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ABSTRACT

The Box-Counting (BC) method is one of the most commonly used algorithms
for fractal dimension calculation of binary images in the fields of Engineering,
Science, Medical Science, Geology and so on due to its simplicity and reliability.

One of the issues related to fractal dimension is data sampling that involves
a process where a certain size of box is taken from a given image and it has
a direct effect on the precision of the fractal dimension estimation. The
Geometric Step (GS) method, arithmetic step method, and divisor step method
are the representative methods. The GS method is mainly used because of its
efficiency. However, the GS method has some drawbacks in nature. If the
image size is large, it provides insufficient data for regression analysis. It can
be applied to the image of MM pixel size for 100 [%] pixel utilization.
Application of the GS method to an image of M XN may waste pixels in the
calculation and degrade the estimation accuracy.

In this thesis, a novel sampling method is proposed in order to resolve the
shortcomings of the GS method on the basis of the intuitive observation that
an estimate may have a higher degree of precision if more pixels are utilized
in each step and a sufficiently large number of fitting data are guaranteed.
The proposed sampling method is an improved version of the conventional GS
method, called the modified GS (MGS) method. The MGS method selects some
additional step sizes with higher pixel utilization rate among the middle values
between the integer powers of 2 to constitute the overall step set with the
GS method.

Not all sampling methods including the MGS method can guarantee 100 [%]
pixel utilization when the BC method is applied to images of an arbitrary size.

_Vi_
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This study suggests a novel fractional counting method to resolve the problem
of pixel waste. The proposed counting method counts pixels of fractal within a
discarded box (not of 6x4d size) and adds its fractional count normalized by
both the average pixel number of all boxes with §x§ size and step size § to

integer count.

The performance of the enhanced BC method incorporating the MGS method
and fractional counting method is verified on a set of deterministic fractal images
whose theoretical dimensions are well known and compared it with those of the
existing BC methods. The experimental results show that the proposed method
outperforms the conventional BC method and triangle BC method.

= Vil -
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Chapter 1. Introduction

1.1 Motivation

The fractal theory is an effective tool for modeling of complicated geometrical
structures found in the nature, characterized by self-affinity and recursiveness [1].
When a part of a fractal is magnified and then rotated, the shape becomes equal
to the original fractal entirely or partly, or has a statistically similar structure,
which is called self-affinity. The never-ending repetition of a simple structure is
called recursiveness. Fractal structures are classified as non-deterministic structures
such as the coastline, rivers, streams, and thunders that may be seen from the surroundings
and deterministic structures created by mathematical rules such as Mandelbrot set,
Sierpinski triangle, and Sierpinski carpet.

Pentland [2] showed that human recognition of the degree of fractal surface
texture between smoothness and coarseness, which is geometric irregularity, is
closely related to the fractal dimension. Various methods of estimating the fractal
dimension such as the Box-Counting (BC) method, triangular prism method, and
fractional Brownian motion method have been suggested [3]. The BC method is one
of the most commonly used methods to be applicable to estimate the complexity of
binary fractals in the field of Engineering, Science, Medicine, and Geology because

_1_
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of its simplicity and high reliability [4].

Jin et al. [5] applied the BC method to the fractal dimension estimation of the
images of synthetic and natural texture. Yu et al. [6] applied the BC method to
the recognition of human iris image divided into the higher part and the lower
part. Shyu et al. [7] applied the BC method to measure the complexity of the
cerebral cortex surface of a fetus. Lin et al. [8] applied the BC method to estimate
the fractal dimension of the river water flow rate in a basin. Barakou et al. [9]
applied the BC method to calculate the fractal dimension of a distributed network
and to create a virtual distributed network by using an extended fractal model.

To increase the precision of the BC method, Foroutan-pour et al. [10] discussed
the appropriate size of a rectangular frame surrounding a fractal figure and its
threshold. Bisoi and Mishra [11] also investigated the box size threshold. Miloevic
and Elston [12] suggested a method of eliminating regression analysis data having
non-linear properties by adequately controlling the box size and applied the
method to estimate the fractal dimension of neurons. Kaewaramsri and Woraratpanya
[13] suggested the Triangle Box-Counting (TBC) method where the Geometric
Step (GS) method is used by dividing the conventional square box into two
triangles to increase the precision of box-counting.

Most of the fractal dimension estimation methods suggested until now has
employed the GS method where the step size ¢, which is used to divide an
image is a power of 2. Therefore, the size is limited to M X< M=2" x2™ (m is a
positive integer) in the BC method so that the pixels of the handled image are
not wasted. However, the shapes and sizes of the image found in actual
environment, such as coastline, rivers, chains of mountains, and plants are all
different. When the BC method is applied to such images, degrade of the
performance is unavoidable because some pixels may not be used for fractal

dimension calculation.
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1.2 Research objectives

Therefore, in this thesis an enhanced BC method which employs both a
modified GS (MGS) sampling method and a novel fractional counting method is
presented. The MGS method is an improved version of the GS method, which
provides more numbers of step size than the GS method for data fitting when
the image size is large. The novel fractional counting method provides the
ability to count blocks as a real number, that is, the product of the ratio of
the fractal pixel numbers within the relevant block for the averaged pixel
numbers within the blocks of §x<¢§ size and the ratio of the relevant block

size for the block size of §x3.

The performance of the suggested BC method has been verified with two
deterministic fractal images with the Mean Absolute Error (MAE) as the evaluation
index. The effectiveness of the suggested BC method has been verified in comparison
with the conventional BC method and the TBC method proposed by Kaewaramsri
et al [13]. In addition, the suggested BC method has been applied to the coastline
images of the Korean Peninsula, which are non-deterministic images, to estimate
the fractal dimensions and measure the complexity.

1.3 Organization of the thesis

The thesis is organized as follows:

Chapter 2 gives an overview of the fractal theory. It presents definition of
fractal and fractal dimension. Two kinds of fractal geometry and their examples
are shown. It also gives a brief description of how to make deterministic fractal

geometries.

Chapter 3 describes the existing methods to estimate fractal dimension of
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binary (black and white) images. As well known fractal dimension estimators,
the Box Counting (BC) method and the TBC method are explained. As sampling
methods, the Geometric Step (GS) method, Arithmetic Step (AS) method, and
Divisor Step (DS) method are introduced.

Chapter 4 is the core part in this thesis and presents an enhanced BC method.
To overcome the drawbacks of the existing sampling methods, a novel
method, called the modified GS (MGS) method is newly introduced and a
fractional box counting method to be applicable to images of an arbitrary size is

proposed.

Chapter 5 carries out experiments to select the optimal value of the user-defined
parameter n of the MGS sampling method, verify the performance of the
proposed BC method on a set of deterministic fractal images whose theoretical
dimensions are well known and compare it with those of the existing two
methods. In addition, the proposed method is used to measure the complexity
of coastlines of the Korean Peninsula.

Chapter 6 summarizes the conclusion of the study.
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Chapter 2. Overview of Fractal Theory

2.1. Definition of fractal

The term ‘fractal’, originated from ‘Fractus’ which is an adjective of the
Latin verb ‘Frangere’ that means break, split, and fracture, has become a
very important part in modern physics and mathematics since Mandelbrot [1]
introduced the fractal theory by publishing a paper titled ‘How long is the
coast of Britain?’ in 1975. Mandelbrot showed in his paper that the length of

the coast varies according to the size of measurement unit.

