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A curve based hull form variation 

with geometric constraints of area and centroid

NGUYEN SI BANG

Department of Naval Architecture and Ocean Systems Engineering

Graduate School of Korea Maritime and Ocean University

Abstract

To obtain the new shape from modifying an existing geometric shape is a common 

process of design encountered in automobile, aircraft, and shipbuilding industries. In 

particular, designing a new ship from a well-made existing ship, called hull form 

variation or variation, for short, has been a crucial process used in every design 

department of shipyards for prompt and efficient initial hull form creation. This 

process, however, is not only complicated but also unintuitive and thus requires an 

expert’s skill and experience. An approach to performing the variation with the 

given geometric constraints of area and centroid is proposed. To modify an existing 

hull shape, a basic boundary curve of the shape is selected as a design variable. A 

parametric piecewise polynomial curve that satisfies new geometric requirements is 

generated and superimposed on the top of the selected boundary curve to yield the 

desired curve. The main process of the variation is performed in a linearized fashion 

that preserves the original shape as much as possible; thus, a new form is efficiently 

and promptly obtained. The proposed concept can be readily extended to similar 

modification processes of an existing geometric shape by adopting different geometric 

requirements.

Keywords: ship hull design, hull form variation, NURBS, curve superposition, curve 

minimization
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This thesis is written as an introduction to a new numerical method in curve based 
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on a modified hull basic curves such as water lines, section lines. This thesis rather 
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the shape of goal’s curve. The NURBS, Particle Swarm Optimization, and Curve 
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Chapter 1.  Introduction

The final key of this thesis is to present the new numerical method in curve based 

hull form design concept based on the basis curves such as waterlines, section curve, 

etc. This introduction presents some background information as a motivation for the 

work.

1.1 Hull form design concept

In general, in a design office, the starting point of a new project are the owner’s 

demands such as dead weight, range, speed, etc. From them, the main dimensions and 

the geometrical form parameters can be found. Stability and resistance considerations 

give a preliminary definition of the mid-ship section, the flotation and the curve of 

sectional areas. Then the lines can be derived mainly from a series of parent designs, 

a single parent design or the geometrical hull form parameters. 

The standard series approach consists in interpolating the desired new hull form 

within a systematic hull form series. The range of change of parameters is limited, so 

Fig. 1 Ship hull form design
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the forms that can be deduced from the series is restricted.

In the single parent design approach, the lines are obtained distorting existing forms. 

The good points of this method are its simplicity and its possibility to take advantage 

of an existing good design. However, changes must be moderate to avoid strong ones 

in the hydrodynamic behavior of the new hull. The procedures of distorting lines can 

be divided into three groups:

- Simple affine distortion, where the three principal dimensions are each multiplied 

by a standard ratio.

- Modified affine distortion where the simple affine distortion is applied in a 

modified, partial or compound form.

- Non-affine distortion, where the standard ratio can vary continuously in one or 

several directions.

In the form parameter approach, the lines are created according to specified data of 

the parameters that define the basic curves of the hull form. It has been the 

traditional procedure of designing the ship lines. In most of cases, because of the 

difficulty of creating new lines, the first sketch is, in some way although not 

systematically, derived from the shape of a built ship. Once the initial lines are 

obtained, an interactive process is started, drawing waterlines and sections, testing 

every time, whether they fit the contours, the mid-ship section and the curve of 

sectional areas. Other lines like longitudinal and diagonals are also checked. The last 

revision of the lines is made after the tests are carried out in a towing tank.

Nowadays, in ship hull form design, creating a new hull form is a time-consuming 

and challenging process. It also requires comprehensive knowledge of geometry as well 

as in the aesthetic point of view. Due to the humongous size and vast investment, the 

ship design process naturally becomes conservative, and every designer strives to 

create a new hull form that avoids abrupt and sometimes innovative design changes. 

To minimize the risk associated with a new creation, the ship designer has preferred a 
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modification method, called the variation, to a new generation. The variation method 

yields a new hull form by modifying the existing one that was previously built and 

successfully verified on its shape and performance.

1.2 Motivation

‘Hull form variation’ term refers to the process of modifying a form from the 

mothership to become a new hull with features similar to her mother.

It is common to modify the existing shape of a curve following new design 

requirements. In shipbuilding design departments, in particular, this is the typical way 

to perform hull variation that generates a new hull form from the existing shape of a 

well-made or reference ship. Whenever the ship designer is given a task to design a 

new ship, he or she starts to search for a similar ship that was previously built. Next 

step is to confirm whether the existing ship found can be extended to satisfy the new 

design requirements. This variation approach has always been a handy but safe way as 

the performance, and other characteristics can be preserved or kept similarly up to a 

certain degree.

Lackenby (1950) established a solid way to perform the variation using shift 

functions. He extended the existing   method to more flexibly. In the early stage 

of ship design, the prismatic coefficient  curve is known to be one of the most 

important elements that determine an initial hull form. The principle of the 

Lackenby’s is the movement of both the longitudinal center of buoyancy LCB and 

the  . Several advantages associated with this method can be summarized as a rapid 

modification, dependency on empirical data including the knowledge of successful  

curve, and direct linkage among some analysis modules. However, a simpler algorithm 

would be preferred for an immediate modification or variation.

Successive work to enhance the Lackenby’s method has been continuously 

published. A series of research on hull form variation was published Alef and Collatz 
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(1976), Versluis (1977), Rabien (1979). Some used more geometric constraints such as 

sectional area curves or design waterlines Nowacki et al. (1977), Munchmeyer et al. 

