저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리와의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
무선 네트워크에서 최소 전력 브로드캐스트를 위한 트리 기반 탐욕 알고리즘

A Tree-based Greedy Algorithm for Minimum Power Broadcast in Wireless Networks

지도 교수 장길웅

2017 년 2 월

한국해양대학교 대학원

데이터정보학과
이동호
본 논문을 이동호의 이학석사 학위논문으로 인준함.

위원장 김익성 (인)
위 원 장 김웅 (인)
위 원 박찬근 (인)

2016년 11월 28일

한국해양대학교 대학원
목 차

List of Tables .. ii
List of Figures .. iii
Abstract ... iv

1. 서 론 ... 1

2. 관련 연구
 2.1 확률기반의 방법 ... 5
 2.2 이웃 노드 정보를 이용한 방법 ... 6
 2.3 클러스터를 이용한 방법 .. 6
 2.4 최소 비용 신장트리를 이용한 방법 ... 7

제 3 장 제안된 알고리즘
 3.1 네트워크 모델 ... 10
 3.2 Neighborhood Greedy 알고리즘 ... 11

제 4 장 성능 평가
 4.1 실험 환경 .. 18
 4.2 성능 비교 및 분석 ... 19

제 5 장 결론 및 향후 과제 .. 24

참고문헌 ... 26
List of Tables

Table 1 브로드캐스트 수행 횟수에 따른 이웃 노드 리스트 ... 16
Table 2 네트워크 총 전송 에너지 .. 17
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>무선 브로드캐스트 과정</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>무선 환경에서의 브로드캐스트와 유니캐스트</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>BIP 알고리즘의 동작 과정</td>
<td>8</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>BIP 브로드캐스트 트리 구성의 예</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>NG 알고리즘</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>트리 구성의 첫 번째 단계</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>트리 구성의 두 번째 단계</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>트리 구성의 세 번째 단계</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>브로드캐스트 트리 완성 단계</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>네트워크 노드 개수에 따른 전송 에너지 비교</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>최대 전송거리에 따른 전송 에너지 비교</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>네트워크 노드 개수에 따른 브로드캐스팅 횟수</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>최대 전송거리에 따른 브로드캐스팅 횟수</td>
<td>23</td>
</tr>
</tbody>
</table>
A Tree-based Greedy Algorithm for Minimum Power Broadcast in Wireless Networks

Lee, Dong Ho

Department of Data Information
Graduate School of Korea Maritime and Ocean University

Abstract

Wireless networks are composed of wireless devices with the limited battery. They can be used in the situation where the supply of powers is not practical, therefore it is important to construct the energy efficient routing protocol.

In this paper, we propose tree-based greedy algorithm to solve the minimum power broadcasting problem for minimizing the total transmit power on broadcasting in wireless networks. We apply a neighborhood list, which is a set of nodes that can transmit message to other nodes within the maximum transmission energy to the proposed algorithm. Among the nodes that receive the data, a node that has the greatest number of the neighborhood list transmits data to neighbor preferentially. We compare the performance of the proposed algorithm with other existing algorithms through computer simulation in terms of transmitting energy of nodes. Experiment results show that the proposed algorithm outperforms better than the existing algorithms.

KEY WORDS: Wireless networks; Minimum power broadcasting; Minimum spanning tree; Greedy algorithm.
제 1 장 서론

최근 무선 통신 기술의 발달로 사회 전반에 걸쳐 무선 네트워크 분야가 활용되고 있다. 케이블로 연결되어 통신하는 유선 네트워크와 달리, 무선 네트워크는 직접적인 연결 없이 각 장치의 통신 반경 내에 있는 장비들과 자유롭게 통신할 수 있다. 따라서 각 장비들을 유선으로 연결할 필요가 없기 때문에 네트워크 설계비용이 상대적으로 저렴하고, 통신망 구축이 비교적 자유롭다. 무선 네트워크 기술은 노드들의 위치가 고정된 네트워크부터 각 노드들이 수시로 이동하는 에드혹(ad hoc) 네트워크, 그리고 다양한 환경의 센싱(sensing)을 위한 수많은 센서들로 구성된 무선 센서 네트워크 등의 다양한 응용 네트워크 어플리케이션 개발에 활용될 수 있다.

데이터를 전송하는 방식은 크게 유니캐스트(unicast), 브로드캐스트(broadcast), 멀티캐스트(multicast)의 세 가지 방법으로 나눌 수 있으며, 이들 중 브로드캐스트는 라우팅 경로를 획득하기 위한 효율적인 전송 방식 중 하나이다. 네트워크에서의 브로드캐스팅은 네트워크상에 존재하는 모든 노드에게 메시지를 전송하는 방식이며, 다수의 수신자에게 효율적으로 동시에 데이터를 전달하기 위해 사용된다(Nguyen, et
무선 네트워크에서 하나의 특정 노드에게 데이터를 직접 전송(directly transmission)하는 유니캐스트 방식과는 달리, 브로드캐스트는 노드의 단일 전송만으로 주위의 여러 노드들에게 메시지를 보낼 수 있다(Das, et al., 2003). 네트워크상의 노드 i에서 노드 j로 데이터를 송신할 때 유니캐스트 방법은 오직 노드 j만이 메시지를 수신하지만, 무선 브로드캐스팅은 노드 i와 노드 j 사이에 있는 모든 노드들이 j에 관한 묵시적 전송(implicitly transmission)을 받는다. 그림 1은 무선 브로드캐스트의 메시지 전송 과정을 간략히 보여준다.

