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시간 지연을 고려한 해상 크레인의 상하동요 보상 

시스템의 능동제어

Seong, Hyung Seok

Department of Convergence Study on the Ocean Science and Technology

Ocean Science and Technology School
Korea Maritime and Ocean University

Abstract

This thesis presents a heave compensation system for offshore crane when it gets 
unexpected disturbances and external force. The dynamic model consists of crane 
assumed to be the rigid body, hydraulic driven winch, elastic rope and payload. To 
keep the payload from moving up and down, PD control is applied by using 
linearization. For better performance, sliding mode control and nonlinear generalized 
predictive control algorithm is applied due to the time-delay. As a result, the 
oscillating amplitude of the payload is reduced by using the control algorithm. 
Considering the time-delay assumed one second involved in the system, nonlinear 
generalized predictive controller with robust controller is suitable control algorithm 
for this heave compensation system because it makes the position of payload reach 
the desired position with least error. In the end of thesis, it shows the control 
algorithm using the robust control and its simulation results.

KEY WORDS: Active heave compensation 상하동요 능동제어; Nonlinear system 비선

형 시스템; Sliding mode control 슬라이딩 모드 제어; Time-delay 시간 지연; Nonlinear 
generlized predictive control 비선형 일반 예측 제어.
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Chapter 1. Introduction

1.1 Background and History

With the demand for offshore platform in the deep sea, the installation depth of offshore 

platforms has been deeper and the size of them has been larger. Also the maintenance and 

repair for the installed platform including the subsea exploration around them have extended 

the range from the sea along the coast to the sea far from the coast whose depth is over 

3000 m. Moreover, these tasks are needed in the difficult situation such as in the Arctic 

Ocean. So the position control of the offshore crane which is operated for working in those 

kinds of situation has become important. When the offshore crane is working on the sea 

with the environmental loading such as ocean waves, tidal currents, or winds such as shown 

in Fig. 1.1. the position control of the offshore crane does matter. Since they cause the crane 

(or vessel) to place away from the desired position both horizontally and vertically. There 

have been lots of heated discussions, a number of control techniques and studies for dealing 

with the position control for horizontal motion. However, the position control for vertical 

motion has not attracted researcher’s attention.

Fig. 1.1 The offshore crane in operation
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Fig. 1.2 The offshore crane in harsh condition

To ensure the functionality of the crane system under harsh sea conditions such as the 

situation described in Fig. 1.2, it is important to prevent the payload motion from moving 

unaffected by the environmental loading-induced crane motion. So the object is to safe and 

accurate positioning operate when transferring, or holding the payload shown in Fig. 1.3. It is 

crucial to consider the tension of the rope which the payload is attached to because it causes 

the damping dynamics in underwater condition. In addition, the unwanted vertical motion of 

the payload should be reduced noticeably regardless of the environmental loading.

The problem of safe and accurate position control for the offshore crane in tough sea 

conditions has been addressed by many publications in the past. Especially, in the view of 

vertical position control, there are two types of control for heave compensation. The first one 

is called passive heave compensation (PHC). PHC is a technique used to reduce the effect of 

waves or other unwanted disturbance upon lifting and drilling operations. A simple passive 

heave compensator is a soft spring which acts like a vibration isolator. The main principle in 

PHC is to store the energy from the external forces influencing the system where the input 
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is ship motion and output is a reduced amplitude motion of attached one. Therefore, shock 

absorbers or drilling compensators are simple forms of PHC.

Fig. 1.3 The suspended payload

Another approach is to use the active heave compensator which applies a force onto the 

load. This system is called active heave compensation (AHC) system. AHC is a technique 

used on lifting equipment to reduce the influence of waves or other environmental loading 

upon offshore operations. There are difference between PHC and AHC system in that AHC 

system is an actual control system actively trying to compensating for any movement at a 

desired position. A control system is often based on programmable logic controller and it 

calculates how the active parts of the system should react to the movement. Therefore, the 

performance of an AHC system is limited by motor speed, torque, energy or power, by 

measurement accuracy and its delay, or by computing algorithms. It does matter to choose 

the control method that which kind of control algorithm used to preset values or delayed 

signals, considering other environmental loading. 

