工學碩士 學位論文

A Study on the Development of a High Accuracy Dissolved Oxygen Measuring System using Polarographic Method

指導敎授 柳 吉 洙

2001年 2月

韓國海洋大學校 大學院

工學科 尹 甲 烈

本 論文 尹甲烈 工學碩士 學位論文 認准

委員長工學博士辛沃根印

- 委員工學博士金鍾和印
- 委員工學博士柳吉洙印

2001年 2月

韓國海洋大學校 大學院

工學科 尹 甲 烈

Abstract

1		
2		
	2.1	
	2.1.1	
	2.1.2	
	2.2	6
	2.2.1	7
	2.2.2	
	2.2.3	
	2.3	
3		
	3.1	H/W11
	3.1.2	
	3.1.3	
	3.2	S/W23
	3.2.1	
	3.1.2	

4		가
4.1		
	4.1.1	
	4.1.2	
4.2		1
	4.2.1 1	
	4.2.2 2	
4.3		2
	4.3.1 1	
	4.3.2 2	
4.4	가	

3

A Study on the Development of a High Accuracy Dissolved Oxygen Measuring System using Polarographic Method

Gab Ryul YUN

Dept. of Computer Engineering, Graduate School, Korea Maritime University

Abstract

Dissolved oxygen in pure water supplied to power plant may cause corrosion of piping arrangements, condensers or turbine's blades. For preventing accidents from corrosion, therefore, it is essential to measure the concentration of Dissolved oxygen in real-time.

In this paper we present a method of measuring dissolved oxygen very accurately up to ppb units. This method, called polarographic method, is based on the measures of the electric current generated by the oxidation process in cathode and deoxidation process in anode, assuming that the amount of the current is proportional to the density of dissolved oxygen. We introduce algorithms for the compensation of temperature and atmospheric pressure to reduce measuring errors and multiple amplification ratio algorithm to amplify small current.

Effectiveness of the suggested method is verified through a series of experiments in the real power plant field.

,

,

가

(,)

ppm

•

•

,

•

•

		winkler ,		(iodin metry),
	[15].		winkler	
winkler				
			가	
		•		
	[2][6],			
			ppb	
		가		, ,
가	가	[7].		

. [6].

•

(polarographic)

 가
 [3].

 가
 ,

 가
 .

 가
 .

2

2.1

2.1.1

(discolved	ovugan)		フト
(uissoiveu	oxygen)	•	

.

•

,

	Henry	1)		•
	$P_o = H \times X_o$			(1)
Po		, X.	mol	, H
	henry			

•

가

,

.

2.1.2

(Ag) (Au) (KCl, KBr, KOH) [2].

 700mV
 800mV
 71
 .
 (

)
 O2

1) Henry :

•

2.1a

winkler

•

•

,

.

.

(polarographic)

.

가

.

Fig. 2.2 Various methods to measure the quantity of dissolved oxygen

•

.

•

,

[1][3].

,

,

,

가

7ŀ μΑ), 7ŀ

•

2.2.3

(

	가			(fouling)	가
4 5			6		
			[7].	ppb	
	,	가			

•

ppm

•

•

,

가 , ,

•

.

,

ppb

.

: 0 8000 ppb

: ±1%

: ±0.5ppb

,

: +0 +45

OUTPUT: 0 5V(1 5V) or 4 20mA, RS-232 or RS-485

: / , , ,

가

,

μA μA 가.

,

.

3

,

- 9 -

,

Fig. 2.3 Diagram of measuring system

3.1 H/W

3

3.1.1

3.1

(anode)

(cathode),

가 (guard)

3.1

anode

Fig. 3.1 Structure of dissolved oxygen measuring sensor

anode		cathode
	, cathode	가

- 11 -

(3.2).

3.1 Anode Photo. 3.1 Anode unit

3.2 Cathode Photo. 3.2 Cathode unit

Anode

가

,

•

MC(nylon)

.

.

•

,

(cathode)

,

•

3.2

500 900mV

.