그림 1과 같이, 노드의 브로드캐스팅 과정에서 실제로 전송을 받는 노드보다 송신하는 노드에 더 가까운 두 개의 노드는 전송 받는 노드에 대한 묵시적 전송을 받는다는 것을 알 수 있다. 이와 같은 묵시적 전송을 받는 노드들은 송신 노드에 의한 직접 전송이 일어나지 않기 때문에 노드간의 전송 에너지 소모가 일어나지 않는다. 그러므로 모든 노드에게 단일 전송을 해야 하는 유니캐스트 방식과 비교하여 전송 에너지 측면에서 에너지 소비가 효율적임을 알 수 있다. 그림 2는 4개의 노드로 이루어진 무선 네트워크에서 브로드캐스트와 유니캐스트를 나타낸 것이다.
그림 2(a)와 같이 소스 노드(source node) \(S \)에서 이웃 노드로의 브로드캐스팅을 수행한 경우, 각 노드로 전송 시 소비되는 전송 에너지의 값들은 최대의 전송 에너지만으로 모든 이웃 노드들에게 메시지를 보낼 수 있다. 그림 2(a)의 경우 소스 노드의 2번 노드로의 전송 에너지 값 4로 주위의 1, 3번 노드들에게 브로드캐스팅을 실시할 수 있다. 반면에 유니캐스트 방식은 소스 노드가 네트워크 내의 모든 노드들과 통신하기 위해서 각 노드들과의 단일 전송이 필요하며, 그림 2(b)의 경우 2+3+4=9의 에너지를 사용하여야만 모든 노드와의 통신이 가능하다. 이와 같이 무선 브로드캐스트에서 묵시적 전송을 이용하여 전송 에너지를 감소시킬 수 있는 성질을
무선 브로드캐스트 이점(wireless broadcast advantage)이라고 정의한다(Wieselthier, 2001).

위의 무선 브로드캐스트의 성질을 이용하여, 전체 송신 전력을 최소화 하는 최소 전력 브로드캐스트(Minimum Power Broadcast : MPB) 문제를 해결하기 위한 연구가 활발히 진행되고 있다. 무선 네트워크에서의 브로드캐스트 성능을 향상시키기 위한 연구는 확률에 기반을 둔 방법, 최소 비용 신장트리(Minimum Spanning Tree : MST)를 이용한 방법, 이웃 노드 정보를 이용한 방법, 클러스터(cluster)를 구성하는 방법 등으로 분류할 수 있다. 본 논문에서는 이들 중 이웃 노드 정보를 이용하여, 각 노드의 브로드캐스트 메시지 수신 상태를 고려한 탐욕(greedy) 알고리즘을 제안한다. 각 노드들간 전송 반경 내에 있는 이웃 노드들을 탐색한 뒤, 가장 많은 이웃 노드를 가지고 있는 노드에게 우선적으로 브로드캐스팅을 수행하여 에너지 효율을 높이는 방법을 제안한다.

본 논문의 구성은 다음과 같다. 2장에서 MPB 문제를 해결하기 위한 관련 연구들을 기술하고, 3장에서는 에너지 효율적인 브로드캐스팅을 위한 이웃 노드 기반의 탐욕 알고리즘을 기술한다. 4장에서는 기존 연구들과의 전송 에너지 소비 측면에서 성능을 비교하고, 마지막으로 5장에서는 결론 및 향후 과제를 제시한다.
제 2 장 관련 연구

유선 네트워크에서 전체 노드에 메시지를 브로드캐스트하기 위해서는 Prim 알고리즘을 이용한 최소 비용 신장트리(Minimum Spanning Tree : MST)를 사용하면 된다(Sahni, 2000). MST는 네트워크를 구성하는 모든 노드들을 포함하는 그래프에 최소값을 갖는 간선을 연결한 것이다. 트리 상의 간선을 거쳐 데이터를 전송하면 망을 구성하는 모든 노드들이 데이터를 수신 받게 된다. 하지만 무선 네트워크 환경에서는 한 노드가 보낸 패킷을 이웃 노드들이 동시에 수신하게 되는 특성이 있어 트리 상의 경로를 따라 브로드캐스트를 수행하는 것이 비효율적일 수도 있다. 따라서 트리에 기반을 둔 방법뿐만 아니라 여러 가지 접근법으로 MPB 문제를 해결하기 위한 연구들이 진행되었다.

2.1 확률기반의 방법

각 노드들의 데이터 전송 여부를 확률에 기반을 둔 방법으로 고정 확률 브로드캐스트가 있다(Song, et al., 2011). 이 방법은 노드들이 브로드캐스트 패킷을 수신했을 때 고정된 \(p(0 \leq p \leq 1) \)의 확률로 데이터를 주로 전달하는 방법이다. 각 노드는 확률적으로 패킷을 주로 전달하지 않을 수 있기 때문에 모든 노드가 브로드캐스트를 수행하는 blind flooding에 비해 전체적인 패킷 전송 횟수가 줄어들게 된다. 그러나 네트워크에 속한 모든 노드들에게 브로드캐스트 되는 것을 보장할 수 없으며 망의 상황에 따라 \(p \)의 값을 적절하게 선택하여야 한다.

노드 카운터(counter)를 사용하는 방법도 제안되었다(Tonguz, et al., 2006). 이 방법은 각 노드들이 브로드캐스트 메시지를 받았을 때 이웃 노드들이 받게 되는 중복된 메시지의 수를 세어 그 수가 임계값 \(C \)를 넘는 경우에는 패킷을 주로 전달하지 않는 방법이다. 즉 중복된 패킷을 계속 받는 경우에는 자신이 주로 패킷을 전달하지 않아도 주위의 노드들이 다른 노드들을 통해 패킷을 받게 될 것이라고 생각하는
것이다. 이 방법은 임계값 C를 적절하게 선택하기 어려우며 중복된 패킷을 세는 시간 동안 메시지 전송이 지연되어 전체적인 브로드캐스트 시간이 커진다는 단점을 지닌다.

