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ABSTRACT

The Box-Counting (BC) method is one of the most commonly used algorithms 

for fractal dimension calculation of binary images in the fields of Engineering, 

Science, Medical Science, Geology and so on due to its simplicity and reliability.

One of the issues related to fractal dimension is data sampling that involves 

a process where a certain size of box is taken from a given image and it has 

a direct effect on the precision of the fractal dimension estimation. The 

Geometric Step (GS) method, arithmetic step method, and divisor step method 

are the representative methods. The GS method is mainly used because of its 

efficiency. However, the GS method has some drawbacks in nature. If the 

image size is large, it provides insufficient data for regression analysis. It can 

be applied to the image of × pixel size for 100 [%] pixel utilization. 

Application of the GS method to an image of × may waste pixels in the 

calculation and degrade the estimation accuracy.

In this thesis, a novel sampling method is proposed in order to resolve the 

shortcomings of the GS method on the basis of the intuitive observation that 

an estimate may have a higher degree of precision if more pixels are utilized 

in each step and a sufficiently large number of fitting data are guaranteed. 

The proposed sampling method is an improved version of the conventional GS 

method, called the modified GS (MGS) method. The MGS method selects some 

additional step sizes with higher pixel utilization rate among the middle values 

between the integer powers of 2 to constitute the overall step set with the 

GS method. 

Not all sampling methods including the MGS method can guarantee 100 [%] 

pixel utilization when the BC method is applied to images of an arbitrary size. 
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This study suggests a novel fractional counting method to resolve the problem 

of pixel waste. The proposed counting method counts pixels of fractal within a 

discarded box (not of × size) and adds its fractional count normalized by 

both the average pixel number of all boxes with × size and step size  to 

integer count.

The performance of the enhanced BC method incorporating the MGS method 

and fractional counting method is verified on a set of deterministic fractal images 

whose theoretical dimensions are well known and compared it with those of the 

existing BC methods. The experimental results show that the proposed method 

outperforms the conventional BC method and triangle BC method.
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Chapter 1. Introduction

1.1 Motivation

The fractal theory is an effective tool for modeling of complicated geometrical 

structures found in the nature, characterized by self-affinity and recursiveness [1]. 

When a part of a fractal is magnified and then rotated, the shape becomes equal 

to the original fractal entirely or partly, or has a statistically similar structure, 

which is called self-affinity. The never-ending repetition of a simple structure is 

called recursiveness. Fractal structures are classified as non-deterministic structures 

such as the coastline, rivers, streams, and thunders that may be seen from the surroundings 

and deterministic structures created by mathematical rules such as Mandelbrot set, 

Sierpinski triangle, and Sierpinski carpet.

Pentland [2] showed that human recognition of the degree of fractal surface 

texture between smoothness and coarseness, which is geometric irregularity, is 

closely related to the fractal dimension. Various methods of estimating the fractal 

dimension such as the Box-Counting (BC) method, triangular prism method, and 

fractional Brownian motion method have been suggested [3]. The BC method is one 

of the most commonly used methods to be applicable to estimate the complexity of 

binary fractals in the field of Engineering, Science, Medicine, and Geology because 
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of its simplicity and high reliability [4].

Jin et al. [5] applied the BC method to the fractal dimension estimation of the 

images of synthetic and natural texture. Yu et al. [6] applied the BC method to 

the recognition of human iris image divided into the higher part and the lower 

part. Shyu et al. [7] applied the BC method to measure the complexity of the 

cerebral cortex surface of a fetus. Lin et al. [8] applied the BC method to estimate 

the fractal dimension of the river water flow rate in a basin. Barakou et al. [9] 

applied the BC method to calculate the fractal dimension of a distributed network 

and to create a virtual distributed network by using an extended fractal model.

To increase the precision of the BC method, Foroutan-pour et al. [10] discussed 

the appropriate size of a rectangular frame surrounding a fractal figure and its 

threshold. Bisoi and Mishra [11] also investigated the box size threshold. Miloevic 

and Elston [12] suggested a method of eliminating regression analysis data having 

non-linear properties by adequately controlling the box size and applied the 

method to estimate the fractal dimension of neurons. Kaewaramsri and Woraratpanya 

[13] suggested the Triangle Box-Counting (TBC) method where the Geometric 

Step (GS) method is used by dividing the conventional square box into two 

triangles to increase the precision of box-counting.

Most of the fractal dimension estimation methods suggested until now has 

employed the GS method where the step size , which is used to divide an 

image is a power of 2. Therefore, the size is limited to ×× (m is a 

positive integer) in the BC method so that the pixels of the handled image are 

not wasted. However, the shapes and sizes of the image found in actual 

environment, such as coastline, rivers, chains of mountains, and plants are all 

different. When the BC method is applied to such images, degrade of the 

performance is unavoidable because some pixels may not be used for fractal 

dimension calculation.
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1.2 Research objectives

Therefore, in this thesis an enhanced BC method which employs both a 

modified GS (MGS) sampling method and a novel fractional counting method is 

presented. The MGS method is an improved version of the GS method, which 

provides more numbers of step size than the GS method for data fitting when 

the image size is large. The novel fractional counting method provides the 

ability to count blocks as a real number, that is, the product of the ratio of 

the fractal pixel numbers within the relevant block for the averaged pixel 

numbers within the blocks of × size and the ratio of the relevant block 

size for the block size of ×.

The performance of the suggested BC method has been verified with two 

deterministic fractal images with the Mean Absolute Error (MAE) as the evaluation 

index. The effectiveness of the suggested BC method has been verified in comparison 

with the conventional BC method and the TBC method proposed by Kaewaramsri 

et al [13]. In addition, the suggested BC method has been applied to the coastline 

images of the Korean Peninsula, which are non-deterministic images, to estimate 

the fractal dimensions and measure the complexity.

1.3 Organization of the thesis

The thesis is organized as follows:

Chapter 2 gives an overview of the fractal theory. It presents definition of 

fractal and fractal dimension. Two kinds of fractal geometry and their examples 

are shown. It also gives a brief description of how to make deterministic fractal 

geometries.

Chapter 3 describes the existing methods to estimate fractal dimension of 
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binary (black and white) images. As well known fractal dimension estimators, 

the Box Counting (BC) method and the TBC method are explained. As sampling 

methods, the Geometric Step (GS) method, Arithmetic Step (AS) method, and 

Divisor Step (DS) method are introduced.

Chapter 4 is the core part in this thesis and presents an enhanced BC method. 

To overcome the drawbacks of the existing sampling methods, a novel 

method, called the modified GS (MGS) method is newly introduced and a 

fractional box counting method to be applicable to images of an arbitrary size is 

proposed. 

