 6] (
             )
  2.3.3
                                    Harche
                                             (1994)
  [ ]
Maximize
  1829\ X1+1729\ X2+1499\ X3+1080\ X4+1947\ X5+1800\ X6
+\ 1315\ X7+\ 1263\ X8+\ 1453\ X9+\ 1842\ X10+\ 1238\ X11+\ 1908\ X12
+\ 1335\ X13 +\ 1988\ X14 +\ 1990\ X15 +\ 1579\ X16 +\ 1165\ X17 +\ 1335\ X18
+ 1722 X19 + 1245 X20 + 1513 X21 + 1035 X22
Subject to
    1] X1 + X2 + X3 + X4 + X5 + X6 + X7
    2] X8 + X9 + X10 + X11 + X12 + X13 + X14 + X15
    3] X16 + X17 + X18 + X19 + X20 + X21 + X22
    1] X3 + X7 + X17 + X20
    2] X3 + X6 + X9 + X10 + X15 + X19 + X21
    3] X1 + X3 + X12 + X13 + X15 + X16 + X18
    4] X5 + X12 + X13 + X15 + X17 + X18 + X2
    5] X2 + X4 + X8 + X13 + X14 + X15 + X17 + X18 + X19
    6] \ X4 + X10 + X11 + X14 + X16 + X21 + X2
                          i 가
```

 $X_i = \begin{cases} 1, \\ 0, \end{cases}$

```
가
  [ ]
                     , LP-
                                               Xi 0
                     LP-
                                            "simplex"
        [ 2-1] . [ 2-1]
Slack
          Z = 5494.66667 7
                                        ZUB = 5494
  "simplex"
                  S , S = \{ X2, X3, X4, X6, X7, X8, X9, X11,
X13, X15, X17, X18, X21, X22, S1, S2, S3, S5, S6, S7, S8, S9 }
  "heuristic"
                                                     (BFS:
Breadth First Search) . T(i, n+1) - S(i, j)
  (, i = 1, ..., 10, j = 1, ..., 22, n = 31).
  S(i, j)
                       (ZOPT)
                                                ZLB
                             , ZLB = 0
                                                     가
                           ZUB - ZIB
                               S = \emptyset
          S(i, j)
     2-1]
                                              S
  [
                   X1 = X10 = X17 = 1, ZLB = 4836
             X 17
                             LP-
                     X17 1
                                                    가
             , SPK (Set Packing Problem)
                                                   X17 1
         X17 = 1
                                가
       X17 1 ( , - X17 - 1) LP-
                                               "simplex"
             "dual pivot" [ 2-2] .
       가
```

[표 2-1] LP-완화문제의 최종 "Simplex" 테이블

	311.5 184.83333 5494.66667	84.83333	31 1.5	1-	49.16667	185.5	0	1245	191.66667	1679,83333 1491,66667 1245	662 1	2.33333	0	0	537.83333
ž	0.65657	-0.16667	0.5	0.15667	0.16667	0.5	0	0	- 0.33333	0.16667		0.33333		_	0.83333
×	0,33333	0,16667	0,5	-0.16667	0.16667	- 6.5 -	0	0	0.33333	0.16667	_	0.33333	-	D	0,16667
×	0.33333	- 0.33333	0	0,33333	0.33333		0	0	0.33333	0.33333		0.33333	' -	0	0.66667
ź	0.33333	0.66667	0	0.33333	0.33333	0	а	0	-0.66667	0.33333		0.66667	_	0	0.66667
ž.	0,33333	0,16667	- 0.5	-0.16667	0.16667	0.5	0	0	0.33333	0.18587		0,66667	0	0	0.83333
ŏ	-	0.5	6.0	0.5	0.5	6.0	-	7	7	- 0.5			0	0	0.5
,5 X	0	- 0.5	- 0.5	- 0.5	- 0.5	9.0-	0	77)	-	0.5		0	***	0	- 0.5
×	0.66667	0.33333	0	0.66667	-0.33333		0	0	- 0.33333	0.33333		0.33333		0	0.33333
×	0.33333	- 0.33333	0	29999.0 -	0.33333	0	0	0	0.33333	0.66667	-	-0.33333 -	0	0	0.33333
Basic Var.	RHS	8,	S.	8,	Se	Sf	8	S	Š	S,	Xez	× 15%	ŝ.	ķ	×.