2.2 이웃 노드 정보를 이용한 방법

어떤 노드들이 특정 노드에 인접해 있는지를 알 수 있다면 이러한 정보를 이용하여 브로드캐스트 효율을 높일 수 있다. 인접 노드의 정보를 얻기 위해서는 각 노드들이 주기적으로 인접 노드 관련 패킷을 보내는 것이 일반적인 방법이다. 패킷을 수신한 노드는 패킷을 송신한 노드가 자기 자신과 인접해 있다는 것을 알 수 있다.

이러한 인접 노드를 이용한 기법으로 Self Pruning 기법이 제안되었다(Wu & Dai, 2003). 이 알고리즘은 브로드캐스트 시 자신의 인접노드 리스트를 브로드캐스트 메시지에 같이 실어서 보내게 되고, 메시지를 수신한 노드들은 송신 노드의 인접 노드 리스트를 자신의 인접노드 리스트와 비교하여 차이가 있으면 브로드캐스트를 수행하고, 그렇지 않으면 브로드캐스트를 수행하지 않는다. 즉 주위의 모든 노드가 이전 노드로부터 이미 메시지를 받았을 것으로 생각되면 패킷 전달을 취소하여 전송 횟수를 줄임으로써 MPB 문제를 해결하는 방안을 제시하였다.

2.3 클러스터를 이용한 방법

클러스터 기법은 두산망을 구성하는 노드들을 클러스터 단위로 분류하는 기법이다(Tripathy & Chinara, 2012). 하나의 클러스터는 클러스터 헤드(cluster head)와 일반 노드들로 구성된다. 클러스터 헤드는 클러스터의 중심에 위치한 노드로서 클러스터에 속한 모든 노드는 클러스터 헤드의 이웃 노드가 된다. 일반 노드 중 일부 노드는 게이트웨이(gateway) 노드가 된다. 게이트웨이 노드는 서로 다른 클러스터를 연결하는 역할을 하는 노드이다. 클러스터 헤드와 게이트웨이 노드들만이 데이터를 전달하게 되면 브로드캐스트가 가능하게 된다. 이처럼 네트워크상의 모든 노드들을 클러스터 구조로 재구성하여 브로드캐스트를 수행하는 방법이 클러스터 기반의 브로드캐스트 방법이다. 클러스터 기법의 문제는 클러스터 구성을 위한 추가적인 패킷 교환이 많고, 게이트웨이를 적절히 설정하지 않을 경우 패킷 전달 횟수가 많아져 불필요한 에너지 소모가 발생할 수 있다.
2.4 최소 비용 신장트리를 이용한 방법

유선 네트워크에서의 MPB 문제를 해결하기 위해 사용되는 최소 비용 신장트리를 무선 환경에 맞게 설계한 최소 증분 전력(Broadcast Incremental Power : BIP) 알고리즘이 제안되었다(Wieselthier, 2000). 이 알고리즘은 소스 노드만이 포함된 트리 토로 시작하여 전체 전체의 전송 에너지 증가량이 최소가 되는 노드를 트리에 하나씩 추가한다. 네트워크상의 모든 노드들이 트리에 추가되면 무선 브로드캐스트 이점을 적용하여 전체 송신 에너지를 계산하는 과정을 수행한다(Wieselthier, 2002). BIP 알고리즘은 본 논문이 제안하는 알고리즘과 밀접한 관련이 있기 때문에 아래에 자세히 설명한다.

BIP 알고리즘의 브로드캐스트 트리 생성 과정은 그림 3에 간략히 설명되어 있다. 초기의 브로드캐스트 트리 \(T \)은 소스 노드만을 포함하는 트리로 시작되며 네트워크의 노드들은 트리에 하나씩 추가된다. 추가될 다음 노드 \(i \)는 트리에 포함되어있는 노드들과 통신할 수 있는 이웃 노드(neighbor node) 관계와하며, 트리 전체의 송신 전력을 \(P_T \)라고 할 때 \(P_{T,i} - P_T \)를 최소화 하는 노드이다(Bean, 2010). 네트워크의 모든 노드가 \(T \)에 추가되면, 부모 노드에 연결되어있는 자식 노드들 중 가장가 가장 큰 노드들을 실제 전송거리로 하여 전체 송신 에너지를 계산하는 방법이 수행된다.
BIP algorithm(G, S) {

Step 1: // construct a broadcast Tree T

$T = \{ s \}$;
Do k= 1 to n {
 Let i be a node that is not in T but is a neighbor of a node in T and such that $P_{T \cup i} - P_T$ is minimum.
 $T= T \cup \{ i \}$;
}

Step 2: Perform a sweep over the nodes, restructuring T to reduce total transmission energy