For example, measuring of the length of the KMOU’s campus coastline depicted in
Figure 2.1 shows that when the length is measured with a little scale ruler of 50 [ml],
the length is 1.50 [km], and when it is measured with a little fine scale ruler of 25
[m], the length is 1.63 [km]. In other words, the length of the coastline becomes longer
when a smaller measurement unit is applied. This shows that when the measurement
unit becomes infinitely smaller for measuring the length of a complex natural object
other than the coast, its length may become infinitely longer. This is a new geometry
that can explain the structural irregularity of nature. When we take a look at
complex structures available in the nature by partially enlarging them into a geometrical

shape that enables modeling, such shapes are exactly the same or statistically similar.

_5_
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(b) 25 [m]

Figure 2.1 Measuring the length of the KMOU's campus coastline on different
scale (Google photo)

_6_
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The fractal geometry has a characteristic of self-similarity and prime number
dimension, and this is a field of study that explains an uneven shape which is
difficult to be explained in a non-linear status just as Euclidean geometry, not a
smooth linear or curvilinear shape that is easy to be explained. Bracken can be
considered as an example of such characteristics [14]. Bracken has a characteristic
of self-similarity and recursiveness. Self-similarity means that even if a shape
is scaled down in a fractal space, a part which has the spatial characteristics
of the whole shape in the original scale always exists and such part is aligned in
phases, and recursiveness means that two or more same or statistically similar

elements are aligned, forming a successional pattern [15].

2.2 Fractal dimension

A dimension is an index showing how the general measurements are correlated
with measurements such as area, length, and volume. Typically, there are integer
dimensions including 0 dimension for a dot, 1 dimension for a straight line, and 2
dimensions for a plane, the dimension is a strictly absolute definition [16]. As an
example of importance of dimension, when the volume of a book is measured on
the assumption that it is measured on an appropriate scale and the unit of
volume is constant, the same result will always be shown. However, the fractal figure
on a fractional dimension cannot be measured with a scale of integer dimension.
This is in the same context with the calculation of volume of line segment. The line
segment is a concept in 1 dimension but the volume is a concept in 3 dimensions.
Likewise, an appropriate dimension should be known in order to calculate a length
and volume properly. Therefore, it is very important to know the fractal dimension
which has a decimal dimension.

In mathematical approach, one side is divided by m in 1 dimension, m(= N)

side(s) which length is 1/m time(s) the original length is(are) created, and
when each side of an equilateral square is divided by m in 2 dimensions,
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m*(=N) square(s) which side is reduced by 1/m is(are) created, and each
side of an equilateral hexahedron is divided by m in 3 dimensions, m*(=N)
equilateral hexahedron(s) reduced by 1/m time(s) is(are) created. Taking a
square as an example, when one side is divided by 2 in 1 dimension, two sides
of which length is 1/2 time(s) the original length are created, and when each
side of an equilateral square is divided by 2 in 2 dimensions, 4 squares of which
side is reduced by 1/2 time(s) are created. This is summarized in Table 2.1.

Table 2.1 Schematics of dimension

D
1 2 3
m

1

N=1 N=1 N=1
2 t

N=2 N=4 N=8
3 —

N=3 N=9 N=27

The relational expression between the rate of reduction r=1/m, number of
figures N and the dimension D from Table 2.1 is shown in Equation (2.1) and
Equation (2.2).
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N=1/r?=(1/r)? 2.1

D=log(N)/log(1/r) 2.2)

2.3 Fractal geometry

Fractal objects are divided into deterministic and non-deterministic fractal
object [17]. A deterministic fractal object is created by reducing or rotating its
shape recursively in phases according to the mathematical rules, and a
non-deterministic fractal has a statistically similar shape with the whole shape
by enlarging a part of a certain shape in phases. The examples of deterministic
and non-deterministic fractal figures are shown in Figure 2.2.

Deterministic fractals

5 U

Mandelbrot set Julia set Koch Snowflake

Non-deterministic fractals

Brain Lung

Figure 2.2 Images of fractal geometry (Naver photo)

_9_

Collection @ kmou



2.3.1 Mandelbrot set and Julia set

Since there is one generator for basic fractal geometries, so the whole
fractal dimension and partial fractal dimension are same [1]. However, fractal
geometries appeared after Mandelbrot set or Julia set have a different value
between global dimension and local dimension. The figures of Mandelbrot set
and Julia set are shown in Figure 2.3.

Mandelbrot set is the set of ¢ that does not diverge when the initial value of z is
0. It begins from Equation (2.3) which is a simple complex recurrence formula [16].

Zp+1 :Zi"'c 2.3

The above equation can be explained as repetition of process to square a
certain complex and add the original complex to the value. Julia set is a type
of fractal designed by a French mathematician Gaston Maurice Julia and it
begins from Equation (2.4) which is a simple complex recurrence formula. This
is sets of 2 that does not diverge when c is fixed in the complex equation. In
other words, the set of z varies depending on which value ¢ is fixed to [16].

fla)=2+c 2.4)

(a) Mandelbrot set (b) Julia set

Figure 2.3 Mandelbrot set and Julia set

_10_



2.3.2 Koch snowflake (Opened)

Koch snowflake is one of fractals that were introduced first among the
deterministic fractals that can be explained mathematically. It appeared first in
a paper of a Swedish mathematician Helge Von Koch in 1904 [16]. The figures
of Koch snowflake according to the level are shown in Figure 2.4. In order to
draw Koch snowflake, a triangular shape is created by dividing one segment into
three equal segments and pulling up the middle segment, and at this time, the
length of two segments created from one middle segment should be same with the
length of one segment at the time of dividing the original segment into three
segments, and at this time, four segments of which length is the original 1/3 are
created [16]. 1:4=1":3" when substituting it for the proportional expression,
and at this time, x value is the dimension. x value is log4/log3 which takes
the value of 1.26. We call one dimension as a line and two dimensions as a plane.
1.26 dimension is a figure in the mean dimension which is not one dimension nor
two dimensions. When the above process is repeated, the length of each segment
decreases by 1/3 and the length of the whole segment increases by 1/3. In other

words, the length of one segment of nth Koch snowflake is (1/3)" ! and the

whole length becomes (4/3)"~'. When it is carried out infinitely, 4/3 is larger
than 1 so it becomes infinite.

VAN N

(@) Level = (b) Level =
(©) Level = (d) Level =

Figure 2.4 Level of Koch snowflake (Opened)

_11_

Collection @ kmou



2.3.3 Apollonian gasket

An Apollonian gasket created by using a circle of Euclidean geometry is a
shape frequently used in the fractal geometry. It is created by a sand artist
Jim Denevan and his three associates [18]. The figures of Apollonian gasket
according to the level are shown in Figure 2.5. The first figure of Apollonian
gasket consists of large and small circles and which were drawn repeatedly on
a flat desert to give a property. It was named after the ancient Greek
mathematician ‘Appollonius’ who used terms including ellipse and arc for the
first time in the book that is titled ‘Conic Sections’. A gasket as an automotive
part is a mechanical seal which fills the space between pipes or engine to
prevent leakage of gas or oil. There are several kinds of methods to make
Apollonian gasket figure. It depends on the way the first figure starts.