658.66667	395 0	0 97	0 884.	438.5	0 2999	204.16667	540,16667	3 540	364.8333	45,33333	0	1096, 16667	495.5		0 262,33333
0.66667	0	0 9	0.5	- 0.5	0 199	0.16667	0.16667		-0.16667	0.33333	0	0.16667	0.5	0.33333	0 0.33
0,33333	0 0	2	0.5	0.5	0 299	-0.16667	0.83333	0.8	0.16667	- 0.83333	0	0.83333	- 0.5	18.81	0.66667
0.33333	1	8	=	0	183 0	0.33333	0.33333		-0.33333	- D.83333	0	-0.88867	0	3333	- 0.33333
0.33333	0	а	0	0	0 299	-0.66667	0.66667	L	-0.33333	- 0.33333	0	0.33333	0	3333	-0.33333
-0.66667	0 0	0.5 0	-	0.5	133 1	0.83333	0.16667	9	0.16667	0.66667	0	-0.16667	0.5	33333	- 0.3
-	0 -	2 0	0.5	- 0.5	5 0	-0.5	6.0	1.0	0.5	0	0	0.5	- 5	_	0
0	0 -	0.5	-	0.5	0	0.5	0.5		0.5	0	0	- 0.5	- 0.5	_	-
0.66667	0 0	0	0	0	333 0	-0.33333	0.33333	-	0.33333	0.33333		0.66667	0	1333	0.33333
-0.66667	0 0	0	0	0	33 0	0.33333	0.33333	6	0.66667	0.66667	0	0.33333	-	1999	0.66667
NO.	200	9 014	AIR AIB	X 157	×	Ž	ž		No.	ź	Ž	Ž.	Z	ž	×

[표 2-2] 제약식 X17 ≥ 1을 추가하여 "Dual Pivot"을 행한 결과

Xes Xee Xee Xes Xes	0 0 0 0	0 0 0 0	-0.5 0 -1 0	0.5 0 1 0	-0.5 0 0 0	0 0 0 1	0 1 0 1	0.5 1 0 0	0.5 0 1 0	0 0 0 0	884.5 0 395 0 658.66667	S. RHS Basc Var.	-0.33333 1 X ₁	0.33333 0 X _e	-0.5 0 Xa	0.5 0 84	0.16667 1 Xia	0.66667 0 Xia	-0.33333 0 ×iz	0.16667 0 X ₁₄	-0.16657 0 Xis	
XII XI	0 0	0 0	0.5 0	-0.5 0	0.5 0	0 0	0	0.5	- 0.5 0	0 0	438.5 C 8	S, Sg	0 299990-	0.65557 0	-0.5 -0.5	0.5 0.5	-0.16667 - 0.5	0.33333 0	0.33333 0	-0.16667 0.5	0.16667 0.5	
× ×	0.33333 0	0.33333 0	0.5 0	-0.5 0	0.83333 1	-0.66667 0	0.33333 0	0.15667 0	0.16667 0	0	204.16667 0	ő	0,33333	-0.33333	0.5 - 0.5	5 0.5	- 0.16667	0.33333	0.33333	0.5 -0.16667	0.16557	
×7.	0.33333 0	-0.33333 -	0.5	- 0.5	-0.15667 0	- 0.65667 -	0.33333 0	0.83333 -	0,16667 0	0		S ₃ S ₄ S ₈	0 0 0	0 0 0	1 0 -0	-1 1 0.5	0 0 0.5	0 0 0	0 0 0	0 0 -0	0 0 0.5	
Ż	0.66667	0.33333	0.5	0.5	0.16667	8 - 0.33333	3 - 0.33333	10.16667	-0.16667	0	1 364.83333 540.16667	S	0.33333	- 0,33333	_	7	0.33333	- 0.66667	0.33333	0.33333	- 0.33333	
× ×	0 0.66667	1 0.33333	0 0	0 0	0 0.65557	0 - 0.33333	0 - 0.33333	0 - 0.33333	0 0.33333	0 0	0 45.33333	S	0.66667	0,33333	0.5	- 0.5	0.16667	- 0.33333	- 0.33333	0,18667	- 0.16667	
	m	F-			15	m	Į.	m	100		29	ž	-	-	0	0	0	-	0	0	0	
x	0.33333	0.66667	- 0.5	0.5	-0,16657	0,33333	-0.66667	0.83333	0.16667	0	1096.16667	ź	- 0.33333	0.33333	0	0	0.65567	0.66667	- 0.33333	- 0.33333	0.33333	
×	+	0	- 0.5	1.5	0.5	0	0	- 0.5	0.5	0	495.5	ž	0	0	-	0	0	0	் 6	0	D	
×.	0.66667	0.33333		0	0.33333	- 0.33333	- 0.33333	0.66667	0,33333	0	2, 33333	X	3 0	0	0	0	3 0	0	0	0		
×₹	1 0.	0 0	0	0)- 0	0	0	0 0	0 0	0	0 262.	ž	-0.33333	0.33333	- 0.5	0.5	- C.8333	1.66667	1.66667	0.18667	1.83333	

ZIB ,

. , "slack variable"

"slack variable heuristic"

.

, m+1

[0] ZUB = 5494, ZIB = 4836. ZUB ZIB , T ZUB-ZIB 7 , "slack variable"

. S' S'(i, j) [2-3] . , i = 1, ..., 10, j = 1, ..., 6, n = 5, S'(i, 6) = T(i, 32).

[2-3] "slack variable"

point(1)	point(2)	point(3)	point(4)	point(5)		
S 6	S 5	S 9	s 7	S 8	RHS	Basic Var.