Fig. 3 BIP 알고리즘의 동작 과정

그림 4는 BIP 알고리즘을 사용하여 브로드캐스트 트리를 구성하였을 때의 전송 경로의 예를 보여주고 있다. 그림 4의 네트워크는 소스 노드를 포함한 10개의 노드로 구성되어 있고, 전송 가능한 노드 사이에는 각각의 가중치가 부여된 간선으로 연결되어 있다. 전송 에너지 P_T는 전송에 참여한 노드들이 실제로 전송한 노드의 가중치를 합한 값으로 가정한다. 초기의 브로드캐스트 트리 T는 소스 노드만이 포함되어 있으므로 전체 송신 에너지 P_T는 0이고, $P_{T \cup i} - P_T = 3$으로 최소가 되는 2번 노드가 트리에 추가된다. 두 번째 트리 추가 과정에서는 P_T는 3이고, $P_{T \cup i} - P_T = 1$이 되는 3번 노드를 트리에 추가한다. 이러한 과정을 반복하여 그림 4와 같은 브로드캐스트 트리를 구성할 수 있다.
모든 노드들이 트리에 추가되면, 무선 브로드캐스트 이점을 적용한 전송 에너지를 구하기 위한 과정을 수행한다. 처음 패킷을 보내는 소스 노드의 경우, 트리에서 소스 노드와 연결되어 있는 1, 2, 3번 노드들 중 전송 에너지가 가장 큰 1번 노드로 실제 전송을 하게 되면, 1번 노드보다 전송 에너지가 작은 2, 3번 노드는 1번 노드에 관한 묵시적 전송을 받게 된다. 즉, 전송에 참여하는 노드들의 자식 노드 중 가장 큰 전송 에너지를 소모하는 노드를 실제 전송 경로로 선택하여 전체 송신 에너지 P_T를 계산하는 것이다. 전송에 참여한 노드의 전송 에너지를 P_s라고 하면, 소스 노드에서의 전송 에너지 P_s는 가장 큰 에너지를 소모하는 1번 노드와의 전송 에너지인 6이 되고, 그 다음 전송 노드인 1번 노드의 전송 에너지 P_1은 자식 노드인 4번과 5번 노드의 전송 에너지 중 가장 큰 값인 6이다. 마찬가지로 전송에 참여한 3, 6, 7번 노드에 대해서도 실제로 전송하는 경로를 찾는 과정을 수행하면 전체 송신 에너지 P_T의 값은 6+6+4+3+9=28임을 알 수 있다.

BIP 알고리즘은 유선 네트워크에서의 최적화에 사용되는 MST를 무선 환경에 적합한 형태로 수정하였기 때문에 에너지 효율적인 트리를 구성할 수 있지만, 추후에 일어나는 에너지 전송을 생각하지 않는 점 때문에 트리를 생성할 때 MST에서는 나타나지 않는 불필요한 전송 에너지 소모가 발생할 확률이 높다.
제 3 장 제안된 알고리즘

본 장에서는 무선 네트워크에서 MPB 문제를 해결하기 위해 MST에 기반을 둔 탐욕적인 휴리스틱 알고리즘을 제안한다. 각 노드들의 브로드캐스트 시 목표적 전송을 받는 노드들이 많을수록 전체 네트워크의 전송 횟수가 작아져 송신 에너지를 절약할 수 있다는 가정 하에, 이웃 노드의 정보를 이용하여 가장 많은 이웃 노드를 가지고 있는 노드에게 브로드캐스트 우선순위를 부여한다.

3.1 네트워크 모델

본 논문에서는 위치가 고정된 \(n \)개의 노드들로 구성된 중앙집중식(centralized) 무선 네트워크를 이용한다. 처음 브로드캐스트를 수행하는 소스 노드와 나머지 노드는 직점 또는 호핑(hopping) 방식으로 통신하며, 각 노드들은 다른 노드들에게 데이터를 전송하는 중계 노드의 역할을 수행할 수 있다. 신호 수신, 데이터 처리 활동에 관련된 에너지 소비는 없다고 가정하며, 송신 전력은 실제로 데이터를 주고받는 노드들의 유클리드 거리에 비례한다. 네트워크에 존재하는 모든 노드들에게 데이터를 송신하는 것이 목적이므로, 각 노드들은 적어도 하나 이상의 노드들과 통신할 수 있다.

그래프 \(G=(V,E) \)에 대하여 \(V \)는 각각의 무선 노드들의 집합을 의미하고, \(E \)는 각 노드들이 통신하기 위한 전송거리를 간선으로 나타낸 것이다. 노드 \(v \in V \)에 대하여 각 노드는 최대 전송거리 \(R \)을 가지며, 각 노드들의 최대 전송거리 내에 위치한 노드들을 이웃 노드라고 정의한다. 각각의 노드 \(v_1, v_2 \in V \)에 대하여 \(d_{v_1v_2} \)는 두 노드간의 유클리드 거리를 나타내며, \(v_1 \)이 \(v_2 \)에 메시지를 전송하기 위해 필요한 에너지는 \(c \cdot (d_{v_1v_2})^\alpha \)에 비례하는 에너지 모델을 사용한다. 여기서 \(c \)는 상수이고, \(\alpha \)는 경로 손실 지수(path loss exponent)이다.(Wieselthier, 2001). 전송 거리 이외의 에너지 손실이 없다고 가정할 때, MPB 문제는 식 (1)과 같은 각 노드의 송신 에너지 \(P_{v_i} \)의 총 합을 최소화 하는 것이며,
브로드캐스트 이점을 적용하기 위해서는 식 (2)와 같이 P_{v_i} 가 최대 전송거리와 가까운 이웃 노드로 브로드캐스트 메시지를 전송하게 되면 그보다 가까운 거리에 있는 이웃 노드들은 묵시적 전송을 반복 되기 때문에 전송 에너지 소모를 줄일 수 있다.

\[P_T = \min \sum_{i=1}^{n} P_{v_i} \quad (1) \]

\[P_{v_i} = \max (d_{v_i v_j} \mid v_j \text{ is a neighbor of } v_i) \quad (2) \]

3.2 Neighborhood Greedy 알고리즘

NG 알고리즘은 2장에서 언급한 BIP 알고리즘의 불필요한 에너지 소모를 줄이기 위해 세롭게 제안한 알고리즘이다. 단순한 BIP 알고리즘을 사용하게 되면, 트리 구성 과정 중 트리에 속한 노드가 새로운 노드로 데이터를 전송할 경우, 이웃 노드에 관한 불필요한 에너지 전송이 발생할 수 있다. NG 알고리즘은 이러한 BIP 알고리즘의 단점을 최소화하기 위해 각 노드들에 최대한의 전송거리로 브로드캐스팅을 수행함으로써 묵시적 전송을 받는 노드의 수를 증가시켜 이웃 노드간의 불필요한 전송 에너지 소모를 최소화하였다. 또한 각 노드의 이웃 노드 정보를 이용하여 브로드캐스트 메시지를 받지 않은 이웃 노드가 가장 많은 노드에게 브로드캐스트 우선순위를 부여하여 전송 에너지 효율을 높인다.