Among the first active heave systems Southerland (1970) showed the mechanical handling 

systems which evaluates the ship motion and payload response to various sea conditions. The 
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control method of relative motion compensation and load attenuation was studied where the 

system is a spring-loaded tether. By pulling in and out the tether, a hydraulic proportional 

valve was adjusted to keep the payload constant height from the deck.

The mechanically actuated system was presented by Blanchet and Reynolds (1977) and 

patented. A heave compensator package capable of transferring heavy loads was invented to 

compensate an accurate fine positioning control of the load.

In 1980s, Barber (1982) invented a control system for a motion compensating arrangement 

which stabilizes a body suspended by a flexible line from a support structure. This system 

was circuit based AHC system so that it was capable of detecting and sensing the heave 

motion. From this invention, the study for a support structure subject to uncontrolled or 

unwanted disturbance causing oscillating movements began.

In the meantime, the theory and algorithm of AHC system were developed in the sonar 

field. Hutchins (1978) invented a heave compensation system for an underwater towed 

seismic system. The system has a circuit having simple double integrator converting 

accelerometer data into vertical motion data. A pressure transducer located in a support 

structure produced a pressure signal indicative of the depth so that the sonar array used for 

mapping the ocean bottom by using the circuit. By measuring the vertical position data, the 

system made the sonar array adjust the sonar pulse timing, correcting for vertical motion.

This kind of method using the sonar data to correct the vertical motion, improved method 

was invented by El-Hawary (1982). By applying fast fourier transform (FFT) to measured 

sonar data, the frequency components of heave motion were analyzed. Then by means of 

Kalman filter, it was able to establish a refined value of the high frequency important in 

getting an accurate account of the seabed profile.

As late as 1990s, Jones and Cherbonnier (1990) invented the motion compensation system 

especially, concerning multiple actuators and control mechanisms. Integrating typically existing 

compensators and their circuits, this control system advantageously included an hydraulic fluid 

pump, and a four-way directional control valve to use multiple actuators. This kind of 
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practical and specializing in heave compensating system was presented by Robichaux and 

Hatleskog (1993). The system using microprocessor and a responsive operator was particularly 

useful in improving the operational results of hydraulic or pneumatic drill string compensators 

on floating drilling rigs. The system was based on a microprocessor control including 

mechanical hardware and software adjusting the control parameters to multiple platforms such 

as marine vessels, floating offshore drilling rigs or traveling blocks. This improved system 

made operator modify only software part by changing several parameters which cost less 

expensive than before also it broadened the AHC system application field.

It does matter to diminish vessel heave motion from the drill strings when the drilling 

vessels is drilling at sea. That purpose was in accord with the one of AHC system so that 

research had been conducted by applying AHC system to the drilling system. Korde (1988) 

removed the effect on the drill-ships from heave motion which it made the operating time 

longer and them stable. In this system, the simulation showed complete decoupled dynamic 

system by using the linear model which utilized the accelerometer data for position and force 

feedback. After then, the research for nonlinear model based control system has been 

suggested for application by Do and Pan (2008).

1.1.2 Recent research

To acquire the heave motion of the offshore crane effected by disturbance on the sea in 

the real time, the modern system uses an inertial measurement unit(IMU) such as shown in 

Fig. 1.4. 

Fig. 1.4 Motion reference unit
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By Using 3-axis accelerometers and gyroscopes, an IMU determines ship motion. Since the 

payload is attached to the end of the rope, between sensors and control systems there are 

time delays in the input-output signal system. It is critical to design the control system with 

the time delay minimized. Kyllingstad (2012) came up with the transfer function filter to 

adjust the phase or time lag for minimizing time delay. On the other hand, Kuchler, et al., 

(2011) used heave prediction algorithms to estimate and predict the heave motion of the 

vessel based on previous measurements and then applied control action based on these 

predicted motions. 
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Chapter 2. Mathematical Model of Dynamics

In order to formulate control system for any dynamic model, it is important to understand 

background knowledge and fundamental concepts about the processes and physical laws 

governing the dynamics. With respect to AHC system, factors for instance dynamic forces 

acting on the offshore crane, hydraulic-driven winch system, elastic forces due to rope and 

various forces on the payload should be considered. This chapter introduces some of these 

fundamental ideas and concepts about AHC system with describing above factors minutely.