(1979). Bole and Lee (2006) attempted to use the geometric properties as additional 

parameters in addition to usual numerical form parameters. To increase the 

performance of hull form variation, researchers began to adopt new technologies such 

as optimization and computational fluid dynamics (CFD) Gregory et al. (2010). A 

systematic approach to building a commercial package was introduced by Abt and 

Harries (2007). They claimed that they extended the classic Lackenby’s method for 

more flexibility and higher quality.

Fig. 2 Hull form variation with fairing curve’s curvature.

Recently a new paradigm for ship design has been proposed. Unlike the traditional 

methods, an approach tries to lessen the stringent requirements imposed in determining 

some characteristic shapes of a ship. Some ship design engineers thought of generating 

a new hull form by considering the natural shape of major sections comprising a ship 

hull. Rather than clinging to an initial shape resulting from the preliminary design, 
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which might have been too strict to generate a reasonable shape, they wanted to 

focus on other design factors that would enhance the entire performance of ship 

design. While this approach is against the traditional concept of hull form design or 

variation, it is worthy of consideration when it involves to the design of non-traditional 

vessels such as yachts and warships.

1.3 Clarification of study

From the ship’s lines plan of the mother hull such as section curves, waterlines, 

etc., called original curve (see Fig. 3), the transformation of this curves to change the 

shape of the hull would be performed.

Fig. 3 Ship lines plan

Along with the actual requirements as the change in volume, the center of gravity 

position, the form factor, etc., designers will transform these requests into geometric 

constraints include area and centroid. The algorithm that is presented in this paper will 

use these constraints (area and  centroid) to transform the original curves such as 
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waterlines or section curves to obtain the new curves. These new curves satisfy the 

requirements including an area and a centroid that are set by the designer. 

Simultaneously, the advantages of the original curve will be preserved on the new 

curve. This means that the new hull form will retain the good characteristics of the 

mother hull form.

Fig. 4 The hull curve variation

1.4 Outline

The work of this thesis is to introduce a new numerical approach in the field of 

ship hull form design by transforming a hull form from existing one. Based on the 

basic curve such as waterline, sectional area curve, the section curve, etc., hull form 

variation approach is expected to preserve the good characteristics of the mother hull. 

The geometric constraints are also mentioned as a requirement from designers.

In Chapter 2, the traditional methods of modified hull form are briefly presented to 

help the readers visualize the designing of a new hull from an existing hull, also 

known as hull form variation. It should be emphasized that traditional methods were 

announced for a while but still useful today.
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Chapter 3 presents the theoretical basis that is mentioned in this curve based hull 

form variation including the creating a curve by using NURBS technique, the optimized 

search method - Particle Swarm Optimization, and the minimizing energy curve. 

The purpose of Chapter 4 is to propose hull form variation approach based on the 

basic curves with geometric constraints of area and centroid. By applying the 

theoretical basis has been presented on the basic curves to figure out the new curves, 

which meet the design requirements that entered by the designers. By examining the 

distribution of curvature, the comparison of the new and original curve is also 

performed.

Finally, Chapter 5 presents concluding remarks and discusses further work.
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Chapter 2. Hull form’s geometry variation traditional method

Chapter 2 briefly review the hull modified method based on the geometry 

characteristics modification, known as the traditional method. These are mid-ship 

coefficient CM-vary, Lackenby’s method, and other methods. It should be emphasized 

that these traditional methods were announced for a while but still useful today.

There have been several different methods used for hull form variation. The 

parameters involved in the variation typically include geometric dimensions such as 

length, beam, draft, mid-ship area AM, and others. In addition, the variation considers 

the change of major shape coefficients that determine a hull form such as the 

prismatic coefficient CP, the block coefficient CB, the longitudinal center of buoyancy, 

and so forth. The specific notations used in the hull form definition are briefly 

depicted in Fig. 5.

Fig. 5 Major coefficients that indicate how much the hull form (defined by the volume ∇ ) 

occupies within the bounding box (defined by the combination of length L, breadth B, and 

draft T). (Left) block coefficient  ∇), (Right) mid-ship coefficient 

  
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2.1 Mid-ship coefficient  vary

A method is given by Hollister (1996) allows the mid-ship shape of a vessel to 

change independently of two factors that include the beam, and depth of each station. 

It uses a value called -fact which varies the shape of each section diagonally in 

the direction of the bilge corner. It is defined as the intersection of the maximum 

beam and depth of the station. A -fact value of 1.0 means that each section shape 

is rectangular (see Fig. 6).

Fig. 6 Station showing -fact diagonal

-fact is related to the mid-ship coefficient ( ) of a vessel. However, the 

-fact is based on the overall maximum beam and depth of the vessel, rather than the 

waterline beam and the draft. Since all of the hull variations affect the whole hull 

shape, a -type factor was established that also affects the whole section, rather 

than just the area below the waterline. This characteristic makes the factor 

independent of the draft and displacement.

The -fact value for a particular station is the rate distance of the station from 
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point P(0,0) to point Q(1,0). The -fact for the hull is the largest -fact of all of 

the stations and is the value used by the -Vary routine to vary the shape of the 

hull.

-Vary hull variation steps:

- Find the section with the largest -fact value. This is the one -fact value 

that is used for the entire boat.

- Given a new, target -fact, determine the percent increase or decrease of the 

defining -fact section along the diagonal (P-Q) variation line.