 초기의 브로드캐스트 트리 T는 소스 노드 v_s를 포함한 상태로 시작한다. 트리를 구성하는 절차는 크게 두 가지로 나눌 수 있는데, 하나는 트리에 추가할 노드들을 선택하는 절차이고, 나머지 하나는 트리에 포함된 노드들 중에서 브로드캐스트 우선순위를 부여할 노드를 찾는 것이다. 그림 5는 NG 알고리즘을 간단히 요약한 것이다.
Heuristic NG(){

\[T = \{s\}; \]
\[N_{v_k} = \text{a list of } v_k \text{'s neighborhoods but not in } T \text{ (} 1 \leq k \leq n); \]
\[T = T \cup N_{v_k}; \]

Step 1 : construct a broadcast tree \(T \)

Do \(i = 1 \) to \(n \) {
Let \(v_u \) be a node that is in \(T \) and \(\| N_{v_u} \| \) is maximum;
\[T = T \cup N_{v_u}; \]
renew \(N_{v_u}; \)
If all nodes in networks are in \(T \) then
END

Step 2 : Perform a sweep over the nodes, restructuring \(T \) to reduce total transmission energy:
}

Fig. 5 NG 알고리즘

그림 5를 보면, 초기의 브로드캐스트 트리 \(T \)에는 소스 노드 \(v_s \)만이 포함되어 있는 상태이므로, \(v_s \)의 이웃 노드 전체를 트리에 추가한다. 그 다음 \(T \)에 속한 노드들 중 브로드캐스트 우선순위를 부여할 노드를 탐색한다. 각 노드들은 이웃 노드 리스트를 가지고 있으며, 이웃 노드 리스트 \(N_v \)는 식 (3)과 같이 트리에 구성되어 있지 않고 \(v_i \)의 최대 전송거리 내에서 통신할 수 있는 노드들의 집합이라고 정의한다.

\[N_{v_i} = \{v_j \not\in T \mid d_{v_i,v_j} \leq R\}, \ 1 \leq i,j \leq n \] (3)
트리에 추가된 각 노드들은 브로드캐스트 메시지에 포함되어있는 수신 노드 리스트를 참조하여 이미 패킷을 수신한 이웃 노드를 리스트에서 삭제하는 과정을 거쳐 이웃 노드 리스트를 갱신한다. 이후 수정된 이웃 노드 리스트 정보를 참조하여 가장 많은 이웃 노드를 가지고 있는 노드에게 브로드캐스트 우선순위를 부여한다. 브로드캐스트 자격을 받은 노드는 이웃 노드로의 브로드캐스팅을 수행하고, T에 추가하는 과정을 반복한다. 네트워크상의 모든 노드들이 브로드캐스트 트리에 구성될 때 까지 위 절차를 반복하며, 트리가 완성 되면 무선 브로드캐스트 이점을 적용시켜 전체 송신 에너지를 계산하는 과정이 수행된다.

그림 6에서 그림 9는 NG 알고리즘을 사용하여 브로드캐스트 트리를 구성하는 과정을 보여주고 있다. 10개의 노드로 이루어진 무선 네트워크를 나타내고 있으며 임의로 주어진 각 노드들의 최대 전송거리를 이용하여 통신할 수 있는 노드들을 각각 간선으로 연결한 것이다.

그림 6은 트리 구성의 초기 단계를 보여준다. 처음의 트리에는 소스 노드만이 포함되므로 소스 노드의 이웃 노드로 브로드캐스팅을 수행한다. 이 경우 노드 v_1, v_2, v_3가 트리에 포함된다. 그리고 그림 7과 같이 트리에 속한 노드들의 이웃 노드 리스트를 비교하여 가장 많은 이웃 노드를 가지고 있는 노드에게 브로드캐스트 우선순위를 부여한다. 아래 그림의 경우 $N_1 = \{v_4, v_5\}$, $N_2 = \{v_6\}$, $N_3 = \{v_4, v_5, v_6\}$으로 가장 많은 이웃 노드를 가지고 있는 v_3에게 브로드캐스트 권한을 부여한다. 이후 v_3은 자신의 이웃 노드로의 브로드캐스팅을 수행하며, 이 경우 노드 v_4, v_5, v_6가 트리에 포함된다. 브로드캐스팅을 한번 수행할 때마다, 브로드캐스트 메시지를 받은 노드들은 이웃 노드 리스트를 갱신한다.
그림 8은 브로드캐스트를 3회 수행했을 때 트리에 구성되는 노드들을 보여주고 있다. 트리에 구성된 노드들 중 이웃 노드 리스트의 크기가 가장 큰 노드는 \(v_4 \)이며, 이웃 노드로의 브로드캐스트를 수행하게 된다. 브로드캐스트 메시지를 받은 \(v_7 \)과 \(v_8 \)은 자기 자신의 이웃 노드 리스트에서 트리에 추가된 노드들을 삭제하여 리스트를 갱신한다.
표 1은 브로드캐스트 수행 시 갱신되는 이웃 노드 리스트를 보여준다. 소스노드로부터 처음 브로드캐스트를 실시했을 때 v_1, v_2, v_3가 트리에 추가되고, 이들의 이웃 노드 리스트를 탐색하여 이미 트리에 추가된 노드들이 존재한다면 리스트에서 삭제하는 과정을 수행한다. 노드 v_2의 경우, 브로드캐스트를 수행하기 전에는 $N_2 = \{v_s, v_3, v_6\}$으로 3개의 이웃 노드를 가지고 있었지만 브로드캐스트를 1회 시행한 후에는 v_s와 v_3가 리스트에서 삭제됨을 보여준다. 마찬가지로 브로드캐스트를 2회 수행했을 때, 트리에 추가되는 v_4, v_5, v_6은 자신의 이웃 노드 리스트를 갱신하고 이 경우 이웃 노드 리스트의 크기가 가장 큰 v_4에게 브로드캐스트 우선순위를 부여한다.