(b) Level =3

-~ S

(c) Level =4 (d) Level =5

Figure 2.5 Apollonian gasket

_12_
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To draw a normal Apollonian gasket, a regular triangle is drawn first. Then,
three adjoining circles with a radius which equals to a half of one side of the
regular triangle are drawn. Next, a circle which adjoins with three circles at
the same time should be drawn, and one circle inside the circle and two circles
outside the circle are drawn. Next, when a circle which adjoins three circles
and two additionally drawn circles at the same time is drawn, a total of eleven

circles can be obtained. When this process is repeated, a total of 3" '+2 circles
can be obtained in nth steps. When it is drawn infinitely, the figure where a
circle is completely filled but it does not become a plane. Its dimension is 1.654.

2.3.4 Vicsek fractal

Vicsek fractal is a fractal geometry arising from a construction similar to that
of the Sierpinski carpet, proposed by Tamas Vicsek [19]. The figures of Vicsek
fractal according to the level are shown in Figure 2.6.

o+

(a) Level = (b) Level =

-|--|-

et

(c) Level = (d Level =5
Figure 2.6 Vicsek fractal
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It begins from a square figure. The square is divided into nine smaller squares
in the 3-by-3 grid and then the squares at the corners are removed. Then, 5 out of
9 squares remain. In the next level, the same process is repeated for each of the
five remaining squares. When the experiment according to the level is repeated by
nth times, the area of the figure is (5/9)" ! and 5/9 is a number smaller than 1,
when it is repeated infinitely, its area is close to 0. Its dimension is log5/log3

which is approximately 1.465.
2.3.5 Sierpinski triangle

Sierpinski triangle, named after the Polish mathematician Waclaw Franciszek

Sierpinski in 1917, is also called the Sierpinski gasket. The figures of Sierpinski

triangle according to each level are shown in Figure 2.7.

A&

(a) Level = (b) Level =

(c) Level =4 (d Level =5

Figure 2.7 Sierpinski triangle
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To draw a Sierpinski triangle, an equilateral triangle is drawn first and the
center of each side of the equilateral triangle is connected to each other with a
line. Then, a total of four equilateral triangles are created and the central one is
removed. A figure obtained by repeating the same process for the remaining
three equilateral triangles is called Sierpinski triangle. Each side is reduced by
1/2 and the number of triangles increases threefold, so the dimension is log3/log?2
that is 1.585. When the above process is repeated, the sum of length of sides

of equilateral triangle in nth step becomes (3/2)"~' and when it is carried out

1

infinitely, the sum becomes an infinite value. The area becomes (3/4)" ' in nth

step, and when it is carried out infinitely, the value becomes 0 [16].
2.3.6 Rand cantor

Rand cantor is a type of cantor set. The figures of Rand cantor according
to each level are shown in Figure 2.8. The cantor set is a type of fractal that

(a) Seed =272

E}’% r}r

g,

(c) Seed = 809 (d) Seed = 2892

Figure 2.8 Cantor set
— 15 —

Collection @ kmou



has the characteristics of self-similarity, and the German mathematician Georg
Cantor discovered a method to count a transfinite number and introduced the

concept of fractal geometry along with an example of cantor set in 1883 [16].

To draw the cantor set, a closed interval [0,1] is given first, it is divided
by three sections and the middle section 1/3 is removed. The remaining
two sections are divided by three sections each and the middle section is
removed. Then, the sets {[0,1/9,], [2/9,1/3], [2/3,7/9], [8/9,1]} remain. The
set obtained by carrying out this process recursively is called the cantor set
[16]. In a normal cantor set, the middle segment is removed sequentially,

but in a Rand cantor, segments are removed randomly to create a shape.
2.3.7 Koch curve 85°

Koch curve 85° is a fractal object designed from the fractal figure originated
from the Koch snowflake. The figures of Koch curve 85° according to each

level are shown in Figure 2.9.

In a normal Koch snowflake [16], one segment is divided by three to have
approximately 60° for the angle between the 0° segment and the vertex of
the triangle, and Koch curve 85° is a figure which has 85° for the angle

between the segment and the vertex of the triangle.

First, an isosceles triangle with the vertex angle of 10° is drawn, and the
base side is erased and one side of length which is same with the size of
the isosceles triangle is drawn on each side. When this process is carried
out repeatedly, a fractal figure as shown in the figure below is obtained. A

theoretical fractal dimension of Koch curve 85° is 1.785.

_16_
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(a) Level = (b) Level =3

ﬁAﬂ

3

(c) Level =4 (d) Level =5

Figure 2.9 Koch curve 85°

2.3.8 Sierpinski carpet

Sierpinski carpet was named after the Polish mathematician W. F. Sierpinski
in 1916. The figures of Sierpinski carpet according to each level are shown in
Figure 2.10.

To create this, a square is first necessary. At first, the square is cut into 9
congruent sub-squares in a 3-by-3 grid and the central sub-square is removed.
To move to the next level, each of the 8 remaining sub-squares are cut into
congruent sub-squares in a 3-by-3 grid and each of central sub-square is
removed. The Sierpinski carpet can be obtained by repeating the same procedure
infinitely [17]. When it is shown in a formula, the area of Sierpinski carpet in nth
step is (8/9)" and by taking the limit, becoming the same to the principle of

Sierpinski triangle.
— 17 —
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(a) Level =2 (b) Level =3

(c) Level =4 (d) Level =5

Figure 2.10 Sierpinski carpet

2.3.9 Hilbert curve

A Hilbert curve is a space-filling curve that was described by the German
mathematician David Hilbert in 19th century. The figures of Hilbert curve according
to each level are shown in Figure 2.11. This is a variant curve of the Peano
curves discovered by Giuseppe Peano [20]. As the Peano curve, the Hilbert curve
begins from a plane line, creates and adds a line infinitely, filling the plane
completely and becoming a figure in two dimensions, and its dimension is 2. The
Hilbert curve is a fractal figure which is created in the unit square. Level 1
begins as three segments by connecting 4 dots of the unit square (1/4,3/4),
(1/4,1/4), (3/4,1/4), (3/4,3/4). In Level 2, all coordinates of the Level 1 are
reduced by a half and a curve rotated counterclockwise based on (0,1/2) is
added. Next, symmetrical lines based on z=1/2 are added infinitely to obtain
the Hilbert curve.
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(@) Level =1 (b) Level =2
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(c) Level = (d Level =4

Figure 2.11 Hilbert curve
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Chapter 3. Existing Box-Counting Methods

The concept of fractal dimension plays an important role in the fractal
study. There have been several methods for estimating a fractal dimension
include the BC method, triangular prism method and Fractional Brownian
motion method [17]. Among these methods, the BC method suitable for two
dimensional binary (black and white) images is used frequently because of its
simplicity and high reliability. Therefore, the relevant study was carried out.