2.1 Coordinate of AHC system

AHC system consists of the offshore crane, the hydraulic-driven winch and the payload 

cling to the elastic rope. The offshore crane is considered as a rigid body system for 

simplicity. The hydraulic-driven winch system is acting like a first-order dynamic system. 

Since AHC system concentrates upon estimating and compensating the heave motion of the 

payload, only the vertical motion coordinate is defined. That makes horizontal forces acting 

on the system neglected, so are any random currents. Furthermore, the offshore crane is not 

affected by the motion of payload because it is considered as rigid body. The control 

purpose of AHC system is to maintain the position of the payload when it is located at the 

deep sea.

The system coordinate has 1-DOF; only z axis is considered. As to understand the whole 

pictures, Fig. 2.1 depicts the overall dynamic factors. And only the z axis position is 

considered here, Fig. 2.2 and Fig. 2.3 help to understand the whole concept. The z axis 

represents the position of payload which points along depth length under the sea. Note that 

the z axis is zero at the surface and points downwards; hence, it is positive for increasing 

depth. 
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Fig. 2.1 The whole sketch of AHC system

Fig. 2.2 Dominant movement in AHC system
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Fig. 2.3 Without heave compensation ; general explanation

The position of the payload   consists of the length of rope , the extension of elastic 

rope ∆ and payload motion effected by the offshore crane disturbances acting on  . So 

the position of the payload   is defined by equation (2.1).

     ∆    (2.1)

For the winch system, the hydraulic-driven winch is located at the top of offshore crane. 

Because only 1 degree is considered and above assumption changes the offset of the origin 

of the rope so that it does not break any characteristics of dynamic model. The length of 

rope depends upon the angle of winch and is defined as equation (2.2)

      (2.2)

where   denotes the rope length at initial time,  denotes the radius of the winch and 

 denotes the angular displacement of the winch.

The rope is elastic so that it has elastic coefficient defined by (2.3).
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   


 (2.3)

Here   is the Young’s modulus of the rope and   denotes the intersectional area of the 

rope.

Since the elastic rope oscillates under the sea, the extension of rope length is divided into 

a static part and a dynamic part as in (2.4)

∆  ∆  ∆  (2.4)

where ∆   and ∆  denote the static rope extension and the dynamic rope extension, 

respectively.

2.2 Dynamic relations among the forces

From the rope extension, the forces acting on AHC system are described in this section. 

The static rope extension is given by the static equilibrium of forces which is written as 

following equation (2.5)

      (2.5)

where   denotes the gravitational force,     denotes the static spring force of the rope 

and  denotes the buoyancy force caused by the hydrostatic lift. The gravitational force   

is given by equation (2.6)

     


   (2.6)

where   denotes the gravitational constant,   denotes the mass of payload and    

denotes the mass of the rope per meter. The static spring force of the rope     is given 

by equation (2.7).

   

  ∆ (2.7)

And the buoyancy force  is given by equation (2.8)
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     


   (2.8)

where   denotes the density of the water,   denotes the volume of the payload and   

denotes the nominal rope length submerged in water.

The equivalent mass for AHC system is given by equation (2.9)

      


  (2.9)

where   denotes the added mass coefficient term accounting for the heave motion of 

the payload submerged in water.

