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Growth and evaluation of high quality AIN using
sputtering

Sungmin Cho

Department of Convergence Study on the Ocean Science and
Technology

Graduate School of Korea Maritime and Ocean University

Abstract

AIN (aluminum nitride), which has excellent properties such as wide
band gap, high thermal conductivity and surface acoustic velocity, is utilized
in various fields. Up to now, AIN thin films are mainly grown using thin
film growth equipments such as MOCVD, MBE and sputter. However, AIN
thin films fabricated by sputtering have advantages such as a higher
possibility of a low temperature growth, a low roughness of thin film and a
low manufacturing cost, but it is not satisfying in terms of crystallinity for
certain applications. It was reported that the crystallinity of the sputtered
AIN thin film is affected by the sputtering conditions. Therefore, in order
to fabricate high-quality AIN thin films by sputtering, it is necessary to
study the influence of sputtering conditions on AIN thin films. In this study,
[ researched the growth and evaluation of AIN thin films by sputtering for
the widen application of AIN thin films.

In the chapter 1, the background and motivation of this study were
introduced. The crystal structure, properties, application fields of AIN and

methods for fabricating AIN thin films were described.

In the chapter 2, the equipments used in the experiment were

introduced. The sputtering methods for fabrication of AIN thin film and

Collection @ kmou T Xi-



equipments for the analysis and evaluation of AIN thin films such as XRD,
SEM, EDS, AFM, and CL are described.

In the chapter 3, The growth of AIN thin films was demonstrated using
a DC reactive gas magnetron sputter. The Influences to the crystallinity in
terms of the stoichiometric composition change with changes of the supply

amount were investigated.

In the chapter 4, The growth of the AIN thin film is discussed using a
pulsed sputter. The growth conditions of the AIN thin film are optimized by

utilizing the content of chapter 3.

In chapter 5, In order to evaluate the utilization value of various fields,
the physical properties of the optimized AIN thin films were evaluated in

chapter 4.

Finally, In the chapter 6 all results are summarized and conclusions of

this study were explained.

KEY WORDS: Aluminum nitride (AIN), Pulsed DC reactive magnetron sputtering,

Stoichiometric composition, Residual strain, Crysatllinity, Electrical property, Optical

property
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Chapter 1. Introduction

1.1 Aluminum nitride

1.1.1 Crystal structure

Aluminium nitride (AIN) is one of a group of IIl-Vnitride semiconductor
such as gallium nitride (GaN), indium nitride (InN) and boron nitride (BN).
Figure 1.1 shows the representatively reported wurtzite structure of AIN.
The lattice constant is reported as a-axis = 3.111A and c-axis = 4.979 A
(PDXL: no. 00-025-1133). Because of instability and ionicity of lattice, the
c/a ratio of 1.6 is changed from ideal wurtzite crystal structure. [1] Each Al
atom (N atom) is surrounded by four N atoms (Al atoms) of tetrahedral site
as shown in Figure 1.1 (b). The length between Al and N1 is 1.917A (Bl
bond) and Al to N2 is 1.885A. (B2 bond) The angle of N1-AI-N3 is 107.7°
and N2-AI-N3 is 110.5°. The bonding energy of B2 is relatively larger than
it of B1. AIN(10-10) is only composed of the Bl bond, while AIN(0002) and
AIN(11-20) is consisted of both bond Bl and B2. Therefore high energies of
adatoms are required for growth of AIN (0002) thin film using sputtering [2].

In addition, AIN also has other crystal structures such as metastable cubic
zinc-blend structure (z-AIN) and the high pressure cubic rock salt structure
(r-AIN). z-AIN and r-AIN have the lattice parameter a = 4834 and a =
4.043~4.045 A at room temperature, respectively. N. Li, et al. has reported
about other crystal structures experimentally and using density functional
theory. [3]
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Figure 1.1 The schematic diagram of wurtzite AIN structure
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1.1.2 Physical properties

Table 1.1 The physical properties of wurtzite aluminum nitride

Energy gap E,(300K)= 6.2eV

Index of Refraction  n(3eV)=2.15, n(3.42eV)=2.85
Melting point 2500K
Thermal expansion Aafa = 4.2x10°/K
Thermal conductivity k=319 W/m - K
Hardness 17.7 GPa
Toughness 0.4 MPa - m'?

Young’ s modulus 308 Gpa
Relative permittivity 8.5 at 1IMHz
Resistivity 10° - 10" 2m

AIN is well known as a hard material having 9 at mohs’ scale and
chemically stable material. The mechanical properties of c-axis oriented AIN
is reported as hardness of 17.7 GPa, fracture toughness of 0.4 MPa - m'?
and Young’ s modulus of 308 Gpa at room temperature (RT) [4]. However,
it is softer than 6H-SiC (0001) of 22.9 GPa and «-AlL,O; (0001) of 28 GPa
[5] and harder than GaN (0001) of 10.2GPa [6].

AIN is stable at high temperature (melting point : ~2500K). The thermal
conductivity of pure AIN is 319 Wm - K at RT [7]. Also thermal expansions
of a-axis (Aalap) and c-axis (Ac/cy) are changed as following equation 1.1

and equation 1.2, respectively. [8]

Aajay =—8.68x10 2 +1.93x 10" *T+3.40x 10" "T*—7.97x10 " 1T° (1.D

Ac/cy=—T7.01x10 *+1.58x10 *T+2.72x10 "T*—5.83x10 "' 71? (1.2)

The optical properties such as fundamental band gap of AIN were reported
by Yamashita et al. at 1979. [9] It has optical properties of wide direct band
gap (6.2eV) at RT and high optical transmittance at visible wavelength.
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Also AIN has high electrical resistivity (10° - 10" @m) [10] and dielectric
constant (8.5 at 1MHz) [11] and has high surface acoustic velocity of
5.76km/s [12].

1.1.3 Applications

Due to the properties mentioned in chapter 1.1.2, AIN thin films has

various applications as illustrated in figure 1.2.

In applications of optoelectronics, AIN thin films is well known as buffer
layer between Si and GaN for relaxation of thermal expansion and lattice
misfit [13]. It inhibits etching of Si layer from Ga called melt-back reaction
[14]. Also the wide direct band gap (6.2eV) of AIN makes it can be adopted
for deep-ultraviolet (DUV) LED- [15].  However, for the expansion of
optoelectrionic applications, it is needed to apply acceptor doping and

activation of p-tpye AIN.

In applications of power electronics packaging, AIN-based micro-channel
heat sink (MCHS) has been investigated. [16] Shan Yin et al. have reported
that AIN is regarded as promising material due to thermal conductivity and
high mechanical strength. It has similar lattice parameter and coefficient of
thermal expansion (CTE) compared to SiC substrate using in power

electronics.

AIN thin films have been attracting attention for application of surface
acoustic wave (SAW) devices and bulk acoustic wave resonators (FBARs). A
basic structure of SAW sensor is consisted of two interdigitated transducers
(IDT) on piezoelectric films and space called the delay-line between the
input and output IDT. The micro mass variation caused in delay-line makes
the difference of each frequency detected at input and output IDT. It is
important for c-axis oriented AIN thin films to have low roughness for SAW
device and FBARs for piezoelectric constant and electricity coupling

coefficients required for minimizing frequency variations caused by local
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velocity changes. The SAW characteristics were utilized for as sensor [17]
and filter [18].