Fig. 8 트리 구성의 세 번째 단계
Table 1 브로드캐스트 수행 횟수에 따른 이웃 노드 리스트

<table>
<thead>
<tr>
<th>N</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_8</td>
<td>{v_1, v_2, v_3}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_1</td>
<td>{v_4, v_5}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_2</td>
<td>{v_6}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_3</td>
<td>{v_4, v_5, v_6}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_4</td>
<td>{v_1, v_3, v_7, v_8}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_5</td>
<td>{v_1, v_3, v_6, v_8}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_6</td>
<td>{v_2, v_3, v_5, v_7}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_7</td>
<td>{v_4, v_6, v_8, v_9}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_8</td>
<td>{v_4, v_7, v_9}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>N_9</td>
<td>{v_7, v_8}</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

그림 9와 같이 네트워크의 모든 노드들이 트리에 구성되면, 전체 송신 에너지를 계산하는 과정을 실시한다. 이 과정은 식 (2)와 같이 브로드캐스트 우선순위를 부여받은 노드를 탐색하여, 간선의 가중치가 가장 큰 이웃 노드만을 남겨두고 나머지 노드들의 가중치는 생략하는 것이다. 이는 무선 브로드캐스트 이점을 이용하여 전송 에너지 소비를 감소시킬 수 있다는 점을 의미한다.
표 2는 네트워크 내의 총 전송 에너지를 보여준다. 그림 9를 보면, 브로드캐스트 메시지를 보내는 노드는 소스 노드와 3번, 4번, 8번 노드이며 식 (2)에 의해 소스 노드는 1번 노드로 실제 전송을 하게 되고, 나머지 송신 노드들도 각 노드의 연결된 자식 노드들 중 가장 큰 전송거리를 가진 노드로 실제 전송을 하게 된다. 나머지 수신 노드는 송신 노드의 실제 전송에 관한 묵시적 전송을 받게 된다.

Table 2 네트워크 총 전송 에너지

<table>
<thead>
<tr>
<th>전송 노드</th>
<th>수신 노드</th>
<th>P_{e_i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_s</td>
<td>v_1, v_2, v_3</td>
<td>6</td>
</tr>
<tr>
<td>v_3</td>
<td>v_4, v_5, v_6</td>
<td>6</td>
</tr>
<tr>
<td>v_4</td>
<td>v_7, v_8</td>
<td>6</td>
</tr>
<tr>
<td>v_8</td>
<td>v_9</td>
<td>8</td>
</tr>
<tr>
<td>총 전송 에너지</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
제 4 장 성능 평가

4.1 실험 환경

에너지 효율적인 브로드캐스트를 위해 제안한 NG 알고리즘을 여러 가지 환경에서 모의실험하고 그 성능을 분석해 보았다. 실험 비교 대상으로 트리 기반의 MST, BIP와 브로드캐스트 우선순위를 무작위로 부여하는 랜덤 브로드캐스트 알고리즘과 성능을 비교하였다. OS는 Microsoft Windows 10을 이용하였으며 시뮬레이션 프로그램은 Microsoft Visual Studio 2015를 사용하여 C 언어를 기반으로 각 알고리즘을 실험 환경에 맞게 구현하였다. 각 알고리즘들의 정확한 성능 비교를 위해 모든 비교는 100번의 시뮬레이션 결과의 평균값으로 비교하였다.

성능 평가는 크게 세 가지 방향으로 수행되었다. 먼저, 각 알고리즘들의 네트워크상에 존재하는 노드의 밀도에 따른 성능을 비교하기 위해 노드의 개수를 적절히 설정하여 제안된 알고리즘이 효율적인 브로드캐스팅을 수행하였는지의 여부를 분석하였고, 노드의 최대 전송거리를 다르게 설정하여 기존 알고리즘과 상대적인 전송 에너지 효율을 분석하였다. 마지막으로 동일한 조건에서 브로드캐스팅 시 직접 전송한 노드의 개수를 계산하여 전체 네트워크에서 브로드캐스트가 수행된 횟수를 비교하였다.

100 × 100 크기를 가지는 2차원 네트워크에서 각각 50, 150, 300개의 노드를 네트워크의 임의의 위치에 배치하여 동일한 소스 노드에서 브로드캐스트를 수행하였다. 네트워크 전체의 전송 에너지 P_r는 브로드캐스트 메시지를 송신한 모든 노드의 전송거리의 합으로 계산하였다. 이때, 상수 c와 경로 손실 지수 α는 1로 지정하고, 각 노드의 최대 전송거리 R은 15, 20, 25로 동일하게 설정하였다.
4.2 성능 비교 및 분석

네트워크의 밀도에 따른 성능 평가를 위해 고정된 크기의 네트워크에 존재하는 노드의 개수를 50, 150, 300개인 환경에서 성능을 비교 분석하였다. 각 노드의 최대 전송 거리 $R=20$으로 동일하게 설정하였다. 네트워크상의 모든 노드에게 브로드캐스트 메시지를 전송하는 것이 목표이므로 각 노드는 하나 이상의 노드들과 통신을 할 수 있도록 적절하게 설정하였으며, 노드 간의 거리가 R보다 먼 경우에는 노드 간의 통신이 불가능하다고 가정하였다. 그림 10은 노드 개수에 따른 전송에너지비를 나타낸 것이다.