Chapter 5 carries out experiments to select the optimal value of the user-defined 

parameter  of the MGS sampling method, verify the performance of the 

proposed BC method on a set of deterministic fractal images whose theoretical 

dimensions are well known and compare it with those of the existing two 

methods. In addition, the proposed method is used to measure the complexity 

of coastlines of the Korean Peninsula.

Chapter 6 summarizes the conclusion of the study.
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Chapter 2. Overview of Fractal Theory

2.1. Definition of fractal

The term ‘fractal’, originated from ‘Fractus’ which is an adjective of the 

Latin verb ‘Frangere’ that means break, split, and fracture, has become a 

very important part in modern physics and mathematics since Mandelbrot [1] 

introduced the fractal theory by publishing a paper titled ‘How long is the 

coast of Britain?’ in 1975. Mandelbrot showed in his paper that the length of 

the coast varies according to the size of measurement unit. 

For example, measuring of the length of the KMOU’s campus coastline depicted in 

Figure 2.1 shows that when the length is measured with a little scale ruler of 50 [m],

the length is 1.50 [km], and when it is measured with a little fine scale ruler of 25 

[m], the length is 1.63 [km]. In other words, the length of the coastline becomes longer 

when a smaller measurement unit is applied. This shows that when the measurement 

unit becomes infinitely smaller for measuring the length of a complex natural object 

other than the coast, its length may become infinitely longer. This is a new geometry 

that can explain the structural irregularity of nature. When we take a look at 

complex structures available in the nature by partially enlarging them into a geometrical 

shape that enables modeling, such shapes are exactly the same or statistically similar.  
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(a) 50 [m]
  

     

(b) 25 [m]   

Figure. 2.1 Measuring the length of the KMOU’s campus coastline on different 

scale (Google photo)
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The fractal geometry has a characteristic of self-similarity and prime number 

dimension, and this is a field of study that explains an uneven shape which is 

difficult to be explained in a non-linear status just as Euclidean geometry, not a 

smooth linear or curvilinear shape that is easy to be explained. Bracken can be 

considered as an example of such characteristics [14]. Bracken has a characteristic 

of self-similarity and recursiveness. Self-similarity means that even if a shape 

is scaled down in a fractal space, a part which has the spatial characteristics 

of the whole shape in the original scale always exists and such part is aligned in 

phases, and recursiveness means that two or more same or statistically similar 

elements are aligned, forming a successional pattern [15].

2.2 Fractal dimension

A dimension is an index showing how the general measurements are correlated 

with measurements such as area, length, and volume. Typically, there are integer 

dimensions including 0 dimension for a dot, 1 dimension for a straight line, and 2 

dimensions for a plane, the dimension is a strictly absolute definition [16]. As an 

example of importance of dimension, when the volume of a book is measured on 

the assumption that it is measured on an appropriate scale and the unit of 

volume is constant, the same result will always be shown. However, the fractal figure 

on a fractional dimension cannot be measured with a scale of integer dimension. 

This is in the same context with the calculation of volume of line segment. The line 

segment is a concept in 1 dimension but the volume is a concept in 3 dimensions. 

Likewise, an appropriate dimension should be known in order to calculate a length 

and volume properly. Therefore, it is very important to know the fractal dimension 

which has a decimal dimension.

In mathematical approach, one side is divided by  in 1 dimension, () 

side(s) which length is  time(s) the original length is(are) created, and 

when each side of an equilateral square is divided by  in 2 dimensions, 
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     

   m
1 2 3

1

1 1 1

2

2 4 8

3

3 9 27

() square(s) which side is reduced by  is(are) created, and each 

side of an equilateral hexahedron is divided by  in 3 dimensions, () 

equilateral hexahedron(s) reduced by  time(s) is(are) created. Taking a 

square as an example, when one side is divided by 2 in 1 dimension, two sides 

of which length is  time(s) the original length are created, and when each 

side of an equilateral square is divided by 2 in 2 dimensions, 4 squares of which 

side is reduced by  time(s) are created. This is summarized in Table 2.1.

Table 2.1 Schematics of dimension

The relational expression between the rate of reduction  , number of 

figures  and the dimension  from Table 2.1 is shown in Equation (2.1) and 

Equation (2.2). 
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                                                    (2.1)

 log  log                                                (2.2)

2.3 Fractal geometry 

Fractal objects are divided into deterministic and non-deterministic fractal 

object [17]. A deterministic fractal object is created by reducing or rotating its 

shape recursively in phases according to the mathematical rules, and a 

non-deterministic fractal has a statistically similar shape with the whole shape 

by enlarging a part of a certain shape in phases. The examples of deterministic 

and non-deterministic fractal figures are shown in Figure 2.2.

Deterministic fractals

Mandelbrot set Julia set Koch Snowflake

Non-deterministic fractals

Braken Brain Lung

Figure 2.2 Images of fractal geometry (Naver photo)
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2.3.1 Mandelbrot set and Julia set  

Since there is one generator for basic fractal geometries, so the whole 

fractal dimension and partial fractal dimension are same [1]. However, fractal 

geometries appeared after Mandelbrot set or Julia set have a different value 

between global dimension and local dimension. The figures of Mandelbrot set 

and Julia set are shown in Figure 2.3.

Mandelbrot set is the set of  that does not diverge when the initial value of  is 

0. It begins from Equation (2.3) which is a simple complex recurrence formula [16].

 
                                                        (2.3)

The above equation can be explained as repetition of process to square a 

certain complex and add the original complex to the value. Julia set is a type 

of fractal designed by a French mathematician Gaston Maurice Julia and it 

begins from Equation (2.4) which is a simple complex recurrence formula. This 

is sets of  that does not diverge when  is fixed in the complex equation. In 

other words, the set of  varies depending on which value  is fixed to [16]. 

 
                                                      (2.4)

     

(a) Mandelbrot set                  (b) Julia set

Figure 2.3 Mandelbrot set and Julia set
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2.3.2 Koch snowflake (Opened)

Koch snowflake is one of fractals that were introduced first among the 

deterministic fractals that can be explained mathematically. It appeared first in 

a paper of a Swedish mathematician Helge Von Koch in 1904 [16]. The figures 

of Koch snowflake according to the level are shown in Figure 2.4. In order to 

draw Koch snowflake, a triangular shape is created by dividing one segment into 

three equal segments and pulling up the middle segment, and at this time, the 

length of two segments created from one middle segment should be same with the 

length of one segment at the time of dividing the original segment into three 

segments, and at this time, four segments of which length is the original 1/3 are 

created [16].       when substituting it for the proportional expression, 

and at this time,  value is the dimension.  value is loglog which takes 

the value of 1.26. We call one dimension as a line and two dimensions as a plane. 

1.26 dimension is a figure in the mean dimension which is not one dimension nor 

two dimensions. When the above process is repeated, the length of each segment 

decreases by 1/3 and the length of the whole segment increases by 1/3. In other 

words, the length of one segment of th Koch snowflake is  and the 

whole length becomes . When it is carried out infinitely,  is larger 

than 1 so it becomes infinite. 

