이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
Dismantling of Wasted Printed Circuit Boards using HCl with Sn^{4+}
본 논문을 정문철의 공학석사 학위논문으로 인준함.

위원장 장 원 일 (인)

위원 윤 지 호 (인)

위원 유 경 근 (인)

2018년 2월

한국해양대학교 대학원
목 차

List of Tables .. iii
List of Figures ... iv
Abstract .. vi

1. 서 론 ... 1
 1.1 연구배경 ... 1
 1.2 선행연구 .. 8
 1.3 연구목적 .. 15

2. 실험 이론 ... 16
 2.1 침출 ... 16
 2.2 전해체취 ... 20
 2.2.1 Faraday의 법칙 ... 20
 2.2.2 전류밀도 ... 21
 2.2.3 전류효율 ... 21
 2.2.4 이온 교환막 ... 22

3. 실험 방법 ... 24
 3.1 실험재료 ... 24
3.2 PCB 해체 실험 .. 25
3.3 음이온 교환막을 이용한 Sn의 전해채취 27
3.4 침출 실험 .. 29

4. 실험 결과 .. 31
 4.1 PCB 해체 실험 .. 31
 4.1.1 PCB 해체 거동 ... 31
 4.1.2 교반속도의 영향 .. 34
 4.1.3 Sn⁴⁺ 농도의 영향 .. 37
 4.1.4 온도의 영향 .. 38
 4.1.5 부품별 금속성분 분석 ... 40
 4.2 음이온 교환막을 이용한 Sn의 전해채취 42
 4.2.1 전류 밀도의 결정 .. 42
 4.2.2 Sn²⁺ 농도에 따른 전해량 비교 44
 4.3 양극액을 이용한 Sn의 침출 .. 48
 4.3.1 용매에 따른 Sn의 침출 비교 48
 4.3.2 침출을 통한 Sn⁴⁺의 재생성 확인 50

5. 결론 .. 60

참고문헌 .. 63

감사의 글 .. 68
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Metal composition of different types of PCBs</td>
<td>2</td>
</tr>
<tr>
<td>Table 2</td>
<td>Concentration of precious metals in PCBs before and after shredding</td>
<td>4</td>
</tr>
<tr>
<td>Table 3</td>
<td>Compositions and the intrinsic values of metals containing in PCBs</td>
<td>6</td>
</tr>
<tr>
<td>Table 4</td>
<td>Summaries of conventional studies for dismantling with various mechanisms</td>
<td>10</td>
</tr>
<tr>
<td>Table 5</td>
<td>Major element composition in the PCB</td>
<td>24</td>
</tr>
<tr>
<td>Table 6</td>
<td>Experimental condition for PCB dismantling tests</td>
<td>26</td>
</tr>
<tr>
<td>Table 7</td>
<td>Experimental condition for leaching tests</td>
<td>29</td>
</tr>
<tr>
<td>Table 8</td>
<td>Metallic contents in PCB sample and different groups of electric and electronic components dismantled from the PCB</td>
<td>41</td>
</tr>
<tr>
<td>Table 9</td>
<td>Shape of tin deposit from different concentration of Sn$^{2+}$ with time</td>
<td>47</td>
</tr>
<tr>
<td>Table 10</td>
<td>Regeneration efficiency of Sn$^{4+}$ from the 13,000mg/L of Sn$^{2+}$ solution with electrowinning time</td>
<td>54</td>
</tr>
<tr>
<td>Table 11</td>
<td>Regeneration efficiency of Sn$^{4+}$ from the 10,000mg/L of Sn$^{2+}$ solution with electrowinning time</td>
<td>56</td>
</tr>
<tr>
<td>Table 12</td>
<td>Regeneration efficiency of Sn$^{4+}$ from the 7,000mg/L of Sn$^{2+}$ solution with electrowinning time</td>
<td>58</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 1 Worldwide generation of E-waste in 2010~2018 ... 1
Fig. 2 Schematic image of the processes for WPCBs recycling 7
Fig. 3 Schematic diagram and photos of physical dismantling equipment for WPCBs .. 11
Fig. 4 Schematic image of experimental system for WPCBs dismantling using hot air .. 12
Fig. 5 EECs disassembly apparatus equipped with IR heater and steel brush .. 13
Fig. 6 Schematic image of the equipment of WPCBs dismantling and recycling solder .. 14
Fig. 7 Schematic image of the anion membrane filter ... 23
Fig. 8 Schematic image of the experiment system for PCB dismantling process 26
Fig. 9 Schematic image of the experimental system for electrowinning 28
Fig. 10 Dimension of electrowinning cell .. 28
Fig. 11 Schematic diagram of the experimental system for the leaching test 30
Fig. 12 The dismantling ratio and the concentration of Sn and Pb dissolved in the solution during the test .. 32
Fig. 13 Photos of PCB sample before(A) and after(B) the dismantling experiment and electric and types of electronic components dismantled from PCB with time .. 33
Fig. 14 Effects of agitation speed on the dismantling ratio of the PCB 35
Fig. 15 Effects of agitation speed on the leaching behavior of tin 35
Fig. 16 Effects of initial concentration of Sn⁴⁺ on the dismantling ratio of the PCB .. 36
Fig. 17 Effects of temperature on the dismantling ratio of the PCB 38
Fig. 18 Effects of temperature and concentration of Sn⁴⁺ on the dismantling completion time ... 39
Fig. 19 Effects of current density on current efficiency .. 43
Fig. 20 Photos of anode and cathode electrode surface after electrowinning 43
Fig. 21 Variation of Sn²⁺ concentration in catholyte and anolyte from 7,000mg/L Sn²⁺ during electrowinning with time .. 45
Fig. 22 Variation of Sn²⁺ concentration in catholyte and anolyte from 10,000mg/L Sn²⁺ during electrowinning with time .. 45
Fig. 23 Variation of Sn²⁺ concentration in catholyte and anolyte from 13,000mg/L Sn²⁺ during electrowinning with time .. 46
Fig. 24 Leaching efficiency of tin metal from different lixiviants 49
Fig. 25 Effects of different spent time of anolyte from 13,000mg/L of Sn²⁺ on Sn leaching test .. 53
Fig. 26 Relationship between leaching efficiency and electro-deposition efficiency in 13,000mg/L of Sn²⁺ ... 54
Fig. 27 Effects of different spent time of anolyte from 10,000mg/L of Sn²⁺ on Sn leaching test .. 55
Fig. 28 Relationship between leaching efficiency and electro-deposition efficiency in 10,000mg/L of Sn²⁺ ... 56
Fig. 29 Effects of different spent time of anolyte from 7,000mg/L of Sn²⁺ on Sn leaching test .. 57
Fig. 30 Relationship between leaching efficiency and electro-deposition efficiency in 7,000mg/L of Sn²⁺ ... 58
Fig. 31 Expected PCB recycling system with dismantling step through reusable Sn⁴⁺ .. 59
염산용액 중 주석 4가 이온을 이용한 페인쇄회로기판 해체

한국해양대학교
해양에너지자원공학과

요약

본 연구에서는 페인쇄회로기판의 재활용 효율 향상을 위해 Sn⁴⁺를 이용한 페인쇄회로기판 해체 연구를 습식제련공법으로 진행하였다. 더 나아가, 음이온 교환막을 이용한 전해체취 공정에서 Sn⁴⁺의 전해 재생에 대한 연구를 진행하였다. 실험에 사용된 Sn⁴⁺는 출처의 주석분인 주석 금속을 산화시키는 산화제로 사용할 수 있으며, 선형 연구에 따르면 낮은 산도에서 효과적으로 주석 금속을 침출 가능성이 확인되었다. 이는 주석금속과 Sn⁴⁺의 반응식의 표준산화환원전위는 0.291V로 주석의 산화 반응이 자발적으로 일어날 수 있는 사실에 근거한다. 또한, Sn⁴⁺는 용액으로부터 금속을 회수하는 단계인 전해체취 과정 중 양극에서 전기적으로 산화됨으로써 전해 재생이 가능함을 기대할 수 있다.

페인쇄회로기판의 해체 실험은 교반속도, 온도, Sn⁴⁺의 농도를 변화시키며 해체율에 미치는 영향을 관찰하였다. 먼저, 교반속도를 100〜300rpm으로 조절하며 실험한 결과 교반속도가 해체율 변화에 미치는 영향은 미미함을 확인하였다. 하지만 온도와 Sn⁴⁺를 각각 30〜90℃, 7,000〜13,000mg/L로 조절한 결과 온도와 Sn⁴⁺의 농도가 상승함에 따라 해체에 완료되는 시간을 효과적으로
단축시킬 수 있었다. 최적의 실험 조건에서 폐인쇄회로기판을 해체하는데 소요되는 시간은 45분이었으며, 실험 조건은 교반속도 300rpm, 온도 90℃, Sn⁴⁺ 농도 13,000mg/L이었다.