3.1 Conventional box-counting method

In the BC method, when a binary image is given, the fractal dimension is
estimated by repeating an estimation process where a reference square (of which
length of a side is 1) incorporating the image is created and then divided into grids by
reducing the length of a side in a scale of r, and then the boxes including fractal
figures are counted [1]. Therefore, the minimum number of boxes required to
completely cover the fractal image, N(r), is a function of r, expressed as follows:

N(r)= (=) 3D

Not all fractals exhibit deterministic self-similarity but some statistical self-similarity.
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In order to obtain approximate fractal dimension, we can use one of the commonly
adopted algorithms, called the BC algorithm, introduced by Gangnepain and
Roques-Carmes [21]. Given a binary (black and white) image I of M <M pixels,

where M=2" and m is an integer number, Equation (3.1) can be rewritten from
the relation between box (step) size § and M, that is, 6=rM (0<r<1) as
M 1
N@)=(=)P=()"=M" ()P (3.2
T 1) 1)
Since M” is a constant, Equation (3.2) may be rewritten as the following
Equation (3.3):

NG) o< ()7 (3.3

Step size § needed to calculate N(§) sampling has a direct effect on the precision
of the fractal dimension estimate, the sampling method should be carefully decided.
Representative sampling methods are the GS method, the AS method, and the DS
method.

The GS method used with BC method is employed by most fractal dimension
estimation methods as in the present study. To make the data intervals on
the log-log coordinates become equal, the GS method employs geometric
numbers increasing in the multiples of 2, which are the powers of 2. Figure
3.1 shows an example of calculating N(§) while sampling an image of 16<16
pixels representing Koch snowflake curve. Table 3.1 shows the results.

Table 3.1 Step size and box numbers

) N(5) log(1/9) log(N(5))

1 46 0 1.6628

2 20 —0.3010 1.3010

4 6 —0.6021 0.7782

8 4 —0.9031 0.6021
— 21 —
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Figure 3.1 Box counting on an image of 16<16 pixels

Hence, N(§) is obtained by repeating the process of dividing the image
while changing ¢ and counting the boxes including fractal figures. The fractal
dimension is the gradient of the log(1/8)—log(N(§)) plot which is expressed
as:

_ log(N(5))

D= Tog(1/0) 3.4

If {5,,N(5,)} (1=<k=<m) is given as the number of boxes corresponding to

the given step size, it can be obtained also through least square technique
by the regression analysis of linear model. The relationship between ¢ and

N(6) can be expressed as a linear equation as shown in Equation (3.5)
log(N(©))=D- log(1/§)+a+e (3.5)

and in Equation (3.5), @ is an intersection point between the linear equation

and y-axis, and e is an error between the linear equation and data.

When substituting data {6,, N(5,)} (1=<k<m) for Equation (3.5), it can simply
be expressed by Equation (3.6).
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b=Axte (3.62)

log(N(6,)) € log(1/6,) 1
b= log({\f@)) CR™ g = [D]ERQ’ e=|%|crm 4= log(:1/52) 1
log(N(s,,)) €m log(1/6,,) 1
(3.6b)
When the sum of error square as the estimation function is J
Jx)=€Te = (b— Ax)"(b— Ax) 3.7

z estimated from the necessary condition 8J(z)/az=0 for this value to be the

minimum is given as Equation (3.8).
x=(ATA) A (3.8)

Therefore, the fractal dimension is obtained from Equation (3.8) as D= z,.

When the approximate fractal dimension calculated using the data of boundary
value on both sides from Table 3.1 can be obtained with the least square method
in Equation (3.5) as

_ log N(1) —log N(8) _ 1.6628—0.6021

D
0+0.9031

1 = 1.17, and D= 1.23
log1—10g§

It can be known that this is approximate to D= 1.262, theoretical dimension
of Koch snowflake curve. Also, Figure 3.2 shows that the gradient of the graph

means fractal dimension of koch snowflake curve.

Table 3.2 shows overall algorithm of the BC method with M <M images to
calculate fractal dimension.

_23_

Collection @ kmou



Table 3.2 Overall procedure of the BC method

The conventional BC algorithm

Get an image I of M XM,
m= log, (M);
for k=1 tom
5, =281,
Blocks= M/, ;
N(k) =0;
for +=1 to Blocks
for =1 to Blocks
if sub-image I(i,j) is a non-empty box

=L
else
n; = 0;
end if
Nk)=N(k)+ nj;
end for
end for
end for

Estimate D using data set {6, N(k)} (I1<k<m) of m and the least squares
method;

Fractal Dimension D= 1.23
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-2 -1.5 -1 -05 0
Scaling factor, log (18)

Figure 3.2 Data fitting using the least squares method
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3.2 Triangle box-counting method

The procedure of the TBC method, suggested by Woraratpanya et al. [13], is
similar with that of the BC method shown in Table 3.1 and the major difference
is that the box of each §x<¢§ pixel size is counted separately into two pattern
areas as shown in Figure 3.3. Therefore, it is counted as n; = 2 in case of

Figure 3.4(a) and n,; =1 in case of Figure 3.4(b).

(a) Pattern-1 (b) Pattern-2

Figure 3.3 Patterns of partitioning a square box

® ®
® <0 @ ® o ®
® ® ®
® ® L ® ®
® ®
® ® L
® ®
® ®
® o ®
®
(@ n;=2 () n;=1

Figure 3.4 Box-counting of the TBC method
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Given an image of size M <M, the overall algorithm of the TBC method is

shown below in Table 3.3.

Table 3.3 Overall procedure of the TBC method

The TBC algorithm
Get an image I of M <M,

m = log, (M);
for k=1 tom
5, =21
Blocks = M/4,;
Nk)=0;
for =1 to Blocks
for j=1 to Blocks
Split sub-image 1(i,5) into two equally triangle boxes as shown in Figure 3.3
Count non-empty boxes in both patterns, such that C; and C, denote
counter variables for Pattern-1 and Pattern-2, respectively
if C; and C, are equal to 2

iy =2
else if C; and G, are equal to 1
;=15
else if C; is not equal to C,, such that C, and C, are greater than 0
ny; = min[C;, G,;
else if
n; = max|[C;, Gyl

else
T = 0
end if
N(k) = N(k) +n,;
end for
end for
end for

Estimate D using data set {5, N(k)} (1=k=<m) of m and the least squares
method;
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Chapter 4. Enhanced BC Method

In the previous chapter, three data sampling methods were mentioned. Their
principles and drawbacks are in this chapter reviewed and a new sampling method
and fractional counting method are suggested to improve the BC method.

4.1 Existing sampling methods and their drawbacks

4.1.1 Sampling methods

In the GS method, which is employed by most fractal estimation methods,
sampling is performed in geometric numbers increasing in the multiples of 2 to
make the data intervals on the log coordinate become equal. The step set and step
size are shown below.

For example, applying the GS method to an 8<8 image gives A,y =11, 2,4} and

Neg = 3.

Age= 1012771 k=1, 2, 3, ..., log,(M)} 4.1
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ngs = [A gl = log, (M) 4.2)
Figure 4.1 shows the results of applying the GS method.
In the AS method, which has been proposed for the purpose of obtaining
sufficient data for regression analysis of a small size of image, § is arithmetically
increased by 1 at each time from 1 to M/2 in the sampling process. The step

set and step size are shown as:

Ag=181 6=1,2,3, .., M/2} 4.3
nag =|A,5l = M/2 (4.4)
Application of the AS method to the previously mentioned image of 8<8 pixels

gives A, =11, 2, 3, 4}, and n,q4 = 4. Figure 4.2 shows the results of applying the
AS method. When 6= 3, 28 pixels are wasted.