    

(a) Level  2                      (b) Level  3

       

(c) Level  4                       (d) Level  5

Figure 2.4 Level of Koch snowflake (Opened)
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2.3.3 Apollonian gasket

An Apollonian gasket created by using a circle of Euclidean geometry is a 

shape frequently used in the fractal geometry. It is created by a sand artist 

Jim Denevan and his three associates [18]. The figures of Apollonian gasket 

according to the level are shown in Figure 2.5. The first figure of Apollonian 

gasket consists of large and small circles and which were drawn repeatedly on 

a flat desert to give a property. It was named after the ancient Greek 

mathematician ‘Appollonius’ who used terms including ellipse and arc for the 

first time in the book that is titled ‘Conic Sections’. A gasket as an automotive 

part is a mechanical seal which fills the space between pipes or engine to 

prevent leakage of gas or oil. There are several kinds of methods to make 

Apollonian gasket figure. It depends on the way the first figure starts. 

      

                  (a) Level  2              (b) Level  3

     

                (c) Level  4             (d) Level  5

Figure 2.5 Apollonian gasket
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To draw a normal Apollonian gasket, a regular triangle is drawn first. Then, 

three adjoining circles with a radius which equals to a half of one side of the 

regular triangle are drawn. Next, a circle which adjoins with three circles at 

the same time should be drawn, and one circle inside the circle and two circles 

outside the circle are drawn. Next, when a circle which adjoins three circles 

and two additionally drawn circles at the same time is drawn, a total of eleven 

circles can be obtained. When this process is repeated, a total of  circles 

can be obtained in th steps. When it is drawn infinitely, the figure where a 

circle is completely filled but it does not become a plane. Its dimension is 1.654.

2.3.4 Vicsek fractal

Vicsek fractal is a fractal geometry arising from a construction similar to that 

of the Sierpinski carpet, proposed by Tamas Vicsek [19]. The figures of Vicsek 

fractal according to the level are shown in Figure 2.6. 

    

(a) Level  2            (b) Level  3

    

(c) Level  4             (d) Level  5

Figure 2.6 Vicsek fractal
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It begins from a square figure. The square is divided into nine smaller squares 

in the 3-by-3 grid and then the squares at the corners are removed. Then, 5 out of 

9 squares remain. In the next level, the same process is repeated for each of the 

five remaining squares. When the experiment according to the level is repeated by 

th times, the area of the figure is  and  is a number smaller than 1, 

when it is repeated infinitely, its area is close to 0. Its dimension is loglog

which is approximately 1.465.

2.3.5 Sierpinski triangle

Sierpinski triangle, named after the Polish mathematician Waclaw Franciszek 

Sierpinski in 1917, is also called the Sierpinski gasket. The figures of Sierpinski 

triangle according to each level are shown in Figure 2.7. 

        

(a) Level  2              (b) Level  3

        

(c) Level  4              (d) Level  5

   Figure 2.7 Sierpinski triangle
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To draw a Sierpinski triangle, an equilateral triangle is drawn first and the 

center of each side of the equilateral triangle is connected to each other with a 

line. Then, a total of four equilateral triangles are created and the central one is 

removed. A figure obtained by repeating the same process for the remaining 

three equilateral triangles is called Sierpinski triangle. Each side is reduced by 

 and the number of triangles increases threefold, so the dimension is loglog

that is 1.585. When the above process is repeated, the sum of length of sides 

of equilateral triangle in th step becomes  and when it is carried out 

infinitely, the sum becomes an infinite value. The area becomes   in th 

step, and when it is carried out infinitely, the value becomes 0 [16]. 

2.3.6 Rand cantor

Rand cantor is a type of cantor set. The figures of Rand cantor according 

to each level are shown in Figure 2.8. The cantor set is a type of fractal that 

    

(a) Seed  272             (b) Seed  790

      

(c) Seed  809            (d) Seed  2892

Figure 2.8 Cantor set
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has the characteristics of self-similarity, and the German mathematician Georg 

Cantor discovered a method to count a transfinite number and introduced the 

concept of fractal geometry along with an example of cantor set in 1883 [16].

To draw the cantor set, a closed interval [ ] is given first, it is divided 

by three sections and the middle section  is removed. The remaining 

two sections are divided by three sections each and the middle section is 

removed. Then, the sets {[ ,], [ ], [ ], [ ]} remain. The 

set obtained by carrying out this process recursively is called the cantor set 

[16]. In a normal cantor set, the middle segment is removed sequentially,

but in a Rand cantor, segments are removed randomly to create a shape.

2.3.7 Koch curve 85°

Koch curve 85°is a fractal object designed from the fractal figure originated 

from the Koch snowflake. The figures of Koch curve 85°according to each 

level are shown in Figure 2.9.

In a normal Koch snowflake [16], one segment is divided by three to have 

approximately 60°for the angle between the 0°segment and the vertex of 

the triangle, and Koch curve 85°is a figure which has 85°for the angle 

between the segment and the vertex of the triangle. 

First, an isosceles triangle with the vertex angle of 10°is drawn, and the 

base side is erased and one side of length which is same with the size of 

the isosceles triangle is drawn on each side. When this process is carried 

out repeatedly, a fractal figure as shown in the figure below is obtained. A 

theoretical fractal dimension of Koch curve 85°is 1.785.
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(a) Level  2            (b) Level  3

    

(c) Level  4            (d) Level  5

Figure 2.9 Koch curve 85°

2.3.8 Sierpinski carpet

Sierpinski carpet was named after the Polish mathematician W. F. Sierpinski 

in 1916. The figures of Sierpinski carpet according to each level are shown in 

Figure 2.10.

To create this, a square is first necessary. At first, the square is cut into 9 

congruent sub-squares in a 3-by-3 grid and the central sub-square is removed. 

To move to the next level, each of the 8 remaining sub-squares are cut into 

congruent sub-squares in a 3-by-3 grid and each of central sub-square is 

removed. The Sierpinski carpet can be obtained by repeating the same procedure 

infinitely [17]. When it is shown in a formula, the area of Sierpinski carpet in th 

step is  and by taking the limit, becoming the same to the principle of 

Sierpinski triangle.
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(a) Level  2           (b) Level  3

    

(c) Level  4            (d) Level  5

Figure 2.10 Sierpinski carpet

2.3.9 Hilbert curve

A Hilbert curve is a space-filling curve that was described by the German 

mathematician David Hilbert in 19th century. The figures of Hilbert curve according 

to each level are shown in Figure 2.11. This is a variant curve of the Peano 

curves discovered by Giuseppe Peano [20]. As the Peano curve, the Hilbert curve 

begins from a plane line, creates and adds a line infinitely, filling the plane 

completely and becoming a figure in two dimensions, and its dimension is 2. The 

Hilbert curve is a fractal figure which is created in the unit square. Level 1 

begins as three segments by connecting 4 dots of the unit square (,), 

(,), (,), (,). In Level 2, all coordinates of the Level 1 are 

reduced by a half and a curve rotated counterclockwise based on (0,) is 

added. Next, symmetrical lines based on   are added infinitely to obtain 

the Hilbert curve.
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(a) Level  1            (b) Level  2

    

(c) Level  3            (d) Level  4

Figure 2.11 Hilbert curve
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Chapter 3. Existing Box-Counting Methods

The concept of fractal dimension plays an important role in the fractal 

study. There have been several methods for estimating a fractal dimension 

include the BC method, triangular prism method and Fractional Brownian 

motion method [17]. Among these methods, the BC method suitable for two 

dimensional binary (black and white) images is used frequently because of its 

simplicity and high reliability. Therefore, the relevant study was carried out.