Sn⁴⁺의 전해 재생을 위한 전해채취 실험은 자체 제작된 전해조와 Sn²⁺가 양극액으로부터 음극액으로 이동하는 것을 차단하기 위해 음이온 교환막을 사용하여 진행하였다. 실험 후 재생된 Sn⁴⁺를 정량적으로 확인하기 위해 전해채취에 사용된 양극액을 이용하여 주석 금속의 침출을 진행하였으며, 침출농도를 통해 재생된 양을 확인하였다. 침출 결과 초기 Sn²⁺의 농도가 7,000mg/L, 10,000mg/L, 13,000mg/L일 때 각각 3시간, 4시간 6시간 후 84.44%, 81.03%, 79.43%의 Sn⁴⁺가 전기적으로 산화됨을 확인하였다. 이를 통해 Sn⁴⁺를 산화계로 사용하여 폐인쇄회로기판을 효과적으로 해체 가능성을 확인하였고, 산화반응에 사용된 Sn⁴⁺는 전해채취 과정에서 재생성 가능함을 확인하였다. 이는 기존의 폐인쇄회로기판의 재활용 공정보다 환경에 미치는 영향을 줄일 수 있으며, 추가적인 산화제의 투입이 필요하지 않는 비용 효율적인 재활용 공정의 구축에 토대가 될 수 있을 것이라 기대된다.

KEY WORDS: 인쇄회로기판; 주석 4가 이온; 해체; 습식제련공법; 침출; 전해채취
Dismantling of Wasted Printed Circuit Boards using HCl with Sn⁴⁺

MOONCHUL JUNG

Department of Ocean Energy & Resources Engineering Graduate School of Korea Maritime & Ocean University

Abstract

In this study, a noble recycling process for WPCBs was suggested to enhance the recycling efficiency by dismantling WPCBs with a chemical method and retrieving tin metal from the spent leach solution using anion exchange membrane filter. Stannic ions(Sn⁴⁺), used in this study as an oxidant to leach tin metal in the solder, were found that it had a strong oxidation power toward tin metal and leached tin metal with a relatively low concentration of acid according to the difference of standard electro potential between tin metal and stannic ion. Moreover, it has a potential to make the spent solution available to reuse in the leaching process by electrically oxidizing Sn²⁺ ions, which is a reaction product caused by tin leaching, into Sn⁴⁺ ions during the electronwinning process.

Experiments were performed by varying agitation speed, temperature, and concentration of Sn⁴⁺ ion in the designed experimental system. As for the effects of agitation speed, varying agitation speed from 100~300rpm rarely affected the dismantling completion time. However, increasing temperature
and concentration of Sn⁴⁺, from 30°C to 90°C and from 7,000mg/L to 13,000mg/L respectively, significantly shortened the time required to complete the dismantling of PCB to 45 minutes consequently and the optimum experimental condition is followed by: agitation speed: 300 rpm, temperature: 90°C, concentration of Sn⁴⁺: 13,000mg/L. When it comes to regeneration of Sn⁴⁺ during the electrowinning process, experiments were performed in a self-designed cell equipped with anion membrane filter to figure out whether Sn⁴⁺ would be reoxidized from Sn²⁺ in the electrowinning process. After the electrowinning experiments, anolyte which would contain a certain amount of regenerated Sn⁴⁺ was used to leach tin metal powder. As a result of leaching tests, it was observed that 84.44%, 81.03%, 79.43% of Sn⁴⁺ was regenerated from 7,000mg/L, 10,000mg/L, 13,000mg/L of Sn²⁺ anolyte within 3, 4, 6 hours. The result indicates that PCBs can be dismantled effectively with Sn⁴⁺ by dissolving solder and Sn⁴⁺ can be regenerated during electrowinning process. In conclusion, it is expected to be a foundation to establish an cost-saving and less environmental hazardous PCBs dismantling system.

KEY WORDS: PCB(Printed Circuit Board) 인쇄회로기판; Stannic chloride 염화주석; Dismantling 해체; Hydrometallurgy 습식제련; Leaching 침출; Electrowinning 전해채취
제 1 장 서론

1.1 연구배경

전기전자제품 폐기물(WEEE, wasted electric/electronic equipment)은 사용자에 의해 더 이상 사용을 원하지 않거나 더 이상 제 기능을 수행하지 못하여 폐기되는 전기전자제품을 의미하며, 여기에는 모든 구성 부품을 포함하는 하나의 완성된 제품을 비롯하여 하위 부품, 그리고 소모품까지 해당된다(Kahhat et al., 2008). 최근 개발도상국의 경제성장으로 인한 전기전자제품의 수요가 증가하고 있으며, 제조 기술의 발전에 의해 새롭게 생산되는 신제품이 구제품을 대체하는 주기가 가속화되고 있어 증가하는 WEEE의 발생량은 전 세계적인 관심을 받고 있다(Lee et al., 2007). 국 내, 외에서 발생하는 WEEE의 정확한 총량은 조사하기 어려우나, WEEE의 발생량 예측을 위한 연구 결과에 따르면 매년 약 2,000~2,500만 톤의 WEEE가 전 세계적으로 발생하였으며(Robinson, 2009), Balde et al.(2015)의 보고에 따르면 Fig. 1에 나타난 바와 같이 2018년까지 약 4,980만 톤이 발생할 것으로 예측되었다.

![Fig. 1 Worldwide generation of E-waste in 2010~2018](Balde et al., 2015)
인쇄회로기판(PCBs, printed circuit boards)은 모든 전기전자제품에 장착되는 전기전자제품의 필수적인 부품으로, 기판(bare board)에 집적회로(IC, integrated circuit), 저항기(resistor), 캐패시터(capacitor), 다이오드(diode), 트랜지스터(transistor) 등 각각의 기능을 수행하는 다양한 전기전자부품(EECs, electric/electronic components)이 실장되어 하나의 부품으로 구성 된다(Tohka & Lehto, 2005; Lee et al., 2012). PCBs의 일반적인 조성은 금속 40%, 세라믹 30%, 플라스틱 30% 정도로 구성되어 있으며, 그 종류에 따라 구성성분의 함량은 변할 수 있다(Tenorio et al., 1997). 기판 및 각각의 전기전자부품들은 각기 다른 금속 조성을 가지고 있으며 Cu, Al, Fe, Sn, Ni, Zn 등의 주요 유기금속과 더불어 Au, Ag, Pd 등의 귀금속을 함유하고 있다(Table 1). 특히, PCBs에 함유된 귀금속은 각 금속의 원가에 존재하는 함유량(Au 5~7ppm; Ag 5~7ppm; Pd 3~5ppm)보다 높은 조성을 가지고 있어 경제적으로 주요한 금속 자원으로 여겨지고 있다(Havlik et al., 2014).

Table 1 Metal composition of different types of PCBs(a. Birloaga et al., 2013; b. Yang et al., 2009; c. Oishi et al., 2007; d. Behnamfard et al., 2013; e. Monka et al., 2011)

<table>
<thead>
<tr>
<th>Metallic element</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt. %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>30.57</td>
<td>25.06</td>
<td>26.0</td>
<td>19.19</td>
<td>10-27</td>
</tr>
<tr>
<td>Al</td>
<td>11.69</td>
<td>4.65</td>
<td>3.2</td>
<td>4.01</td>
<td>1.3-4.8</td>
</tr>
<tr>
<td>Fe</td>
<td>15.21</td>
<td>0.66</td>
<td>3.4</td>
<td>1.13</td>
<td>1.2-8.0</td>
</tr>
<tr>
<td>Sn</td>
<td>7.36</td>
<td>1.86</td>
<td>4.9</td>
<td>0.69</td>
<td>1.0-5.3</td>
</tr>
<tr>
<td>Ni</td>
<td>1.58</td>
<td>0.0024</td>
<td>1.5</td>
<td>0.17</td>
<td>0.3-2.4</td>
</tr>
<tr>
<td>Zn</td>
<td>1.86</td>
<td>0.04</td>
<td>2.6</td>
<td>0.84</td>
<td>0.2-2.2</td>
</tr>
<tr>
<td>Pb</td>
<td>6.70</td>
<td>0.80</td>
<td>3.0</td>
<td>0.39</td>
<td>1.0-4.2</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>238</td>
<td>-</td>
<td>-</td>
<td>130.25</td>
<td>80-1,000</td>
</tr>
<tr>
<td>Ag</td>
<td>688</td>
<td>-</td>
<td>-</td>
<td>704.31</td>
<td>110-3,300</td>
</tr>
<tr>
<td>Pd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10-290</td>
</tr>
</tbody>
</table>
PCBs에는 적절한 처리 없이 폐기될 경우 토양 및 수계에 심각한 환경오염을 초래할 수 있고, 인체에 흡수될 때 치명적인 영향을 줄 수 있는 Cr, Pb, Hg, Be 등의 중금속이 존재 한다(Sum, 1991; Tenorio et al., 1997; Duan et al., 2011). 또한 낮은 가격과 훌륭한 내화효과(flame retardant effect)를 가지고 있어 PCBs의 내구성을 향상시키기 위해 사용되는 브롬화 난연제(brominated flame retardant)는 소각 될 때 Polybrominated diphenyl ethers(PBDEs), Polychlorinated dibenzo-p-dioxins/dibenzofurans(PCDD/Fs), Polybrominated dibenzo-p-dioxins/dibenzofurans(PBDD/Fs)와 같은 발암 물질로 분류된 유기물을 방출하여 환경 및 인체에 해로운 영향을 미친다는 다수의 연구 결과들이 존재 한다(Wang et al., 2005; Liu et al., 2008; Leung et al., 2011; Burreau et al., 1997; McDonald, 2002; Birnbaum et al., 2003). 따라서 폐전기전자제품의 발생량 증가에 따라 수반되는 폐인쇄회로기판(WPCBs, wasted printed circuit boards)은 유가금속의 회수를 위한 유용한 자원이 될 수 있을뿐만 아니라 폐기과정에서 발생 가능한 환경오염의 방지를 위해 필수적인 재활용의 대상으로 여겨지고 있다.