0.33333	0	- 0.33333	- 0.66667	0	0.33333	X 1
- 0.33333	0	0.33333	0.66667	0	0.66667	X 5
- 0.5	- 0.5	- 0.5	- 0.5	- 0.5	0	x2 0
0.5	0.5	0.5	0.5	0.5	1	S 4
- 0.16667	0.5	0.16667	- 0.16667	- 0.5	0.33333	x 10
0.33333	0	0.66667	0.33333	0	0.33333	X 16
0.33333	0	- 0.33333	0.33333	0	0.33333	x 12
- 0.16667	- 0.5	0.16667	- 0.16667	0.5	0.33333	x 14
0.16667	0.5	- 0.16667	0.16667	0.5	0.66667	x 19
149.16667	165.5	184.83333	267.16667	311.5	5494.66667	

[1]
$$E(i, 1)$$
 . $E(i, 1) = T(i, 32)$. $scol = 1$, $index = 1$, $acol = point(1)$. $point(j)$ S' j . $save_index(1) = 0$. [2] .

[2]
$$scol = scol + 1 = 2$$
. $E(i, 2) = E(i, 1) - S'(i, point(1))$. $save_index(2) = 1$, $index = index + 1 = 2$. [3]

```
가
  [
       3] E(i, 2)
                                 [ 4]
       4] index = 2 < 5. acol = point(index) = point(2).
  E(10, 2) - S'(10, point(2)) = 5180.00000 > ZLB
                                                         2]
       2] scol = 3. E(i, 3) = E(i, 2) - S'(i, point(2)).
  [
  save\_index(3) = 2, index = 3. [3]
                                ZLB = 5180.00000
  [
        3] E(i, 3)
                                                             , [
         ZUB - ZLB = 5494 - 5180 = 314 , S'
                    , S'
314
       5] index = save\_index(3) + 1 = 3. scol = scol - 1 = 2.
  scol > 0 [ 4]
       4] index = 3 < 5. acol = point(3).
  E(10, 2) - S'(10, point(3)) = 5160.66667 < ZIB
                                                        5]
       5] index = save\_index(2) + 1 = 2. scol = 1.
  scol > 0
                      4]
       4] index = 2 < 5. acol = point(2).
  E(10, 1) - S'(10, point(2)) = 5329.16667 > ZIB
                                                 [
                                                         2]
        2] scol = 2. E(i, 2) = E(i, 1) - S'(i, point(2)).
  save\_index(2) = 2, index = 3. [ 3]
                        가
  [
       3] E(i, 2)
                                   [
                                         4]
       4] index = 3 < 5. acol = point(3).
  E(10, 2) - S'(10, point(3)) = 5144.33334 < ZIB
                                                         5]
```

```
[ 5] index = save\_index(2) + 1 = 3. scol = 1.
scol > 0
               [
                     4]
     4] index = 3 < 5. acol = point(3).
E(10, 1) - S'(10, point(3)) = 5309.83334 > ZIB
                                                 ſ
                                                        2]
     2] scol = 2. E(i, 2) = E(i, 1) - S'(i, point(3)).
save\_index(2) = 3, index = 4. [
                                 3]
                       가
[
     3] E(i, 2)
                                  [
                                        4]
     4] index = 4 < 5. acol = point(4).
E(10, 2) - S'(10, point(4)) = 5042.66667 < ZLB
                                                 [
                                                        5]
     5] index = save\_index(2) + 1 = 4. scol = 1.
scol > 0
               [
                     4]
     4] index = 4 < 5. acol = point(4).
E(10, 1) - S'(10, point(4)) = 5227.50000 > ZLB
                                                 ſ
                                                        2]
     2] scol = 2. E(i, 2) = E(i, 1) - S'(i, point(4)).
[
save\_index(2) = 4, index = 5.
                                 3]
                       가
[
   3] E(i, 2)
                                 [
                                        4]
     4] index = 5 5. acol = point(5).
E(10, 2) - S'(10, point(5)) = 4916.00000 < ZIB
                                                        5]
     5] index = save\_index(2) + 1 = 5. scol = 1.
```

scol > 0

[

4]

```
[ 4] index = 5 5. acol = point(5).
  E(10, 1) - S'(10, point(5)) = 5183.16667 > ZIB [ 2]
      2] scol = 2. E(i, 2) = E(i, 1) - S'(i, point(5)).
  save\_index(2) = 5, index = 6. [ 3]
                    가 [ 4] .
  [ 3] E(i, 2)
  [ 4] index = 6 > 5. [ 5] .
  [ 5] index = save\_index(2) + 1 = 6. scol = 1.
  scol > 0 [ 4]
  [ 4] index = 6 > 5. [ 5] .
  [ 5] index = save\_index(1) + 1 = 1. scol = 0.
  scol = 0 [ 6] .
                      가
  X5 = X14 = X20 = 1, ZOPT = ZIB = 5180.00000.