AIN was studied for resistive switching (RS) materials such as capacitance
of transparent MIM (Metal-Insulator-Metal) structure [19] and high electron
mobility transistors (HEMTs) of MIS (Metal-Insulator-Semiconductor) structure
[20]. RS materials based on nitride semiconductor are known for a high
thermal conductivity, good insulating property, wide optical band gap and

featured low voltage/current operation [19].
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Figure 1.2 The schematics of AIN thin films of applications such as
DUV-LED [15], Heat-sink [16], SAW sensor [17], RF filter [18], transparent
device [19] and HEMTs [20]

Collection @ kmou 6



1.2 Growth methods for AIN thin films

The AIN films has been grown using conventional growth methods MOCVD
[21] and MBE [22]. The methods are generally required growth at high
temperatures (above 950°C) to supply source for the growth of AIN films.
However, It is possible that AIN thin films of high quality is fabricated. The
lower crystal quality has been reported using sputter. However, it has
benefits of low growth temperature, low price and low roughness of AIN
thin films. [23] Therefore, sputtered AIN thin films is needed for widening

application fields.

In order to maximize the advantages of sputtered AIN thin films,
sputtering parameters such as cathode, anode and chamber were
investigated for improving crystallinity of AIN thin film. The gas pressure
[24] and Ar/N, gas flow ratio [25] were controlled as chamber parameter.
The controlled parameter of cathode with target involves plasma power [26]
and pulsed frequency/off time [27]. The controlled parameters of anode with
substrate are substrate temperature and substrate bias. [28] The distance
between cathode and anode is controlled. [29] Through them, it can be seen

that the sputtering parameters affect crystallinity of AIN thin films.

1.3 Outline of thesis

In this study, AIN thin films were grown and evaluated using sputter to
expand the field of applications. Sputtering parameters such as plasma
power, gas flow ratio, substrate temperature and gas flow ratio are

controlled for enhancing crystallinity of AIN thin films.

In chapter 3, the fundamental growth principle of the reactive gas DC
magnetron sputtering method for the growth of AIN thin films were

described.
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In chapter 4, utilizing influences of sputtering condition which mentioned
chapter 3, the growth conditions of AIN thin films by using pulsed

sputtering deposition is optimized.
In chapter 5, The feasibility of AIN thin film is evaluated for widen

applications.
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Chapter 2. Experimental Equipment

2.1 Sputter

Sputter technique is generally classified as one of physical vapor
deposition (PVD) in thin films growth method. It is a method of depositing
atoms formed from the target on a substrate and it happens when the
ionized particles collide with the target at a low pressure (<5 mTorr). Figure
2.1 shows the fundamental sputter mechanism. A brief concept of the
mechanism is supplying power - between  target (cathode) and substrate
(anode) at a low pressure (typically range : few mtorr). lons can be
generated by the collision of high energy electrons with neutral atoms

according to the equation. 2.1.

Ar+e” (primary) = Ar' +e (primary)+e (secondary) (2.1

Plasma is formed at discharged area. When ionized atoms accelerate and
collide with the target, the newly generated atoms from the surface of the
aiming material under the condition that the collision energy is greater than

the bonding energy of the material surface.

The sputtering method of AIN films brings benefits in diverse ways such
as a low temperature growth, a smooth surface, and a low cost. According
to the study, however, the crystal quality of sputtered AIN is still not

meeting the demands of the certain fields.
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Figure 2.1 The schematic of sputtering process

2.1.1 DC discharge

The direct current (DC) discharge in sputtering process can be divided
into dark discharge, glow discharge, arc discharge depending on the voltage

and current to be formed as shown figure 2.2.

A dark discharge is invisible eye except for corona discharges and the
breakdown. Townsend regime with exponentially increasing current means
avalanche of electron and ion production that other neutral atoms are
ionized due to collisions of secondary electrons in equation 2.1. The
discharge is continued but the number of electrons in this range is still

insufficient.

The plasma resistance is decreased with increasing current (increasing ions
and electrons) at normal glow discharge of glow discharge. Therefore, The
voltage is decreased and plasma is stabled. At this range, the number of ion
production is equal to it of extinction. Also bright light is emitted at cathode
(or target). The sputtering is processed in range of abnormal glow discharge

that voltage is increased as function of current.

A arc discharge is induced with higher current and low voltages. It is

consisted of non-thermal and thermal arc.
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Figure 2.2 V-I graph of DC discharge [1]

2.1.2 Sputtering yield

A sputtering vyield is defined as the number of atoms per colliding ion on
the target. It is approximately calculated as below equation 2.2 at ion
energies from 100 to 1000eV [2].

3 dmm, | ‘
_EWW [atom/ion)] (2.2)

Where « is ratio of the masses of the target atom and the incident ion, my;
is the atomic mass of the bombarding incident ion, m; is atomic mass of the
target, E is energy of the incident ion, U is binding energy of the surface
atom of the target. The sputtering yield is related to target material, gas,
power according to equation 1.4.

Al target using inert gas of Ar is experimentally reported as value from
0.11 to 1.24 at different energies from 100 to 600eV [3].
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2.1.3 Magnetron sputter

In order to increase the ionization rate of the target, a magnetron is
provided on the cathode (target) side of the plate shaped diode so that the
electrons stay in the electric and magnetic fields around the target, and the
ionization is continued, so that sputtering is intensively caused and ionization
is caused. There is an effect that the growth rate of the treated material is
greatly increased. Also The swirling motion of the electrons can reduce the
collision of the electrons with the substrate and the thin film. Therefore,

the effect of increasing the substrate temperature is small.

2.1.4 Reactive gas sputter

Ar gas is usually used for sputtering due to cost and efficiency. However,
the reactive gas sputtering for compound film growth is used as method
supplying a small amount of oxygen or nitrogen besides Ar gas. Compound
thin film formation by reactive gas sputtering is advantageous in terms of
manufacturing, purity and cost, rather than direct sputtering of oxide or
nitride targets. The reason is that sputtered atoms from target are in a
very unstable state, so that they easily react with the reactive gas and the
atoms that reach the substrate are also fast in the thin film state. Also
sputtering vyield of metallic target is over 100 times higher than it of
compound target. Growth rate using metallic target is faster than using
compound target. However, arc discharge is occurred in sputtering process
[4,5]. Because reactive gas is affected as increasing compound fraction of

metallic target.

2.1.5 Pulsed sputtering deposition (PSD)

The reactive gas sputtering has disadvantage of instable process called
poisoned effect. The metallic target becomes poisoned insulator (nitride or

oxide) with higher reactive gas. It functions as capacitance caused arching
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in sputtering process. [4,5] PSD is presented as solution of this problems [5].
Reverse voltage is added at PSD compared with DC mode as shown in
figure 2.3. At the reverse voltage ranges, electron and ions of plasma decay
the dielectric surface. off voltage time (7 is required for stable
sputtering of on voltage time (7 .. The relationship called duty cycle is

defined as below equation 2.3 [6].

T()n T()n
Dutycycle = = 2.3

Ton + T ff Tcyde

The arc free condition is related to the duty cycle and figure 2.4 shows
their relationship. If not 7 srerit » T offerit @Nd 7 on < T onerits arc discharge is
induced due to charging accumulation and dielectric surfaces. It is normally

processed from 0.5 to 0.9 for relaxation of arc discharge.

Also Sputtering using pulsed supply was reported merit of high kinetic
energy atoms supply. [7] It means possible that high energy migration length

of ad atoms is supplied.