3.1 Conventional box-counting method

In the BC method, when a binary image is given, the fractal dimension is 

estimated by repeating an estimation process where a reference square (of which 

length of a side is 1) incorporating the image is created and then divided into grids by 

reducing the length of a side in a scale of , and then the boxes including fractal 

figures are counted [1]. Therefore, the minimum number of boxes required to 

completely cover the fractal image, , is a function of , expressed as follows:

 


                                                            (3.1)

Not all fractals exhibit deterministic self-similarity but some statistical self-similarity.
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  log log
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In order to obtain approximate fractal dimension, we can use one of the commonly 

adopted algorithms, called the BC algorithm, introduced by Gangnepain and 

Roques-Carmes [21]. Given a binary (black and white) image I of × pixels, 

where  and  is an integer number, Equation (3.1) can be rewritten from 

the relation between box (step) size  and M, that is,      as

 


  


    


                                       (3.2)

Since   is a constant, Equation (3.2) may be rewritten as the following 

Equation (3.3):

∝ 


                                                             (3.3)

Step size  needed to calculate  sampling has a direct effect on the precision 

of the fractal dimension estimate, the sampling method should be carefully decided. 

Representative sampling methods are the GS method, the AS method, and the DS 

method.

The GS method used with BC method is employed by most fractal dimension 

estimation methods as in the present study. To make the data intervals on 

the log-log coordinates become equal, the GS method employs geometric 

numbers increasing in the multiples of 2, which are the powers of 2. Figure 

3.1 shows an example of calculating  while sampling an image of ×

pixels representing Koch snowflake curve. Table 3.1 shows the results.

Table 3.1 Step size and box numbers
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     (a)           (b)             (c)             (d)   

Figure 3.1 Box counting on an image of × pixels

Hence,  is obtained by repeating the process of dividing the image 

while changing  and counting the boxes including fractal figures. The fractal 

dimension is the gradient of the log log  plot which is expressed 

as:

log
log

                                                           (3.4)

If {} (1≤k≤m) is given as the number of boxes corresponding to 

the given step size, it can be obtained also through least square technique 

by the regression analysis of linear model. The relationship between  and 

 can be expressed as a linear equation as shown in Equation (3.5)

log ∙ log                                                  (3.5)

and in Equation (3.5),  is an intersection point between the linear equation 

and y-axis, and  is an error between the linear equation and data. 

When substituting data {} (1≤k≤m) for Equation (3.5), it can simply 

be expressed by Equation (3.6).
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                                                        (3.6a)

 






log

log

⋮

log





∈,   Da∈,  







⋮

m





∈, 





log 

log 

⋮ ⋮

log 






                                                          (3.6b)

When the sum of error square as the estimation function is 

                                          (3.7)

 estimated from the necessary condition   for this value to be the 

minimum is given as Equation (3.8).

                                                          (3.8)

Therefore, the fractal dimension is obtained from Equation (3.8) as  . 

When the approximate fractal dimension calculated using the data of boundary 

value on both sides from Table 3.1 can be obtained with the least square method 

in Equation (3.5) as

 
log log



log log



 , and  

It can be known that this is approximate to  , theoretical dimension 

of Koch snowflake curve. Also, Figure 3.2 shows that the gradient of the graph 

means fractal dimension of koch snowflake curve. 

Table 3.2 shows overall algorithm of the BC method with × images to 

calculate fractal dimension.
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The conventional BC algorithm
Get an image  of ×;

m log ;

for 1 to m

   
 ;

  Blocks;

   ;

  for  1 to Blocks

    for  1 to Blocks

      if sub-image   is a non-empty box

          ;

      else

          ;

      end if

        ;

    end for

  end for

end for

Estimate  using data set { } (1≤k≤m) of m and the least squares 

method;

Table 3.2 Overall procedure of the BC method
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Figure 3.2 Data fitting using the least squares method
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3.2 Triangle box-counting method

The procedure of the TBC method, suggested by Woraratpanya et al. [13], is 

similar with that of the BC method shown in Table 3.1 and the major difference 

is that the box of each × pixel size is counted separately into two pattern 

areas as shown in Figure 3.3. Therefore, it is counted as   2 in case of 

Figure 3.4(a) and   1 in case of Figure 3.4(b).

(a) Pattern-1         (b) Pattern-2

Figure 3.3 Patterns of partitioning a square box

                                           

                                                                                    (a)   2                    (b)   1

Figure 3.4 Box-counting of the TBC method
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The TBC algorithm

Get an image  of ×;

m log ;

for 1 to m

   
 ;   

  Blocks ;   

   ;

  for  1 to Blocks

   for  1 to Blocks

     Split sub-image  into two equally triangle boxes as shown in Figure 3.3

      Count non-empty boxes in both patterns, such that  and  denote

      counter variables for Pattern-1 and Pattern-2, respectively

      if  and  are equal to 2

          ;

      else if  and  are equal to 1

          ;

      else if  is not equal to , such that  and  are greater than 0

          min ;

      else if

          max ;

      else

          ;

      end if 

       ;

    end for

  end for

end for

Estimate  using data set { } (1≤k≤m) of m and the least squares 

method;

Given an image of size ×, the overall algorithm of the TBC method is 

shown below in Table 3.3.

Table 3.3 Overall procedure of the TBC method
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Chapter 4. Enhanced BC Method

In the previous chapter, three data sampling methods were mentioned. Their 

principles and drawbacks are in this chapter reviewed and a new sampling method 

and fractional counting method are suggested to improve the BC method.

4.1 Existing sampling methods and their drawbacks

4.1.1 Sampling methods

In the GS method, which is employed by most fractal estimation methods, 

sampling is performed in  geometric numbers increasing in the multiples of 2 to 

make the data intervals on the log coordinate become equal. The step set and step 

size are shown below.

For example, applying the GS method to an × image gives   {1, 2, 4} and 

  3.