The dynamic rope extension caused by the motion of offshore crane and payload can be 

obtained by applying to Newton’s second formula. Equation (2.10) shows the dynamic 

relations


         (2.10)

where   denotes the acceleration of the payload,    denotes the dynamic spring force, 

  denotes the rope’s damping force and   denotes the hydrodynamic drag force. The 

dynamic spring force     is given by equation (2.11)

   

  ∆ (2.11)

The damping force of the rope is given by equation (2.12)

  ∆  (2.12)

where   denotes the damping coefficient of the rope. The hydrodynamic drag force   is 

given by equation (2.13)

  


        (2.13)

where   denotes the drag coefficient,   denotes the payload’s nominal cross-sectional 

area in the heave direction and   denotes the velocity of the ambient water particles which 
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is neglected because it is assumed that the payload is submerged far below the water 

surface.

2.3 Hydraulic-driven winch system dynamics

In the AHC system, the control input is given by the hydraulic-driven winch system. The 

dynamic equation of hydraulic-driven winch system is given by equation (2.14)

  

  


  (2.14)

where   denotes the acceleration of the winch angle,   denotes the velocity of the winch 

angle,   denotes the time constant of the winch dynamics,   denotes the proportional 

constant of the flow rate to the input voltage  ,   denotes the transmission ratio and 

  denotes the volume of the hydraulic motor. Here the sketch of AHC winch is drawn 

in Fig. 2.4 also the actual AHC winch is shown in Fig. 2.5.

Fig. 2.4 Sketch of AHC winch and the payload



- 13 -

Fig. 2.5 Actual picture of AHC winch
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Chapter 3. Control strategy

3.1 PD Controller

In AHC system, the position of the payload is measured in real time by using the inertial 

measurement unit(IMU). The control purpose is to keep the position of the payload still so 

the error is defined as the difference between the desired trajectory and its actual position. 

From the above definition, PD(Proportional-Derivative) controller is applied to AHC system in 

order that the motion of the payload is reduced. Since the hydraulic-driven winch dynamics 

is simple differential equation with the second order, the solution which shows the relation 

equation between the rotational angle and control input is easily acquired as shown in 

equation (3.1).

    
  

 
  (3.1)

By using the linearization for the input-output relation equations, the output is written as 

in equation (3.2)

      


∆     


∆   (3.2)

from the equation (3.2), the PD control input is attained.

3.2 Sliding mode controller

From the chapter 2, the dynamic equations can be transformed into the state-space 

equation as following equation (3.3)

         ∆   
∆    

   (3.3)

In this notation, the dynamic equations can be written in equation (3.4)
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               ≥ 

  






   
 

 
















    


 




 (3.4)

where  denotes the dynamic characteristics of the system,   denotes the constant 

matrix for control input which indicates the characteristics of the winch system,  denotes 

the disturbance included in the system and   denotes the matrix for adjusting the constant 

parameters for the output.

The robust controller is quite suitable choice where uncertain disturbances and parameters 

exist because it effectively cancels out them. Especially, in that AHC system has nonlinear 

characteristics and uncertain parameters also unwanted disturbances, sliding mode 

controller(SMC) is a reasonable choice to handle this system. SMC is the robust controller 

for the disturbance also the uncertain parameters while this controller is easily applied to the 

nonlinear system, too (Young, et al.,1999). As mentioned above, the error is defined as the 

error which is the difference between the desired trajectory and current position. In addition, 

another error is defined as the difference between the desired velocity and current velocity. 

These definitions make the sliding surface   by using the errors as in equation (3.5)

           (3.5)

The sliding surface is convergent to zero where Lyapunov stability is satisfied which 

means that the purpose of control is achieved in AHC system. The error which denotes the 

difference between the desired trajectory and current position as  , and error which denotes 

the difference between the desired velocity and current velocity as   makes equation (3.5) as 

following equations (3.6) and (3.7)
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        
  (3.6)

    
  (3.7)

From the above equations (3.4) and (3.7), the relation equation of errors is attained as 

equation (3.8)

           (3.8)

In order to satisfy the sliding surface equation   , the equivalent control input   is 

calculated as in equation (3.9)

        
    (3.9)

So the control input for SMC is as following in equation (3.10)

    ∆        (3.10)

where the parametric conditions for  is as in equation (3.11)

              (3.11)

The above equation (3.11) shows the sliding condition for satisfying the Lyapunov 

stability. The constrained condition for parameters including uncertainties are as following 

equations (3.12), (3.13).