Discharging the dielectric surface

v
£ + + + -
=0 >
g - - - Time
< < >
\,Tuff Ton Teyele T

Sputter-deposition and charging up layers

Figure 2.3 V-I graph of pulsed unipolar DC discharge
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Figure 2.4 Arcing free conditions in the 2-d space of pulsing frequency
and duty cycle

2.2 X-ray diffraction (XRD)

X-ray diffraction of each crystal lattice appears in the crystal, which is
an important means for wunderstanding the crystal structure. Figure 2.5
shows mechanism of X-ray diffraction. Due to shorter wavelength of X-ray
(few A) than lattice constant, X-ray can be passed between atoms and
affected to tens of micrometer atoms. incident X-ray is reflected by each
of the atoms and it disappears and the reflected wave does not exist.
However, reflected X-ray does not disappear because the constructive
interference occurs only when conditions satisfies Bragg’ s law as shown

equation 2.1.

2dsind = n\ 2.D

Where d is plane distance, # is diffraction angle, n is positive integer and
A is wavelength of X-rays (this research use Cu-Ka of 1.54184A). The
equation 2.1 means if sample has a constant d value (good alignment with

c-axis) strong diffraction is happened only at a specific angle of incidence.
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The XRD using this mechanism is analysis equipments of crystallinity by
controlling XRD goniometer. Films are typically analyzed using XRD such as
mismatch, phase, strain, preferred orientation, crystallite size relaxation,

in-plane epitaxy, mosaic spread, thickness density

XRD is divided of parallel beam (PB) mode and Bragg Brentano (BB) mode
as x-ray alignment. Figure 2.6 shows x-ray different modes. Focusing
geometry beams is utilized in BB mode and parallel beams is utilized in PB
mode. In this study, AIN thin films is investigated using theta-2theta scan
of BB mode and using omega rocking curve, theta-2theta and phi scan in
PB mode.

Figure 2.5 Bragg’s law [8]
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Figure 2.6 The schematic of BB and PB modes [9]

2.3 Atomic force microscope (AFM)

AFM, one of scanning probe microscope can analyze surface. Figure 2.7
shows configuration and mechanism of AFM. It is typically consisted of
mirror, laser, cantilever, detecter. when probe of a few atoms size near
approaching to sample, vibration is occurred because of van der waals force
between probe and surface atoms. It is imaged using measured detector.
The AFM has 2 measurement modes such as non contact mode and contact
mode. They utilize applications of attractive and repulsive force of van der
Waals force shown in figure 2.8 respectively. The non contact mode

reduces damage to sample. However, resolution is lower than contact mode.

It has resolution of a few nanometer window. Therefore, films of narrow

range is usually used for roughness, grain size and morphology.

In this study, It is used for roughness and morphology utilizing non
contact modes for reducing damage to films. The size of 10 X 10 xm is

observed in this study.
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Figure 2.7 The schematic of AFM mechanism

B Contact AFM
~.Non-Contact AFM

Distance, z

Repulsive
--------- Attractive
Total interaction

Figure 2.8 Different AFM modes using van der waals force [10]
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2.4 Field emission scanning electron microscope (FE-SEM)

FE-SEM is a widely used microscope for observation of small size
microstructure and shape in solid state. It forms surface images by using
information of secondary electron generated as shown figure 2.8. Field
emission using a tunneling effect, one of the methods for forming electrons
can emit electrons at low temperature and high efficiency compared with a

thermo electron emission.

FE-SEM has high spatial resolution of 0.8 - 1.8 nm. Also since it is a
measurement method using electrons, there is a limitation that a sample is a
conductor. In the case of a insulator or a semiconductor, a thin conductor

layer must be coated for measurement.

In this study, thin carbon layer is coated on AIN layer reducing charging
before measurement. It is used for surface morphology of AIN thin films at

electron voltage of 15 kV.
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Figure 2.9 Different types of electron interactions with specimen and

related detection modes [11]
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2.5 Energy dispersive x-ray spectrometer (EDS)

EDS analyzes the components of a specimen using a characteristic X-ray
of various signals, in which a high-energy electron beam reacts with the
specimen as shown figure 2.9 and holds the structure and chemical

composition information of the specimen.

EDS is capable of qualitative and quantitative analysis of materials. In
qualitative analysis, X-rays of K-, L- and M-groups are distinguished. Since
the peak position of the spectrum has an error of about 10 eV, it is
possible to easily find the elements. However, when the peaks are closer to
the resolution (128 eV), the peaks overlap. In this case, the electron
acceleration voltage can be adjusted to enable accurate analysis. In case of
quantitative analysis, it is analyzed through the peaks in qualitative analysis.
It is calculated as atomic percent and weight percent by the algorithm of
the system (ZAF). However, a peak resolution and accuracy in quantitative
analysis is low, but it is very easy to use because it is very easy to use for
beginners and it can process large amount of data due to its short signal

acquisition time.

In this study, It is used for relative composition variation of AIN thin films

as function of sputtering conditions.

2.6 Cathodoluminescence (CL)

The CL analyzes the components of a specimen using a electron state
information as shown figure 2.9. Using an electron beam, electrons of the
valance band are excreted, and it emits energy of a specific wavelength
band is measured. The CL is variously applied to evaluation of impurities or

defects such as semiconductors, evaluation of stress distribution, evaluation
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of light emitting devices, and evaluation of three-dimensional quantum

structure.

When electrons and holes meet and recombine in the semiconductor, they
emit light or heat. The recombinations are divided as non-luminescent and
luminescent ~ recombination.  Typical examples of  non-luminescent
recombination are defects, which include externally added impurity atoms,
native defects, dislocations, and defect complexes, and inherent defects in
compound semiconductors are intrusive an interstitial atom, a vacancy, and
an antisite defect. However, some defects can also recombine with
uminescent recombination. All these defects have energy levels different
from those of the lattice-filled atoms and usually form one or several
energy levels in the forbidden zone of a semiconductor. The energy levels
in the forbidden zone effectively recombine the transporters, especially
when the position of the energy level is near the middle of the forbidden
band.

In this study, it is used for luminesce property of AIN such as defect and

direct band gap.

2.7 Fourier transform infrared (FTIR)

FTIR is a measurement that can quickly measure all the materials in the
state by absorbing infrared or transmit infrared rays by applying infrared

rays to the sample.

When IR light enters to the substrate, the molecules that make up the
material are subjected to specific vibrations depending on its structure. The
energy of this molecular vibration becomes equal to the infrared light
energy. For this reason, when infrared light is irradiated on a substance,
only the light in a specific wave number area corresponding to the

frequency of the vibration mode is absorbed. It is also effective in
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qualitative and quantitative analysis, and quantitative analysis of organic

substances in various mixtures can be carried out without a pre-treatment.

In this study, it is used for AI-N cluster of thin films. It is used to

correlate Al-N cluster with sputtering conditions.
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Chapter 3. Reactive Gas DC Magnetron Sputtering of AIN
Thin Films

3.1 Introduction

In general sputtering, fundamental sputtering parameters such as plasma
power and gas flow rate are relatively simple compared with other thin film
growth methods. Although the substrate temperature can be varied, the
general sputter growth usually proceed at room temperature. In the case of
sputtering using a reactive gas as in this study, the sputtering process is
changed by the reaction of the target surface. A sputtered total number of
metal atoms (R) in the reactive gas sputtering process is given by equation
3.1 as follows [1].