(@ 6=1 (b) 6=2 (© 6=4

Figure 4.1 GS sampling on an image of 8x8 pixels
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(@ 6=1 (b) =2

(c) 6=3 (d) 6=4

Figure 4.2 AS sampling on an image of 8<8 pixels

In the DS method, which is a method designed to accomplish 100 [%] of pixel
utilization rate at any 4, § is a natural number divisor (except M). The step set

and step size are given by

Aps=1{6| ¢ is a natural number divisor of M and 6= M } 4.5)

(4.6)

Nps = |ADS|

If M is a geometric number, the DS method becomes identical to the GS method.
Application of the DS method to the same image of 8 <8 pixels gives Apq =11, 2,
4} and n,g = 3. The sampling result is equal to that shown in Figure 4.1.
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4.1.2 Pixel utilization

The coverage ratio CR(§), which is the pixel utilization ratio to measure
how many pixels out of the whole pixels are used or deleted according to ¢
when the sampling method is applied to an image of MXxN pixels, is defined

as follows:

mt(]\%)axmt(%)a

MXN

4.7

CR(5) = . e )

where int(%f)éXint(]\Tf)é denotes the number of pixels with a given step size

of 4, and A denotes the step set. In addition, with respect to all step sizes, the

average coverage ratio CR is defined as:

CR = — Y CR() “8)

Then, average wasting ratio WR is defined as follows:

WR =1—CR 4.9
4.1.3 Drawbacks of the existing sampling methods

In the case of the BC method or the Ruler’s method, the degree of accuracy is
improved when measuring a fractal dimension as generally the scale r is larger, in
other words, the step size ¢ is smaller. The fact that when M becomes larger,
the GS method has a disadvantage that there are less data in high precision
scale, and the AS method has a large step size so that enough data for

regression analysis can be obtained but a block with low pixel utilization rate is
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sampled several times so that the degree of accuracy is not improved while only

increasing the burden of calculation. The DS method secures 100 [%] pixel

utilization rate for M=2" (m is a positive integer) image but when M=2" and

M is a prime number, the number of data is insufficient.

Next, the number of steps was obtained with the GS method, the AS
method, and the DS method by increasing M with an increment of 1 from
10 to 50 and the graph was drawn. According to Figure 4.3, the GS method
and the AS method tend to show a monotonous increase as M increases,
but the GS method has too narrow margin of increase, and in case of the
DS method, the number of steps increases or decreases repeatedly according
to M and the number of steps which is 1 occurs frequently, and in case of
the AS methods, the number of steps increases in proportion to M but the
pixel utilization rate is low and too many small boxes are created so that the

estimated value is skewed accordingly.

—6— B
+m
+[E

B

-
a
T

I

Number of step size
=)

Figure 4.3 Number of step size to changes of M
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4.2 New sampling method

It is critical in the BC method to determine the step size and the limits of
the step size. In the GS method, the data in the scale of which precision
may be increased (i.e., small §) are insufficient if M is large. Also, when it
is applied to M XN image, some pixels cannot be utilized. Therefore, in
this study, a novel sampling method is herein proposed to resolve these
problems on the basis of the intuitive observation that an estimate may have
a higher degree of precision if more pixels are utilized in each step and

sufficiently large quantity of regression analysis data are secured.

The suggested method is an improved version of the previous GS
method, called the modified GS (MGS) method. The MGS method takes the
middle value from the integer section on the log-log coordinates for the

step set of the GS method to combine § where CR is better.

When the image size is M XN, partition should be done based on the
length of a short side, so if L=min(M, N), the step set of the GS method
will become Equation (4.10).

Agg= 1616=2"1k=1,2,3,....0 (4.10)

Here, ¢= int(log,(L)) =ngs The step set which takes the middle value from

the integer section on the log-log coordinates becomes Equation (4.11). Here

round() means the round-off operator.

(k=2)

Ayp= 616 =round2  * )<

gykzLZ&mJ} .11

The remainder between A,,, and A, to eliminate the overlapping step size due

to real exponent and rounding off operation can be obtained by Equation (4.12).

_32_

Collection @ kmou



Apypr = Ayp— Ags = 610EA,,, and § & A (4.12)

CR(5) of 6€ Ay, is obtained and lined up in descending order in order to

include a large number of § which a has high pixel utilization rate while

securing more data than the GS method, and the step set A,,, is composed

by taking the corresponding § as many as n,,, according to size.
N4 pp = Min(nppp, round(n- 1)) (4.13)

where 7 is a real positive value between 0 and 1 and a user-defined variable.

Therefore, the suggested sampling method is the sum of A,q and A, .

The overall procedure of the proposed MGS method is shown in Table 4.1.

Table 4.1 Procedure of the MGS method

The MGS method
Get M, N and n;
Set L=min(M,N);
Set ¢=int(log,(L));

Calculate the set A, using Equation (4.10);
Calculate the additional set A,,, using Equations (4.11)~(4.13);
Set Apygs =Aas UAapp

For example, when the MGS method is applied to 17 <21 image with n=0.6,
L=min(M,N)=min(17,21) =17, ¢=int(log,(L)) =4, A,s=11,2,4,8} and A,,, =
{1,3,6}. Therefore, Ay = Ay — A = 3.6 and n, pp, =min (g round(n. £))
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=min(2,round(0.6x4)) =2, A, =13,6}, Ayas=Acs U A, pp=11,2,3,4,6,8} in
the end. As another example, the result of applying the GS method and the
MGS method to a 191 <256 image is shown in Table 4.2 and Figure 4.4 shows
a drawing of CR(9).

Table 4.2 Sampling results of the GS and MGS methods on 191 X256 image

Sampling : Average coverage ratio (CR)
method slEp sz 0 (Standard deviation)
GS 1 2 4 8 16 32 64 0.910 (0.11D
1 2 3 4 6 8§ 11
MGS 16 23 32 45 64 91 0.903 (0.11D

According to the table and the figure, the average coverage ratio CR of
the MGS method and the GS method is similar but the number of steps of
the MGS method is 13 and the number of steps of the GS method is 7,

indicating that the MGS method can secure more regression analysis data.

1.2m \

1Q Q@ 0 ¢ 00 O o 1
0.8/ ? 9 .

<
o 0.64 ]
(@]

0.4H ]

0.2 ]

0
0 1 2 3 4 5 6 7

log,(3)

Figure 4.4 Coverage ratio of the GS and MGS sampling methods
(Solid: GS method, Solid+Dotted: MGS method)
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4.3 Fractional box count

As described above, the conventional BC method and most of the methods
which can estimate fractal dimension, where the sampling is performed by the GS
method, limits that the image size is M <X M=2" x2" (m is a positive integer) to
prevent waste of pixels. Also, when large images are treated to calculate fractal

dimension, the data for regression analysis are not enough.

On the average the size of images acquired from actual environment, such as
the shapes of coastline, rivers, chains of mountains, is actually various. Therefore,
this study suggests a real number counting method to resolve the problem of pixel

waste which occurs when the BC method is applied to images of an arbitrary size.

Once ¢ is determined, and m=int(M/5) and n=int(N/5), the image is

divided as shown below to make each block to be a square or a rectangle.