     ≤    (3.12)






                ≤      (3.13)

3.3 Nonlinear generalized predictive controller

In the circumstances where the disturbances and unexpected or uncertain parameters exist, 

to control the nonlinear system, the nonlinear generalised predictive control (NGPC) is one of 

the most promising algorithms (Chen, et al., 2003). For applying the nonlinear system, the 

extended results from the appendix A.2 are used in this section.
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The following assumptions are imposed on the nonlinear system given by equation (3.4) :

(A1) The zero dynamics are stable.

(A2) All states are available.

(A3) Each of the system output  has the same well-defined relative degree .

(A4) The output  and the reference signal  are sufficiently many times 

continuously differentiable with respect to .

The output prediction procedures are given by the Taylor series expansion. In the moving 

time frame, repeated differentiation up to  times of the output   with regard to time is 

needed. Since the relative degree is one here, equation (3.14) denotes the repeated 

substitution of AHC system where the output   is assumed to be  for the 

conventional notation.

     ∂
∂

      (3.14)

For deriving the control input from the nonlinear system, one more differentiation is 

needed shown in equation (3.15).

     
          

    (3.15)

where   denotes the equation (3.16)

      
  

 
  

  (3.16)

From the equation (3.15),     is calculated as shown in equation (3.17)

   
         

    

 
    

 (3.17)

The output predicted matrix is given by the equation (3.18)
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  











 

 

 




































  
 (3.18)

where    denotes a matrix valued function of control inputs as shown in the equation 

(3.19)

          (3.19)

From the equations (3.15) to (3.19), the output   at time  is practically predicted 

by the equation (3.20)

  ≃        (3.20)

Here the matrix  and   given by shown in the equation (3.21) and (3.22)

        (3.21)

 



 


  



 (3.22)

Also to get the   at time  is given by the Taylor expansion of . This 

reference signal is given by the equation (3.23)

             (3.23)

Considering the time delay, this is given by the Taylor series expansion by using the 

following matrix   as shown in the equation (3.24)

           

    

 (3.24)

where       denotes moving horizon time frame interval matrix. The following equation 

(3.25) denotes the control input for the system.

    
      

     (3.25)

where  denotes the relative degree for the system and  denotes the desired 

trajectory function. The matrix   and   denotes the attained tracking trajectory and the 
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predictive trajectory calculated by the Taylor expansion. The matrix M is given by the 

equation (3.26).

       


     

 (3.26)
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Chapter 4. Simulation Results

In this chapter, a series of control algorithm on the AHC system is utilized. At first, in 

the view of practical application where actual operating offshore crane is being utilized the 

specification and parameters for simulation of AHC system are shown as in Table 4.1.

Symbol Description Units Value

 Young’s modulus  ×

 Intersection of the cable   × 

 Length of the cable  

 Equivalent mass   × 

 Time constant - 

 Radius of the winch  

Table 4.1 Parameters used for the simulation in analyzing numerically

Simulation time is 100 second and the unwanted disturbances are assumed to be the 

regular wave source    sin and   sin  sin . In 

this thesis, the simulation tool is Simulink. Whole simulation consists of two parts which are 

inner loop and outer loop for simulation. Fig. 4.1 shows outer loop for simulation and Fig. 

4.2 shows inner loop which consists of all the dynamics and control algorithms, respectively. 

As described above, the position of the payload is measured in real time by using the 

inertial measurement unit(IMU) and the two errors which are position error between the 

desired position and actual position and velocity error between the desired velocity and actual 

velocity are utilized for the control algorithm.
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Fig. 4.1 Outer loop for simulation

Fig. 4.2 Inner loop for simulation
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4.1 PD Controller

The entire block diagram for AHC system is shown in Fig.4.3. As the entire system 

consists of dynamic system, disturbance, controller, winch encoder, and sensor, Fig.4.3 shows 

the whole flow of the AHC system. PD control algorithm is input to the system as a 

controller in the block diagram.