Rzg[ymu—m ¥ 6]A 3.1

Where J is the ion current density, q is the charge amount, Y, is the
sputtering yield of the target, ¢ is the surface area ratio of the target
reacted with the reactive gas, Y. is the sputtering yield of the compound
formed by reacting with the reactive gas. Yc has commonly higher value Y
over 100 times. The equation 3.1 means sputtering parameter is relative to
R value. In PVD mechanism, adhesion coefficient is close to 1 at room
temperature. Therefore, the influence of the supply amount on the thin film

is very large.

In this chapter, AIN films controlled as basic parameter of reactive gas

DC sputtering is investigated as basic experiment for high quality AIN thin
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film. Through the change of the growth rate, it is confirmed that the
composition of the thin film is changed. In addition, the effect on the

crystallinity was explained in terms of stoichiometric composition change.

3.2 Experimental details

Before growth, ITO (200 nm)/ SiO, (200 «m) substrates of 20Xx50mm size
were cleaned as acetone, methanol and DI water during 10min respectively.
AIN films were deposited on it using reactive gas DC magnetron sputter. In
order to deposit AIN, N, gas of 6N and Al metal target of 5N were used at
sputter. The basic sputtering parameters such as gas flow ratio (Ar flow of
10sccm and N, gas flow from 3 to 7 sccm) and plasma power from 75 to
300W were controlled at RT.

The analyses of surface were performed using FE-SEM and AFM. The
10x10 xm® range were measured in AFM measurements. A films color
variation was evaluated by photo camera. Crystallinity was evaluated using
XRD. The X-ray source of Cu-ke is used for the XRD theta/2theta
measurement. A relative composition of N and Al in the thin film is

measured by EDS.

3.3 Influence of plasma power on reactive gas DC magnetron
sputtering of AIN thin films

3.3.1 Growth rate variation

the growth rate increased linearly with increasing plasma power as shown
figure 3.1. It was changed from 100nm/h of 75W to 750nm/h of 300W. It

can be described by modifying equation 3.1 to equation 3.2 because of Y>>
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R==Y, (1-0)A (3.2)

m

The plasma power is well known as plasma power = IXV. The current (I)
affects to the ion current density as below equation 3.3 and the voltage (V)

affects the sputtering yield as below equation 2.2 given at previous chapter.

1

3o dmm, | /
=3 (mi—i—mt)Q i [atom/ion] (2.2)

where 7 is secondary electron emission coefficient of a few percentage.

The equation 3.2 is changed as below equation 3.4.

3a dAmm, 1 1
R= (= 1—0)AXP (3.4)
A7 (mi-i—mt)2 Ul+y ( )

~ K(1—0)P

where K is abbreviated constant. The equation 3.4 implies that the supply
of Al is proportional to the plasma power. It is affected to films of
increasing growth rate. Therefore, in figure 3.1, the increase in growth rate
as increasing plasma power can be expected to be due to the increase in
Al
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Figure 3.1 Growth rate of films with plasma power from 75 to
300W at No/Ar flow ratio of 3/10

3.3.2 Surface change

The plasma power is affected to Al supply amount. It is also expected
that this phenomenon controls composition of film due to the amount of Al

generated from the target.

Figure 3.2 shows surface of AIN thin films grown at different plasma
power. The thin films in the plasma power range from 75 to 300W is
described as photograph, top image of FE-SEM and roughness RMS value of
AFM. AIN has a wide band gap and transmits to visible range. Therefore,
high transparency is generally obtained. Transparent thin films were
observed in the samples grown on plasma power (P<200W) (figure 3.2 (a)
and (b)). A dark surface at high plasma power (P>200W) (figure 3.2 (c) (e))
were observed. Although the AFM Roughness RMS value of the same

specimen shows a smooth surface at plasma power of 200W or less,
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surfaces with a very rough and high density island structure were observed

at a plasma power of 200W or more.

It is judged to be a droplet due to Al through a phenomenon appearing
under high Al supply condition. Metallic droplet is similarly reported in AIN
growth using MBE. [2] S. Tamariz et al. have reported that Al droplet is
induced at high Al supply amount or low N supply amount condition. A
200W sample with a dark surface and no droplet is observed. It have been
reported as a phenomenon appearing in an approximate region of
stoichiometric composition called Al-rich intermediate region. [3] Also in the
case of a wide band gap compound, the change in the transparency of the
sample observed with the naked eye is most likely caused by a change in
the stoichiometric composition. In the case of AIN, if the composition is

changed, metallic Al in the thin film is formed and transparency is reduced.

the amount of Al supplied increases with the increase of the plasma
power, and it is expected that the change of the stoichiometric ratio causes

the change of the transparency and the surface roughness.
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Figure 3.2 Surface of AIN samples grown at different plasma power

3.3.3 Composition variation

It was expected that the stoichiometric composition is changed as
increasing plasma power in previous chapters. EDS results were confirmed
to intuitively confirm the stoichiometric composition change of the thin film

as shown figure 3.3.

As a result of the intensity change of N and Al peaks according to the
change of plasma power, N/Al ratio of films was decreased linearly as
increasing plasma power. V/II > 1 at low power and V/II < 1 at plasma
power of 200W or more were observed. Also from results, it is expected
that a stoichiometric condition is obtained at plasma power of about 180W

in this experiment.
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The films of low N/Al ratio have been reported to induce Al droplets in
AIN growth using MBE. [3] In this experiment, similar results at Al rich
condition (250 and 300W samples) is observed. 200W As a result, it is
confirmed that the plasma power influences the stoichiometric composition

of the thin film by increasing the Al supply.
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Figure 3.3 Relative composition at different plasma power

3.3.4 Crystallinity

The XRD 260-6 patterns were observed for describing the effect of
stoichiometric composition on crystallinity. Figure 3.4 shows XRD 26-0
pattern at plasma power from 75 to 300W the ITO and SiO, related peaks
did not show any change in position or intensity in all samples. On the
other hand, the AIN (0002) peaks were hardly observed at low plasma
power conditions (<150 W), However the highest intensity was observed at
200 W and the tendency was rather decreased when the power is higher.

Also, metallic Al (111) peaks were observed, which are clearly
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distinguishable from samples grown at high plasma power of 250W and
300W. and the intensities of the peak were increased with an increase in
the plasma power, it can be judged that the supply amount of Al is
increased with an increase in the plasma power. Considering that the
nitrogen gas supply was fixed in this experiment, the reason why the
diffraction intensity of AIN at a power of 200W shows the greatest strength
is that this condition is interpreted as the most suitable condition for AIN

growth from the stoichiometric viewpoint.
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Figure 3.4 XRD theta-2theta patterns of sputtered AIN layers on
ITO/SIO, at different plasma power

To sum up the results so far, through the change of the growth rate, it
can observe that the amount of Al was controlled by plasma power. Also
the composition of the thin film was changed due to it. Figure 3.4 (a) and

(b) can be classified as those in which the supply amount of N is higher
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than that of Al It is referred to as the so called N-rich condition. In the
N-rich condition, the thin film showed a smooth surface and transparency in
the visible region. In figure 3.4 (c) - (e), the range was growth condition
of Al oversupply. In the Al-rich condition, the thin film showed dark color
and a rough surface because of Al droplet. These conditions affected the
crystallinity. It was also confirmed that the proper amount of Al is

important for the crystallinity of the thin film.