WPCBs의 재활용은 습식재련 및 건식재련방법으로 이루어지며, 파분쇄(shredding), 분별(separation), 재련(metallurgy), 전해제취 또는 전해정련(electrowinning or electorefining) 공정을 거쳐 금속을 회수함으로써 재활용된다(Fig. 2). 건식재련은 일반적으로 WEEE로부터 구리 및 귀금속의 회수 목적으로 상업적으로 사용되어 왔지만 초기 설비에 많은 투자가 필요하며, 공정 중 귀금속의 손실, 대기오염, 대량의 슬래그가 발생하는 등의 한계점이 존재한다(Sum, 1991 cited in Kim, 2005). 또한, 기판의 플라스틱에 첨가되어 내연소성을 개량하기 위해 사용되는 할로겐 난연제(halogenated flame retardants)가 로(furnace)에서 소각되면서 발생하는 발암성 유기물과 금속 증기, 먼지 등에 의해 환경 문제 뿐만 아니라 인체에 심각한 악영향을 초래 할 가능성이 높다(Hagelüken et al., 2006; Kumari et al., 2010). 습식재련법은 건식재련방법과 비교하여 소규모로 적용 가능하여 비교적 낮은 비용으로 공정이 가능할 수 있으며, 금속 종류에 따라서는 높은 회수율을 제공하는 장점이 존재한다. 따라서 WEEE의 재활용에 있어 기존의 재련법에 대한 잠재력 있는 대안으로 여겨지고 있으며, 다양한 연구들이 이루어져 왔다(Brandon et al., 2001; Mecucci & Scott, 2002; Kim et al., 2005; Oishi et al., 2007).

습식재련을 통한 WPCBs의 재활용은 일반적으로 Fig. 2와 같은 순서로 이루어진다. 그
구성은 크게 적절한 크기의 시료를 얻기 위한 파분쇄 공정, 산, 염기 등의 침출제를 이용한 금속 성분의 침출 단계, 침출액의 정역단계, 전해체취단계로 이루어지만 최종 산물로써 높은 순도의 금속을 획득할 수 있다. 전처리 단계인 파분쇄 공정은 침출 대상 물질의 비표면적을 증가시키고, 레진(resin), 유리섬유(glass fiber) 등의 비금속 성분으로 둘러싸인 금속 성분의 표면을 노출시키기 위해 선행되는 필수적인 단계이며, 파분쇄의 정도에 따라 다음 단계인 침출공정에서 금속의 침출율에 중요한 영향을 줄 수 있다. Oliveira et al.(2013)은 WPCBs의 파분쇄와 금속의 침출율의 상관관계에 대한 연구를 진행하여 분쇄산물의 입도가 적어질수록 침출율이 금속의 종류에 따라 다른 비율로 상승함을 확인하였다. 하지만 Chancerel et al.(2009)은 WEEE의 재활용을 위한 전처리 단계에서 물질의 혼합에 대한 연구를 진행한 결과, WPCBs에 존재하는 전체 귀금속(Au, Ag, Pd) 중 약 35.95%가 2단계에 걸친 파분쇄 공정(preshredding and shredding process)에서 손실 되는 것을 확인하였다(Table 2). 이는 Table 3에 나타난 바와 같이 WPCBs내에 존재하는 귀금속의 함량은 기타 금속보다 다소 존재하지만 가격의 비중은 매우 높기 때문에 파분쇄 단계에서 발생하는 귀금속의 손실은 PCBs의 재활용에 있어서 상당한 경제적 손실을 가져다줄 수 있다.
Fig. 2 Schematic image of the processes for WPCBs recycling (Yazici & Deveci, 2009)
Table 2 Concentration of precious metals in PCBs before and after shredding (Chancerel et al., 2009)

<table>
<thead>
<tr>
<th>Concentration of Metal</th>
<th>Silver (g/t)</th>
<th>Gold (g/t)</th>
<th>Palladium (g/t)</th>
<th>Total (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unshredded PCBs</td>
<td>669</td>
<td>135</td>
<td>50</td>
<td>854</td>
</tr>
<tr>
<td>Preshredded PCBs (<8mm)</td>
<td>562</td>
<td>126</td>
<td>48</td>
<td>736</td>
</tr>
<tr>
<td>Shredded PCBs (<2.5mm)</td>
<td>481</td>
<td>48</td>
<td>18</td>
<td>547</td>
</tr>
</tbody>
</table>

Percentage of loss
28.10% 64.44% 64.00% 35.95%

Table 3 Compositions and the intrinsic values of metals containing in PCBs (Park & Fray, 2009)

<table>
<thead>
<tr>
<th>Component</th>
<th>Wt.%</th>
<th>Value(^a) ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>0.025</td>
<td>43976.08</td>
</tr>
<tr>
<td>Palladium</td>
<td>0.010</td>
<td>35803.10</td>
</tr>
<tr>
<td>Silver</td>
<td>0.100</td>
<td>557.33</td>
</tr>
<tr>
<td>Copper</td>
<td>16.0</td>
<td>6.54</td>
</tr>
<tr>
<td>Aluminium</td>
<td>5.0</td>
<td>1.80</td>
</tr>
<tr>
<td>Iron</td>
<td>5.0</td>
<td>0.35</td>
</tr>
<tr>
<td>Tin</td>
<td>3.0</td>
<td>19.58</td>
</tr>
<tr>
<td>Lead</td>
<td>2.0</td>
<td>2.43</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.0</td>
<td>10.99</td>
</tr>
<tr>
<td>Zinc</td>
<td>1.0</td>
<td>3.09</td>
</tr>
</tbody>
</table>

\(^a\)Metal values are based on December 2017 London Metal Exchange (LME) levels.
이러한 문제점을 보완하기 위해서 전통적인 WPCBs의 재활용에 있어 PCBs와 부품의 해체를 선행하는 공정에 대한 연구가 활발히 이루어지고 있다. 기존의 WPCBs 재활용 공정 중 전처리 단계에서 기판과 부품의 해체 공정이 선행되어 진다면, 투입물질의 일괄적인 파분쇄 공정에서 발생하는 귀금속 손실 방지를 기대할 수 있고, 부가가치가 높은 귀금속의 효율적인 회수를 위해 높은 농도의 귀금속을 함유한 부품을 선별하여 재활용 공정에 적용할 수 있다. 김영진 등(2012)은 WPCBs 해체 장치를 이용하여 물리적인 방법으로 설정된 부품을 해체하는 연구를 진행하였고, 산업에서 발생하는 폐열, 적외선(infrared), 디젤유 등의 열원을 이용한 열적 WPCBs 해체 연구도 다수 수행되었다(Chen et al. 2013; Park et al., 2015; Zhou & Qiu, 2009). 화학적 방법으로는 메탄술폰산(methanesulfonic acid)과 과산화수소(hydrogen peroxide), 플루오로붕산(flouroboric acid)과 과산화수소, 그리고 WSIL(water soluble ionic liquid)을 이용한 방법들이 제안되었다(Zeng et al., 2013; Zhang et al., 2015; Zhang et al., 2017).

본 연구에서는 기존의 WPCBs의 재활용 공정에서 발생하는 금속성분의 손실을 방지하고 낮은 함량의 유가금속의 회수율 향상을 기대할 수 있는 WPCBs의 해체 및 재활용에 관한 연구를 진행하였다. 습식제련공법인 침출법을 이용한 해체 실험에서 주요한 역할을 수행하는 산화제로써 Sn⁴⁺을 이용하여 WPCBs의 해체에 대한 적용 가능성을 평가하고, 해체공정에 미치는 다양한 변수들에 대한 영향을 관찰하였다. 더 나아가, 해체공정에서 사용된 침출액으로부터 Sn⁴⁺의 재생성을 위해 음이온 교환막을 이용한 전화채취 연구를 실시하여 전화채취 중 Sn⁴⁺의 재생성 가능성과 재생 효율을 검토하였다. 이를 바탕으로 순환 가능한 WPCBs의 해체 공정을 통해 기존의 WPCBs 재활용 공정으로부터 금속 회수 효율을 증대시킬 수 있는 새로운 공정을 제시하고자 하였다.
1.2 선행연구

WPCBs의 해체에 대한 연구는 열적, 물리적, 화학적 방법으로 이루어져 왔다(Table 4). 김영진(2012) 등은 WPCBs의 해체를 위해 고안된 장비를 이용하여 물리적인 방법을 통한 부품 탈착 연구를 실시하였다. 사용된 장비는 PCBs의 고정, 부품의 연삭, 부품 회수 역할을 수행하는 3개의 부분으로 구성되어 있으며, 고정부에 WPCBs를 장착한 후 장비 하단의 롤러를 따라 이동하며 하단에서 고속으로 회전하는 4개의 연마석에 의해 해체가 이루어진다(Fig. 3). 실험 결과 연마석의 회전속도 5500rpm, 연마석의 높이 1.5 mm, WPCBs의 이동속도 1m/s의 조건에서 WPCBs에 설치된 전체 부품 중 95.2%가 분리될 수 있었다. 부품의 분리 후 최종산물은 연삭처리된 WPCBs(2,164.1g), 연삭분말(439.2g), EECs(560.5g)을 얻었으며, 해체 공정 중 발생한 손실량은 33.2g으로 나타났다.