ZOPT = 5180.0
            , LINDO Optimizer
4836.0
      4916.0
                 ZOPT
```

3
7
7
7
7
7
7
7
3.1

GUI(Graphic User Interface)7
7
7
7
7
PC
(OOPL)
4 , Windows 98, Pentium CPU7
PC
3.1.1

, ,

가 , 가 LINDO

GUI , 가 , LP , LINDO

Fig. 3.1

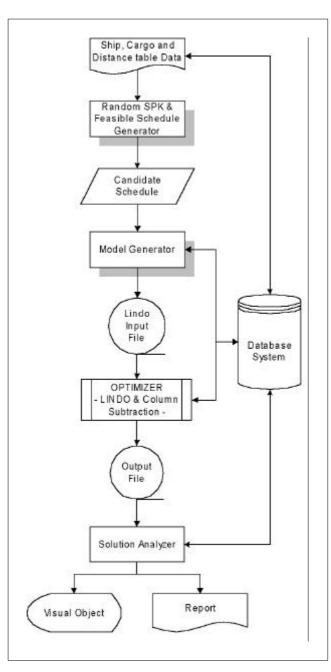


Fig. 3.1 System Flowchart

3.1.2

GUI

. Fig. 3.2 4 "DB Engine"

SPK Random Generator for Ship Scheduling Problem - [Data Tables] . 8 x - + + -10 B Ca Ship Data | Cargo Data | Distance Table ShipID VoyageCost BallastCost OpenDate InitPos Carg. * 300 182 140 98-04-01 Bib 2 Faith 200 141 120 98-04-01 Sabi 3 Grace 200 123 98-04-01 Duma A 143 4 Helper 133 98-04-01 Sabi A 260 155 5 Норе 120 124 112 98-04-01 Bib. A 6 Kind 180 150 98-04-01 300 Duma A 7 Love 150 137 \12 98-04-01 Bib А 8 Mercy 150 \13 98-04-01 184 Sabi 9 Miems 300 176 \32 98-04-01 Sabi 10 Shalom 260 159 126 98-04-01 Bib 11 Venus 260 158 120 98-04-01 Duma A 12 Victory 260 119 98-04-01 144 Віь 14 Hanara 300 178 \42 98-04-01 Sabi А 146 98-04-01 15 Saebada 900 179 Bib A

Fig. 3.2

가 LP-, LINDO Optimizer 가 . 가 LP-

Fig. 3.3, Fig. 3.4

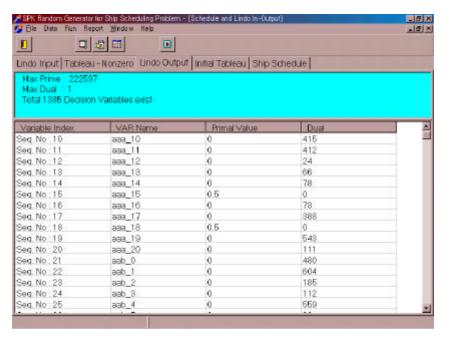


Fig. 3.3 LP-

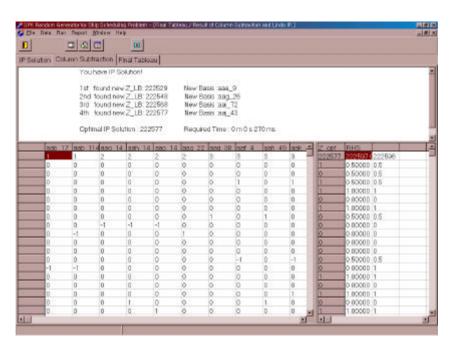
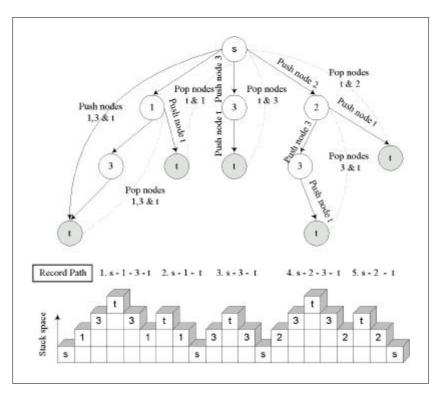


Fig. 3.4

3.2 가

가 가 . 가 Appelgren(1969) 가 , McKay Hartley(1974) 가 (seed column) (1987). Brown 가 가 , Fisher Rosenwein(1989) 가 Brown (1987) . Kim & Lee(1997) 가 가 3.2.1 가 가 가 i가 C(i)가 가 Gi(Ni, Ai) Fig. 3.5 Ni i s, i가 *C*, i t ck C가 A iC(s, C) i 가 ,

, C t7t (C, t) i


Fig. 3.5 A Feasible Scheduel Generating Graph Gi(Ni, Ai) for Ship i

가 i 가 가 가 Gi가 가 GiKim & Lee(1997) (Contiguous adjacency lists) GiKim & Lee(1997)가 가 3.2.2 가 Gi가 i

```
가
        Gi
                                                가
          Gi
  (1)
                                    Gi
  (2)
                          (push) .