Fig. 4.3 The block diagram for active heaving compensation system

At first, the characteristic of the dynamic of AHC system is shown in Fig. 4.4 and Fig. 

4.5. As shown in Fig. 4.4 and Fig. 4.5, the dynamic characteristic of AHC system is 

oscillating movement of payload. Due to the disturbance assumed to be the regular wave 

while on the sea actual disturbance is the irregular wave which however, is not considered in 

this study, the motion of the payload is oscillating, obviously. Its maximum displacement is 

0.58m where the origin of the payload is located at 2,000m under the sea. 
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Fig. 4.4 Dynamic response for    sin

Fig. 4.5 Dynamic response for   sin  sin 
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Fig. 4.6 Dynamic response with PD control for    sin

As shown in Fig. 4.6, when PD control is applied, the relative motion of payload is 

decreased into 0.082m. The effect of the PD control is clearly seen since the displacement of 

payload is decreased as expected. After comparing with the graphs in Fig. 4.4 to 4.6, they 

show the similar tendency that the movement of payload is oscillating. Since the PD control 

is originally reducing the amplitude of its variables, it looks like PD control algorithm is 

well applied to this system.

4.2 Sliding mode controller

Since the sliding mode controller(SMC) is robust controller for the rigid body system and 

the offshore crane is assumed to be rigid body, it looks plausible to apply SMC to AHC 

system. Also the SMC is based on the error dynamics, the sliding surface is defined as error 

multiplied by gain constant given by sliding surface condition and Lyapunov stability. In this 

study, only the numerical analysis is conducted, however, the uncertain parameters and gains 

are calculated properly to decrease the motion of payload. The relative motion of the payload 
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with SMC algorithm applied is shown in Fig. 4.7.

Fig. 4.7 Dynamic response with SMC for    sin

As comparing the Fig. 4.4 to 4.7, the result graph with SMC applied clearly shows the 

effect of robust control. The maximum amplitude of the payload is reduced into 0.0602m. 

While the chattering exists, the amplitude is only in about 10% compared to the original 

dynamic characteristic already has. Since the SMC has chattering, also the dynamic 

characteristic is oscillating. It doesn’t matter what kind of controller is used to this system,   

because the oscillating motion is not removed.

Also as comparing the Fig. 4.5 to Fig. 4.8, Fig. 4.8 shows the effect of SMC. The low 

frequency disturbance makes the controlled output stable at the end while the chattering is a 

little bit remained.
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Fig. 4.8 Dynamic response with SMC for   sin   sin 

As AHC system has time-delay problem. It’s obvious seen from the Fig. 4.9 which shows 

the whole block diagram relating with the SMC applied. Since the dynamics parameters and 

variables are detected by the sensors, got calculated by winch encoder, and are to be used to 

derive the control algorithms, there are time-delay between the sensors and other devices. 

Actually, time-delay is the main issues to signal-system part but in this paper, only the 1 

second time-delay existing is considered for the simulation.

So if the 1 second time-delay is considered for above controller, Fig. 4.10 shows the 

retarded graph tendency compared to Fig. 4.7.
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Fig 4.9 The time-delay factors on active heaving compensation 

system

Fig 4.10 Dynamic response with 1s time-delay and SMC for 

   sin  
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4.3 Nonlinear generalised predictive controller

Assumed SMC algorithm already applied, nonlinear generalised predictive controller 

(NGPC) can dwindle the first period of oscillation amplitude due to the predictive algorithm. 

Also, once in a stable stage, the amplitude(the relative motion of the payload) is a little 

reduced due to NGPC. It means that SMC is a robust controller so that the other controller 

combined in the same system can not affect much. 

In this section, the simulation result which the combined controller including both SMC 

and NGPC shows is shown in Fig. 4.11.