  { , 1, 2, 3, ..., log }                             (4.1)
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         log                                               (4.2)

Figure 4.1 shows the results of applying the GS method.

In the AS method, which has been proposed for the purpose of obtaining 

sufficient data for regression analysis of a small size of image,  is arithmetically 

increased by 1 at each time from 1 to  in the sampling process. The step 

set and step size are shown as:

  {   1, 2, 3, ..., }                                    (4.3)

                                                     (4.4)

Application of the AS method to the previously mentioned image of × pixels 

gives   {1, 2, 3, 4}, and   4. Figure 4.2 shows the results of applying the 

AS method. When   3, 28 pixels are wasted.

(a) 1                (b) 2                 (c) 4

Figure 4.1 GS sampling on an image of × pixels
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(a) 1                     (b) 2

    

(c) 3                     (d) 4

Figure 4.2 AS sampling on an image of × pixels

In the DS method, which is a method designed to accomplish 100 [%] of pixel 

utilization rate at any ,  is a natural number divisor (except  ). The step set 

and step size are given by

  {｜ is a natural number divisor of  and ≠ }        (4.5)

                                                          (4.6)

If  is a geometric number, the DS method becomes identical to the GS method. 

Application of the DS method to the same image of × pixels gives   {1, 2, 

4} and   3. The sampling result is equal to that shown in Figure 4.1.



- 30 -

4.1.2 Pixel utilization

The coverage ratio , which is the pixel utilization ratio to measure 

how many pixels out of the whole pixels are used or deleted according to 

when the sampling method is applied to an image of × pixels, is defined 

as follows:

×




×




 ∈
                                  (4.7)

where 


×


 denotes the number of pixels with a given step size 

of , and  denotes the step set. In addition, with respect to all step sizes, the 

average coverage ratio  is defined as:

 


∈

                                                     (4.8) 

Then, average wasting ratio  is defined as follows:

                                                            (4.9) 

4.1.3 Drawbacks of the existing sampling methods

In the case of the BC method or the Ruler’s method, the degree of accuracy is 

improved when measuring a fractal dimension as generally the scale r is larger, in 

other words, the step size  is smaller. The fact that when  becomes larger, 

the GS method has a disadvantage that there are less data in high precision 

scale, and the AS method has a large step size so that enough data for 

regression analysis can be obtained but a block with low pixel utilization rate is 
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sampled several times so that the degree of accuracy is not improved while only 

increasing the burden of calculation. The DS method secures 100 [%] pixel 

utilization rate for  ( is a positive integer) image but when ≠ and 

 is a prime number, the number of data is insufficient.

Next, the number of steps was obtained with the GS method, the AS 

method, and the DS method by increasing  with an increment of 1 from 

10 to 50 and the graph was drawn. According to Figure 4.3, the GS method 

and the AS method tend to show a monotonous increase as  increases, 

but the GS method has too narrow margin of increase, and in case of the 

DS method, the number of steps increases or decreases repeatedly according 

to  and the number of steps which is 1 occurs frequently, and in case of 

the AS methods, the number of steps increases in proportion to  but the 

pixel utilization rate is low and too many small boxes are created so that the 

estimated value is skewed accordingly.

Figure 4.3 Number of step size to changes of 
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4.2 New sampling method

It is critical in the BC method to determine the step size and the limits of 

the step size. In the GS method, the data in the scale of which precision 

may be increased (i.e., small ) are insufficient if  is large. Also, when it 

is applied to × image, some pixels cannot be utilized. Therefore, in 

this study, a novel sampling method is herein proposed to resolve these 

problems on the basis of the intuitive observation that an estimate may have 

a higher degree of precision if more pixels are utilized in each step and 

sufficiently large quantity of regression analysis data are secured.

The suggested method is an improved version of the previous GS 

method, called the modified GS (MGS) method. The MGS method takes the 

middle value from the integer section on the log-log coordinates for the 

step set of the GS method to combine  where  is better. 

When the image size is ×, partition should be done based on the 

length of a short side, so if min, the step set of the GS method 

will become Equation (4.10).

  {    }                                   (4.10) 

Here,   log . The step set which takes the middle value from 

the integer section on the log-log coordinates becomes Equation (4.11). Here

 means the round-off operator.

  {   
 




≤ 


   }                     (4.11)

The remainder between  and  to eliminate the overlapping step size due 

to real exponent and rounding off operation can be obtained by Equation (4.12).
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The MGS method

Get ,  and ;

Set min;

Set log;

Calculate the set  using Equation (4.10);

Calculate the additional set  using Equations (4.11)~(4.13);

Set  ∪ ;

     { ∈ and   ∉ }                    (4.12)

 of ∈ is obtained and lined up in descending order in order to 

include a large number of  which a has high pixel utilization rate while 

securing more data than the GS method, and the step set  is composed 

by taking the corresponding  as many as  according to size.

 min   ∙                                        (4.13)

where  is a real positive value between 0 and 1 and a user-defined variable.

Therefore, the suggested sampling method is the sum of   and .

 ∪                                              (4.14) 

The overall procedure of the proposed MGS method is shown in Table 4.1.

Table 4.1 Procedure of the MGS method

For example, when the MGS method is applied to × image with    , 

min min ,  log ,  {} and  

{}. Therefore,     {3,6} and  min  ∙ 
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Sampling 
method

Step size δ Average coverage ratio 
(Standard deviation)

GS   1   2   4   8   16   32   64 0.910 (0.111)

MGS
  1   2   3   4    6    8   11

16  23  32  45   64    91
0.903 (0.111)

min × ,  {3,6},  ∪   {} in 

the end. As another example, the result of applying the GS method and the 

MGS method to a × image is shown in Table 4.2 and Figure 4.4 shows 

a drawing of . 

Table 4.2 Sampling results of the GS and MGS methods on × image

According to the table and the figure, the average coverage ratio  of 

the MGS method and the GS method is similar but the number of steps of 

the MGS method is 13 and the number of steps of the GS method is 7, 

indicating that the MGS method can secure more regression analysis data.
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Figure 4.4 Coverage ratio of the GS and MGS sampling methods 

                   (Solid: GS method, Solid+Dotted: MGS method)
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4.3 Fractional box count

As described above, the conventional BC method and most of the methods 

which can estimate fractal dimension, where the sampling is performed by the GS 

method, limits that the image size is ×× ( is a positive integer) to 

prevent waste of pixels. Also, when large images are treated to calculate fractal 

dimension, the data for regression analysis are not enough.

On the average the size of images acquired from actual environment, such as 

the shapes of coastline, rivers, chains of mountains, is actually various. Therefore, 

this study suggests a real number counting method to resolve the problem of pixel 

waste which occurs when the BC method is applied to images of an arbitrary size.

Once  is determined, and   and  , the image is 

divided as shown below to make each block to be a square or a rectangle. 