열적방법은 다양한 열원을 사용하여 기판과 EECs의 접합 매개체인 솔더를 용융점 이상으로 가열하여 용융시킴으로써 기판과 EECs의 해체를 유도하는 방식이다. Chen et al.(2012)은 산업에서 발생하는 폐열을 이용하여 WPCBs의 해체에 적용하고자 열풍(hot air)과 터스제트(pulse jet)로 구성된 WPCBs 해체 장비를 제작하여 연구를 수행하였으며(Fig. 4), 장비의 예열온도, 열원의 온도, 시간을 실험 변수로 설정하였다. 실험 결과 예열온도 120℃, 열원의 온도 260℃, 시간 4min의 조건에서 전체 부품 중 49.12%(SSMCs, small surface mount components), 100%(OSMCs, other surface mount components), 91.18%(PTHCs, pin through hole components)가 해체될 수 있었다. Park(2015) 등은 열원으로 적외선 가열기(IR, infrared heater)를 적용하고 물리적인 전단력을 제공하기 위한 쇼 브러쉬를 장착한 WPCBs 해체 장비를 제작하여 열원의 온도, 시료의 투입 속도에 대한 영향을 관찰 하였다(Fig. 5). 실험조건은 열원의 온도를 200~275℃, 시료 투입속도를 0.33~3cm/s로 조절하며 해체율 상승을 위해 시료의 투입, 해체, 회수 단계를 3회 반복하여 실험을 진행하였다. 실험결과 275℃의 온도, 0.33 cm/s의 시료 투입속도를 가질 때 해체율이 94%에 도달하였으며, 하나의 PCBs를 처리하는 평균적으로 70초가 소요됨을 확인하였다. Zhou & Qiu(2009)는 솔더를 용융시키는 열원 매개체로 경유(diesel oil)를 이용하여 EECs 해체 실험을
진행하였다(Fig. 6). 해체 실험은 WPCBs에 충분한 원심력을 제공할 수 있도록 고안된 전기모터(electromotor), 회전드럼(rotating drum), 반응기(reactor) 등으로 구성된 장치를 제작하여 진행되었으며, 반응기 내에 열전달 면개체인 경유와 시료인 WPCBs를 투입하여 온도를 상승시키며 실험을 진행하였다. 실험결과 경유의 온도 240℃, 회전드럼의 회전속도 1,400rpm, 반응시간 6분에서 설정된 부품이 모두 해체됨을 확인하였다. 또한 본 방법으로 WPCBs를 해체 할 시 기판, 부품, 솔더로 분리가 가능하며, 용융된 솔더는 물성이 변하지 않은 상태로 회수됨으로 추가 공정을 거치지 않고 재사용 가능한 장점이 존재한다.

WPCBs의 해체를 위한 주요한 방법 중 화학적 방법은 설정된 EECs를 기판(bare board)으로부터 분리를 위해 접합제의 역할을 수행하는 솔더를 적절한 침출제와 산화제를 이용하여 화학적으로 용해시키는 것을 목적으로 수행된다. Zhang et al.(2015)은 LCD(liquid crystal display)로부터 발생하는 WPCBs에 설정된 부품의 해체를 위해 침출제로 불화붕소산(fluoroboric acid)과 산화제로 과산화수소(H₂O₂, hydrogen peroxide)를 적용하여 해체 실험을 진행하였다. 해체 연구는 침출제의 농도를 1.5-3.5 mol/L로 조절하고, 산화제의 농도를 0-0.8mol/L로 조절하며 솔더 침출 실험을 진행하였으며, 침출제 및 산화제의 농도가 각각 2.5mol/L, 0.4mol/L에서 최적의 해체 효율을 가지며, 대부분의 부품이 해체되었음을 확인하였다. 화학적 방법으로써 다른 침출제를 이용하여 해체 연구를 진행한 결과도 존재한다. Zhang et al.(2017)은 침출제로 메탄술폰산(CH₃SO₃, Methanesulfonic acid)를 사용하고, 산화제로는 H₂O₂를 적용하여 최적의 해체 실험 조건을 제시하였다. 침출제와 산화제의 농도를 각각 1.5-3.5mol/L, 0.2-0.8mol/L로 조절하며 모든 실험은 15, 25, 35, 45분의 시간동안 진행되었다. 실험결과 3.5mol/L의 침출제 농도, 0.5mol/L의 산화제 농도에서 45분이 경과 시 최적의 해체 효율을 갖는 것을 확인하였다.
<table>
<thead>
<tr>
<th>Classification</th>
<th>Summary</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>An apparatus equipped with 3 units (rotating arms, diamond grinders, collecting units) was used to remove EECs from PCBs</td>
<td>김영진 등, 2012</td>
</tr>
<tr>
<td></td>
<td>WPCBs were disassembled with an equipment designed for applying industrial wasted heat</td>
<td>Chen et al., 2012</td>
</tr>
<tr>
<td></td>
<td>A designed apparatus including infrared heaters and iron brushes was applied to dismantle WPCBs</td>
<td>Park et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Diesel oil and a designed apparatus including an electrical motor, a rotating drum and a reactor was applied to dismantle WPCBs</td>
<td>Zhou and Qui, 2009</td>
</tr>
<tr>
<td>Chemical</td>
<td>Dismantling of PCBs was performed with fluoroboric acid with hydrogen peroxide</td>
<td>Zhang et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Dismantling of PCBs was performed with methanesulfonic acid with hydrogen peroxide</td>
<td>Zhang et al., 2017</td>
</tr>
</tbody>
</table>
Fig. 3 Schematic diagram and photos of physical dismantling equipment for WPCBs (김영진 등, 2012)
Fig. 4 Schematic image of experimental system for WPCBs dismantling using hot air (Chen et al., 2013)
Fig. 6 Schematic image of the equipment of WPCBs dismantling and recycling solder (Zhou & Qiu, 2009), 1. electro-motor, 2. gland cover, 3. water-cooler, 4. temperature controlled furnace, 5. diesel oil, 6. reactor, 7. rotating drum, 8. hole, 9. revolving spindle
1.3 연구 목적

전기전자폐기물로부터 발생하는 WPCBs 폐기물은 경제적 및 환경적인 측면에서 필수적인 재활용의 대상으로 여겨진다. 하지만 유가금속의 회수를 목적으로 하는 재활용 공정에서 기존의 방식은 시료 내에 존재하는 금속의 순수를 초래하고, 미량 존재하는 고부가 가치 금속의 회수에 복잡한 공정이 필요한 등, 그 한계점을 가지고 있다. 이러한 한계점을 보완하기 위해 WPCBs의 해체에 대한 다양한 연구들이 활발하게 진행되고 있다. 물리적, 열적, 화학적 방법을 통해 수행된 WPCBs 해체 연구는 각각의 원리에 따라 고유한 장점을 갖고 있지만, 현재까지 진행되어온 화학적 방법의 경우 2M 이상의 높은 농도의 산을 침출제로 사용하며, 산화제로 사용되는 과산화수소는 반응 조건에서 쉽게 분해되어 작업에서 조작하기 어려운 한계점이 존재한다.

본 연구에서 주요 목적은 WPCBs의 해체를 위한 화학적 방법 중 새로운 침출제와 산화제의 적용 가능성을 제시하고, 최적의 해체 조건 수립을 위한 실험 변수 영향을 평가하는 것이다. 기존에 진행된 연구에 따르면 Sn4+을 산화제로 하여 1M 농도의 염산(HCl, hydrochloric acid)에서 무연솔더(lead-free solder) 내에 존재하는 Sn을 효과적으로 침출시킬 수 있음을 확인하였다(Kim et al., 2016). 이를 통해 HCl 용액과 염화주석(SnCl4, stannic chloride)을 사용하여 WPCBs의 해체 공정에 대한 적용 가능성을 평가하였다.

실험 중 해체율(dismantling ratio)에 영향을 미치는 실험 변수로는 침출액의 교반속도, 침출액의 농도, 산화제의 농도가 있으며, 각 변수 조건을 변화시켜 가며 시간에 따른 해체율을 관찰하고 최적의 조건을 제시하였다. 더 나아가, 해체공정에 사용된 침출액으로부터 Sn4+의 재생성 및 침출액의 재사용 가능성을 확인하기 위해 음이온 교환막(anion membrane filter)을 이용한 주석의 전해제취 실험을 진행하여 WPCBs 재활용 공정에 있어 새로운 화학적 해체 방법을 제안하였다.
제 2 장 실험 이론

2.1 침출

침출이란 목적금속을 물, 산, 알칼리 등의 용매로 용해시킨 후 이 용매에 난용성 잔재로서 불순물을 남기는 조작을 일컫는다. 용매의 선택에 있어서 목적금속에 대한 용해도가 크고 경제적이며, 이 용액으로부터 금속의 환원이 용이하고, 용기를 부식시키지 않는 것을 선택하는 것이 필요하다(염희택 & 김수식, 2002). 따라서 침출 대상 및 조업 조건에 따라서 침출 효율을 높이기 위해서 적절한 침출제를 선택하는 것이 대단히 중요하다. 침출의 사용되는 용매의 종류에 따라 크게 수침출, 산침출, 알칼리침출과 같이 분류할 수 있다. 일반적으로 금속이 침출 대상이 되는 경우 산을 이용하여 수소이온을 산화제로 하여금 금속을 산화시킨다. 하지만 모든 금속이 산에 용해되는 것은 아니므로 수소이온보다 더 귀한 금속의 침출을 위해서는 더 강한 산화력을 갖는 산화제를 사용하여야 할 수 있다.