3.4 Influence of gas flow ratio on reactive gas DC magnetron
sputtering of AIN thin films

In the sputtering process, the reactive gas is known to be consumed in

three ways as below [1]

(1) Move to a vacuum pump
(2) React with the target to form a compound

(3) Activated in the plasma and supplied to the substrate

As the reactive gas supply increases and the nitrogen partial pressure in
the growth chamber increases, the ratio of reacting with the target surface
also increases. If this phenomenon persists, it may prevent stable plasma
generation in extreme cases. Therefore, even if the supply amount of the
reactive gas is controlled, the range in which the plasma stability is ensured
is checked in advance, It is important to control the gas flow rate in the

condition.

At higher N, gas flow than 7 sccm, it interfered with formation of high
density plasma. Therefore, the flow rate of nitrogen was limited to 7 sccm

or less. In this experiment, Ar gas flow rate was fixed to 10 sccm and N,
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gas is injected from 3 to 7 sccm. The effect of gas flow ratio on the thin
film was confirmed by the change of growth rate and the effect on the

crystallinity from the viewpoint of stoichiometric composition.

3.4.1 Growth rate variation

Figure 3.5 is the result of the change of growth rate according to the
variation of nitrogen flow rate at various plasma power. The growth rates
at every plasma power conditions were decreased with increasing the

nitrogen flow rate.

In the experiment in which the plasma power was fixed, the tendency of
the growth rate to decrease with the increase of the nitrogen flow rate is
not explained at (1) phenomenon of gas flow ratio. For example, if the
growth rate is determined by the supply amount of the growth element, the
growth rate of the thin film increases as the supply amount of nitrogen
increases while the plasma power is constant (constant amount of Al
supply). Therefore, it can be seen that the decrease in growth rate in
figure 3.4 should be explained as (2) phenomenon rather than (1)
phenomenon. Therefore, it can be described by the poison fraction of target

(#) in equation 3.4.

R~ K1—-0)P (3.4)

where K is abbreviated constant, ¢ 1is fraction of poisoned target, P is
plasma power. Through the above equation, as the nitrogen flow increases,
0 value increases, and the supply amount decreases, and as a result, the

growth rate decreases.
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Figure 3.5 Growth rate according to the variation of nitrogen flow

rate at various plasma power from 75 to 300W

3.4.2 Surface variation

The cause of figure 3.5 was explained by surface analysis in figure 3.6.
Figure 3.6 is surface variation at conditions of different N, gas flow. In the
results of figure 3.2, the change of the transparency and the surface
roughness of the sample were observed at conditions of different plasma
power. Figure 3.6 (a) was observed as similar the metallic surface, but
figure 3.6 (b) of 5 sccm and figure 3.6 (c) of 7 sccm increased
transparency. Also, the sample grown at 3sccm was described island like
structures originating from the metal phase in the AFM images, and those
grown at 5 and 7sccm were observed flat surfaces without island like

structures.

The results can be actually concluded that Al supply is decreased by
increasing the nitrogen flow rate (2) phenomenon. In the gas flow ratio
control, the smooth surface is observed because of the increased N and

decreased Al supply.
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Figure 3.6 FE-SEM image, photo image, AFM roughness RMS value
and growth rate of the grown AIN samples as function of N gas

flow

3.4.3 Crystallinity and relative composition variation

Figure 3.7 shows investigation of composition and crystal quality of the
sample grown according to the above mentioned change. Figure 3.7 (a)
show the XRD intensity changes of AIN (002) and Al (111). It have been
reported that the preferred orientation change of AIN was observed
depending on the mixing ratio of the reactive gas [4]. However, in the
experiment, thin films of all conditions were observed as the c-axis
orientation. As the nitrogen flow rate increased, the Al peak intensity
decreased and the intensity of AIN peak increased with XRD. The decrease
of the Al peak intensity and the increase of the AIN peak intensity were
considered to be due to the increase of the N supply amount and decrease

of Al supply amount with the increase of the nitrogen flow rate.

Figure 3.7 (b) is the intensity ratio of N and Al peaks measured by EDS
at this condition. The V/II ratio of the thin film measured by EDS was
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increased with increasing the nitrogen flow rate. As expected, it can be
interpreted as a result indicating that as increasing supply amount of N, the
reactive gas has reacted on the target surface and the sputtering yield of
the target has decreased to reduce the Al supply amount. As a result, the
sample grown at gas flow of 7sccm is close to the superior stoichiometric

composition (near 1 of V/II ratio).
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Figure 3.7 (a) The XRD theta-2theta intensity of AIN and Al peaks

and (b) The chemical ratios variation of AIN thin films as function

of N, gas flow
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3.5 Conclusion

In chapter 3, AIN thin films on the ITO/SIO, substrate were investigated
by reactive gas DC magnetron sputter. The plasma power and gas flow
ratio (increasing N, gas flow) at reactive gas DC sputter were controlled.
The growth rates varied with sputtering parameters, confirming that the Al
supply amount was controlled. The influence of the thin film was analyzed
in terms of stoichiometric composition according to the change of the Al
supply amount. The stoichiometric composition influenced the crystallinity of

the film. As result, it is considered for high quality AIN fabrication process.
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Chapter 4. Pulsed Sputtering Deposition of AIN Thin Films

4.1 Introduction

The improved crystallinity of AIN thin films is essential for a wide range
of applications. Pulsed power supplies in the PLD method can supply high
energy Ill-group precursors, which can reduce defect density at low growth
temperatures. [1] The PSD method, which the positive voltage supplies in
addition to the DC power supply, is a similar growth method to PLD in that
it uses a pulsed power supply. K. Sato et al. reported the possibility of
fabricating high quality AIN thin films on SiC with low lattice mismatch with
AIN using PSD. [1]

There are many parameters in the sputtering method, and as the sputter
of this chapter uses pulsed DC, the parameters that control the waveform
of the voltage such as pulsed frequency and off time are additionally
introduced in comparison with DC. PSD is similar to reactive gas DC
magnetron sputter but it is reported that residual strain is formed in thin
film due to high energy of Al supply. [2] To fabricate high quality AIN thin
films, using sputter it is necessary to study it and it can be improved by

using parameters in PSD. [3-5]

In this chapter, the sputtering conditions of PSD are optimized for high
quality AIN. In previous chapters, sputtering parameters affected the Al
supply and altered the stoichiometric composition of the film. It also
affected the crystallinity. Using it, chapter 4 investigated the effect of
sputtering parameters on the thin film and the solution of the problem in

terms of lattice strain variation of the thin film.
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4.2 Experimental details

AIN thin films were deposited on a 2 inch double side polished (DSP) -
sapphire wafer using PSD. Before the growth, the substrates were cleaned
by ultrasonic cleaning for 10 minutes each for acetone, methanol, and
DI-water for organic cleaning. Sputtering parameters such as gas pressure
from 0.1 to 1.2 mtorr, Ar gas flow from 10 to 15 sccm, N, gas flow from 7
to 10 sccm, substrate growth temperature from room temperature to 500 °C
and a plasma power from 300 to 800 W were controlled. Pulsed DC pulse
frequency of 50 kHz and off time of 2.0 xs (Duty cycle: 0.9) were

confirmed in arc free condition.