  (3)
                        가
         가
                                                "backtrack"
  (4)
                                                          (pop)
  Kim & Lee(1997)
                                가
AFSG(G)
                                          가
          AFSG(G)
  Kim & Lee(1997)
                          AFSG(G)
                                                         가
                                                   가
      G(N, A)
notation"
             \sum_{n=N} |A \, dj[n]| = (A)
                                                     "density"
    , m
                   가
        "density"
                                   "density" c ,
```

AFSG(G)

Fig. 3.6

3.2.3 가

, ,

·

7} 3.2.1 3.2.2 (Contiguous

adjacency lists) . ,

LP-

가

Fig. 3.7 (Contiguous

adjacency lists)

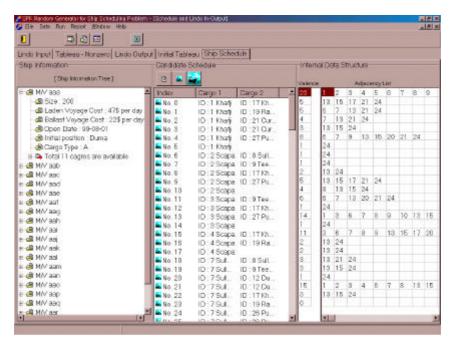


Fig. 3.7

3.3

가

Algorithm CSA_SPK(S) (Column
Subtraction Algorithm for Set Packing Problem) (pseudocode)

Algorithm CSA_SPK(S)

I	$S_RSPK(S)$		Solve the Relaxed $SPK(S)$
2	T[][]	NIL	Initialize the entry of final tableau for \ensuremath{RSPK}
3	E[][]	NIL	Initialize the entry of Cumulous Column
4	Slack[]	NIL	Initialize the List of Slack Variables

```
5 ZUB, ZLB
                       Initialize the Upper and Lower Bound
               0
                       Initialize the Column Index of Slack List
  point[]
             NIL
                       Initialize the Cumulous Coumn Index
7 scol
           0
                       Initialize the Column Index of final Tableau
8 acol
           0
                       Initialize the Index for Row and Column
9 i, j, index
10 n
        0
                       Initialize the Counter
                              Initialize the List of Saved Index
11 save_index[]
                   NIL
12 ZUB
          a Rounded Off Value of Relaxed SPK Solution
                       Set the Upper Bound
13 ZLB
          a Heuristic Solution, If any
                       Set the Lower Bound
14 for Final Tableau of Relaxed SPK(S)
15
    {
16
                 n + 1
                 i + 1
17
            i
18
                 j + 1
            T[i][j]
                      the [i, j]th entry of final tableau
19
                       Set the entry of final tableau for RSPK
20
            Slack[n]
                        Slack Variable's Value
                       Set the List of Slack Variables for Subtracting
21
            if(Check Slack Variable's Value)
22
                               Index for the Slack List
                    point[n]
                       Set the Index
23
    }
24 for each row
25
            E[i][1]
                      T[i][j]
                       Set the first entry of Cumulous Column with
                       the last Column of Final Tableau
                       Set the Index
26 scol, index
                       Set the Column Index for Slack List
27 acol
           point(1)
28 ForwardStep(S)
```

```
1 scol
          scol + 1
2 for each row I
3
    E[i][scol]
                 E[i][scol-1] - T[i][acol]
4 save_index[scol]
                      index
5 index
            index + 1
6 IntegralityCheck(S)
IntegralityCheck(S)
1 for each row
    if(Check Nonnegative Integer Solution)
3
4
            ZLB
                   the Nonnegative Solution
           BackTrack(S)
5
6
    }
7
    else
8
            CheckStep(S)
CheckStep(S)
  if(Check the Number of Slack List)
2
    BackTrack(S)
3 acol
          point[index]
  for Last row
5
    if(Check New Lower Bound Condition)
6
            BackTrack(S)
7
    else
8
            ForwardStep(S)
```

FowardStep(S)

BackTrack(S)

Algorithm $CSA_SPK(S)$ 1 11 , 12 13 , 14 23 7

"slack variable"

24 28 "slack variable"

4

3

LINDO Optimizer "branch- and- bound"

4.1

가 , , ,

[4-1] [4-3] .