용매에 따른 침출 가능성 여부를 열역학적으로 해석하기 위해서는 표준깁스 자유에너지(Standard Gibb’s free energy, ΔG°) 및 표준전극위(€°)를 사용할 수 있다. 표준깁스 자유에너지란 “표준상태에서 반응이 진행되는 경우, 즉 표준상태에 있는 반응물들이 표준상태의 생성물로 변화될 때의 급스 자유에너지 변화”로 정의된다(Chang, 2008). 어떤 반응에서 표준.libs 자유에너지 변화는 생성물과 반응물의 표준.libs 자유에너지 차를 이용하여 일반적으로 식(1)과 같이 표현할 수 있다.

하지만 모든 화학반응은 표준상태에서 이루어지는 것이 아니므로 반응 조건이 표준상태가 아닌 경우 표준.libs 자유에너지(ΔG°)가 아닌 급스 자유에너지(ΔG)를 사용해야 하며 그 관계를 유도해보면 식(2)와 같이 표현 가능하다. 만약 어떤 반응이 평형상태에 도달 했을 경우 급스 자유에너지의 변화는 ΔG=0이며, 반응상수(Q)는 평형상수(K)로 표현 가능함으로 식(3)과 같이 나타낼 수 있다.

\[
\begin{align*}
\Delta G^0_{\text{표준}} &= \sum n \Delta G^0_f(\text{생성물}) - \sum m \Delta G^0_f(\text{반응물}) \\
\Delta G &= \Delta G^0 + RT \ln Q
\end{align*}
\]
표준전극전위는 "모든 용질이 1M이고, 모든 기체가 1atm일 때 전극에서 일어나는 환원 반응에 관련된 전압"으로 정의된다(Chang, 2002). 하지만 두 전극으로부터 생기는 전위차인 전압의 경우 두 전극의 상대적인 값이므로 각각의 단일 전극에 대해서는 전압의 절대값을 측정할 수 없다. 따라서 두 전극에 대하여 기준이 되는 전극을 사용하여 전위차를 결정해야 하며, 이러한 기준으로 사용되는 전극을 기준전극(reference electrode)이라 한다. 실제로 다양한 종류의 기준전극들이 사용되고 있지만, 일반적으로 사용되는 전극은 표준수소전극(SHE, standard hydrogen electrode)이다. 표준수소전극은 수소의 압력이 1atm이고 수소이온의 활동도가 1일 때, 온도 25℃에서 Pt를 촉매로 하여 그 표면에서 발생하는 수소이온의 환원전위를 0V라고 규정하고 있으며, 그 반응을 식(4)와 같이 표현할 수 있다.

\[2H^+ + 2e^- \rightarrow H_2, \quad E^0 = 0 \text{V vs. SHE} \]

두 전극에서 산화반응과 환원반응이 일어날 때 각 전지의 표준전극전위의 차이를 표준전지전극이라 한다. 이는 화학반응에서 긴급자유에너지의 변화를 통해 그 반응의 방향성을 결정할 수 있는 것과 같이, 용액 내에서의 산화, 환원의 반응정도를 예측할 수 있게 해준다. 열역학적 해석을 위해 표준전지전위와 \(\Delta G \)의 관계를 살펴보면, 식(5)와 같이 표현할 수 있다.

\[\Delta G^0 = -nF\overline{E}_{\text{cell}} \]

n: 반응에 참여하는 전자 수
F: 패러데이 상수(96485C/mol)

\[E_{cell}^0 : \text{전지전위(V)} \]

이를 평형상태에서 김스자유에너지의 변화 식(3)과 관계하여 정리하면 식(6)을 얻을 수 있고, \(E_{cell}^0 \) 에 대해서 정리하면 식(7)을 얻을 수 있다.

\[-nFE_{cell}^0 = -RT\ln K \quad (6) \]

\[E_{cell}^0 = \frac{RT}{nF} \ln K \quad (7) \]

여기에 기체상수와 표준조건의 온도(T=25°C=298K)를 대입해주면 식(8)과 같이 표준전극전위와 평형상수와의 관계식을 얻을 수 있다.

\[E_{cell}^0 = \frac{0.0257}{n} \ln K = \frac{0.0592}{n} \log K \quad (8) \]

이와 같이 결정되는 \(\Delta G^0 \)와 \(E^0 \)는 화학반응의 방향성을 결정할 수 있다. 만약 화학 반응의 \(\Delta G^0 \)이 음의 값을 가지게 되면 표준조건 하에서 그 화학반응은 자발적으로(생성물 생성 선호) 반응하는 것을 의미하지만, \(\Delta G^0 \)와 반대의 부호를 가지고 있는 \(E^0 \)의 경우 그 값이 양일 때 자발적으로 반응이 이루어짐을 의미하게 된다. 그와 반대로 \(\Delta G^0 \)가 양의 값을 가지고 \(E^0 \)가 음의 값을 가지게 되면 그 반응은 비자발적으로(반응물 생성 선호) 반응이 이루어짐을 의미한다.

이를 바탕으로 표준전극전위를 통해 염산 용액 하에서 Sn의 침출 반응을 해석해 보면 식(9)~(11)과 같이 나타낼 수 있다. 이는 열역학적 해석으로는 표준상태에서 주석금속이 산으로부터 침출이 가능함을 의미한다. 하지만 실제로 주석금속은 산에 녹이기 위해서는 매우 높은 농도의 산이 필요한 것을 선행연구들을 통해 확인하였다. 따라서 그 침출의 효율을 증대시키기 위해서는 더 강한 산화제의 사용이 필요하다. 일반적으로 침출의 효율을 증대시키기 위해 사용되는 산화제는 기체상태의 산소, 괴산화수소, Fe³⁺, 염소기체 등을 사용한다. 언급된 산화제는 지속적으로 소모되어 그 비용이 많이 소요되고, 불안정 상태를 갖고 있어 자발적으로 분해되기 쉬우며, 후 공정에서 처리가 힘들다는 단점이 존재한다. 하지만 본 연구에서 사용된 Sn⁴⁺은 식(12)와 같은 표준전극전위를 갖는
다. 따라서 Sn⁴⁺을 이용하여 Sn을 침출 시 반응식을 계산해보면 식(13)과 같이 산과의 반응보다 높은 표준전극전위를 갖게 되어 그 반응을 가속화하여 침출속도를 높일 수 있다. 뿐만 아니라, 전자 가수가 다른 동종 금속 이온을 산화제로서 사용하므로 이를 재 생성하여 재사용할 수 있는 장점이 존재하며, 금속의 회수를 위한 공정에서 같은 양의 금속을 식출하는데 필요한 전자의 양이 절반으로 줄어들어 소모되는 전기를 절약할 수 있는 장점이 존재한다.

\[Sn^{2+} + 2e^- \rightarrow Sn(s), \quad E^0 = -0.14 \text{V} \] \hfill (9)

\[2H^+ + 2e^- \rightarrow H_2(g), \quad E^0 = 0 \text{V} \] \hfill (10)

\[Sn(s) + 2H^+ \rightarrow Sn^{2+} + H_2(g), \quad E^0 = 0.14 \text{V} \] \hfill (11)

\[Sn^{4+} + 2e^- \rightarrow Sn^{2+}, \quad E^0 = 0.151 \text{V} \] \hfill (12)

\[Sn(s) + Sn^{4+} \rightarrow 2Sn^{2+}, \quad E^0 = 0.291 \text{V} \] \hfill (13)
2.2 전해채취

전해채취는 목적금속이 용해되어있는 용액을 전해액으로 하여, 그 전해액으로부터 전기적인 환원을 통해 금속을 음극면(cathode) 위에 석출하여 금속으로 회수하는 제련법이다(염희택 & 김수식, 2002). 일반적으로 전해액에 운영조건에 맞게 선택된 음극과 양극을 침지하여 전류를 인가하면 두 전극에 전위차가 발생하게 된다. 전위차에 의해 전자는 음극으로부터 양극을 통해 환원되며, 음극표면에서는 전극의 표면과 전해액의 계면에서 식(14)와 같이 전해액 중의 금속이온이 전극에 결합해 금속으로 석출된다. 전해과정에서 금속이 석출되는 속도는 인가되는 전류의 크기에 영향을 받게 된다. 전류밀도가 낮을 때는 금속이온들이 흡착 에너지가 큰 전극 표면의 가장자리부터 서서히 결정을 이루며 판상의 금속으로 석출된다. 하지만 전류밀도가 높은 경우 결정을 이루는 속도가 석출되는 판상의 금속 표면의 거칠기가 커지거나, 전극 위에서 석출되지 않고 용액이 존재하는 방향으로 석출하게 되어 침상으로 금속이 석출되기도 한다. 이렇게 침상으로 석출되는 금속은 랜드라이트(dendrite)라고 하며 전해 산업에서는 이를 방지하기 위해 조업 조건을 적절히 조절해야 한다. 전류밀도, 전해 온도, 전해액 중 금속 농도, 전해질의 청가, 전해액의 순환 유량 등을 조절할 수 있으며, 이 같은 조건은 이론적으로 예측하기보다는 경험적으로 얻는 경우가 많다(백운기 & 박수문, 2007).

\[M^{n+} + ne^- = M^0 \] (14)

M: metal ion

2.2.1 Faraday의 법칙

전해 체취에 있어서 Faraday의 법칙은 다음과 같다.

(1)전해질에 존재하는 금속 이온 중 전극에 석출되는 양은 전극으로부터 통과된 전기량, 즉 전류와 시간의 곱에 비례한다.