•

•

가

•

3.1.2

가

,

AD

Fig. 3.3 A little current amplification diagram of sensor

Fig. 3.4 Multiple amplification ratios according to input signal levels

가

10 가 가 10 가

3.6 Fig. 3.6 Air pressure sensor circuit

Кра	mBar	mV		mV	
		С		С	
- 20	846	1.317			
- 10	946	1.477	0.160	1.487	1.487
0	1046	1.637	0.160	1.645	0.158
10	1146	1.795	0.158	1.807	0.162
20	1246	1.954	0.159	1.966	0.159
30	1346	2.110	0.156	2.125	0.159
40	1446	2.270	0.160	2.283	0.158
50	1546	2.423	0.153	2.441	0.158
60	1646	2.581	0.158	2.590	0.149
70	1746	2.737	0.156	2.755	0.165
80	1846	2.891	0.154	2.912	0.157
90	1946	3.042	0.151	3.066	0.154
100	2046	3.196	0.154	3.220	0.154
110	2146	3.345	0.149	3.369	0.149
120	2246	3.499	0.154	3.525	0.156
130	2346	3.649	0.150	3.676	0.151
140	2446	3.797	0.148	3.826	0.150
150	2546	3.950	0.153	3.976	0.150

Table 3.1 Air pressure sensor test data

Fig. 3.7 Air pressure sensor test graph

3.1.3

.

CPU					Ph	illips	80c5	52		,
								[8][9][10)]. ,
						가				
					(wat	chdog t	imer)	10Bit	A/D	1
가						16Bit		A/D		
						가				,
			0	5V(1	5V)	4	20mA,	RS - 232		RS-485
	가			,						
						가				
EEPROM										
		,	,		,					
									IC	2
,							L	CD(2X16	5 line))
		가		. LC	CD					
								•		,
,						. CPU	port	5	7	가
	•	IC	D							71
		. LU	U							∠ L

, ,

•

	,						
	•					27ト	
			가			I	RS232
	가	RS485					
RS 232		IC	TTL				
MAX232 IC		. RS2	32				
		IC가					
						LED	
		RS485			IC TT	L	
	SN75	5176 IC			3.8		
		4 20m	nA, 0 5	V			가
		가		,		가	

Fig. 3.8 Block diagram of digital and analog communication module

3.2.1

•

,

,

, LCD,

,

•

(, ,) . , EEPROM

S/W

,

,

		,	RS232	RS485, 0	5V(1	5V)
4	20mA			3.9		

3.9

Fig. 3.9 Flow chart of the proposed system

ppb

,

0 V

•

,

.

가

0 ppb

,

,

3.2

,

.

가

,

.

0

•

Table 3.2 Menu items of proposed system

measure measuring mod		easuring mode	
	calibration	calibration detect	
calibration	in air	calibration state	
	zero voltage	vol. 00.000V	
	modify options	vol 000mV	
	anode volt set		
	modify options	vol. 000mV	
	guard volt set		
	modify options	dissolved oxygen	
ontion	alarm limit	limit 000ppb	
option	modify options	RS - 232	
	digital output	RS-485	
	modify options	0 5V, 1 5V	
	analog output	4 20m A	
	modify options	rolling average	
	rolling average	disable 3 5 7 9	

3	•	1	0	

,

Fig. 3.10 Remote monitoring

😑 09052000 - 위도패드	_ 🗆 🗙
파일(E) 편집(E) 보기(V) 삽입(I) 서식(Q) 도움말(H)	
Volt : 5.97543, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.99059, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.98453, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.96453, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.96700, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.96700, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.96520, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.96520, PPM : 0.00000, Temp : 27.8, Press : 1024, Time : 09/05/00.00:00: Volt : 5.96581, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.9757, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.96581, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97603, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97693, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97693, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97693, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97691, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97691, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97293, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97293, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97294, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97293, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97294, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97294, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97294, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97294, PPM : 0.00000, Temp : 27.7, Press : 1024, Time : 09/05/00.00:00: Volt : 5.97294, PPM :	01 04 10 10 10 10 10 10 10 10 10 10 10 10 10

Fig. 3.11 Dissolved oxygen value measured in PC

3.12

.