- Decrease this -fact change percentage parabolically to zero at each end of the 

boat. This means that this hull variation tapers off to zero change at the ends of the 

boat.

- Apply the appropriately decreased -fact changes the rate to each station. For 

each point (B), create a line (R-S) that parallel to the main station diagonal (P-Q). 

Then determining the intersections with the defining beam-depth station box (points R 

and S). Stretch or shrink each offset point along this line by the appropriate CM-fact 

modified factor. Point B move towards, or away from point S at the same rate as 

point A move towards or away from point Q. When the global value of -fact 

approaches 1.0, the shape of each section approaches the rectangular shape of the 

defining beam-depth box.
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2.2 Lackenby’s method

This is an approach for hull variation developed by H. Lackenby, which allows the 

designer to modify any of the following variables, without affecting the  ,  and 

the depth of the vessel.

Fig. 7 Lackenby’s sectional area curves variation

The Lackenby’s method is a quadratic variation of the ‘one minus 

prismatic’method whereby the parallel ship hull can be controlled independently of 

LCB and the prismatic coefficient  (see Fig. 7). Following this method, the sectional 

area curve is generated for the ship, and that curve is modified to reach the target 

values. The breadths and heights of the offsets in the station definition are 

maintained in this method. Only the longitudinal position of each station is shifted. It 

can generate a few iterations of this method to zero in on the desired values. The 

more stations involve, the more accurate it is and the fewer iterations it takes.

Although the Lackenby’s hull variation technique allows the designer to vary and 

sets the most of these parameters, the displacement does change for a constant draft.
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In this method, the author used the second order of polynomial to interpolating a 

new sectional curve from the original. Therefore, the result was limited.

2.3 Other methods

2.3.1 Block coefficient  method

The  (block coefficient) method had been popular in ship basic calculation 

software. This method allows the user to carry out minor modifications in the block 

coefficient of a model ship. The modification is done by translating ship sections in the 

longitudinal direction satisfying the constraint between new and original block 

coefficients.

2.3.2 ‘One minus Prismatic’method

Another traditional method was called the   method, where  ∇

stands for the prismatic coefficient. This method is similar to the  method, in that 

both use the section as a constraint. But,   method uses the longitudinal center 

of buoyancy (LCB) instead of  .

2.3.3 Stretch

This method routine varies any or all of the three major dimensions of the ship 

(length, beam, and depth) by using a scale factor. This is a very simple hull variation 

approach that applied to all offsets of the station definition.

2.3.4 Balance

This technique doesn't actually change the shape of the station definition, but it 

does modify some of the major parameters. When the user selects a constant 

displacement hull variation as a constraint, this method will raise or sink down the 
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hull to search for a new draft (T) which maintains a ship’s displacement. This is 

performed with a searching technique which maintains zero trim while searching for 

the desired displacement. And if the draft changes, the  and the  will likely 

change. If a constant draft option is selected, this routine calculates the new 

displacement for the current hull shape.
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Chapter 3.  Theoretical basis

The content of Chapter 3 is to present the relevant theoretical that support to the 

algorithm. The theory is presented in a general form. Therefore it can be applied in 

various fields, especially PSO optimal algorithm. NURBS function and curve energy 

minimization seem too familiar with the CAD/CAM system.

3.1 Ship lines – design variables
The goal of our problem is to generate a new shape from a set of constraints, with 

the following assumptions. The shape of the problem is described by a curve 

representation that includes parametric piecewise polynomials such as Bézier or NURBS. 
In addition, the shape consisting of a closed polygon is assumed to be planar. In ship 

design, this is a plausible assumption as the key shape of hull form is usually 

represented by a set of three orthogonal planar sections where each section contains 

profile, waterlines, and buttock lines, respectively (see Fig. 8). If the shape is not 

planar in other applications, it should be projected to an orthogonal plane.

Fig. 8 Ship lines in 3D
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A set of waterlines, the typical component of ship hull form, is shown in Fig. 9 

Waterline curves are obtained by slicing a ship hull in parallel to the base. One or 

more waterline curves will be modified following the proposed algorithm.

Fig. 9 A set of waterlines of a ship

3.2 Non-Uniform Rational B-Spline

Non-uniform rational B-spline or NURBS is a mathematical model that commonly 

used in computer graphics for generating and representing curves or surfaces. It offers 

an excellence flexibility and precision for processing both analytic and modeled shapes. 

NURBS are also commonly used in computer-aided design (CAD), manufacturing (CAM), 

and engineering (CAE) and are part of numerous industry-wide standards, such as an 

IGES, STEP, ACIS, or PHIGS. NURBS techniques are also found in most of the 3D 

modeling software packages and animation programs.

Fig. 10 NURBS curve segments

They can be efficiently processed by the computer programs and for easy human 

interaction. In general, editing NURBS curves is highly intuitive and predictable since 
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control points are always either connected directly to the curve or act as if they 

were connected by a rubber band. Based on the type of user interface, editing can 

be performed via control points that are most obvious and common in Bezier curve 

editing, or via the other tools such as spline modeling or hierarchical editing.

The B-spline representation for curves is defined by Piegl and Tiller (1997), Eq. (1):

  
  




 (1)

where t is the parametric variable; and 
’s are B-spline basis functions of 

degree n defined over the knot vector              . The basis 

functions are defined by the recursive form written in Eq. (2):


     ≤ ≤   

 
      (2)


     

 


        

      
  

  

The basis function of the rational form is associated with weights and defined by 

Eq. (3):





  









(3)
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3.2.1 Control point

The control points  control and determine the curve’s shape. Generally, each point 

on the curve is represented by taking a weighted sum of a number of control points. 