(2)전기량이 일정 할 때 전해질로부터 석출되는 물질의 양은 그 물질의 화학량에 비례한다.
이를 정리하면, 어떤 물질 1g 당량을 석출하기 위해서는 1F의 전기량 (96,485C)이 통해야 함을 말한다. 따라서 전해채취 과정에서 통한 전기량, 즉 전류와 시간을 알 수 있다면 이론적으로 석출되는 금속의 양을 계산 할 수 있으며, 식 (15)로 이론적 물질 회수량을 표현 할 수 있다.

\[W_{\text{theoretical}} = \frac{M}{nF} I \Delta t = \frac{M}{nF} \int_{i}^{f} I dt \]

(15)

\(W \): 이론적 물질 회수량
\(I \): 전류 (C/s)
\(n \): 전자가
\(M \): 원자량 (g/mol)
\(F \): 패러데이상수 (96,485C/mol)
\(t \): 반응시간 (t)

2.2.2 전류밀도

전류밀도 (current density)는 전해과정에서 목적 반응에 유호하게 사용되는 전극의 면적에 대한 전류의 크기로 정의된다. 단위는 A/m², A/dm², A/cm², A/ft² 등을 사용한다. 전류밀도는 전해채취 과정에서 금속이 석출되는 속도 및 그 형태에 큰 영향을 주며, 소비되는 전기량을 결정하는 중요한 요소이므로 목적에 맞게 적절한 값을 사용하여야 한다.

2.4.3 전류효율

전류효율은 전해 시 사용된 종 전기량에서 금속의 석출 반응에 유호하게 사용된 전기량의 비율로 정의되며 식 (16)과 같이 표현할 수 있다. 이는 전해 조건에 따라 매우 영향을 받을 수 있으므로, 불필요한 전기의 소모를 방지하고 비용을 감소하기 위해 높은 전류 효율을 갖는 조건을 결정하여야 한다.

전류효율 (%) = \(\frac{\text{실제석출량}}{\text{이론석출량}} \times 100 \)

(16)
2.4.4 이온 교환막

이온교환막은 양 또는 음의 전하를 띠는 작용기가 막에 분포하여 그 작용기와 반대의 전하를 갖는 이온만을 선택적으로 투과시키고 같은 전하를 띠는 이온은 투과시키지 않는 기능을 수행한다. 여기서 막의 작용기와 같은 전하를 띠는 이온을 co-ion이라 칭하며, 반대의 전하를 가지는 이온은 counter ion이라 한다. 이온교환막은 co-ion이 가지는 전하에 따라 양이온 교환막과 음이온 교환막으로 분류된다. 음의 전하로 구성되어 양이온만 선택적으로 투과시키면 양이온 교환막, 이와 반대로 양의 전하를 띠는 작용기로 구성되어 음이온만 선택적으로 투과시키면 음이온 교환막이라 부른다. Fig. 7은 음이온 교환막의 모식도를 나타낸다. 이온교환막의 성능은 co-ion의 통과를 배제하고 counter ion만을 얼마나 잘 통과시킬 수 있는지에 따라 그 결정된다. 이온 선택성(selectivity)은 그 성능을 평가하는 지표로써 이온교환막의 이동수(transport number)로 표현할 수 있다. 즉 co-ion의 통과율이 0이라면 그 이동수는 1로 표현하며, co-ion의 통과율이 0.5라면 이동수는 0.5로 표현한다. 이온 선택성은 막에 고정된 작용기의 종류 및 분포에 의해 결정되며, 인접한 작용기로부터 다른 작용기의 거리가 멀어질수록 선택성은 감소한다. 또한, 전해질 농도에도 영향을 받으며 전해질의 농도가 높아 co-ion의 농도가 높아져도 그 선택성은 감소한다고 알려져 있다.
Fig. 7 Schematic image of the anion membrane filter
제 3 장 실험 방법

3.1 실험 재료

본 연구에 사용된 폐 인쇄회로기판은 개인용 컴퓨터에 탑재되는 DDR2 메모리 타입의 인쇄회로 기판이 사용되었다. 시료의 확일성을 위해 같은 제조사에서 제작된 동일한 모델을 선별하여 실험을 진행하였다. 기판에는 다양한 크기의 집적회로, 저항기, 캐패시터 등 약 250여 개의 전기전자 부품이 실장되어 있으며, 시료 하나의 무게는 약 42g이다. 시료의 가로 및 세로 길이는 140mm×40mm이며, 실험 용기에 시료 장입을 용이하게 만들기 위해 약 70mm×40mm로 이등분하여 시료를 장입하였다. 시료 내에 존재하는 금속 성분의 조성비는 Table 5와 같다. 해체에 사용된 침출액은 시약 등급의 염산(JUNSEI, ASSAY 35%), 염화주석 수화물(SnCl₄·5H₂O, JUNSEI, ASSAY 99.9%) 시약을 사용하여 제조되었다.

폐 인쇄회로기판의 해체 후 주석이 용해되어 있는 침출액의 모사액 제조를 위해 시약등급의 Sn 분말(JUNSEI, 200mesh, ASSAY 99.0%)과 염산(JUNSEI, 35%, ASSAY 99.9%)을 사용하였다.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Cu</th>
<th>Fe</th>
<th>Ni</th>
<th>Sn</th>
<th>Pb</th>
<th>Ag</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content(wt. %)</td>
<td>17.1</td>
<td>2.8</td>
<td>2.4</td>
<td>2.2</td>
<td>0.8</td>
<td>0.0162</td>
<td>0.0967</td>
</tr>
</tbody>
</table>

Table 5 Major element composition in the PCB
3.2 PCB 해체 실험

해체 실험은 Fig. 8과 같이 500ml 용량의 자켓 비커를 사용하여 진행하였다. 일정한 온도 유지를 위해 항온수조(CW-10G, JEIO TECH Co. Ltd)를 사용하였으며, 용액의 교반을 위해 가열식 자력교반기(MS300HS, MISUNG SCIENTIFIC Co. Ltd)와 막대자석을 사용하여 교반속도를 조절하였다. 실험에 사용된 침출액은 1M 농도의 염산 용액에 염화주석 수화물을 계산된 양만큼 용해시켜 제조하였으며, 실험조건은 Table 6에 나타내었다. 침출액은 목표온도에 도달한 후 시료를 투입하였으며, 시료가 교반을 방해하는 것을 차단하기 위해 내산성 실을 사용하여 시료를 매달아 막대자석의 간섭을 방지하였다. 실험 용기의 밀폐를 위해 사용된 실리콘 마개에 유클립기를 장착하여 실험 중 발생하는 용액의 증발을 억제해주었다. 시료는 정해진 시간간격으로 침출액으로부터 떨어져 드린성을 이용하여 탄착된 부품을 회수하였다. PCB의 해체율은 식 (17)과 같이 시간별 해체된 부품의 누적 개수와 전체 부품의 개수의 백분율로 계산하여 결정하였다.

\[
\text{Dismantling ratio(\%)} = \frac{\text{Number of dismantled components}}{\text{Total number of components}} \times 100 \quad (17)
\]

또한 해체 실험 중 PCB에 함유된 금속의 침출 거동을 관찰하기 위해 정해진 시간별로 2ml의 용액을 회수하였으며, 0.45µm 주사기 필터를 이용하여 회수된 용액 중 불순물을 제거하였다. PCB 해체 실험이 끝난 후 회수된 부품은 수세 후 부품별 금속 조성 분석을 위해 기판, 집적회로, 저항기, 캐패시터 그룹으로 분류하였다. 이후 기판은 켓팅밀 (SM100, Retsch GmbH & Co., Germany), 나머지 부품은 믹서밀(Mixer mill, MM400, Retsch GmbH & Co., Germany)을 사용하여 분쇄 후 용매를 이용하여 분해하였다. 성분 분석을 위해 Sn은 1M 염산, Pb, Cu, Ni, Al, Fe는 2% 질산을 이용하여 회석 후 유도 결합 플라즈마 발광 분석기(ICP-OES, Inductively Coupled Plasma-Optical Emission Spectrometer, OPTIMA 8300, PerkinElmer)를 사용하여 금속 농도 분석을 실시하였다.
Fig. 8 Schematic image of the experiment system for PCB dismantling process. 1. reflux condenser, 2. silicone stopper, 3. water jacketed reactor, 4. thread, 5. PCBA sample, 6. heating bath circulator, 7. magnetic bar (bar type), 8. heating and stirring plate.