Sputtered AIN thin films under various conditions were fabricated with
similar thicknesses of 700 * 30 nm for comparison. The grown AIN thin
film analysis is analyzed by growth rate, thin film color, relative composition
and crystallinity. The growth rate was measured using a contact profiler,
and the color change of the film was observed using a photo camera. The
composition change of the thin film was measured by EDS at 5 kV electron
beam condition, and EDS intensity was converted into atomic precent and
compared with N/Al intensity ratio values. Al-N clusters are analyzed using
FTIR at wavenumber of 500 to 1800 cm™. Crystallinity was evaluated using
XRD and Cu-ke was used as an X-ray source. The measurements used
theta-2theta scan, omega rocking curve scan and phi scan. The omega
rocking curve scan is controlled as the omega value at theta-Ztheta peak
position (36.04°) of bulk AIN (0002). The phi scan was measured at the chi
angle of 42.729 degrees, which is the angle between AIN (0002) and AIN
(10-12), and theta-2theta angle of AIN (10-12), which is 49.821 degrees. The
lattice strain of the thin film was calculated as shown in equation 4.1

below.
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Where cum is the c-axis lattice constant of the thin film, Cpux iS c-axis
lattice constant of bulk AIN (AIN = 4.982 A). cmn calculated the peak
position of XRD theta-2theta using Bragg’s law of equation 2.1.

4.3 Influence of plasma power on the PSD AIN thin films

Plasma power of the reactive gas DC magnetron sputter in chapter 3
affected the Al supply. As a result, the composition of the thin film was
changed and it affected the crystallinity. However, the plasma power in PSD
was mainly have been reported as a parameter to increase the migration
length during AIN growth. [3] However, Al atoms of high energy induce
residual strain, which is expected to affect the crystal quality of the thin
film. [2] In addition, high plasma power in PSD is expected to affect
crystallinity as Al supply also increases. In this chapter, the effect of plasma

power on the film. is investigated.

4.3.1 Al amount supply

Figure 4.1 shows the growth rate of AIN thin films grown at various
plasma powers from 300 to 800W. Other sputtering parameters such as the
pulsed frequency of 50 kHz, the off time of 2.0 xm, the Ar/N, gas flow
ratio of 3/2 and room temperature are fixed. As the plasma power

increases, the growth rate increases linearly from 220 to 1439 nm/h.

Figure 4.2 shows the color of these films. Samples with low power
conditions are transparent in visible light, but as the plasma power

increases, the film gradually darkens. It is similar to the results of using
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reactive gas DC magnetron sputtering in chapter 3. Therefore, plasma

power is also influenced by Al supply in PSD.

Figure 4.3 shows the change in the N/Al EDS intensity ratio. As the
plasma power increases, the N/Al EDS intensity ratio decreased linearly from
1.2 to 0.75. It can confirm the effect of the thin film on the increased Al
supply. As the Al supply increased, the N/Al EDS intensity decreased, and
the Al supply also affected the composition.

Consequently, the results show that the plasma power in the PSD also

affects the Al supply, which influences the composition of the film.
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Figure 4.1 Growth rate at different plasma power from 300 to
800W
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4.3.2 Migration length

The results in chapter 4.3.1 were very similar to the results of DC
(chapter 3). However, PSD can supply molecules of higher energy rather
than DC sputter. [6,7] The high energy Al atoms increase AIN crystallinity

due to migration length increase. [3]

Figure 4.4 shows the change in thin-film peaks FWHM of theta-Ztheta
patterns. In conditions of plasma powers from the 300 to 600W, the FWHM
decreases linearly as the plasma power increases. However, FWHM

increased sharply from 600 to 800W.

In the regions of low plasma power, the plasma power is increased and
the crystallinity of the thin film was increased by increasing the energy of
Al molecules. However, in the regions of high plasma power, as the plasma
power increases, the crystallinity was expected to deteriorate due to the

plasma damage.
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Figure 4.4 FWHM of theta-2theta peaks at different plasma power from
300 to 800W
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4.3.3 Plasma damage

Plasma damage can be identified in the XRD theta-2theta patterns in
shown figure 4.5. The peak positions of the grown thin film were shifted
from the bulk h-AIN peak position (36.04°) to a lower angle from 0.14 to
0.26° as the plasma power increased. It indicates that the thin film has a
tensile strain in the c-axis direction, and the plasma power has a lattice
strain relationship. Similar results [2-5] were observed in the AIN thin films
grown with PSD, which are reported to be caused by the peening effect.
Thornton and Hoffman have reported when metal molecules of high-energy
are deposited on a substrate, the molecules collide with the substrate and
induce a residual strain. [2] When high-energy metal atoms are supplied,
compressive strain appears when the tensile strain is supplied with

low-energy atoms.

Al peaks due to Al supply were not observed in XRD patterns. Samples in
the high plasma power (600-800 W) range were similarly observed in
chapter 3, although the color of the thin film was observed to be dark, but
the Al peaks were not confirmed. These conditions are considered to be the

effects of the Al-rich intermediate condition. [8]
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4.3.4 Lattice constant

In XRD patterns,

Figure 4.6 shows their c-axis lattice constant of samples. The lowest lattice
constant of 300W (4.996 A) was higher than bulk AIN (4.979 A), and the

lattice constant increased linearly from 4.996 to 5.013 A as the plasma

power increases.

It means that thin films has a residual strain, and The tendency increases

with increasing plasma power. Therefore it is concluded that plasma power

the films had tensile strain in the c-axis direction.

generates plasma damages.

)

o
o
-
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Lattice constant of c-axis (A

Figure 4.6 Lattice constant of films at different plasma power from 300
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4.3.5 Al-N cluster

High-energy Al penetrated into the thin film, resulting in defects due to
residual strain. Strain due to peening was expected to be induced in Al-N
clusters. Al-N clusters have various geometric arrangements as shown in

Figure 4.7. Table 4.1 shows the theoretical calculation results. [9]

Table. 4.1 Reported geometries of AI-N clusters used in the theoretical

calculation [9]

Cluster Distance Geometry | Wavenumber IR Raman
133.3 cm™!| 23.67 0

AlLN Al-N=1.731 2yt 525.4 cm™* 0 11.13
1052.4 cm™ |  86.14 0

42.4 cm ! 6.97 0

154.0 cm™ | 29.53 0

ALN Al-N=1.705 2 53t 376.4 cm~! 0 83.17
2 N—-Al=1.713 u 675.9 cm | 201.19 0
1166.3 cm ! 1098 0

1167.3 ecm ! 0 166.68

157.2 cmfi 53.9 0

_ 1 163.9 cm™ 81.1 0

AIN, | AI-N = 1.804 II, 6467 om”! 0 706
660.1 cm™! 1036 0

97.1 cm ! 0.85 7.38
496.4 cm ! 141 42.3

AINNN ?\%_ﬁ _ %2(2)2 Lyt 627.0 cm; 21.2 0.89
N—N = 1138 627.8 cm” 21.2 0.89

' 1463.3 cm 277.8 0.26

2266.9 cm ! 850 48.7

73.2 cmfi 4.4 0.2

209.6 cm” 0.1 19.26

ANoAL VTN Z 1SS oy 332 em | 87 676
: 606 cm~ | 341.6 10.67

1744 cm™! 7.9 5878

156.3 cm ! 3.8 5.1

223.62 cm ! 0.2 0

AN | AI-N = 1.850 Dy, 427.52 cm ! 0 56.9

749.44 cm™Y 326.4 0.10
749.46 cm~ ! 3264 0.11

Collection @ kmou 93



Figure 4.8 shows the FTIR spectra results to confirm the effect of high
residual strain. AI-N clusters of ALN (521cm™), AIN,Al (591cm™), AIN
(620-670cm™) and AlN3; (1339cm™) were observed in all samples. It expect

that residual strain was associated with AI-N clusters.