The weight of each point varies corresponding to the governing parameter. For a 

curve of degree p, the weight of any control point is the only non-zero in p+1 

intervals of the parameter space. Within those intervals, the weight changes according 

to a polynomial function (basis functions) of degree p. At the boundaries of the 

intervals, the basic functions go smoothly to zero, the smoothness being determined by 

the degree of the polynomial.

In many applications, the fact that each control point affects only a certain segment 

of the entire curve, known as local support. In modeling, this property allows the 

changing of one part of a surface or curve while keeping other parts unchanged.

Adding more control points allows a better approximation to a given curve, even 

though curves can be represented exactly with a fewer number of control points. 

NURBS curves also need a scalar weight parameter for each control point. This allows 

for more control over the shape of the curve without using a large number of 

control points. In particular, it adds conic sections such as circles and ellipses to the 

Fig. 11 NURBS curve with control points
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set of curves that can be represented exactly. The term‘rational’in NURBS refers 

to these weights.

3.3.2 Knot vector

The knot vector is a sequence of non-decrease parameter values that define where 

and how the control points affect the NURBS curve. The number of knots is always 

satisfied the condition: m = n + p + 1, where m is a number of knots, n equal 

number of control points, and p is a degree of curve. The knots in knot vector 

divides the parametric space into the intervals mentioned before, usually referred to 

as ‘knot spans.’ Each time the parameter value enters to each new knot span, and 

a new control point is active, while an old control point is discarded. It follows that 

the values in the knot vector should be in non-decreasing order.

The knot vector usually begins with a knot that has multiplicity equal to the order. 

This makes sense since this activates the control points that have an influence on the 

first-knot span. Similarly, the knot vector also ends with a multiplicity knot. Curves 

with these knot vector will start and end at the first and last control point.

Fig. 12 Quadratic p = 2 B-spline basis constructed from the knot vector 

[0,0,0,1/6,1/3,1/2,2/3,5/6,1,1,1]

Moreover, the knot vector manipulates the input parameter in parametric space and 
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the corresponding NURBS value on the curve in world space. Rendering an NURBS 

curve is usually done by stepping with a fixed stride through the parameter range. By 

changing the knot span lengths, more curve’s points can be used in a narrow region 

where the curvature is high.

3.2.3 Order

The order or degree of an NURBS curve defines the number of nearby control 

points that affect any given point on the curve. The parametric curve is represented 

mathematically by a polynomial of degree that one less than the order of the curve. 

Therefore, the second-order curves (which are represented by linear polynomials) are 

named linear curves, third-order curves are named quadratic curves, and fourth-order 

curves are named cubic curves. The number of control points must be greater than 

or equal to the curve’s degree. 

Fig. 13 The different curves respect to orders

In practice, fourth-order or cubic curves are the ones most commonly used (relating 

to continuous property). Sometimes Fifth- and sixth-order curves are useful, especially 

in the case of handling a continuous higher order of derivatives. However, curves 

with higher orders are practically never used because it is unnecessary. Moreover, 

they lead to internal numerical problems and tend to require disproportionately large 

calculation times.
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3.2.4 Local modification scheme

This property is the most important thing in geometry design. Changing the position 

of control point   only affects the curve  on the interval      .This based 

on another important property of B-spline basis functions. Recall that 
 is 

non-zero on interval      . If  is not in this interval, 
  has no effect in 

computing  since 
 is zero. On the other hand, if  is in the indicated 

interval, 
 is non-zero. If   changes its position, 

 is changed and 

consequently,  is changed.

This local modification scheme is very important and useful in curve design because 

designers can modify a curve in the narrow region without changing the whole shape 

of a curve in a global way.

3.3 Optimization techniques

3.3.1 Optimization in ship hull variation

The optimization methods have been widely used to solve many engineering 

problems including complex; nonlinear design problems occurred in ship design. These 

methods in general supply the most effective platform if used with good objective 

functions and proper constraints.

As for the hull form generation or modification, using an optimization technique 

implies the finding of a new shape by considering the geometric or functional 

requirements embedded in the formation. Depending on the characteristics of the 

problem, this method can be effective, but in most cases, the results suffer from 

sluggishness or divergence unless formulated carefully. Guaranteeing the global 

optimum is another critical issue associated with optimization.



- 21 -

Fig. 14 Hull form optimization procedure

The optimization of a ship’s hull form characteristics for improved fairness quality 

can be described as a multi-variable nonlinear constrained optimization problem:

min   subject to  ≥        (4)

where      
 is the vector of design variables. Thus the aim is to find 

the value of  that yields the best value of the object function,  , within a design 

space defined by the constraints, . The structure of the hull form optimization 

procedure is illustrated in Fig. 14

3.3.2 Particle Swarm Optimization

Finding the objects in n-dimensional space are common to the mathematical problem. 