Table 6 Experimental condition for PCB dismantling tests

<table>
<thead>
<tr>
<th>Experimental condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Concentration of Sn⁴⁺</td>
</tr>
<tr>
<td>Agitation speed</td>
</tr>
<tr>
<td>HCl concentration</td>
</tr>
</tbody>
</table>
3.3 음이온 교환막을 이용한 Sn의 전해채취

전해채취 실험은 Fig. 9와 같은 시스템에서 수행되었으며, 사용된 셀은 아크릴 재질로 주문제작하여 사용하였다. 셀은 양극부분과 음극부분으로 각각 나누어 제작되었으며 결합이 가능한 구조를 갖는다. 셀의 크기는 두께 20T, 가로, 세로, 높이는 115mm×110mm×120mm이며 각각 약 500ml의 내부 용적을 갖는다(Fig. 10). 음이온 교환막의 설치를 위해 양극부분과 음극부분의 셀이 결합하는 면에 약 60mm 지름의 원형 공간을 마련하고 두 면에 두께 5mm, 외경 7.5mm의 고무 제절의 오링을 마주보게 설치하여 용액의 누수를 방지하였다. 음이온 교환막은 NEOSPEPTA AMX(Tokuyama soda Co., Japan)를 사용하여 양극액의 양이온이 음극액으로 이동하는 것을 차단해주었다. 전극의 재질은 불용성음극인 흑연판을 사용하였으며, 양극은 내부식성이 강한 티타늄판을 주문제작하여 사용하였다. 각 극 표면의 면적을 일치시키기 위해서 절연테이프를 이용하여 음극전극 및 양극전극의 중 45mm×45mm의 면적을 제외한 나머지 부분을 절연시켜 주었다. 실험 중 일정한 전류의 공급을 위해 25℃에서 0.2%+10mA의 프로그래밍 정확도를 갖는 교류 전원 공급기(E3633A, Agilent Technologies)를 사용하였다. PCB 해체 과정에서 솔더의 용해는 솔더 내의 주석금속과 Sn⁺의 식(13)과 같은 반응에 의해 이루어진다. 따라서 해체 후에 얻어지는 침출액 내의 주석은 Sn²⁺의 형태로 존재하게 되므로, Sn²⁺을 갖는 모사액의 재조를 위해 계산된 양의 Sn 분말을 희석하지 않은 35% 염산 용액에 2시간 동안 침출한 후 증류수를 이용하여 염산 1M 농도까지 희석하여 제조하였다. 제조된 모사액은 양극셀과 음극셀에 각각 약 450ml씩 투입하여 음극액에 존재하는 Sn²⁺가 모두 금속으로 환원 될 때까지 전해채취를 실시하였다. 모든 이온이 금속으로 환원되는데 필요한 반응 시간은 식(15)를 이용하여 계산하였으며, 전해 채취 종료 후 양극액은 전량 회수하여 침출 실험에서 침출액으로 사용하였다. 실험 중 Sn의 농도 변화를 관찰하기 위해 정해진 시간 간격으로 음극액과 양극액을 2ml씩 회수 후, 1M 농도의 염산으로 희석하여 ICP-OES를 이용하여 금속 농도를 분석하였다.
Fig. 9 Schematic image of the experimental system for electrowinning, 1. DC power supply, 2. thermostat, 3. acrylic cell, 4. graphite anode, 5. titanium cathode, 6. anion exchange membrane

Fig. 10 Dimension of electrowinning cell
3.4 침출 실험

침출실험은 Fig. 11과 같은 실험시스템을 통해 진행하였다. 500ml 부피의 5구 pyrex 반응기 내에 전해체취 후 회수된 양극액을 200ml 투입하여 침출제로 사용하였고, 가열기와 외부 온도센서를 이용하여 온도를 조절하였다. 교반기와 마그네틱 바를 병행 사용하여 교반함으로써 비중이 큰 금속 분말이 교반봉 아래에 정체되는 현상을 방지 하였다. 실험 중 발생하는 증발로 인한 용액의 손실을 방지하기 위하여 용축기를 설치하여 모든 실험을 진행하였다. 용액 내 용존 된 산소를 제거하고, 교반 중 산소가 용액 내로 침투하는 것을 억제하기 위하여 실험 시작 한 시간 전부터 순도 99.99%의 질소 가스 주입을 시작하여 실험 종료 시까지 주입해 주었다. 실험 중 시간에 따른 Sn의 침출 거동을 분석하기 위하여 주사기를 이용하여 정해진 시간 간격으로 2ml의 침출액을 회수 후 0.45㎛ 주사기 필터로 침출액을 여과시켜 주었다. 회수된 침출 여액은 IM 농도의 염산으로 희석하여 ICP-OES를 사용해 금속 농도 분석을 실시하였다. 침출 조건은 Table 7에 나타내었다.
Fig. 11 Schematic diagram of the experimental system for the leaching test,
1. 500ml pyrex reactor, 2. gas inlet, 3. reflux condenser, 4. impeller, 5. agitator head, 6. thermostat, 7. sample outlet, 8. heating mantle, 9. egg shaped magnetic bar

Table 7 Experimental condition for leaching tests

<table>
<thead>
<tr>
<th>Experimental condition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>50℃</td>
</tr>
<tr>
<td>Nitrogen gas flow rate</td>
<td>400cc/min</td>
</tr>
<tr>
<td>Agitation speed</td>
<td>400rpm</td>
</tr>
<tr>
<td>HCl concentration</td>
<td>1M</td>
</tr>
<tr>
<td>Pulp density</td>
<td>10g/L</td>
</tr>
<tr>
<td>Leaching time</td>
<td>2hours</td>
</tr>
</tbody>
</table>
제 4 장 실험 결과

4.1 PCB 해체 실험

4.1.1 PCB 해체 거동

PCB의 해체는 부품의 실장에 사용되는 솔더를 용해함으로써 이루어질 수 있다. 이는 Sn⁺이 Sn과 자발적으로 반응하여 금속을 산화시킬 수 있다는 연구결과를 배경으로 한다. 현재까지 무연 솔더 및 솔더 페이스트로부터 Sn의 선택적 침출 혹은 파분쇄된 폐 PCB 시료로부터 Sn의 회수를 위한 연구들이 진행되어 왔지만(Havlik et al., 2010; Jha et al., 2012; Lee et al., 2015; Kim et al., 2016), 실제 부품이 실장된 PCB의 해체에 이를 적용한 사례는 존재하지 않는다. 따라서 Sn⁺을 이용한 PCB 해체의 실현 가능성을 확인하고 실험 중 실장된 부품의 해체 거동 및 금속의 침출 거동을 관찰하기 위하여 PCB 해체 실험을 진행하였다. 실험조건은 HCl 농도 1M, Sn⁺의 농도 10,000mg/L, 교반속도 300rpm, 온도 50℃에서 실험을 진행하였다. Fig. 12는 해체 실험 중 시간에 따른 해체율의 변화와 Sn과 Pb의 농도변화에 대한 결과를 보여주고 있다. 해체율의 경우 한 시간 경과 후 약 10%의 부품의 해체가 이루어지고, 이후 2시간까지 해체율이 약 90%에 도달하여 4시간 이내에 모든 부품의 해체가 이루어졌다. 해체과정에서 솔더의 주성분 금속인 Sn과 Pb의 침출 거동과 해체율 변화에 대한 관계를 비교한 결과 Sn과 Pb가 약 1,000mg/L, 200mg/L씩 침출된 후 부품의 해체가 발생하는 것을 관찰할 수 있었으며, 침출되는 농도가 지속적으로 증가하여 각각 약 1,600mg/L, 400mg/L에 도달하였을 때 부품 해체가 종료되는 것을 확인하였다. 이를 통해 실험에 사용된 PCB 샘플은 Sn-Pb 합금 상의 솔더를 이용하여 부품을 실장 하였음을 확인 할 수 있고, 솔더가 용해됨에 따라서 부품의 해체가 일어나는 것으로 생각될 수 있다. Fig. 13은 해체 실험에 사용된 PCB의 실험 전, 후 사진과 시간별로 해체된 부품을 보여주고 있다. 실험 시작 후 1-2시간 내 대부분의 IC와 resister 그리고 작은 크기의 capacitor가
해체되었으며, 이후 상대적으로 크기가 큰 capacitor가 해체되었다. 실험 종료 후 설정된 부품들이 100% 해체되었으며 기판 및 해체된 부품에 물리적인 변화는 관찰되지 않았다.

Fig. 12 The dismantling ratio and the concentration of Sn and Pb dissolved in the solution during the test (Experimental condition: HCl 1M, agitation speed 300rpm, concentration of Sn^{4+} 10,000mg/L, temperature 50℃)
Fig. 13 Photos of PCB sample before(A) and after(B) the dismantling experiment and types of electric and electronic components dismantled from PCB with time.
4.1.2 교반속도의 영향

부품의 해체율에 대한 교반속도의 영향을 관찰하기 위하여 교반속도를 100rpm에서 300rpm까지 조절하여 실험을 진행하였다. 실험 시스템의 한계로 400rpm 이상의 교반속도에서는 막대자석의 불안정한 회전이 관찰되어 안정적으로 회전 가능한 범위인 300rpm을 상한으로 제한하였다. Fig. 14는 위의 교반속도 조건에서 시간에 따른 해체율의 변화를 나타낸 결과이다. 모든 실험 조건에서 1시간 경과 후 전체 부품의 약 10-15%가 해체되었으며, 이후 1시간 동안 부품의 90% 이상이 해체되어 4시간 경과 후 설정된 전체 부품이 해체되었다. 또한 교반속도를 조절함에도 불구하고 매시간별로 침출되는 Sn의 농도가 비슷한 거동을 보이는 것을 Fig. 15를 통해 확인할 수 있다. 따라서 100-300rpm 범위에서 교반속도를 조절함에도 불구하고 해체가 완료되는 시간은 4시간으로 같은 시간이 소요되어 교반속도가 해체율에 미치는 영향은 미미함을 확인하였다. 이는 교반속도에 대한 영향을 효과적으로 갖는 분말 시료는 달리 일정한 형상을 갖는 고정된 고체 시료가 사용되었고, 산화제의 농도가 충분히 높아 본 교반조건에서도 고체 시료의 유체피막을 감소시켜 침출제와 고체의 화학적 반응이 지배적으로 일어나 충분한 속도로 확산이 일어나기 때문에 물리적인 영향을 적게 받는 것으로 생각된다.
Fig. 14 Effects of agitation speed on the dismantling ratio of the PCB (Experimental condition: concentration of Sn\(^{4+}\) 10,000mg/L, temperature 50°C, concentration of HCl 1M)