Figure 4.11 Dynamic response with 1s time-delay also SMC and NGPC  for 

   sin

Since the SMC and NGPC are both applied, the maximum amplitude of oscillating 

payload is reduced into 0.0524m. And as already mentioned above, the first period of 

oscillating amplitude is a little decreased. 
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Chapter 5. Conclusions

In this thesis, heave compensation control system which consists of the offshore crane 

assumed to be the rigid body, the hydraulic-driven winch, the elastic rope and the payload is 

modeled by mathematically and implemented in a simulation. The purpose of control is to 

maintain the relative motion of the payload from the reference point in still and the 

important variable in this system is the dynamic variation of the elastic rope’s length. That’s 

why to control the relative motion of the payload, dynamic model is set including the 

dynamic variation of the elastic rope’s length and the rotational angular variable of winch. 

As for controlling the position of the payload, PD control algorithm is the first option to 

choose. Since the purpose of the control is matched, and the characteristics of error dynamic 

are shown in AHC system. By using PD controller, the simulation shows the maximum 

amplitude is reduced into 0.13m from 0.58m where no controller is used.

In the view of the error dynamics, the robust controller, i.e., here the sliding mode 

controller is proposed and used for simulation. Since SMC does effectively cancel out the 

disturbance and handle with other unexpected or uncertain parameters, actually the simulation 

result shows the dramatically reduced amplitude change about 90%. Also the time-delay is a 

issue on this system because the payload is located at under the deep sea, the detected 

information and calculating time should be considered. So the time-delay is assumed to be 1 

second and due to nonlinear characteristic of this system, nonlinear generalised predictive 

control algorithm is used for dealing with the time-delay. NGPC doesn’t affect much the 

amplitude since combined robust controller, here, SMC. The simulation result which is using 

both SMC and NGPC shows only the a little reduced amplitude change from the former 

simulations. Obviously, SMC is effectively canceling out the disturbances and leaving the 

chattering on the system, no other controller combined with SMC would show the effective 

amplitude change in the system. However, in this thesis, only the regular wave acts a 

disturbance source which could be the reason for above result. So in the case the irregular 

wave sources or similar wave forms are input to the system, NGPC could do more than. 
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Also the time-delay is in this thesis 1 second assumed, more precise and practical calculated 

time-delay is needed for further research. 
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Appendix A

A.1 Feedback linearization

Another way to get feedback linearization of nonlinear system is to construct a nonlinear 

control law as a so-called inner loop control (Spong, et al., 2004). It means that by a 

suitable state space change of coordination, the nonlinear system is changed into the feedback 

linearizable system. The new coordinates of the transformed system satisfy with the 

traditional control deesign specifications for instance tracking and disturbance rejection. 

From the equation (3.4), the whole AHC system is transformed into equation (A.1) by the 

suitable change of coordinate.

         ∂
∂   (A.1)

where  denotes the nonlinear change of coordinate. In this system, the control input 

is given by the equation (A.2).

     


       (A.2)

In advance, to use the above control law, conditions for Frobenius theorem should be 

verified. The following equations (A.3) ~ (A.8) are needed to verify.

          (A.3)

where  denotes   

  for simplification.

      


  


  (A.4)

here the 
  denotes   

   , also    is the Lie bracket of   and  , 

which makes a third vector field defined by      ∂

∂
  ∂

∂
 .
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
    



    

 
 





    



 
 








  (A.5)


       








  (A.6)

where   and   are respectively,

  





    

 


 
    

 


  (A.7)

     











    

 







    
 







    

 



 




    
 

  
 




 

 (A.8)

Since the rank of      
   

     is 4, the conditions are satisfied with so 

that the new coordinate can be assigned into   . Take the simplest solution shown in 

equation (A.9), other coordinates are attained consequently which are shown in equations 

(A.10), (A.11) and (A.12)

      (A.9)

         
  



∂

∂
    (A.10)

         
  



∂

∂
    


 


  (A.11)

         
  



∂

∂
 

   


     












 (A.12)

The control law here is equation (A.2), so equation (A.13) is needed to get     
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      
  



∂

∂
     


   







 (A.13)

also the equation (A.14) is needed to get     

      
  



∂

∂


 

     


 


 




   

 
 






 (A.14)

where                 for simplification, respectively.