If M=md and N=nd, the image is divided into m,n blocks of 44§ pixels.

e If M>md and N=ng, the image is divided into m,n blocks of §x4 pixels
and n blocks of (M—md)xé pixels.

e If M=md and N> nd, the image is divided into m,n blocks of §x¢ pixels
and m blocks of §x(N—né) pixels.

e If M>méd and N> nd, the image is divided into m,n blocks of x4 pixels,
n blocks of (M—md) x4 pixels, m blocks of §x(N—nd) pixels, and one
block of (M—md) < (N—nd) pixels.

Figure 4.5 shows an example of a image divided with step size é.
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M—mé 3,1 (3,2 (3,3

Figure 4.5 Partition example of an image

p,; denotes the number of pixels of the fractal figure included in the (i,5) block

and p, denotes the average pixel number of the fractal figure included in the

block of a §xJ size which is counted as 1.

« If the block size is (M—md) x4, the block are counted by the real number
counting method. If any fractal figure is included in the (i,5) block, the
count is done by Equation (4.15); otherwise n,; =0:

. Dy M—mé
ny; =min(=%,1)- %;) (4.15)
V2

« If the block size is §<(N—né), the block are counted by the real number
counting method. If any fractal figure is included in the (i,5) block, the
count is done by Equation (4.16); otherwise n,; = 0:

Ry 2T N—nd
ny; = min(=2,1)- (7571) (4.16)
D;
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« If the block size is (M—md)x<(N—nd), the block are counted by the real
number counting method. If any fractal figure is included in the (i,7) block,
the count is done by Equation (4.17); otherwise n;; =0;

n.. Zmin(ﬁ,l). (M—mé8)(N—nd)

J Ds 52

4.17)

For instance, application of the proposed MGS method and the fractional
counting method to the 17x21 image, L=min(M,N)=min(17,21)=17,
¢ =int(log,(L)) =4, m=int(17/8)= 2, n=1int(21/8) = 2, A5 = {1,2,3,4,6,8}.

Figure 4.6 shows how the image can be divided and Table 4.3 shows the result
of N(6).

Table 4.3 Step size and real number box-counting

Step size § ] 2 3 4 6 8
Box Count N(6) 56 21.19:-10 8.04 424 461

When we see Figure 4.6(f) where 5= 8, 4 blocks sized 8x8, that is, (1,1),
(1,2), (2,1, (2,2th blocks are counted as integers and the (2,3)th block sized
8 x5 that includes the fractal figure is counted as a real number. The integer
counting result is 4 and the (2,3)th block is counted as follows.

By referring to Figure 4.6(a) and Figure 4.6(f), the average pixel number of

the fractal figures included in 4 blocks of 8<8 is p;=11.25 and also p, ; =11, sO

. Do -
ny, =min(222 1) Y 5”‘” _ 111125 x%: 0.61. Therefore, N(§)=4-+0.61=461 When
Ps )

N(6) is obtained for each 6, the fractal dimension is obtained through the least

square technique, and in case of this example, D=1.279.
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© 6=3 d o=4

(e) 6=6 ) =28

Figure 4.6 Sampling of the image of 17x<21
4.4 Procedure of the enhanced BC method

The overall algorithm of the proposed BC method in this study is shown in
Table 4.4.
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Table 4.4 Overall procedure of the enhanced BC method

The enhanced BC algorithm

Get an image I of M XN and n;

Calculate A,,.¢ using Equations (4.10)~(4.14) and £, =|4,,c5):
for k=1 to €,,g

rBlocks=int (M/6),);

cBlocks=int (N/4,);

N(k) =0;

for ¢=1 to rBlocks

for j=1 to cBlocks
if sub-image I(i,5) is a non-empty box

T = 1;
else

N = 0
end if

N(k)=N(k) +
end for
end for
if M > rBlocks<9, and N=cBlocksxJ,
for j5=1:cBlocks
if sub-image I(rBlocks+1,3j) is a non-empty box
Calculate n;; using Equation (4.15);
else
n; = 0;
end if
N (k)= N (k) +n,;
end for
end if

if N > cBlocksx¢, and M=rBlocks<d,

for 4:=1:rBlocks
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if sub-image I(ii,cBlocks+1) is a non-empty box
Calculate n;; using Equation (4.16);

else
n; = 0;

end if

N (k)= N (k) +n,;

end for
end if

if M > rBlocksx¢, and N > cBlocks<d,
if sub-image I(rBlocks+1,cBlocks+1) is a non-empty box
Calculate n;; using Equation (4.17);
else
n;; = 0;
end if
N (k)= N (k) +n;;
end if
end for
Estimate D using data set {J,, N(k)} (L=<k=<m) of m and the least squares
method;
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Chapter 5. Experiments and Review

In this chapter, a set of simulation works are performed with deterministic
fractal figures of which theoretical dimensions are well known to evaluate the
estimation performance of the proposed BC method. The result of using the
proposed BC method was compared with that of the conventional BC method
and the TBC method. The proposed BC method also was applied to the
non-deterministic images of coastlines of South Korea to estimate its complexity
and compared with the other two methods.

5.1 Experiments on deterministic fractal image
511 M < M test image

For these experiments, eight fractal figures having a fractal dimension of 1 to
2 were selected and then drawn by using mathematical formulas. The resulting
drawings were converted into images having pixel sizes of 128 <128, 256 <256,
and 512x512. Since the estimate of a fractal dimension is slightly dependent on
the levels of the figures whose complexity are different, the images of individual
figures drawn at five levels were used. Table 5.1 summarizes the figures used in
the experiment and the theoretical dimensions as well as the levels.
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Table 5.1 M < M test images for experiments

No. Name of figure Figure Level Dimension
1 Koch snowflake 4~8 1.262
2 Apollonian gasket 3~7 1.328
3 Vicsek fractal 3~7 1.465
4 Sierpinski triangle 5~9 1.585

5 kinds of
5 Rand cantor 1.678
seeds
6 Koch curve 85° 5~9 1.785
7 Sierpinski carpet 3~7 1.893
8 Hilbert curve 6~10 2




5.1.2 Determination of 7

In the proposed MGS method, n, the parameter determining how many step
sizes will be selected from A, was determined through the experiment performed
with the images shown in Table 5.1. The evaluation function used to measure the
estimation performance was the MAE between the estimated dimension, D,, and

the theoretical dimension, D,, as expressed as follows:
MAE= %Zmi -D,| 5.1
i=1

where w denotes the total number of images used in the experiment.

Figure 5.1 shows the MAF calculated and drawn with respect to a total of 120
images of eight figures at five levels with 3 sizes by varying n from 0 to 1. As
shown in Figure 5.1, when 0<n< 0.6, the performance of the proposed method
was better than that of the GS method (= 0), the best performance was
obtained when 7n=0.6, and the performance was worse than that of the GS
method when 7> 0.6, since many step sizes having a low pixel utilization rate

were included.

0.04 ¢
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<
= Q@
- 0.03} @
g Q- Q- Q Q ~ ~
|_u|_)] L4 N f’
5 0.02
[
n
Ke]
< 0.01
c U
8
=
0
0 0.2 0.4 0.6 0.8 1

n

Figure 5.1 n versus MAE
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The experimental result indicate that, although 100 [%] of pixel utilization rate
is secured in the conventional estimation methods employing the GS method for
an image of MM pixel size (M is a geometric number), maintaining the
number of steps at a value 1.6 more than n.y is more effective even though

the pixel utilization rate may be slightly lower.
5.1.3 Experiment with images of M <X M pixels

The experiment was performed with the fractal figures shown in Table 5.1 to
verify the performance of the BC method employing the MGS method. The fifteen
images (= Level XSize) were used for each image to calculate the fractal dimensions,
and the mean and the standard deviations of the dimensions were also calculated.
Table 5.2 summarizes the theoretical dimensions and the dimensions estimated by
the three methods.