� If  and , the image is divided into   blocks of × pixels.

� If  and , the image is divided into   blocks of × pixels 

and  blocks of × pixels.

� If  and , the image is divided into   blocks of × pixels 

and  blocks of × pixels.

� If  and , the image is divided into   blocks of × pixels,

 blocks of × pixels,  blocks of × pixels, and one 

block of × pixels.

Figure 4.5 shows an example of a image divided with step size . 
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







(1,1) (1,2) (1,3)

(2,3)(2,2)(2,1)

(3,1) (3,2) (3,3)

      

      Figure 4.5 Partition example of an image

 denotes the number of pixels of the fractal figure included in the () block 

and   denotes the average pixel number of the fractal figure included in the 

block of a × size which is counted as 1.

� If the block size is  ×, the block are counted by the real number 

counting method. If any fractal figure is included in the () block, the 

count is done by Equation (4.15); otherwise  :

 min


 ∙


                                            (4.15)

� If the block size is ×, the block are counted by the real number 

counting method. If any fractal figure is included in the () block, the 

count is done by Equation (4.16); otherwise  :

 min


 ∙


                                            (4.16) 
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� If the block size is ×, the block are counted by the real 

number counting method. If any fractal figure is included in the () block, 

the count is done by Equation (4.17); otherwise  ; 

 min


 ∙




                                   (4.17)

For instance, application of the proposed MGS method and the fractional 

counting method to the × image, minmin , 

 log 4,   2,   2,   {}.

Figure 4.6 shows how the image can be divided and Table 4.3 shows the result 

of .

Table 4.3 Step size and real number box-counting

Step size  1      2      3     4     6      8 

Box Count  56    21.19   10    8.04   4.24   4.61  

When we see Figure 4.6(f) where  8, 4 blocks sized ×, that is, (1,1), 

(1,2), (2,1), (2,2)th blocks are counted as integers and the (2,3)th block sized 

× that includes the fractal figure is counted as a real number. The integer 

counting result is 4 and the (2,3)th block is counted as follows. 

By referring to Figure 4.6(a) and Figure 4.6(f), the average pixel number of 

the fractal figures included in 4 blocks of × is   and also  , so 

 min


×





×


 . Therefore, 40.614.61. When

 is obtained for each , the fractal dimension is obtained through the least 

square technique, and in case of this example, 1.279.
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               (a)                               (b)  

   

               (c)                               (d)   

   

              (e)                                (f)  

Figure 4.6 Sampling of the image of ×

4.4 Procedure of the enhanced BC method

The overall algorithm of the proposed BC method in this study is shown in 

Table 4.4.
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The enhanced BC algorithm

Get an image  of × and ;

Calculate  using Equations (4.10)~(4.14) and    ;

for 1 to 

  rBlocks;   

  cBlocks;  

   ;

  for 1 to rBlocks

    for 1 to cBlocks

      if sub-image  is a non-empty box

          ;

      else

          ;

      end if

        ;

    end for

  end for

  if   rBlocks× and cBlocks×

     for 1:cBlocks

       if sub-image rBlocks is a non-empty box

         Calculate  using Equation (4.15);

       else

          ;

       end if

         ;

     end for

  end if

  if   cBlocks× and rBlocks×

     for 1:rBlocks

Table 4.4 Overall procedure of the enhanced BC method



- 40 -

       if sub-image cBlocks is a non-empty box

         Calculate  using Equation (4.16);

       else

          ;

       end if

         ;

     end for

  end if

  if   rBlocks× and   cBlocks×

     if sub-image  rBlockscBlocks is a non-empty box

       Calculate  using Equation (4.17);

     else

        ;

     end if

         ;

  end if

end for

Estimate  using data set {  } (1≤k≤m) of m and the least squares 

method;
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Chapter 5. Experiments and Review

In this chapter, a set of simulation works are performed with deterministic 

fractal figures of which theoretical dimensions are well known to evaluate the 

estimation performance of the proposed BC method. The result of using the 

proposed BC method was compared with that of the conventional BC method 

and the TBC method. The proposed BC method also was applied to the 

non-deterministic images of coastlines of South Korea to estimate its complexity 

and compared with the other two methods.

5.1 Experiments on deterministic fractal image

5.1.1 × test image

For these experiments, eight fractal figures having a fractal dimension of 1 to 

2 were selected and then drawn by using mathematical formulas. The resulting 

drawings were converted into images having pixel sizes of ×, ×, 

and ×. Since the estimate of a fractal dimension is slightly dependent on 

the levels of the figures whose complexity are different, the images of individual 

figures drawn at five levels were used. Table 5.1 summarizes the figures used in 

the experiment and the theoretical dimensions as well as the levels.
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No. Name of figure Figure Level Dimension

1 Koch snowflake 4~8 1.262

2 Apollonian gasket 3~7 1.328

3 Vicsek fractal 3~7 1.465

4 Sierpinski triangle 5~9 1.585

5 Rand cantor
5 kinds of 

seeds
1.678

6 Koch curve 85° 5~9 1.785

7 Sierpinski carpet 3~7 1.893

8 Hilbert curve 6~10 2

Table 5.1 × test images for experiments
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5.1.2 Determination of 

In the proposed MGS method, , the parameter determining how many step 

sizes will be selected from , was determined through the experiment performed 

with the images shown in Table 5.1. The evaluation function used to measure the 

estimation performance was the  between the estimated dimension, , and 

the theoretical dimension, , as expressed as follows:

 



 



                                               (5.1)

where  denotes the total number of images used in the experiment.

Figure 5.1 shows the  calculated and drawn with respect to a total of 120 

images of eight figures at five levels with 3 sizes by varying  from 0 to 1. As 

shown in Figure 5.1, when  ≤ , the performance of the proposed method 

was better than that of the GS method ( ), the best performance was 

obtained when   , and the performance was worse than that of the GS 

method when  , since many step sizes having a low pixel utilization rate 

were included. 
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Figure 5.1  versus 
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No. Geometry

Dimension

(Standard deviation)

Theoretic BC TBC Proposed

1
Koch snowflake
(Opened form)

1.262
1.250
(0.019)

1.354
(0.036)

1.267
(0.018)

2 Apollonian gasket 1.328
1.378
(0.015)

1.446
(0.042)

1.369
(0.015)

3 Vicsek fractal 1.465
1.458
(0.031)

1.585
(0.053)

1.465
(0.029)

4 Sierpinski triangle 1.585
1.583
(0.021)

1.623
(0.030)

1.583
(0.018)

5 Rand cantor 1.678
1.664
(0.027)

1.662
(0.025)

1.677
(0.022)

6 Koch curve 85° 1.785
1.792
(0.038)

1.761
(0.039)

1.788
(0.041)

7 Sierpinski Carpet 1.893
1.899
(0.018)

1.896
(0.022)

1.901
(0.016)

8 Hilbert curve 2.000
1.969
(0.062)

1.961
(0.066)

1.974
(0.063)

The experimental result indicate that, although 100 [%] of pixel utilization rate 

is secured in the conventional estimation methods employing the GS method for 

an image of × pixel size ( is a geometric number), maintaining the 

number of steps at a value 1.6 more than  is more effective even though 

the pixel utilization rate may be slightly lower.