Therefore, it is necessary to confirm the correlation between plasma
power and Al-N cluster. Figure 4.9 shows the variation of Al-N cluster
intensity with plasma power. The intensities of AlLN and AlN3; clusters
increased linearly with increasing plasma power. In other words, AI-N

cluster interacts with the peening effect.

From these results, it can be seen that the AIN thin film needs to be
fabricated at low plasma power in order to reduce the residual strain.
However, low plasma power also reduces migration length. The crystal
quality is judged to be lower and further studies on other sputtering

conditions are needed.

® . o '

Figure 4.7 Geometric arrangement of clusters of AlNy such as (a) AINNN,
(b) AN, ©) AIN,, (@ AlN,, (e AlsN, and 9] Al3N
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4.4. Influence of gas pressure on the pulsed sputtering deposition of
AIN thin films

The gas pressure of sputtering conditions is commonly used as an element
to increase the aspect ratio. The lower pressure can be supplied as highly
directional sputtered molecules of a high aspect ratio to the thin film. Also
the gas pressure is related to a mean free path of the atoms and have
been reported as a sputtering parameter that can control the residual strain.
[4] M. Ohtsuka et al. has reported the effect of gas pressure on AIN thin
films that high gas pressure at low mean free path can reduce residual

strain due to peening effect. [4]

In this experiment, too low (<0.1 mtorr) high (> 1.2 mtorr) pressure was
plasma unstable. Therefore, It was investigated at stable plasma forming

conditions of 0.1 to 1 mtorr.

Figure 4.10 shows the change in residual strain at gas pressures in the
range of 0.1 to 1 mtorr. As the gas pressure increased, the residual strain
decreased from 0.002 to 0.008. It has been demonstrated as the Al atoms of

energy decreased due to reduced mean free path. [4]

Figure 4.11 shows the variation in FWHM at gas pressures ranging from
0.1 to 1 mtorr. As the gas pressure increased, the FWHM increased from
0.57 to 0.58. The reason for the deterioration of the crystallinity is that the
migration length is expected to decrease as the energy of Al atoms

decreases due to the reduced mean free path.
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4.5 Influence of substrate growth temperature on the pulsed
sputtering deposition of AIN thin films

Previously, the gas pressure decreased the residual strain, but decreased
the crystallinity. The parameters related to the Al supply energy generated
during sputtering were limited in that the crystal quality and the residual
strain were inversely proportional to each other. Therefore, the anode
parameters such as the substrate growth temperature influenced after the
Al supply need to be adjusted. In previous studies, the substrate growth

temperature was reported to increase the surface migration length. [10]

Figure 4.12 shows the change in theta-Ztheta peak FWHM of AIN thin
films prepared from room  temperature to 500 C. As the growth
temperature increases, the FWHM of the thin film is decreased from 0.57 to

0.28 deg due to the increase of the surface movement length.

Figure 4.13 shows the lattice strain from room temperature to 500 C.
The lattice strain also was decreased with increasing temperature. At 500
€, thin films with the same lattice constant were observed compared to

bulk AIN. AI-N clustering is also expected to decrease.

The substrate growth temperature in the PSD affected to increase both
the crystal quality and the lattice strain due to the increase of the surface

movement length.

Figure 4.14 shows the XRD patterns of films grown at room temperature,
300 € and 500 €. The high FHWM and residual strain were observed at
room temperature, and FHWM and residual strain decrease with increasing

temperature.

Figure 4.15 shows these phi-scan patterns. In the samples at RT and 300
C, no peaks were observed due to low crystallinity and high strain results.
It can expect the presence of large amounts of tilt and twist dislocation.

However, in a sample at 500 C, a 6-fold symmetric peaks at 60° intervals
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were observed, which means that the wurtzite structure of AIN is well
aligned. In addition, improvement of crystallinity of in plane can be judged
to have a high c-axis direction because defects such as dislocation are
reduced. Table 4.2 summarizes the results measured by various methods of
XRD.

Table. 4.2 The values of various XRD measurements at different growth

temperature
o rocking curve 0—20peak
FWHM FWHM ¢ scal
HT—-AIN (500°C) 1.53 deg. 0.28 deg. 6—fold
LT—-AIN (300°C) 3.01 deg. 0.34 deg. U.A.
RT-AIN (30°C) 8.61 deg. 0.58 deg. U.A.

As a result, a thin film approximating to residual strain of 0 was
fabricated at a growth temperature of 500 C, an Ar / N, gas flow ratio of
3/2, and a plasma power of 300 W. The crystallinity with 6-fold symmetry
was observed (w rocking curve FWHM: 1.5 deg. ©-260 peak FWHM: 0.28
deg.).
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4.6 Conclusion

In this chapter, the PSD condition of the AIN thin film was optimized.

Plasma power affected the amount of Al and the chemical stoichiometry
of the film as well as migration length and plasma damage. Plasma damage

induced residual strain, which was directly related to Al-N cluster.

The gas pressure was able to reduce the residual strain in relation to the
mean free path of Al molecules, but the high gas pressure was induced to

poor crystallinity due to low energy Al atoms.

As the growth temperature increased, both crystallinity and residual strain

were improved.

Using these a thin film approximating to residual strain of 0 was
fabricated at a growth temperature of 500°C, an Ar/N, gas flow ratio of
3/2, and a plasma power of 300W. The crystallinity with 6-fold symmetry

was observed.
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Chapter 5. Characterizations of AIN Thin Films

5.1 Introduction

AIN has characterizations that can be used in various fields such as
DUV-LED, RF filter, SAW sensor, heat sink, transparent device and memory
device. However, AIN thin films fabricated by sputtering have advantages
such as a higher possibility of a low temperature growth, a low roughness
of thin film and a low manufacturing cost, but it is not satisfying in terms
of crystallinity for certain applications. A study on the characterization of
sputtered AIN thin films is needed for wide application of AIN. Therefore, It

is important to evaluate feasibility of AIN thin film sputtered.

In this chapter, the characterizations of AIN thin films fabricated with PSD

were studied and evaluated to determine the feasibility of various fields.

5.2 Experiment details

The surface, refractive index, luminescence characteristics, permittivity
and resistance of the samples of LT-AIN (700 nm)/Al,O3 (XRC FWHM: 3.02
deg.) And HT-AIN (700 nm)/Al,0; (XRC FWHM: 1.53 deg.) were evaluated.
On the surface, the AFM was measured in the range of 10 x 10 xm’
FE-SEM measurements were performed under accelerating voltage of 5 kV.
and carbon coating was performed on the films before measurement. The
refractive index (n) and extinction coefficient (k) were measured at
wavelengths ranging from 300 to 1000 nm using an ellipsometer. The

luminescence property was measured from 1.5 to 7 eV using CL at 80K.
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The dielectric constant was measured in the region of 1 to 4000 MHz using
VNA. I-V characterization was measured by fabricating Au/AIN/ALO;
samples. Figure 5.1 shows a side view of the structure (a), and (b) OM top
view image. Two upper Au metals were deposited on AIN/AL,O; using a
thermal evaporator. The thickness of Au is 100 nm and the distance

between Au metals is 0.6 mm.