Table 5.2 Estimated results of the three methods for the test images

Dimension
No. Geometry (Standard deviation)
Theoretic BC TBC Proposed
1 Koch snowflake 1969 1.250 1.354 1.267
(Opened form) ' 0.019 (0.036) (0.018)
. 1.378 1.446 1.369
2| Apollonian gasket 1.528 0015 | 0042 | (0.015
. 1.458 1.585 1.465
3 Vicsek fractal 1.465 003D | 0053 | (0,029
L 1.583 1.623 1.583
4 | Sierpinski triangle 1.585 002D | ©0.030) | (0.018)
1.664 1.662 1677
5 Rand cantor 1678 0027 | 0025 | (0,022
) 1.792 1761 1788
6 Koch curve 8 1785 0033 | 0039 | (0.04D)
o 1.899 1.896 1901
7 Sierpinski Carpet 1.893 0018 | 0022 | (0.016)
. 1.969 1961 1974
8 Hilbert curve 2.000 0062 | 0068 | (0.063)
— 44 -
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As can be seen from Table 5.2, the result from the proposed method was generally
closer to the theoretical dimensions when compared with the other two methods, and
the standard deviation was also smaller. In particular, the severe fluctuation
(represented by standard deviation) of the estimates by the TBC method [13] depending
on the level indicates that the triangular pattern is not effective.

5.1.4 Experiments on rotated A/ < M image

The next experiment was performed to evaluate the rigidity of the proposed
method in the case where a fractal figure has been rotated with the Koch snowflake
in Table 5.1 having a size of 256<256 (Levels 4 to 8). The figures rotated
counterclockwise on the left-end tip by 45°, 90°, and 180 ° were drawn for each
level. Table 5.3 summarizes Koch snowflake images according to different angle of
them and the average and standard deviation of estimates obtained targeting 5
images (4~8 levels) used for each rotation angle.

Table 5.3 Estimated results of the three methods for curves rotated

=l of Fractal dimension
. ngle o
Figure rotgation (Standard deviation)
BC TBC Proposed
0° 1.227 1.350 1.247
0.01D (0.010) (0.005)
45 ° 1.259 1.271 1.248
(0.024) (0.019) (0.019)
90 ° 1.227 1.350 1.246
0.01D (0.009) (0.004)
180 ° 1.227 1.349 1.254
0.01D (0.010) (0.010)
1.235 1.330 1.249
Overall 0.020) (0.036) 0.012)
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5.1.5 Experiment with images of M < N pixels

Next, the experiment to estimate a fractal dimension by taking M x< N sub-image
from M <M image discussed in Table 5.1 was carried out. For the experiment,
three scenarios were used when taking M <N sub-image with the previously
obtained 256 X256 image as the original.

In Scenario A, M is fixed to 128 and M <N pixels is taken based on the
top left side while increasing N with an increment of 2 from 128 to 256, and
in Scenario B, M is fixed to 191 and, in Scenario C, M is fixed to 256 and N
is changed using the same method. Figure 5.2 shows this process schematically.

N N
S N A
M=128
1 M=191 <
(a) Scenario A: 128 X N (b) Scenario B: 191 x N

F2

M= 256

. 'vv .'.v.
‘r v‘ ‘v v.
75

(¢) Scenario C: 256 x N

Figure 5.2 M < N sub-image from M x M image
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An experiment according to the scenario A was performed with Sierpinski
triangle (Levels 5 to 9) and Sierpinski carpet (Levels 3 to 7). M was fixed at a
constant value, as M= 128 for the Sierpinski triangle and the Sierpinski carpet.

The MAE was calculated while N was changed to start with sub-images of
the sizes of 1/4. Figure 5.3 show the process.

0.4
BC
—— TBC
g 0.3l Proposed BC
§h
]
Q
L ]
°
[72]
o)
<
c
3 ]
=
A
0 I I I I I L I L
128 140 160 180 200 220 240 256
Window size, N
(@) Sierpinski triangle
0.2~
BC
——— TBC
w
P d BC
<§,: 0151 ropose
éh
i
2 o01r ]
K]
[%2]
Q
<
g F
< 0.05 / .
Y o \ —
O I I I I L L L L
128 140 160 180 200 220 240 256

Window size, N

(b) Sierpinski carpet

Figure 5.3 MAF of the three methods for 128 X N images
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As shown in Figure 5.2(a), in case of Sierpinski triangle, it was a difficult
environment for the experiment since only white background and 1/2 size
triangle are included in the initial sub-image, but in Figure 5.3(a), N increases
and MAE decreases until the step where a large triangle (top figure among
three figures) is completed, and then white background is added and MAFE
increases slightly in case of the suggested method. Generally, MAE is 0.07 or
less and it brings a good performance without being sensitive to the size of N.
On the contrary, the remaining two methods do not bring a good performance
for a partially fractal figure while being sensitive to the size of N. In case of
Sierpinski carpet in Figure 5.3(b), the suggested method also brings a better
performance while not being sensitive to the size of N in comparison with the

remaining two methods.

An interesting fact is that the estimated values of two methods change
similarly to the pattern of increase and decrease of the average pixel waste
ratio (deleted pixel number/total pixel number) of the GS sampling method
(Refer to Figure 5.4). In other words, if the pixel waste ratio is lower, the
performance becomes better, and if the pixel waste ratio is higher, the

performance becomes worse.

0.15 =

0.1+ b

0.05+ .

Average Waste Ratio

0 L L L i L i
128 140 160 180 200 220 240 256
Window size, N

Figure 5.4 Average pixel waste ratio of the GS sampling method
— 48 —
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The experiment based on the scenario B was also performed with the same
fractal images. Figure 5.5 were drawn by calculating MAE, while fixing M at
191 (high pixel waste rate in GS method), increasing N from 128 to 256 by 2 at
each time to obtain M < N pixels, starting from the top left corner. The Figures
show that the performance of the two methods is sensitive to the size of N,
whereas the proposed method is less sensitive to the size of N and more precise.

0.4 T T T T
BC
TBC
u Proposed BC
< 03}
&
i
o)
5
o
[72]
et
<
c
8
=
N— 4
O I I I L I L L L
128 140 160 180 200 220 240 256

Window size, N

(a) Sierpinski triangle

0.2 . i . ‘ ‘ T v
BC
TBC
b Proposed BC
< 0.15¢ 7
5
w
Q
% 0.1+ b
o) /
2 f .
g
® 0.05F .
=
P, —
0 I L I L I I L L
128 140 160 180 200 220 240 256

Window size, N

(b) Sierpinski carpet

Figure 5.5 MAF of the three methods for 191 X N images
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The experiment based on the scenario C was also performed with the same
two fractal images used in the previous experiment. MAE was obtained by
fixing M=256 and changing N to begin with the initial sub-image of 1/2 size
of the original image and Figure 5.6 shows this process schematically. As can
be known from the results of the experiment shown in Figure 5.6, the overall
performance of the proposed method was good.
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(b) Sierpinski carpet
Figure 5.6 MAF of the three methods for 256 <X N images
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5.2 Experiments on non-deterministic fractal image

Three methods were applied to the experiment to attain a non-deterministic
figure where a theoretical fractal dimension cannot be known in advance. Since
it is well known that the value of theoretical fractal dimension is unattainable
in experiments performed with coastlines having non-deterministic fractal
structures, the performance of individual methods may not be directly compared
by calculating MAFE as in the previous experiments. Nonetheless, the relative
complexity of the images may be intuitively evaluated. Therefore the results of
the fractal dimension estimation were calculated by the three methods.