5.1.3 Experiment with images of × pixels

The experiment was performed with the fractal figures shown in Table 5.1 to 

verify the performance of the BC method employing the MGS method. The fifteen 

images ( Level×Size) were used for each image to calculate the fractal dimensions, 

and the mean and the standard deviations of the dimensions were also calculated. 

Table 5.2 summarizes the theoretical dimensions and the dimensions estimated by 

the three methods.

Table 5.2 Estimated results of the three methods for the test images
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Figure
Angle of 
rotation

Fractal dimension

(Standard deviation)
BC TBC Proposed

0 1.227
(0.011)

1.350
(0.010)

1.247
(0.005)

45
1.259
(0.024)

1.271
(0.019)

1.248
(0.019)

    

90 1.227
(0.011)

1.350
(0.009)

1.246
(0.004)

180 1.227
(0.011)

1.349
(0.010)

1.254
(0.010)

Overall 1.235
(0.020)

1.330
(0.036)

1.249
(0.012)

As can be seen from Table 5.2, the result from the proposed method was generally 

closer to the theoretical dimensions when compared with the other two methods, and 

the standard deviation was also smaller. In particular, the severe fluctuation 

(represented by standard deviation) of the estimates by the TBC method [13] depending 

on the level indicates that the triangular pattern is not effective.

5.1.4 Experiments on rotated × image

The next experiment was performed to evaluate the rigidity of the proposed 

method in the case where a fractal figure has been rotated with the Koch snowflake 

in Table 5.1 having a size of × (Levels 4 to 8). The figures rotated 

counterclockwise on the left-end tip by 45, 90, and 180were drawn for each 

level. Table 5.3 summarizes Koch snowflake images according to different angle of 

them and the average and standard deviation of estimates obtained targeting 5 

images (4~8 levels) used for each rotation angle.

Table 5.3 Estimated results of the three methods for curves rotated
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5.1.5 Experiment with images of × pixels

Next, the experiment to estimate a fractal dimension by taking × sub-image 

from × image discussed in Table 5.1 was carried out. For the experiment, 

three scenarios were used when taking × sub-image with the previously 

obtained × image as the original. 

In Scenario A,  is fixed to 128 and × pixels is taken based on the 

top left side while increasing  with an increment of 2 from 128 to 256, and 

in Scenario B,  is fixed to 191 and, in Scenario C,  is fixed to 256 and 

is changed using the same method. Figure 5.2 shows this process schematically.

  









         (a) Scenario A: ×                (b) Scenario B: ×

                   





          (c) Scenario C: ×

         Figure 5.2 × sub-image from × image
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An experiment according to the scenario A was performed with Sierpinski 

triangle (Levels 5 to 9) and Sierpinski carpet (Levels 3 to 7).  was fixed at a 

constant value, as  for the Sierpinski triangle and the Sierpinski carpet.

The  was calculated while  was changed to start with sub-images of 

the sizes of 1/4. Figure 5.3 show the process.

128 140 160 180 200 220 240 256
0

0.1

0.2

0.3

0.4

Window size, N

M
e
a
n
 A

b
so

lu
te

 E
rr

o
r,

 M
A

E

BC

TBC

Proposed BC

(a) Sierpinski triangle

128 140 160 180 200 220 240 256
0

0.05

0.1

0.15

0.2

Window size, N

M
ea

n
 A

b
so

lu
te

 E
rr

o
r,

 M
A

E

BC

TBC

Proposed BC

(b) Sierpinski carpet

  Figure 5.3  of the three methods for × images



- 48 -

As shown in Figure 5.2(a), in case of Sierpinski triangle, it was a difficult 

environment for the experiment since only white background and 1/2 size 

triangle are included in the initial sub-image, but in Figure 5.3(a),  increases 

and  decreases until the step where a large triangle (top figure among 

three figures) is completed, and then white background is added and 

increases slightly in case of the suggested method. Generally,  is 0.07 or 

less and it brings a good performance without being sensitive to the size of . 

On the contrary, the remaining two methods do not bring a good performance 

for a partially fractal figure while being sensitive to the size of . In case of 

Sierpinski carpet in Figure 5.3(b), the suggested method also brings a better 

performance while not being sensitive to the size of  in comparison with the 

remaining two methods.

An interesting fact is that the estimated values of two methods change 

similarly to the pattern of increase and decrease of the average pixel waste 

ratio (deleted pixel number/total pixel number) of the GS sampling method 

(Refer to Figure 5.4). In other words, if the pixel waste ratio is lower, the 

performance becomes better, and if the pixel waste ratio is higher, the 

performance becomes worse.
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Figure 5.4 Average pixel waste ratio of the GS sampling method
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The experiment based on the scenario B was also performed with the same 

fractal images. Figure 5.5 were drawn by calculating , while fixing  at 

191 (high pixel waste rate in GS method), increasing  from 128 to 256 by 2 at 

each time to obtain × pixels, starting from the top left corner. The Figures 

show that the performance of the two methods is sensitive to the size of , 

whereas the proposed method is less sensitive to the size of  and more precise.

128 140 160 180 200 220 240 256
0

0.1

0.2

0.3

0.4

Window size, N

M
ea

n
 A

b
so

lu
te

 E
rr

o
r,

 M
A

E

BC

TBC

Proposed BC

(a) Sierpinski triangle

128 140 160 180 200 220 240 256
0

0.05

0.1

0.15

0.2

Window size, N

M
e
a
n
 A

b
so

lu
te

 E
rr

o
r,

 M
A

E

BC

TBC

Proposed BC

(b) Sierpinski carpet

Figure 5.5  of the three methods for × images
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The experiment based on the scenario C was also performed with the same 

two fractal images used in the previous experiment.  was obtained by 

fixing  and changing  to begin with the initial sub-image of 1/2 size 

of the original image and Figure 5.6 shows this process schematically. As can 

be known from the results of the experiment shown in Figure 5.6, the overall 

performance of the proposed method was good.
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Figure 5.6  of the three methods for × images
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5.2 Experiments on non-deterministic fractal image

Three methods were applied to the experiment to attain a non-deterministic 

figure where a theoretical fractal dimension cannot be known in advance. Since 

it is well known that the value of theoretical fractal dimension is unattainable 

in experiments performed with coastlines having non-deterministic fractal 

structures, the performance of individual methods may not be directly compared 

by calculating  as in the previous experiments. Nonetheless, the relative 

complexity of the images may be intuitively evaluated. Therefore the results of 

the fractal dimension estimation were calculated by the three methods.