Unfortunately, most of those searches are nonlinear while the numerical methods 

typically yield bad results or big computational cost. Applying Heuristic search methods 

appears to be a good choice. And, Particle Swarm Optimization (PSO) is an appropriate 

proposal in this situation.
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Fig. 15 Three-dimensional search space

Fig. 16 The particles flying on search space
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Fig. 17 Finding out the global best solution

PSO was the first introduced by Kenedy and Eberhart in (1995). It is developed from 

the swarm intelligence whose main idea is inspired by the movement behavior of bird 

and fish flock. The PSO method is initialized with a group of random particles or and 

then discover for optima by updating generations. At each iteration, a particle is 

updated by following two best values. The first one called  is the best solution 

(fitness) it has achieved so far. Another best value that is obtained so far by any 

particle in the population, called  , is the global best. After searching the two best 

values, the particle updates its position ’s, and direction ’s by adjusting the 

constants  and  , as formulated in Eq. (5) and illustrated in Fig. 18

     

               
(5)

The inertia weight, , controls the momentum of the particle by weighing the 

contribution of the previous velocity – controlling how much memory of the previous 

flight direction will influence the new velocity. Where  and  , respectively, are 

learning factor for individual ability (cognitive), and social influence (group).  and  

uniformly random numbers are distributed in the interval 0 and 1. The parameters  

and  represent the weight of memory (position) of a particle towards memory 
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(position) of the groups (swarm). So, multiply  and  to ensure that the particles 

will approach the optimum target about half of the difference.

Fig. 18 The depiction of the velocity and 

position updates in Particle Swarm Optimization.

In the research of American Institute of Aeronautics and Astronautics (2004), they 

tried to comparing and finding a suitable optimization method, and there are two 

prominent candidates, PSO and GA (Genetic Algorithm). The results of the t-tests 

support the hypothesis that while both PSO and the GA obtain high-quality solutions, 

with quality indices of 99% or more with a 99% confidence level for most test 

problems, the computational effort required by PSO to arrive at such high-quality 

solutions is less than the effort required to arrive at the same high quality solutions 

by the GA. The results further show the computational efficiency superiority of PSO 

over the GA is statically proven with a 99% confidence level in 7 out of the 8 test 

problems investigated. Further analysis shows that the difference in computational 

effort between PSO and the GA is problem dependent. It appears that PSO 

outperforms the GA with a large differential in computational efficiency if 

unconstrained nonlinear problems with continuous design variables are solved, and less 

efficiency differential when we applied to constrained nonlinear problems with any 

kind of variables.
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3.4 Curve energy minimization

In computer graphics and computer-aided design, the designer has always been 

searching for curves which are smooth both locally and globally. This is also true in 

our problem, as the curve needs to change without introducing unnecessary oscillation 

or distortion. Since the proposed algorithm allows the control points of a curve to 

move freely, an undesirable shape with high strain energy may occur. This situation 

must be avoided to ensure the smoothness of a resulting curve. The minimization of 

strain energy of a curve is applied to the variation for the purpose of obtaining a 

smooth curve.

3.4.1 Curve’s curvature

Since the tangent vector or the velocity vector presents the direction of the curve, 

this means that the curvature is the rate at which the tangent line or velocity vector 

is turning. There are two refinements needed for this terminology. First, the rate at 

which the tangent vector of a curve is turning will depend on how fast it is moving 

along the curve. But curvature should be a geometric characteristic of the curve and 

will not be changed by the way one moves along it. Therefore we define curvature 

to be the absolute value of the rate at which the tangent vector is turning when one 

moves along the curve at a speed of one unit per second.

At first, remembering the determination of whether a curve is curving upwards or 

downwards (‘concave up or concave down’), it may seem that curvature should be 

a signed quantity. However, the reality shows that this would be undesirable. As for 

looking at a circle, for instance, the top is concave down, and the bottom is concave 

up, but clearly user wants the curvature of a circle to be positive all the way round. 

Negative curvature simply does not make sense for curves.

The second problem with defining curvature to be the rate at which the tangent 

line is turning. In the plane, the situation is a simple definition. If  is the angle 
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between the tangent line and the x-axis, then one defines the curvature to be:

  
  (6)

where  is arc length.

Here, 


 is called the radius of curvature. The osculating circle, when ≠, is 

the circle at the center of curvature with radius 


. It approximates the curve 

locally up to the second order.

Fig. 19 Porcupine - the distribution of the curve’s curvature
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Fig. 20 Osculating circle

3.4.2 Curve’s energy

Fig. 21 Plastic curve

The minimum energy of the curve which passes through two specified points can 

be defined as follows:

   (7)

Where  is the curvature and  the arc distance, has a number of interesting 

applications.

The fairness of a curve is intimately related to the porcupine over the form, 

favoring gradual transitions and avoiding abrupt changes. The curvature of planar 

curves     have a positive or negative sign depending on whether on it 

curves to left or right. Thus, this signed curvature is highly desirable to detect 
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inflection points as well as convex and concave regions of a curve.

   


(8)

For the evaluation of curves, curvature plots are employed. The curvature plot 

consists of segments normal to the curve emerging from a set of points on the 

curve. The whose lengths are proportional to the magnitude of curvature at the 

associated point. The characteristics of a curve are evidenced by the undulations of 

its curvature plot. If the curvature plot changes smoothly, the curve can be 

considered fair. Inflection points occur when curvature plot crosses the curve (sign 

change), flat regions produce zero curvature value, bulging tendencies produce locally 

increased, and flattening tendencies produce locally reduced curvature values.

On Fig. 22, the initial curve on the left has many sharp changes in direction, 

although it is very hard to detect these unfair spots on the curve by only observing 

Fig. 22 Comparison curve energy

Left: Initial curve with high curve’s energy

Right: Fairness curve with lower curve’s energy
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the curve shape. However, the curvature plot is so sensitive that these unfair spots 

can easily be detected. The curvature distribution of the initial curve is very uneven 

which is wiggling back and forth indicating unnecessary inflections on the curve. 