(a)
0.6mm

M €«<——> M
Sapphire

Figure 5.1 (a) The schematic and (b) OM top view image of fabricated MIM

structure

5.3 Surface morphology

Figure 5.2 is the surface observed by various methods such as (a)
photomicrograph and (b) FE-SEM (c) AFM 3D image of HT-AIN/ALO;. In
figure. 5.2 (a), the transparent characterization was observed in the visible
light region and shows the value as a transparent device. The AIN material
has a wide band gap and high transmittance in the visible region. In the
case of sputtered AIN/glass, transmittance of over 83% was reported in the
visible region. [1] In addition, a research has been reported about a

transparent device, which is an ITO/AIN/ITO/glass structure. [2]

In figure 5.2 (b) and (c), a very smooth surface with a roughness RMS
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value of less than 1 nm is observed. Sputtered AIN films were similar to
previous results reported to have low roughness. [3,4] Roughness affects
SAW characteristics. The smooth surfaces are required to minimize
frequency variations due to local acoustic velocity changes. [5,6] Low

roughness shows the research value as a SAW device.

Figure 5.2 (a) Photo image, (b) FE-SEM and (c) AFM 3D image of
sputtered HT-AIN/AI,O;

5.4 Refraction index
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Figure 5.3 shows a changes in refractive index (n) and extinction
coefficient (k) of HT-AIN/Al,Os; depending on the wavelength range from
300 nm to 1000 nm. The value of n is 1.8, which is similar to the reported
values of AIN/Glass (1.6) [3] and AIN/Si (1.9) [4].

Also, the value of k was approximated to 0 in the measured wavelength
range. This is related to the absorption coefficient (£) as shown in
equation 5.1, which means that light of a specific wavelength can be

transmitted before it is absorbed.

In the case of semiconductors, absorption coefficient curves have sharp
edges in light with energy below the band gap. It can be seen that k ~ 0

in all wavelength regions and has a low absorption coefficient.

1.84-

1.82-

1.8-

1.78 -

1.76 4

400 600 800 1,000
Wavelength(nm)

Figure 5.3 n and k value of sputtered HT-AIN/AI,Os
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5.5 Luminescence property

Figure 5.6 shows CL spectra ranging from 15 to 7 eV at a low
temperature of 80 K. Defects such as 3.00 eV nitrogen vacancy (Vy) and
4.67 eV interstitial (Oy) were observed in all samples of HT-AIN/AL,O; and
HT-AIN/AL,Os. [7] Near-band edge emission is also observed in LT-AIN/Al,Os.

1 @sok

] ‘ Sapphire
Sapphire 3.82eV
(1.71eV)

LT- AIN/ALO,

=

6.0-6.5eV

HT- AIN/ALO,

Relative Intensity (a.u)

2 3 4 5 6 7

Photon energy (eV)

Figure 5.4 CL spectra of HT-AIN/Al,O; and LT-AIN/AL,Os; at 80K

5.6 Relative permittivity

The dielectric properties can be determined by the memory device. The
nitride material is characterized by low voltage/current capability. [8-10] Due
to the thermal, dielectric and optical properties of AIN thin films, H. D. Kim
et al. have been reported that AIN thin films have excellent value as

transparent resistive random access memory (T-ReRAM) devices. [2]
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Figure 5.4 shows the variation of dielectric constant according to the
frequency of Al,Os substrate, LT-AIN/Al,O; and HT-AIN/Al,O;. Regardless of
frequency, all samples is observed as parallel permittivity values. The

relative dielectric constant of the AIN thin film at 1 MHz was

Al,O3 (4.6) <LT-AIN/AL,Os (6.27) <HT-AIN/AL,O; (6.5)

These values are similar to sputtered AIN films reported as values between
6.0 and 7.0. [4]

8
o
2 e,
2 6-%5%% e " HT- AIN/ALO,
b= %ﬁ@@&m‘“‘“” AP uaannih i .
£ LT- AIN/ALO,
S
o -
Q. | s
CZ’ 4l AlO, substrate
il
Ly
[}
o —

1000 2000 3000 4000
Frequency (MHz)

Figure 5.5 Relative permittivity of substrate, LT-AIN/AI,O3; and
HT-AIN/AL,O; as a function of test signal frequency
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5.7 Electrical resistivity

Figure 5.8 shows the I-V curve from -5V to 5V for Au/LT-AIN/Al,O; and
Au/HT-AIN/AL,Os. Electrical resistivities (o) of Au/LT-AIN/AL,O; (2.83 x 10
2m) and HT-AIN/ALO;. (4.24 X 10" Qm) were observed. These values are
similar to the values for the resistive bulk AIN o = 10° - 10" @m. [111.

N
o

-
(3]

-
o

LT-AIN/ALO

(3]

o

'
a

Py

&~ HT-AIN/ALO,

Current (pA)

-
o

-
a

)
=3

e o
Voltage (V)

Figure 5.6 I-V curves of LT-AIN/Al,O; and HT-AIN/Al,Os
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5.8 Conclusion

In this chapter 5, evaluation of AIN thin films using PSD was investigated
for feasibility. Table 5.1 shows properties of AIN thin films compared with
AIN thin films on different substrates.

Table 5.1 The properties of reported AIN compared with this study

. In this study,
Property AIN/Si AIN/Glass AIN/ALOs
Surface 1nm 1.7nm <1nm
Refraction index 1.9 1.6 1.8
Relative ~
permittivity 6.0 ~ 7.0 57 ~ 6.5
Luminescence 3 | 6.3 eV
property (Near band edge)
Electrical
o - 10°2m 10° ~ 10" 2m
resistivity

The surface of AIN thin films by PSD has low roughness, transparency at
visible region. The value of refraction index and the relative permittivity

were similar compared with previous research.

As a result, It has similar characteristics compared with the AIN thin films
studied in the past, which indicate that research and development of

devices using AIN thin films by PSD is possible.
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Chapter 6. Conclusion

In this study, growth and evaluation of AIN thin films were investigated
for widen application of it. The AIN thin films have been deposited by
sputter of two types such as DC mode and Pulsed DC mode. The
characterization of AIN thin films using by PSD was investigated such as
surface morphology, refraction index, relative permittivity, luminescence

property and electrical resistivity.

Plasma power and Nj/Al gas flow ratio were controled as fundamental
experiments using by reactive gas DC magnetron sputter. the sputtering
parameters were affected to Al supply amount. It changed the stoichiometric
composition of the film. In the N-rich condition, the thin film showed a
smooth surface and transparency in the visible region. In the Al-rich
condition, the thin film showed dark color and a rough surface because of
Al droplet. These conditions affected the crystallinity. It was also confirmed
that the proper amount of Al is important for the crystallinity of the thin

film.

The sputtering parameters such as plasma power, gas pressure and
substrate growth temperature were controled for optimization of AIN growth
condition using by PSD. In PSD, also plasma power affected to Al supply
amount. However, residual strain, such as tensile strain in the c-axis
direction, was observed due to high energy Al supply during sputtering. Also
It indicated that AI-N clustering has to be solved. The plasma power and
gas pressure were correlated with the kinetic energy of Al supplied, and the
relationship between crystal quality and lattice strain was inversely
proportional to each other. The substrate growth temperature was
controlled, and the crystal quality as well as the lattice strain were also
decreased. Using these, a thin film without residual strain was fabricated

with 6-fold symmetry.
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Feasibility of AIN thin films using by PSD was investigated. It has similar
characteristics compared with the AIN thin films studied in the past. It
indicates that research and development of devices using sputtered AIN is

possible.
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