5.2.1 Converting color images to binary images

The scaled RGB images for coastlines of the Military Demarcation Line were 

obtained from the Google Map. Figure 5.7(a) shows such processes and Figure 

5.7(b) displays such processes in an image. 

Google

map

Edge
detection
(Canny)

Binarization
Binary
image

(a) Block diagram of binarization of coastline images

           

   (b) Google map       (c) Edge detection (Canny)         (d) Binarization

Figure 5.7 Binarization of coastline images
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The coastlines were detected and converted into gray level images using the 

Canny algorithm that is provided by program MATLAB, and those images were 

converted again into binary (black and white) images using the drawing 

board. 

5.2.2 Coastline images

In order to obtain the binary images of the Eastern, Southern and Western 

coastlines, RGB images to a scale of approximately 1:250,000 from the Google 

map were obtained and these images were converted through the step shown 

in Figure 5.7. The images to a scale of 1:250,000 could not be obtained from 

one monitor screen at a time, so the images were obtained separately as shown 

in Figure 5.8. At this time, the Eastern coast was divided into eight sections, 

the Southern coast was divided into six sections and the Western coast was 

divided into nine sections. Figure 5.8 shows the map of south of the Korean 

Peninsula and the position of acquired coast images, and Appendix A~C show 

the converted binary images.

The classification of sea area between the Eastern, Southern and Western 

Seas is a straight line between the Taehwa River Estuary in Ulsan which is 

the boundary line between the Southern and Eastern Seas and Izumo in 

Shimane prefecture, Japan according to the announcement of Korean Ministry 

of Oceans and Fisheries in 1997 and the boundary between the Western and 

Southern Seas is the overlapping point connected with a straight line between 

the westernmost tip of Jindo-gun and the westernmost tip of Chagwido near 

Jeju Island. When the images from Google map were binarized by computer 

program, tiny islands were eliminated since they were considered irrelevant to 

fractal estimation. The large islands in the south coast were considered as 

being geographically connected for convenience’s sake, despite being connected 

by bridges. In particular, the mouths of river were considered as smoothly 

connected [22].
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Division
Method

BC TBC Proposed

E1 1.078 1.047 1.065

E2 1.050 1.068 1.041

E3 1.029 1.089 0.984

E4 1.012 1.049 1.003

E5 1.092 1.050 1.062

E6 1.100 1.046 1.072

E7 1.193 1.245 1.101

E8 1.261 1.230 1.234

Average

(Standard deviation)

1.102

(0.079)

1.103

(0.079)

1.070

(0.071)

W1

W2

W3

W4

W5

W6

W7

W8

S2

S3 S4
S5

E8

E7

E6

E5

E4

E3

E2

E1

W9

S1

S6

Figure 5.8 Korean coastline maps for experiment 

Table 5.4~5.6 show the results of the fractal dimension estimation by the three methods.

Table 5.4 Estimated fractal dimensions of the Eastern coastlines
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Division
Method

BC TBC Proposed

S1 1.338 1.302 1.282

S2 1.301 1.299 1.229

S3 1.357 1.325 1.312

S4 1.421 1.387 1.386

S5 1.278 1.274 1.257

S6 1.209 1.202 1.186

Average

(Standard deviation)

1.317

(0.066)

1.298

(0.056)

1.275

(0.063)

Division
Method

BC TBC Proposed

W1 1.246 1.249 1.229

W2 1.203 1.191 1.199

W3 1.287 1.292 1.256

W4 1.238 1.238 1.199

W5 1.225 1.200 1.190

W6 1.184 1.200 1.127

W7 1.099 1.140 1.109

W8 1.372 1.371 1.313

W9 1.389 1.368 1.358

Average

(Standard deviation)

1.249

(0.085)

1.250

(0.075)

1.220

(0.076)

Table 5.5 Estimated fractal dimensions of the Southern coastlines

Table 5.6 Estimated fractal dimensions of the Western coastlines

Table 5.6 shows that the results of the three methods are similar. 

Since it was possible to assume intuitively that the Western and Southern 

coastlines were more complicated than the Eastern coastline, a relatively larger  
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fractal dimension was shown through the experiment. A larger fractal dimension 

means that the structure is more complicated. According to the result of this 

method, the fractal dimension of coastlines in the Korean Peninsula is considered 

to be approximately in between 1.03 and 1.28 [23]. This result is also similar to 

the result that the dimension of Western coastline of Britain is 1.25, and the 

dimension of borderline between Spain and Portugal is 1.14.
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Chapter 6. Conclusion

The BC method which adopts the GS sampling is mainly used for ×

images, and this method brought an efficient result for the estimation of 

fractal dimension when  had a series of 2. However, not all images have 

× size only. If × image is given and the previous BC method is 

used, more pixels will be deleted, deteriorating the performance of fractal 

dimension estimation. 

In order to solve such problems, a new BC method which expanded the 

previous integer box counting method and improved the reliability of fractal 

dimension by counting the boxes with a real number and obtaining a fraction 

of   was suggested. As a result of applying the improved BC method to 

two deterministic fractal figures where a theoretical fractal dimension was 

known, comparing and evaluating the fractal estimation performance between 

the previous BC method and the TBC method suggested by Kaewaramsri, it was 

confirmed that it worked well also for a partial figure and it brought a better 

performance without being sensitive to the image size. Also, an excellent result 

was obtained when an experiment was carried out using Koch snowflake where 

a fractal dimension was known in order to see its robustness when the image 

was rotated. 
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As a result of estimating the fractal dimension in order to improve the complexity 

of coastlines of the Korean Peninsula that is non-deterministic fractal, the fractal 

dimension was confirmed to be in between 1.03 and 1.28.  
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Appendix A. Eastern Coastline Images

Figure. A.1 E1 image of ×



- 62 -

Figure A.2  E2 image of ×

Figure A.3 E3 image of ×



- 63 -

Figrue A.4 E4 image of ×
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Figure A.5 E5 image of ×
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Figure A.6 E6 image of ×
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Figure A.7 E7 image of ×
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Figure A.8 E8 image of ×
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Appendix B. Southern Coastline Images

Figure B.1 S1 image of ×
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Figure B.2 S2 image of ×
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Figure B.3 S3 image of ×
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Figure B.4 S4 image of ×
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Figure B.5 S5 image of ×
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Figure B.6 S6 image of ×
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Appendix C. Western Coastline Images

Figure C.1 W1 image of ×

Figure C.2 W2 image of 271×951
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Figure C.3 W3 image of ×

Figure C.4 W4 image of ×
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Figure C.5 W5 image of ×

Figure C.6 W6 image of ×
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Figure C.7 W7 image of ×

Figure C.8 W8 image of ×
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Figure C.9 W9 image of ×
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