[4-1]

Chin ID	Name	Size	Laden	Empty	Initial Date	In itia l	Туре	
Ship ID	Name	Size	Cost	Cost	Illitial Date	Port	Type	
1	Angel	300	\$82	\$46	99-04-01	Bilb	A	
2	Faith	200	\$41	\$20	99-04-01	Sabi	A	
3	Grace	200	\$43	\$22	99-04-01	Duma	A	
4	Helper	260	\$55	\$30	99-04-01	Sabi	A	
5	Hope	120	\$24	\$16	99-04-01	Bilb	A	
6	Kind	300	\$80	\$52	99-04-01	Duma	A	
7	Love	150	\$37	\$24	99-04-01	Bilb	A	
8	Me rc y	150	\$34	\$22	99-04-01	Sabi	A	
9	Mie m s	300	\$76	\$38	99- 04- 01	Sabi	A	
10	Shalom	260	\$59	\$28	99- 04- 01	Bilb	A	

 $(ID) \hspace{1cm} , \\ (Size) \hspace{1cm} (1000 \hspace{1mm} DWT) \hspace{1cm} . \hspace{1cm} (Profit),$

(Laden Cost), (Empty Cost) US

Dollar(\$/) , 1

. (Load. Port), (Disch. Port),

(Initial Port) . (Ship's Type)

가 (Cargo Type)

[4-2]

Cargo				Load		Disch		
"	Name	Size	Profit		Load.Date		Disch.Date	Туре
ID				Port		Port		• •
1	Khafji	110	\$96	Khaf	99- 04- 18	Bilb	99-05-09	A
2	Scapa	200	\$69	Scap	99- 05- 26	Bilb	99- 06- 01	Α
3	Sullo Voe	100	\$35	Sull	99-04-28	Bilb	99-04-30	Α
4	Teesport	100	\$32	Tees	99-04-16	Bilb	99-04-21	Α
5	Dubai	97	\$45	Duba	99-04-11	Duma	99-04-24	Α
6	Khafji	300	\$157	Khaf	99-05-14	Duma	99-05-28	Α
7	Ras Tanura	300	\$153	Rast	99-05-01	Duma	99-05-15	A
8	Curacao	253	\$80	Cura	99- 04- 13	Sabi	99-04-21	Α
9	Puerto lacruz	150	\$69	Puer	99-05-12	Sabi	99-05-22	A
10	Ras Tanura	101	\$129	Rast	99-05-10	Sabi	99-06-13	A
11	Trinidad	250	\$90	Trin	99-06-12	Sabi	99-06-22	A
12	Khafji	150	\$85	Khaf	99- 04- 16	Bilb	99-05-01	Α
13	Scapa	150	\$120	Scap	99- 04- 17	Bilb	99- 04- 29	Α
14	Trinidad	200	\$105	Trin	99-04-19	Sabi	99-05-06	A
15	Teesport	250	\$100	Tees	99-04-23	Sabi	99-01-09	A

[4-3] : (Day)

Port Name	Bilbao	Dumai	Sabinda
Curacao	14.5	35.6	7.8
Dubai	19.8	12.7	32.2
Khafji	21	13.9	33.4
Puerto la curz	14.2	35.1	9.6
Rastanura	20.8	13.6	33.1
Scapa	5.5	27.5	17.3
Sullomvoe	5.7	29.3	17.6
Teesport	4.9	28.5	17.8
Trin id a d	13.7	34.6	9.1

	Date),	가	
, "simplex	" 가	가 . LP-	
	•		
	가	, LINDO "branch- and- bound"	가
	LP-	LINDO	
	•		,
		,	
"branch-	and- bound"	·	G. I.
	가		GUI
		·	가
	·	10 30 ,	10
50 , 가	,		
, , ,	500		
4.2			
	1 224	Appelgren(1969) 1 2%	
	1 3%	,	

- 43 -

, , "non-zero", "density"
[4-4] [4-6] .

[4-4] 10

Ship & Cargo		Constraint	Va ria b le s	Non-Zero	Density
	Min	16	33	72	0.11447
10 × 10	Max	20	245	710	0.15317
	Ave	16 33 245 110.36 1 23 120 x 30 1031 27.71 389.87 1 32 253 x 40 1932 2 36.57 852.51 1 39 607 1 4 5 4 5 4 5 4 5 4 5 5 9 5038	278.05	0.13068	
	Min	23	120	279	0.07616
10 × 20	Max	30	1031	3267	0.12043
	Ave	27.71	389.87	1092.97	0.09961
	Min	32	253	617	0.06612
10 × 30	Max	40	1932	6656	0.09796
	Ave	36.57	852.51	2543.19	0.08011
	Min	39	607	611	0.00682
10 × 40	Max	50	4405	15412	0.08181
	Ave	45.42	1545.15	4788.61	0.06734
	Min	45	786	2228	0.05056
10 × 50	Max	59	5038	17546	0.07722
	Ave	54.31	2524.76	8139.98	0.05865

[4-5] 20

Ship & Cargo		Constraint	Va ria b le s	Non-Zero	Density
	Min	25	67	129	0.06876
20 × 10	Max	30	624	1798	0.10851
	Ave	28.85	67 129 0.0 624 1798 0.1 234.31 589.03 0.0 262 628 0.0 2028 6538 0.0 792.89 2229.48 0.0 560 1506 0.0 4319 14747 0.0 1645.45 4934.54 0.0 939 2473 0.0 7170 25761 0.0 3106.54 9687.33 0.0 15146 56058 0.0	0.08548	
	Min	34	262	628	0.06135
20 × 20	Max	40	2028	6538	0.08616
	Ave	37.96	792.89	2229.48	0.07268
	Min	40	560	1506	0.05332
20 × 30	Max	50	4319	14747	0.08164
	Ave	46.44	1645.45	4934.54	0.06348
	Min	47	939	2473	0.04589
20 × 40	Max	60	7170	25761	0.06601
	Ave	55.56	3106.54	9687.33	0.05529
	Min	57	1666	4634	0.04266
20 × 50	Max	70	15146	56058	0.06101
	Ave	64.39	5029.32	16252.30	0.04934

, 가 .