Fig. 3.12 Measuring algorithm

가

.

가

3.1.2

•

,

Fig. 3.13 Range of amplification ratio

4.1	1		(K)

Table 4.1 Specification of first subject experiment engine

	1	2	3,4		
(MW)	587	650	950 × 2		
	6 5	6 4	7		
	가				
	(2 4%)				
		()			
	G.E.C()				

(B

4.2 2

)

Table 4.2 Specification of second subject experiment engine

	G1	G2	G3, G4, G5	S 1	
(MW)	75	75	75 x 3	185	
	93 10 19				
		가			
	가 LNG 가				
	ABB				

4.1

Fig. 4.1 Organization diagram of an experiment subject system

4.2 1

4.2.1 1

•

MC(nylon)

Fig. 4.2 Test result of first experiment for 15 days

wave가

4.2.2 2

•

4.3 1

Fig. 4.3 Test result of first experiment for one day

1

4.3.11 2 B 1 $7!$ $0 ()$. . 1 $7!$. . 1 $7!$. . 1 $4.3.22$. . 1 4.4 4.4 $7!$ $7!$ $7!$ 1.1 1.1 1.1 1.1	4.3		2	
2 B 1 7 O () 	4.3.1 1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	В	1	가
7! 2 . 4.3.2.2 2 . 4.3.2.2 2 . 4.4 7! . 4.4 7! . 7! O () 60ppb . 7! . . 1 K . 2 . . 1 K . 2 .	Ο ()		1
2 4.3.2.2 4.3.2.2 2 4.4 7 7 7 7 0 () 0 () 50ppb 7 7 7 7 1 8 1 8 1 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	가			-
4.3.2.2 2 4.4 7! 7! 4.4 7! 7! 7! 0 () 60ppb 			2 .	
2 7 4.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.3.2 2			
イイ ブトブ・ ・ イノ 〇() ・ ク() 〇() ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 1 K ・ 2 ・			2	
4.4 アトフト ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			フŀ	
ブ O () 60pb , 50pb . ブ ブ ブ . 1 K . 2 ブ	4.4		가 가	
, 50ppb . アト アト ・	가		O ()	60ppb
パ パ . 1 . 2		,	50ppb .	
・ ・ 1 K ・ 2 7		가	가	
. 1 K . 2 ア				
. 2 가		1	К	
	. 2		가	

- 33 -

PP

가

가

4.5 2 B

.

1

60ppb O ()

Fig. 4.5 Test result of second experiment for 4 days

4.4 가

O (), R (-Rosemount)

0 ()

[.6]

[Table. 6] Comparison of dissolved oxygen measurement systems

•

,

	О	R	
range	0 20000 ppb	0 50/100/200 ppb	0 8000 ppb
accuracy	± 1%	± 1%	± 1%
response time	90% in 7.2sec(25)	90% in 20sec	90% in 30sec
sample temp.	0 50	0 44	0 45
max. pressure	20bar	3.45bar	10bar
sample flow	180 M@ /min	250 M@ /min	180 M@ /min
output	0 5V DC 0/4 20mA RS232/485	0 1/5/10V DC 0/4 20mA	0 5V(1 5V) DC 4 20mA RS232/485 High/Low Alarm
dimension	221.5 × 132.5 × 195(mm)	$257 \times 235 \times 300 (mm)$	245 × 130 × 175(mm)
case classification	IP65, NEMA4	NEMA4	IP65

•

.

. O

O R , .

가

가

.

.

,

 $Ag(OH)_2$

가

.

,

,

5

(AVT)

.

,

,

가

•

(OT)

,

,

•

,

- 38 -

- [1] 3 , "DO Meter , 1987.
- [2] J.P. Hoare, "The Electrochemistry of Oxygen," Interscience, New York, 1968.