5.2.1 Converting color images to binary images

The scaled RGB images for coastlines of the Military Demarcation Line were
obtained from the Google Map. Figure 5.7(a) shows such processes and Figure
5.7(b) displays such processes in an image.

Google Edge .
> :> detection i> Binarization :> Blnary
map (Canny) Image

(a) Block diagram of binarization of coastline images

45 082! e

Go'gle

(b) Google map (c) Edge detection (Canny) (d) Binarization
Figure 5.7 Binarization of coastline images
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The coastlines were detected and converted into gray level images using the
Canny algorithm that is provided by program MATLAB, and those images were
converted again into binary (black and white) images using the drawing
board.

5.2.2 Coastline images

In order to obtain the binary images of the Eastern, Southern and Western
coastlines, RGB images to a scale of approximately 1:250,000 from the Google
map were obtained and these images were converted through the step shown
in Figure 5.7. The images to a scale of 1:250,000 could not be obtained from
one monitor screen at a time, so the images were obtained separately as shown
in Figure 5.8. At this time, the Eastern coast was divided into eight sections,
the Southern coast was divided into six sections and the Western coast was
divided into nine sections. Figure 5.8 shows the map of south of the Korean
Peninsula and the position of acquired coast images, and Appendix A~C show

the converted binary images.

The classification of sea area between the Eastern, Southern and Western
Seas is a straight line between the Taehwa River Estuary in Ulsan which is
the boundary line between the Southern and Eastern Seas and Izumo in
Shimane prefecture, Japan according to the announcement of Korean Ministry
of Oceans and Fisheries in 1997 and the boundary between the Western and
Southern Seas is the overlapping point connected with a straight line between
the westernmost tip of Jindo-gun and the westernmost tip of Chagwido near
Jeju Island. When the images from Google map were binarized by computer
program, tiny islands were eliminated since they were considered irrelevant to
fractal estimation. The large islands in the south coast were considered as
being geographically connected for convenience’s sake, despite being connected
by bridges. In particular, the mouths of river were considered as smoothly
connected [22].
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Figure 5.8 Korean coastline maps for experiment

Table 5.4~5.6 show the results of the fractal dimension estimation by the three methods.

Table 5.4 Estimated fractal dimensions of the Eastern coastlines

Division Method
BC TBC Proposed
El 1.078 1.047 1.065
E2 1.050 1.068 1.041
E3 1.029 1.089 0.984
E4 1.012 1.049 1.003
E5 1.092 1.050 1.062
E6 1.100 1.046 1.072
E7 1.193 1.245 1.101
E8 1.261 1.230 1.234
Average 1.102 1.103 1.070
(Standard deviation) (0.079) (0.079) 0.07D)
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Table 5.5 Estimated fractal dimensions of the Southern coastlines

Division Method
BC TBC Proposed

S1 1.338 1.302 1.282
S2 1.301 1.299 1.229
S3 1.357 1.325 1.312
S4 1.421 1.387 1.386
S5 1.278 1.274 1.257
S6 1.209 1.202 1.186

Average 1.317 1.298 1.275

(Standard deviation) (0.066) (0.056) (0.063)

Table 5.6 Estimated fractal dimensions of the Western coastlines

Division Megia
BC TBC Proposed

W1 1.246 1.249 1.229
W2 1.203 1.191 1.199
W3 1.287 1.292 1.256
W4 1.238 1.238 1.199
W5 1.225 1.200 1.190
W6 1.184 1.200 1.127
W7 1.099 1.140 1.109
W8 1.372 1.371 1.313
W9 1.389 1.368 1.358
Average 1.249 1.250 1.220
(Standard deviation) (0.085) (0.075) (0.076)

Table 5.6 shows that the results of the three methods are similar.

Since it was possible to assume intuitively that the Western and Southern

coastlines were more complicated than the Eastern coastline, a relatively larger
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fractal dimension was shown through the experiment. A larger fractal dimension
means that the structure is more complicated. According to the result of this
method, the fractal dimension of coastlines in the Korean Peninsula is considered
to be approximately in between 1.03 and 1.28 [23]. This result is also similar to
the result that the dimension of Western coastline of Britain is D=1.25, and the

dimension of borderline between Spain and Portugal is D=1.14.
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Chapter 6. Conclusion

The BC method which adopts the GS sampling is mainly used for M <M
images, and this method brought an efficient result for the estimation of
fractal dimension when M had a series of 2. However, not all images have
M <M size only. If MxN image is given and the previous BC method is
used, more pixels will be deleted, deteriorating the performance of fractal

dimension estimation.

In order to solve such problems, a new BC method which expanded the
previous integer box counting method and improved the reliability of fractal
dimension by counting the boxes with a real number and obtaining a fraction
of N(5) was suggested. As a result of applying the improved BC method to
two deterministic fractal figures where a theoretical fractal dimension was
known, comparing and evaluating the fractal estimation performance between
the previous BC method and the TBC method suggested by Kaewaramsri, it was
confirmed that it worked well also for a partial figure and it brought a better
performance without being sensitive to the image size. Also, an excellent result
was obtained when an experiment was carried out using Koch snowflake where
a fractal dimension was known in order to see its robustness when the image

was rotated.
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As a result of estimating the fractal dimension in order to improve the complexity
of coastlines of the Korean Peninsula that is non-deterministic fractal, the fractal
dimension was confirmed to be in between 1.03 and 1.28.
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Appendix A. Eastern Coastline Images

Figure. A.1 E1 image of 580 %767
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Figure A.2 E2 image of 424 <767

Figure A.3 E3 image of 507 <767
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Figrue A.4 E4 image of 557 <767
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Figure A.5 E5 image of 596 <767
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Figure A.6 E6 image of 458 <767
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Figure A.7 E7 image of 581 x 767
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Figure A.8 E8 image of 558 X767
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Appendix B. Southern Coastline Images

Figure B.1 S1 image of 620 <729
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Figure B.2 S2 image of 620 <711
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Figure B.4 S4 image of 620 <612

_71_



Figure B.5 S5 image of 620360

_72_




Figure B.6 S6 image of 620360
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Appendix C. Western Coastline Images

Figure C.1 W1 image of 583 <951

o

Figure C.2 W2 image of 271x951
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Figure C.3 W3 image of 480 %951

Figure C.4 W4 image of 481 %951
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Figure C.5 W5 image of 558:<951
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Figure C.6 W6 image of 508<951
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Figure C.7 W7 image of 389 %951
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Figure C.8 W8 image of 498<951
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Figure C.9 W9 image of 555<951
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