"non- zero" A 1

, "density" 3.2.2

.

[4-6] 30

Ship & Cargo		Constraint	Va ria b le s	Non-Zero	Density
	Min	36	115	248	0.05000
30 × 10	Max	40	829	2526	0.07912
	Ave	38.95	366.45	927.53	0.06371
	Min	44	529	1319	0.04896
30 × 20	Max	50	2800	9044	0.06973
	Ave	47.73	115 248 0.05000 829 2526 0.07912 366.45 927.53 0.06371 529 1319 0.04896 2800 9044 0.06973 1175.92 3312.66 0.05799 933 2375 0.04450 6655 23766 0.06458 2574.10 7722.46 0.05211 591 1257 0.03272 10290 36628 0.05692 4178.05 12912.43 0.04592 3131 8715 0.03650 15401 56257 0.05349		
	Min	49	933	2375	0.04450
30 × 30	Max	60	6655	23766	0.06458
	Ave	56.55	2574.10	7722.46	0.05211
	Min	58	591	1257	0.03272
30 × 40	Max	70	10290	36628	0.05692
	Ave	65.76	4178.05	12912.43	0.04592
	Min	65	3131	8715	0.03650
30 × 50	Max	79	15401	56257	0.05349
	Ave	73.08	7072.19	22768.82	0.04347

and-bound , [4-8] "branch- and- bound"

.

[4-7] "branch- and- bound"

.

"branch- and- bound"

9.4% 34.6%

[4-7]

×			Density	LINDO()	Column()	
10 × 10		All P	roblems ha	ve Integer	Solution	
	338	25	0.11219	1.2	0.05	0.041
10 × 20	549	28	0.02687	1.1	0.01	0.001
	367	26	0.11171	0.88	0.06	0.069
	636	32	0.08820	0.99	0.05	0.051
10 × 30	1086	37	0.08071	1.76	0.22	0.125
	989	33	0.09232	1.59	0.17	0.107
	2253	47	0.06949	3.73	0.50	0.134
10 × 40	2116	45	0.07310	4.23	0.55	0.130
	1605	50	0.06004	2.64	0.27	0.102
	3279	53	0.06257	6.43	3.57	0.555
10 × 50	2321	58	0.05486	5.77	1.64	0.284
	2069	57	0.05452	5.33	0.44	0.083
20 × 10	246	28	0.09858	0.44	0.05	0.114
20 × 20		All P	roblems ha	ve Integer S	Solution	
	1308	49	0.05604	3.95	0.50	0.127
20 × 30	3050	47	0.07053	9.12	1.53	0.168
	1835	43	0.07119	2.25	0.27	0.120
	2877	55	0.05506	8.84	2.36	0.267
20 × 40	5794	57	0.05850	27.91	20.21	0.724
	2877	55	0.05506	8.84	2.36	0.267
	3022	61	0.04907	10.77	3.46	0.043
20 × 50	4855	64	0.04863	14.55	4.89	0.336
	5966	67	0.04765	27.85	3.57	0.128
30 × 10		All Pi	roblems ha	ve Integer S	Solution	
30 × 20	790	48	0.05367	1.32	0.22	0.167
30 x 20	1054	47	0.05664	1.75	0.17	0.097
	2529	59	0.04912	4.60	0.50	0.102
30 × 30	2761	54	0.05702	4.39	0.61	0.139
	3168	60	0.05125	5.16	0.72	0.140
	3797	66	0.04478	11.15	3.07	0.275
30 × 40	3555	66	0.04479	14.28	3.13	0.219
	3094	66	0.04362	8.96	1.75	0.195
	9112	71	0.04824	15.16	6.43	0.424
30 × 50	6149	75	0.04122	10.11	2.80	0.277
	6896	76	0.04256	11.7	3.13	0.268

[4-8] "branch- and- bound"

	branch-	branch- and- bound()			Column Subtraction()				(%)
×	min	max	ave	min	max	a ve	min	max	ave
10x20	0.210	1.650	0.925	0.001	0.280	0.076	0.1	31.8	9.4
10x30	0.940	2.030	1.429	0.050	0.380	0.187	5.1	18.7	12.7
10x40	1.370	4.230	2.861	0.110	0.880	0.405	8.0	51.8	15.1
10x50	3.020	6.430	5.061	0.380	3.570	1.176	8.3	55.5	21.4
20x10	0.440	0.440	0.440	0.050	0.050	0.050	11.4	11.4	11.4
20x30	2.250	11.870	5.932	0.270	2.360	0.901	9.1	59.7	15.9
20x40	5.880	27.910	11.675	0.770	20.210	4.978	13.1	72.4	34.6
20x50	9.280	160.870	28.461	1.260	25.320	6.600	2.3	89.4	33.8
30x20	1.320	1.750	1.535	0.170	0.220	0.195	9.7	16.7	13.2
30x30	1.980	5.390	4.196	0.160	1.480	0.694	8.1	27.5	15.1
30x40	7.850	14.280	10.954	1.430	3.130	2.501	18.2	27.6	22.6
30x50	7.910	15.160	10.840	1.600	6.430	3.203	18.4	42.4	27.6

"branch- and- bound"

.