Therefore, this curve cannot be considered as a fair curve. After applying the curve 

energy minimization procedure to the initial curve, the curve on the right is generated 

which has a much smoother curvature plot although it deviates in shape very little.
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Chapter 4 

Curve based hull form variation 

with geometric constraints of area and centroid

This chapter provides information about the conditions, assumptions, and processes 

for implementing a basic curve transformation from the original one. The assessment 

of the errors and the distribution of the curvature of the new curve will be examined 

to make sure that the curve that is found to be consistent with design requirements.

4.1 Requirements for variation

The variation starts with the modification of the existing waterlines following the 

given requirements, showed in Fig. 29. Since the shape of a waterline possesses only 

geometric information, the given requirements for variation should be the factors 

concerning the geometric properties such as arc length, area, slope, curvature, and so 

forth.

Fig. 23 The set of the fore part of waterlines

To pursue the goal, the problem is formulated as generating a new curve satisfying 

the given geometric requirements. The curve is defined by the boundary outline of the 

corresponding shape. Two geometric properties, the area and the centroid affecting the 
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shape and thus performance of a ship are chosen as design parameters. These 

parameters have an important role in determining the hull shape in the design stage 

where no other detailed geometric information is available.

Since the area is selected as a design parameter, the curve must be closed by the 

other bounding curves. For example, the fore part of a waterline of a ship shown in 

Fig. 24, is bounded by x and y-axes to make the waterline closed.

Fig. 24 The design parameters

Let  be the planar curve that represents the part of the original waterline. The 

curve is described by the B-spline representation. The area  and the centroid 

    can be automatically calculated following equation:

 




 (9)

 


  



Then, we want to modify  according to the new geometric requirements given by 
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the user: area  and the centroid     . The mission is to find a new curve, 

say , that satisfies the new requirements, as depicted in Fig. 25.

Fig. 25 Problem formulation for curve modification from   to  

A new curve can be obtained in several ways, meaning that the uniqueness of 

resulting curves needs not to be guaranteed in this work. Therefore, there must be a 

certain condition in fulfilling the variation to yield a satisfactory result. 

Performing the variation in this work requires a couple of design criteria. First, the 

new curve must be similar to the original with respect to its shape and smoothness. 

Since the most curves used in the hull variation are smooth locally and globally, the 

first criterion implies that the new curve must also be smooth. In fact, this 

requirement is crucial but natural, considering the definition of variation that takes 

advantage of the original shape. The second criterion requires the modification is 

recommended to spread over the whole curve as uniform as possible. This criterion is 

somewhat associated with the first one.
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4.2 Overall process

With the problem formulation in mind, a complete algorithm, called curve based hull 

variation, is developed. The essential concept is to take advantage of curve 

superposition. Let starting with an original curve; an intermediate curve is created and 

superimposed to the original to yield a final curve that satisfies the given 

requirements.

The overall process can be regarded as performing a blending operation, as 

illustrated in Fig. 26. The blending operation is done by constructing an unknown 

intermediate curve.

    Intermediate curve         

Fig. 26 Problem formulation as a blending operation

The left figure in Fig. 27 shows the original curve in solid. The final curve, yet not 

known, will be found by adding the deviation curve shown on the right, on the top of 

the original curve.

Fig. 27 Transformation of deviation portion on x-axis
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Fig. 28 illustrates the overall process of variation. A geometric shape that has an 

area  and centroid  is defined by an original curve. The designer is asked to 

generate a new shape that will have the new requirements: area  and centroid  . 

The algorithm separates the design requirements in the first place, and an intermediate 

curve is constructed in an iterative manner. The intermediate curve is then 

superimposed to the original curve to yield a final shape. Each step will be discussed 

in detail.

Fig. 28 Overall procedure of proposed variation algorithm

Before going into details, the terms used in this paper need to be clarified. The 

original or existing curve is the given curve that characterizes the shape of existing 

design, for example, a waterline or section curve of a ship. An intermediate or 

deviation curve is the one to be added to the original curve. Obtaining a good quality 

of intermediate curve is the key to the problem. The new or final curve refers to the 

curve obtained by adding the intermediate and original curves.

4.3 Characteristics of intermediate curve

The proposed algorithm takes advantage of an intermediate or deviation curve, to 

find a final curve. Thus, obtaining an appropriate deviation curve is essential in the 

proposed algorithm. The idea of adopting a deviation curve has been utilized in other 

applications. Stewart (1991) and Lu (1995) used this concept by proposing polynomial 

based shape functions for the manipulation of curves and surfaces.
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Since the NURBS form is used to represent all curves, the strategy is to add two 

curves to obtain a new curve. Mathematically each curve is represented by:

  
  




 (10)

where the script  is used to differentiating the curves, that is, the script O for the 

original, I for the intermediate, and F for the final curve.

Our strategy is to obtain   by superimposing   on top of  , like Eq. 

(11):

     

 
  







  






  
  









 
  








(11)

To make the above equation work mathematically, the following conditions or 

assumptions must be satisfied. Firstly, as for the basis functions, all the curves must 

share the same knot vector, and the same number of control points must be 

maintained. Next, the movement of control points is restricted in one direction in order 

to make Eq. (11) true. The latter condition implies the moving range of the final curve 

must be identical to those of the initial curve as well as the intermediate curve. This 

restriction is plausible because the purpose of variation is to make a minor tuning 

rather than a dramatic change. For major modification, it will be better to redesign 

from scratch.