![그림 10 네트워크 노드 개수에 따른 전송 에너지 비교](image)

그림 10을 보면 NG 알고리즘은 노드의 개수가 300개인 경우를 제외하고 전체적으로 MST, BIP 알고리즘과 비슷한 성능을 보이는 것을 알 수 있다. 비교적 낮은 밀도의 네트워크 환경에서는 이웃 노드의 개수가 많지 않기 때문에 가장 많은 이웃 노드를
가지고 있는 노드에게 브로드캐스트 우선순위를 부여하는 NG 알고리즘의 장점을 활용하지 못했으나, 높은 밀도의 네트워크 환경에서는 위의 장점을 활용하여 가장 좋은 효율을 보이고 있다는 것을 알 수 있다. 따라서 MST와 BIP 알고리즘은 노드의 수가 많고 네트워크 밀집도가 높은 네트워크에서는 적합하지 않는다는 것을 알 수 있다.

가장 왼쪽에 위치하는 노드의 개수가 50개인 경우를 살펴보면 BIP 알고리즘이 가장 좋은 성능을 보이고 있다는 것을 알 수 있다. 배치된 노드의 수가 상대적으로 적고, 밀도가 낮기 때문에 이웃 노드의 개수가 많지 않았고, 그로인해 BIP의 단점을 보완하기 위해 제안된 이웃 노드 기반의 NG 알고리즘도 MST와 BIP 알고리즘의 불필요한 에너지 소모를 방지할 수는 없었다. 그래프의 가운데에 위치하는 노드의 개수가 150개인 네트워크의 경우, 전체적으로 에너지 소모가 증가하였다. 임의로 브로드캐스트 우선순위를 부여하는 랜덤 알고리즘을 제외하면 나머지 3가지 알고리즘들은 모두 비슷한 수준의 에너지 소모를 보여주고 있지만, NG 알고리즘의 에너지 소비가 상대적으로 효율적인 것을 알 수 있다. 마지막으로 노드의 개수가 300개인 네트워크의 경우를 살펴보면, NG 알고리즘은 가장 좋은 효율을 보이고 있으며, MST와 BIP는 상대적으로 비효율적인 에너지 소모를 보이고 있다는 것을 알 수 있다. 따라서 단순한 MST와 BIP 알고리즘을 통한 브로드캐스트 트리의 구성은 노드의 밀도가 높은 네트워크에 적합하지 않는다는 것을 알 수 있다.

다음 실험에서는 NG 알고리즘이 고정된 노드의 배치에서 각 노드들의 최대 전송거리에 관계없이 좋은 에너지 효율을 보일 수 있는지에 대한 성능을 평가하였다. 비교를 위해서 최대 전송거리 \(R \)의 값을 각각 15, 20, 25로 설정하여 전송 에너지를 비교하였다. 네트워크의 크기는 \(100 \times 100 \), 노드의 개수는 NG, MST, BIP가 비슷한 성능을 보이고 있는 150으로 설정하여 실험을 수행하였다. 그림 11은 동일한 크기의 네트워크에서 노드 간의 최대 전송거리에 따른 전송 에너지 소모를 보여주고 있는 그래프이다.

그림 11의 경우, NG 알고리즘은 노드의 최대 전송거리에 관계없이 상대적으로 좋은 에너지 효율을 보여주고 있으며, \(R \)이 증가할수록 전송 에너지 소모가 줄어드는 것을 알 수 있다. 이는 노드의 전송 반경이 넓어짐으로써 목적지 전송이 많아져 에너지 효율적인 브로드캐스팅을 가능하게 해 주는 NG 알고리즘의 특징이 잘 반영되었다고.
할 수 있다. MST, BIP 알고리즘은 R에 관계없이 비교적 비효율적인 브로드캐스팅을 수행하고 있다.

마지막으로, 무선 네트워크에 사용되는 노드들의 특성상 무선 통신에 사용되는 전력의 비중이 가장 높기 때문에, 브로드캐스트 수행 횟수가 많을수록 에너지 전송에 사용되는 부가적인 전력 소모가 발생할 것이다. 따라서 이번 실험에서는 NG 알고리즘과 기존 알고리즘의 브로드캐스팅 횟수를 동일한 환경에서 시뮬레이션 하였다. 실험은 두 가지 방향으로 실시하였다. 한번은 동일한 최대 전송거리를 설정하여 네트워크의 노드 개수를 다르게 하여 실험하였고, 두 번째는 동일한 노드 개수의 네트워크에서 최대 전송거리를 각각 다르게 설정하여 시뮬레이션을 수행하였다.

네트워크상의 노드의 개수에 따른 성능 평가를 위해 $R=20$으로 동일하게 설정하고, 네트워크의 노드 개수를 각각 50, 150, 300으로 하여 브로드캐스트 수행 횟수를 비교하였다. 그림 12는 네트워크상의 노드 개수에 따른 브로드캐스팅 횟수를 나타낸
그림 12에서, 노드의 개수와 관계없이 NG 알고리즘의 전송 횟수가 가장 작은 것을 알 수 있다. 네트워크의 노드가 증가함에 따라 전체적으로 브로드캐스트 수행 횟수가 증가하지만, BIP, MST 알고리즘은 브로드캐스트 수행 횟수가 높은 폭으로 증가하는 반면, NG, 랜덤 알고리즘은 증가 폭이 작음을 보였다.