,"

,

- [3] D.P. Lucero, "Design of Membrane-Covered Polarographic Gas Detectors," Vol. 41, APRIL, 1978.
- [4] H. Suzuki, "Disposable Clark oxygen electrode using recycled materials and its application," Sensors and Actuators B21, pp.17-22, 1994.
- [5] L. Nei and R.G. Compton, "An improved Clark-type Galvanic sensor for dissolved oxygen," Sensors and Actuators B30, pp.83-87, 1996.
- [6] , " ," , ('97), pp. 38-48, 1997.
- [7] 小川 修一,"," (), pp. 58-61, 1997.

- [8] , , C 8051, ohm , 1998.
 [9] 4 , 8051 Embedded Microcontroller 8051, , 1997.
- [10] http://www.semiconductors.philips.com/mcu/applications/
- [11] , *OP* , , 1998.
- [12] **谷本** 茂, OP , , 1994.
- [13] 3600 Analysis for Oxygen, Orbisphere 3600 model Manual.
- [14] Rosemount Analytical model 7001D Oxygen monitors, Rosemount 7001D model Manual.
- [15] http://my.netian.com/~pdhan/2_6/do.htm.
- [16] ",", , 1999.

Appendix 1. A photograph of sensor

Appendix 2. Fixed of membrane

Appendix 3. Temperature and pressure sensor

Appendix 4. Dissolved oxygen measuring system

Appendix 5. Free amplify

Appendix 6. 10 times amplify of free amplify

Appendix 7. 100 times amplify of free amplify

: uA	10ΜΩ	1 ΜΩ	100 kΩ	10 kΩ
0.00005		0.03220		
0.00010		0.03240		
0.00020		0.03280		
0.00030		0.03320		
0.00040		0.03350		
0.00050		0.03390		
0.00060		0.03430		
0.00070		0.03460		
0.00080		0.03500		
0.00090		0.03530		
0.00100		0.03570	0.04140	
0.00200		0.03930	0.04180	
0.00300		0.04290	0.04210	
0.00400		0.04650	0.04250	
0.00500		0.05010	0.04280	
0.00600		0.05370	0.04320	
0.00700		0.05730	0.04350	
0.00800		0.06090	0.04390	
0.00900		0.06450	0.04430	
0.01000		0.06810	0.04460	0.03250
0.02000		0.10410	0.04820	0.03280
0.03000		0.14010	0.05180	0.03320
0.04000		0.17620	0.05540	0.03360
0.05000		0.21210	0.05900	0.03390
0.06000		0.24820	0.06260	0.03430
0.07000		0.28420	0.06620	0.03460
0.08000		0.32020	0.06980	0.03500
0.09000		0.35620	0.07370	0.03540

Appendix 8. Multiple amplification test data

: uA	1 0ΜΩ	1 Μ Ω	100 kΩ	10 kΩ
0.10000		0.39220	0.07700	0.03570
0.20000		0.75300	0.11300	0.03930
0.30000		1.11300	0.14900	0.04290
0.40000		1.47300	0.18500	0.04650
0.50000		1.88300	0.22100	0.05010
0.60000		2.19300	0.25700	0.05370
0.70000		2.55300	0.29200	0.05730
0.80000		2.91300	0.32800	0.06100
0.90000		3.27300	0.36490	0.06460
1.00000		3.63300	0.40090	0.06820
2.00000		7.23000	0.76100	0.10390
3.00000		10.84000	1.12100	0.13950
4.00000			1.48100	0.17580
5.00000			1.84100	0.21190
6.00000			2.20100	0.24820
7.00000			2.56100	0.28380
8.00000			2.92100	0.32000
9.00000			3.28100	0.35620
10.00000			3.64100	0.39180
20.00000			7.25000	0.75300
30.00000			10.85000	1.11400
40.00000				1.47400
50.00000				1.83400
60.00000				2.19500
70.00000				2.55500
80.00000				2.91500
90.00000				3.27600
100.00000				3.63600
200.00000				7.25000
300.00000				10.85000

Appendix 9. Multiple amplification test data

Appendix 10. Circuit of digital part

Appendix 11. Circuit of analog part

,

.

,

,

, ,

•

,

•

,

, ,

· , , ,

,

가

•

•

,

•

•