Other important characteristics of the intermediate curve are smoothness and 

uniformly distributed shape. Smoothness means the intermediate curve must be locally 

and globally continuous and smooth. To achieve the smoothness, energy minimization is 

utilized. Uniformly distributed shape, also weakly connected to smoothness, is 

recommended to minimize the change from the original shape.
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4.4 Curve based variation

4.4.1 Hull curve generation

Modeling a basic curve of the hull using NURBS techniques will be done in steps. 

The modeled curve need to ensure the accuracy of smoothness, an area and a 

centroid position with the minimum of the number of control points. The control points 

of the sample are given in vector form as follows:

>> CPx = [0 2.81 9.554 18.668 27.79 35.137 41.687 46.432 47.459];

>> CPy = [16.13 16.148 16.1 15.286 12.863 9.256 5.148 1.196 0];

The specific geometry of the curve as the area, the centroid, the curvature 

distribution, are calculated.

The area and centroid that are delimited by the waterline and the axes are 

calculated by Eq. (9)

Fig. 29 The fore part of a waterline with centroid
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 




  

 



 

 



 

The distribution of waterline’s curvature is also calculated to assess the energy 

level of this curve. That is depicted in Fig. 30

To receive a new waterline shape, the designer must take into the new design 

parameter, called requirement parameters, including new area and new centroid 

position (red star). All of this requirement are completely received from the 

modification of the actual requirements as volume, LCG, or form factor.

New are:   

New centroid:       

Fig. 30 Distribution of waterline’s curvature - porcupine
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From the initial specifications and new requirement parameters, the relationships of 

the area, the centroid are calculated, in order to create an intermediate curve, called 

the deviation curve.

4.4.2 Geometric requirements for intermediate and deviation curves

A curve that has the same knot vector and the same number of control points is 

selected as an intermediate curve. According to the proposed problem formulation, the 

area, and the centroid is added to or subtracted from the original curve via the use of 

the intermediate curve. The differences of area and centroid between the given and 

new shapes need to be calculated. Calculations for those differences are done by the 

simple arithmetic. The subscripts 0, 1, and 2 indicate the geometric properties of the 

original, the intermediate, and the final curves, respectively.

Fig. 31 The new requirement parameter of centroid
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For the area, the incremental area is simply obtained by subtracting the new area 

from the original one:

         (12)

The centroid itself is obtained by applying the first moment equation:

  

 


 
 

  

 


 
 

(13)

In our problem, the modification is restricted along the y-axis, which means the 

intermediate curve is superimposed on the top of the original curve. Thus, in Eq. (11), 

only the y components of the control points of the intermediate curve are the design 

variables.

In Fig. 32, the original curve and the intermediate curve forming the shaded area 

(area A) in space are depicted. The curve named as the deviation curve is the 

transformed intermediate curve on the x-axis. It is crucial to transforming the shaded 

portion (area A) between the original and intermediate curves onto the x-axis, which 

means area A must be translated onto x-axis so that the area B under the deviation 

curve is identical to the area A.
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Fig. 32 Deviation versus original curve

Creating a curve that has new area requirement is simple. The centroid with respect 

to the y-axis remains unchanged, as the areas and the moment arms for the two 

areas A and B are identical. The centroid deviation with respect to the x-axis needs a 

geometric conversion of centroid between two trapezoidal shapes, depicted in Fig. 39

Fig. 33 Conversion of centroid in y direction between intermediate and deviation curve

Assuming that the disparity area is divided into small trapezoids, the relationship 
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between two corresponding trapezoids can be found in Eq. (14):

′   (14)

The centroid  of translated area (region B) and the original centroid   (region A) 

are computed as follows:

 


(15)

 


′




 








  




  (16)

Then, the relation between two centroids is expressed as:

   



 




(17)

and this relation will be used in finding a deviation curve. By balancing the two 

sides of the Eq. (17), the y component will be controlled by the optimal search 

algorithm.

4.4.3 Determination of deviation curve

To find the intermediate and thus deviation curves, the fitness function  is 

established as follows:

  


 (18)

The fitness function is the combination of geometric and energy terms that consider 

the change of area, the change of centroid, and the effect of curve strain energy. 
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The function will find a curve, , that minimizes the change of area, centroid, and 

strain energy. The weighting factors, ’s, may be used at the user’s discretion 

depending on his or her design intention.

The geometric terms in the fitness function are simply defined as the relative value 

between the desired and obtained values:

    
     (19)


    

     (20)


    

    


 (21)

The energy term uses the strain energy of a curve:

  

 (22)

The design variables used in minimizing the fitness function are the control points of 

the intermediate B-spline curve. Since the movement of the intermediate curve is 

restricted along y direction, y components of control points are chosen. The number of 

design variables, therefore, is N+1y control points in Eq. (23):

     ∈   
  




 (23)

The particle swarm optimization performs the finding appropriate deviation curve 

based on the following procedure, showed in Fig. 40.
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Fig. 34 Procedure of PSO for finding deviation curve

The control points of the deviation curve that have been found out by optimal 

search algorithm based on the above procedure, (see Fig. 34). However, following the 

initial assumption that the control points just move only in y direction. Therefore only 

y components of the control points are changed, while x components remain.