The control input for the new coordinate system is as following equation (A.15).

    


    

   
 (A.15)
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A.2 Predictive control of general nonlinear systems

An single-input-single-output(SISO) general nonlinear system can be described by the 

equation (A.16)

       
   

 (A.16)

where ∈   ∈ and ∈  are state, input and output respectively. The results 

developed in this section are capable of extending to multivariable general nonlinear systems.

For the sake of simplicity, the following notation is introduced in this section :

  ∂
∂

 (A.17)



  ∂

∂

  
 for    (A.18)

 

    ∂

∂

 
 (A.19)

Suppose that the output of the nonlinear system in the prediction horizon is approximated 

by its Taylor series expansion up to order  ≥ . One has

  ≈     ⋯ 


    ≤  ≤   (A.20)

The derivatives of the output required in the approximation are given by

  ∂
∂  ∂

∂
  

 (A.21)

and
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  ∂
∂

∂
∂

 ∂
∂

∂
∂

 

  (A.22)

The last equality follows from the notation in (A.17), (A.18). Similarly, one has

    

  for   ⋯  (A.23)

and

     ∂

∂



∂

∂



  

   

   (A.24)

Differentiation of      with respect to time  and substitution of the system’s dynamics 

gives

    ∂

∂

  
 ∂

∂

  
 ∂

∂

 


∂

∂

  
 

 

 

    

      

 (A.25)

where

  ∂

∂

  
 ∂

∂

 
 ∂

∂

  
  (A.26)

Repeating the above procedure, the higher order derivatives can be calculated until the th 

order derivative, which given by

    

  

               ⋯        (A.27)

where         ⋯        is a complicated nonlinear function of 

   ⋯      . 

Invoking (A.27) into (A.20), the output in the receding horizon is approximated by its 

Taylor expansion to the order  as

   ≈    ≤  ≤   (A.28)
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 where

     ⋯ 


 (A.29)

and

         ⋯              ⋯    


















⋮



 



  



  

⋮



 















⋮




 



   

⋮



           ⋯      

 (A.30)

In the same fashion, the command   in the receding horizon can be also be 

approximated by its Taylor series expansion to order  as

     (A.31)

where

         ⋯        ⋯      (A.32)

After approximating the output of the nonlinear system (A.1) and the reference to be 

tracked by series expansion, the tracking error then can be calculated by

          ≈      (A.33)

Thus the predictive control performance can be approximated by

 ≈ 
 





    

 


 





  

 


    

 (A.34)
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where

  




 













   


 



⋯  


   

  




 






 



⋯  


   

  

 


   

  

 


   

  

⋯ 


   

  

 (A.35)

At the time , MPC attempts to find the optimal control profile in the receding horizon, 

   ≤  ≤  , to minimise the tracking error. After the nonlinear system (A.16) is 

approximated by its Taylor series expansion up to the order , the highest derivative of the 

control required is  . Hence all the control profile in the receding horizon can be 

parametrarized by 

       ⋯  
  

     (A.36)

Therefore, instead of minimising the performance index  in terms of the control profile 

 ,  ≤  ≤   directly, the performance index  can be minimised in terms of 

variables    ⋯     . However, for a general nonlinear under consideration as 

in (A.1), the control   does not appear in a linear manner and it is difficult to give the 

explicit solution for  . To avoid this problem, the control   is considered as a new state 

variable, and the performance  is minimised in terms of    ⋯      . 

The necessary condition for the optimality is given by

∂
∂

  (A.37)  

where

    ⋯        (A.38)

When the tracking error is approximated by its Taylor series expansion up to order  ≥ , 
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the NMPC is given by

    (A.39)

where 

    

       

         (A.40)

    











 



    

⋯



    

 (A.41)

and ∈     is the first row of the matrix   
 ,

  










  


   

  

⋯   


   

  

⋮ ⋮ ⋮

 


   

  

⋯    


     

    
, (A.42)

  










     


   

  

⋯   


     

    

⋮ ⋮ ⋮

     


     

    

⋯   


   

  
 (A.43)
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