, フト . Lindo "branch- and-

bound" .

"pivoting" "ratio" (pivot element)
. 2

"0"

, (Option) . LINDO

Optimizer , 가

가

. 2 , . ,

- 48 -

5

, ,

, ,

가 .

LINDO Optimizer

. , 가

,

, "branch- and- bound"

,

, GUI

. .

.

- (1) , , 1991.
- (2) , , , 1994.
- (3) , , 1993
- (4) Goldberg David E., Genetic algorithms in search, optimizatio, and machine learning, Addison-Wesley Pub. Co 1989
- (5) Garfinkel Robert., Integer Programming, Wiley, 1972
- (6) Murty Katta G., Operations Research: Deterministic optimization model, Prentice Hall Inc., 1995.
- (7) Gass Saul I., Linear Programming methods and applications, fifth edition, McGraw Hill Inc., 1985.
- (8) Winston Wayne L., Operations Research Applications and Algorithms, 3rd Edition, International Thomson Pub., 1994.
- (9) Appelgren L. H., "A Column Generation algorithm for a ship scheduling problem", *Transportation Science*, 3, pp. 53-68 (1969)
- (10) Appelgren L. H., "A column generation algorithm for a ship scheduling problem", *Transportation Science*, 3, pp. 53-68 (1969)
- (11) Appelgren L. H., "Integer programming methods for a vessel scheduling problem", *Transportation Science*, 5, pp. 64-78 (1971)
- (12) Balas E. and Padberg M. W., "Set partitioning: A survey", SIAM Review, Vol 18, No. 4, pp. 710-760, Oct. (1976)
- (13) Bellmore M., "A maximum utility solution to a vehicle constrained tanker scheduling problem", *Naval Research Logistics Quarterly*, 15, No. 3, pp. 403-411 (1968)
- (14) Bellmore M., Bennington G. and Lubore S., "A multi-vehicle tanker scheduling problem", *Transportation Science*, 5, pp. 36-47 (1971)
- (15) Brown G. G., Graves G. W. and Ronen D., "Scheduling ocean transportation of crude oil", *Management Science*, Vo. 33, No. 3, pp. 335-346 (1987)
- (16) Dantzig G. B. and Fulkerson D. R., "Minimizing the number of tankers to meet a fixed schedule", Naval Research Logistics

- Quarterly, Vol. 1, pp. 217-222 (1954)
- (17) Rosenwein Fisher, M. L. and M. B., "An interactive optimization system for bulk-cargo Ship Scheduling", *Naval Research Logistics*, Vol. 36, pp. 27-42 (1989)
- (18) Harche F. and Thompson G. L., "The column subtraction Algorithm: An exact method for solving weighted set covering, packing and partitioning problems", *Computers & Operations Research*, Vol. 21, No. 6, pp. 689-705 (1994)
- (19) Si-Hwa Kim and Kyung-Keun Lee, "An Optimization-based decision support system for ship scheduling", *Computers & I.E., An Intl. Journal*, Vol. 33, pp. 689-692 (1997)
- (20) Si-Hwa Kim, "Optimization-based Decision Support System for Some Maritime Transportation Problems", Ph. D. Thesis, Dept. of Industrial Engineering, Pusan National University (1999)
- (21) Laderman J. and Gleiberman L., Egan J. F., "Vessel Allocation By Linear Programming", *Naval Research Logistics Quarterly*, Vol. 13, No. 3, pp. 315-320, Sep. (1966)
- (22) McKay M. D., "Computerized scheduling of seagoing tankers", Naval Research Logistics Quarterly, 21, pp. 255-264 (1974)
- (23) Ronen D., "Cargo Ships routing and scheduling: Survey of models and problems", *European Journal of Operational Research*, 12, pp. 119-126 (1983)
- (24) Ronen D., "Ship Scheduling: The Last Decade", European Journal of Operational Research, Vol. 71, pp. 325-333 (1993)
- (25) Sethi A. P. and Thompson G. L., "The pivot and probe algorithm for sloving a linear program", *Mathmatical Programming*, 29, pp. 219-233 (1984)
- (26) Whiton J. C., "Some constraints on shipping in linear programming models", Naval Research Logistics Quarterly, 14, pp. 257-260 (1967)

,

가 가 ,

· 가 , .

,

.

가 .

,