>> CPx_dev = [0 2.81 9.554 18.668 27.79 35.137 41.687 46.432 47.459];

>> CPy_dev = [0 0 0 0 0.522 0.544 0.348 0.062 0];

The distribution of the curvature of the deviation curve is also examined to ensure 

its smoothness.
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4.4.4 Variation by superposition

Once the intermediate curve is found, the final step is to superpose the deviation 

curve onto the original curve. The superposition is simply done by adding the y 

components of control points of the original and deviation curves, as defined in the 

formulation:

         
  




 

 (24)

        
  




 

 
  

  




 



The control points of the new waterline that received from the superposition 

equation would be:

>> CPx_new = [0 2.81 9.554 18.668 27.79 35.137 41.687 46.432 47.459];

>> CPy_new = [16.13 16.148 16.1 15.286 13.385 9.8 5.496 1.259 0];
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The new curve is showed in the Fig. 35

The values of input, intermediate, and final requirements or results are listed in 

Table 1. The validity of the developed algorithm can be assured by their extremely 

low error rates.

Fig. 35 New waterline with porcupine

Fig. 36 Comparison between new and original waterline’s curvature
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Item 

No.
Description Given by Area Centroid

Error rates 

(compared to 

Item No #)

0
Original

waterline
user 564.9259 (18.7838, 6.8535)

2
Requirements for 

new waterline
user 575.0000 (19.0200, 6.9100)

1
Intermediate

curve

theoretically 

calculated
10.0741 (32.4972, 10.0766)

1.1
Intermediate

curve
algorithm 10.0741 (32.4994, 10.0784)

A: 0% (#1) 

G: (0%, <0.018%) 

1.2 Deviation curve algorithm 10.0741 (32.4972, 0.2014)

Error is checked 

by the values of 

final curve

2.1 New waterline
algorithm 

(superposition)
575.000 (19.0241, 6.9109)

A: 0% (#2) 

G: (0%, < 0.02%) 

Table 1. Error evaluation

4.5 Application

4.5.1 Stern section variation

The sections, what locate at engine room, are special shape because of 

hydrodynamics property. A typical stern section is depicted in Fig. 37. The result of 

stern section variation is evaluated in Table 2.
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Fig. 37 Stern section variation

Item 

No.
Description Given by Area Centroid

Error rates 

(compared to 

Item No #)

0
Original

waterline
user 184.406 (6.766, 6.104)

2
Requirements for 

new waterline
user 192.000 (6.800, 6.340)

1
Intermediate

curve

theoretically 

calculated
7.594 (7.6256, 12.0708)

1.1
Intermediate

curve
algorithm 7.5898 (7.6271, 12.0606)

A: 0.05% (#1) 

G:  (<0.08%) 

1.2 Deviation curve algorithm 7.5898 (7.6271, 0.3034)

Error is checked 

by the values of 

final curve

2.1 New waterline
algorithm 

(superposition)
191.993 (6.7995, 6.342)

A: 0.006% (#2) 

G: (0%, < 0.03%) 

Table 2. Error evaluation – stern section variation
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Fig. 38 Comparison between original and modified stern section

4.5.2 Bulbous bow section variation

Fig. 39 The original section
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Item 

No.
Description Given by Area Centroid

Error rates 

(compared to 

Item No #)

0
Original

waterline
user 55.7596 (7.2954, 1.9519)

2
Requirements for 

new waterline
user 62.0000 (7.3100, 2.0600)

1
Intermediate

curve

theoretically 

calculated
6.2404 (7.4405, 3.0259)

1.1
Intermediate

curve
algorithm 6.2404 (7.4405, 3.0280)

A: 0.00% (#1) 

G:  (<0.07%) 

1.2 Deviation curve algorithm 6.2404 (7.4405, 0.2382)

Error is checked 

by the values of 

final curve

2.1 New waterline
algorithm 

(superposition)
61.9997 (7.3099, 2.0593)

A: 0.005% (#2) 

G: (0%, < 0.03%) 

Table 3. Error evaluation – Bulbous bow section variation

Fig. 40 Bulbous bow section variation
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Chapter 5.  Conclusions

A limitation observed in the proposed algorithm is the infeasibility of the shape of a 

new profile curve. The concept of variation is to modify the minor portion of the 

existing shape, assuming that the existing shape is satisfactory with respect to its 

functional requirements and smoothness. An excessive variation, however, may cause a 

wiggled and thus undesirable result. This is a truly possible case that can be commonly 

observed in real design practice as the undesirable shape can also satisfy the given 

requirements. Even though primary responsibility goes to the designer who sets up 

wrong requirements, this uncontrolled behavior should be avoided within an algorithm. 

The feasibility analysis is being worked by the authors.

A simple and straightforward, but efficient variation method of constructing a new 

shape from an existing one has been introduced. An intermediate curve was 

constructed to satisfy the given geometric requirements and later superimposed on the 

top of the existing curve. Conceptually, this process is similar to the one that uses 

shape functions. In this work, however, geometric requirements that facilitate a 

different hull form design have been incorporated into the problem formulation.

The proposed approach provides a concise and powerful design tool. Constructing 

and adding a simple curve form yields a new shape that is as smooth as the original 

shape. Since both the intermediate curve and consequently the final curve have the 

same knot vector and the same interval, the resulting variation always follows the 

original shape and curve structure. This is a great advantage in performing ship hull 

variations.

Even though the whole process is designed to work in a linear fashion, a nonlinear 

optimization step is used in finding the intermediate or deviation curve. This 

unavoidable process, however, is extremely simple and provides an opportunity in 

yielding an intermediate curve that has smooth and uniformly distributed shape, by 
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considering the energy minimization concept.

The proposed approach generates satisfactory results and can readily be extended to 

more complicated design processes.
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