노드의 전송 반경에 따른 브로드캐스팅 횟수 비교를 위해 노드 개수 \(n = 150 \) 으로 설정하고 최대 전송거리 \(R \)을 각각 15, 20, 25로 설정하여 실험하였다. 그림 13은 최대 전송거리에 따른 브로드캐스트 수행 횟수를 나타낸 것이다.
그림 13에서, 전체적으로 NG 알고리즘의 브로드캐스트 수행 횟수가 기존의 알고리즘보다 브로드캐스팅 횟수 측면에서 효율적임을 나타낸다. \(R \)이 증가할수록, NG 알고리즘과 랜덤 알고리즘은 전송 횟수가 감소하는 것을 보이는 반면에 기존의 MST, BIP 알고리즘은 유의미한 변화가 없는 것을 알 수 있다. 이는 각 노드들의 최대 전송거리가 증가할수록 각 노드의 전송 반경이 증가하여 무시적 전송을 받는 노드들의 수가 많아지기 때문에, 이를 이용한 NG 알고리즘과 랜덤 알고리즘은 노드들의 최대 전송거리 변화에 영향을 받는다는 것을 나타낸다.
제 5 장 결론 및 향후 과제

최근 무선 통신 기술의 발달로 사회 전반에 걸쳐 무선 네트워크에 관한 연구가 활발히 진행되고 있다. 직결적인 연결 없이 무선 장비들과 자유로운 통신이 가능한 무선 네트워크는 비용이 저렴하고, 통신망 구축이 자유롭다는 장점을 가지고 있기 때문에 이동통신망이나 센서 네트워크 등의 다양한 네트워크 응용 분야에 활용되고 있다. 보다 다양한 사회분야에 활용되기 위해서는 무선 장비들의 에너지 소비 문제를 해결하여야 한다. 일반적으로 무선 장비는 배터리에 의존하기 때문에 한정적인 에너지로 효율적인 통신을 수행하는 브로드캐스트 알고리즘이 활발하게 연구되고 있다.

본 논문은 무선 네트워크에서 최소 전력 브로드캐스팅 문제를 해결하기 위한 방법으로 최소 신장 트리를 기반으로 한 탐욕적인 알고리즘을 제안하였다. 무선 브로드캐스트는 단일전송으로 여러 노드와 통신할 수 있기 때문에, 이웃 노드 리스트를 이용하여 한 번의 전송에 최대한 많은 노드들과 통신할 수 있게 브로드캐스트 우선순위를 부여함으로써 전송 에너지 효율을 높이도록 시도하였다. 제안된 NG 알고리즘의 성능 평가를 위해 컴퓨터 시뮬레이션을 통하여 기존의 트리 기반 알고리즘인 BIP, MST와 성능 비교를 하였으며, 소규모 네트워크 환경이나 노드의 밀도가 낮은 네트워크에서는 BIP, MST 알고리즘의 에너지 소모가 효율적이었지만 대규모 네트워크나 노드의 밀도가 조밀한 네트워크에서는 제안된 알고리즘의 성능이 전송 에너지와 전송 횟수 측면에서 효율적임을 알 수 있었다.

향후 과제로 브로드캐스트 권한을 받은 노드들 사이의 중복적인 패킷 전송을 최소화 할 수 있는 프로토콜이 추가적으로 연구되어야 하며 본 논문에서는 위치가 고정된 네트워크를 대상으로 알고리즘을 제안하였지만, 추후 이동성도 가 지는 노드들에 대해서도 본 논문의 알고리즘을 적용시킬 수 있는 연구가 진행
되어야 한다. 또한 평지, 산지, 바다와 같은 노드의 배치 환경에 대한 최대 전송거리의 감소 정도에 관한 연구도 제안된 알고리즘의 활용에 도움이 될 것이 다.
참고문헌

장길웅, 2012. 무선 센서 네트워크에서 최소 전력 브로드캐스트 문제를 위한 최적화 알고리즘. 한국통신학회논문지, 37(4), pp.236-244

정현철, 2009. 무선 센서 네트워크에서 브로드캐스트 트리 구성을 위한 휴리스틱 알고리즘. 석사학위논문. 서울:단국대학교

Joint Conference of the IEEE Computer and Communications Societies, IEEE, 2, pp. 585-594.

감사의 글

2년간의 대학원 과정을 마무리하며 지난 시간들을 돌아보니 많은 아쉬움과 후회가 남습니다. 항상 주변에서 저에게 도움을 주셨던 많은 분들께 감사의 말씀을 전하고자 합니다.

먼저 졸업논문을 쓸 땐 동안 열정적인 지도와 끊임없는 격려로 이끌어 주신 장길웅 교수님께 진심으로 감사드립니다. 석사 과정 2년 동안 교수님의 기대에 부응하지 못한 것 같아 죄송하다는 말씀을 드리며, 교수님께서 보여주신 열정은 제가 사회생활에 첫 발을 디디는 원동력이 될 수 있도록 분반겠습니다. 학부 생 시절부터 부족한 저에게 많은 응원을 보내주신 김익성 교수님, 박찬근 교수님, 김재환 교수님, 배재국 교수님, 홍정희 교수님, 손미정 교수님께도 감사드립니다.

또한 연구실 생활에 불편한 점이 없도록 항상 배려해주신 조교님께도 감사의 말씀을 드리며, 같은 연구실에서 동고동락한 대학원 선배, 동기들에게도 감사의 인사를 드립니다.

마지막으로 항상 부족한 자식을 믿어주시고 지원을 아끼지 않으신 부모님과 가족들에게 감사의 말씀을 드립니다. 이러한 은혜에 보답할 수 있도록 사회에 나가서도 열심히 노력하겠습니다.