Fig. 15 Effects of agitation speed on the leaching behavior of tin (Experimental condition: concentration of Sn\(^{4+}\) 10,000mg/L, temperature 50°C, concentration of HCl 1M)
4.1.3 Sn⁴⁺ 농도의 영향

본 연구에 사용된 PCB 샘플을 완벽하게 해체하기 위해 필요한 Sn⁴⁺의 농도는 약 1,600mg/L임을 Fig. 12를 통해서 확인하였다. 따라서 산화제의 농도가 해체율에 미치는 영향을 관찰하기 위해 해체가 완료되는데 필요한 Sn⁴⁺의 농도의 약 4-8배로 조절하여 그 영향을 관찰하였다. 실험조건은 HCl 농도 1M, 온도 50℃, 교반속도 300rpm으로 설정하여 실험을 진행하였다. Fig. 16은 Sn⁴⁺의 농도를 7,000mg/L, 10,000mg/L, 13,000mg/L로 조절하며 실험한 결과를 나타내며 x축은 시간, y축은 시간별로 해체된 부품의 누적 비율을 나타낸다. Sn⁴⁺의 농도가 7,000mg/L일 때 1시간 이후부터 부품의 해체가 일어나기 시작하여 부품의 해체가 완료되는 데 5시간이 소요되었으며, 농도를 13,000mg/L로 증가시켰을 때 모든 부품이 해체되는 데 2시간이 소요되는 것을 확인하였다. 이를 통해 산화제의 농도를 화학양론 적으로 소모되는 양보다 과량을 투입 시 해체 시간을 3시간 이상 단축시킬 수 있음을 확인할 수 있다.

![Fig. 16 Effects of initial concentration of Sn⁴⁺ on the dismantling ratio of the PCB (Experimental condition: temperature 50℃, concentration of HCl 1M, agitation speed 300rpm)](image)
4.1.4 온도의 영향

온도는 화학반응에 있어서 반응속도를 증가시킬 수 있는 효과적인 방법이며, 온도가 증가할 때 활성화 에너지 이상의 운동에너지가 갖는 반응 입자 수를 증가시켜 화학반응이 촉진될 수 있다. PCB 해체율에 대해 온도 변화에 따른 영향을 관찰하기 위하여 온도를 30℃에서 90℃까지 조절하여 실험을 진행하였다. 실험조건은 HCl 농도 1M, Sn^{4+} 농도 10,000mg/L, 교반속도 300rpm에서 실험을 수행하였고, 결과를 Fig. 17에 나타내었다. 실험결과 온도를 30℃로 조절한 경우 4시간 이후부터 부품의 해체가 시작되어 샘플의 해체가 완료되기까지 7시간이 소요되었고, 온도가 상승함에 따라 해체시간이 감소하여 90℃ 조건에서 30분 이내에 해체가 완료되는 것을 확인하였다. 해체율 관점은 실험에 있어 모든 온도 조건에서 해체가 시작된 후 약 80%까지 해체율이 급속하게 상승한 후 완만해지는 것을 확인할 수 있다. 이는 무게가 큰 집적회로 및 크기가 작은 저항기 및 캐패시터의 경우 부품의 자중에 의해 물리적인 영향을 받아 해체가 용이하게 되고, 부품의 실장에 사용되는 솔더의 양이 적어 해체가 빨리 일어나는 반면, 상대적으로 크기가 큰 캐패시터의 경우 실장에 사용되는 솔더의 양이 많기 때문에 솔더가 완전히 용해되는데 소요되는 시간이 오래 걸려 완만한 해체율을 가진다고 생각된다.

Fig. 18은 모든 실험조건의 온도, Sn^{4+}의 농도에 따라 해체에 완료되는 시간을 나타낸 결과이다. 결과를 종합해보면 Sn^{4+}의 농도 7,000mg/L, 온도 30℃, 교반속도 300rpm, HCl 농도 1M 조건에서 해체가 완료되는데 최대 8시간이 소요된 반면 Sn^{4+}의 농도와 온도를 각각 13,000mg/L, 90℃로 상승시 30분이 소요되어 가장 빠른 시간 내에 해체가 완료된 것을 확인하였다.
Fig. 17 Effects of temperature on the dismantling ratio of the PCB
(Experimental condition: concentration of HCl 1M, concentration of Sn^{4+} 10,000mg/L, agitation speed 300rpm)
Fig. 18 Effects of temperature and concentration of Sn⁴⁺ on the dismantling completion time (Experimental condition: temperature 30-90°C, concentration of Sn⁴⁺ 7,000-13,000mg/L, concentration of HCl 1M, agitation speed 300rpm)
4.1.5 부품별 금속성분 분석

Table 8은 시료 및 해체된 부품의 금속 조성을 나타낸 결과이다. 분석 대상 금속은 해체와 선별을 통해 발생하는 금속의 농축 정도를 확인하기 위하여 초기 시료의 XRF 결과에서 1% 이상의 조성을 갖는 금속을 대상으로 선정하였다. 분석 결과 부품이 해체되지 않은 시료(PCBA, printed circuit board assembly)와 비교하여 부품이 해체된 기판(bare PCB)에는 구리가 17.5%에서 31.7%로 농축된 반면 기타 금속은 발견되지 않거나 감소한 것을 확인할 수 있다. 집적회로에는 귀금속인 Au, Ag의 조성이 0.164 %, 0.085%로 증가하여 약 2.7배, 5.3배 농축됨을 확인하였다. 저항기에는 귀금속인 Ag의 농도가 3.118%로 해체되지 않은 시료에 비해 약 200배가량 현저하게 증가하였고, 캐패시터에는 Ti, Ni, Ag가 각각 15.4%, 14.8%, 0.599%로 금속 함량이 증가하는 것을 확인할 수 있다. 이를 통해 WPCB를 해체하고 해체된 부품을 선별함으로써 목적금속을 농축시킬 수 있고 시료의 품위를 향상시킴으로써 효율적인 금속 회수가 가능해질 것이라 생각된다.
Table 8 Metalic contents in PCB sample and different groups of electric and electronic components dismantled from the PCB

<table>
<thead>
<tr>
<th>Elements</th>
<th>PCBA</th>
<th>Bare PCB</th>
<th>IC</th>
<th>Resistor</th>
<th>Capacitor**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>0.096</td>
<td>0.048</td>
<td>0.164</td>
<td>nd*</td>
<td>nd*</td>
</tr>
<tr>
<td>Ag</td>
<td>0.016</td>
<td>0.012</td>
<td>0.085</td>
<td>3.118</td>
<td>0.599</td>
</tr>
<tr>
<td>Cu</td>
<td>17.5</td>
<td>31.7</td>
<td>2.9</td>
<td>nd*</td>
<td>2.9</td>
</tr>
<tr>
<td>Ni</td>
<td>2.9</td>
<td>0.5</td>
<td>7.5</td>
<td>1.2</td>
<td>14.8</td>
</tr>
<tr>
<td>Fe</td>
<td>2.9</td>
<td>0.1</td>
<td>11.0</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Sn</td>
<td>1.5</td>
<td>nd*</td>
<td>0.4</td>
<td>0.4</td>
<td>nd*</td>
</tr>
<tr>
<td>Pb</td>
<td>1.3</td>
<td>nd*</td>
<td>0.9</td>
<td>0.4</td>
<td>nd*</td>
</tr>
</tbody>
</table>

* nd: not detected
** The capacitor is found to contain 15.4% of Ti
4.2 음이온 교환막을 이용한 Sn의 전해채취

4.2.1 전류 밀도의 결정

해체에 사용된 침출액으로부터 전기적 산화를 통한 Sn의 재생성 여부를 확인하기 위해 전해채취 실험을 진행하였다. 전해채취 실험 전 최적의 전류 효율을 갖는 전류밀도 조건을 찾기 위해 전류밀도를 100~300A/m²로 조절하며 실험하였다. Fig. 19는 Sn 능도 10,000mg/L, HCl 능도 1M의 조건에서 실험한 결과를 나타낸다. 실험 결과 전류 밀도가 100A/m²에서 250A/m²로 상승함에 따라 전류 효율이 증가하였으나, 300A/m² 조건에서는 그 효율이 감소하는 것을 확인 할 수 있다. 이는 전류가 높아짐에도 불구하고 Sn을 환원하는 데 소모되는 전류의 비중이 낮아짐을 의미한다. 음극 표면에서 금속의 석출 형태와 양극의 표면변화를 살펴본 결과 Fig. 20과 같이 음극 표면에서는 침상으로 금속이 성장하는 형태인 덴드리트와 부분적으로는 다공성 스플린 형태로 석출되는 것을 확인하였다. 이러한 현상은 전해질의 능도가 낮거나, 전류밀도가 커 결정이 성장하는 속도가 너무 빨라 발생하는 현상이다. 상업적인 전해 공정에서는 금속의 제품성을 높이기 위해 전상을 금속을 석출하는 것이 일반적이나, 본 연구에서는 금속의 석출 과정의 보상작용으로 발생하는 Sn의 재생성에 그 목적이 있다. 따라서 Sn의 재생성 기능을 거시적으로 관찰하기 위하여 전해 속도를 충분히 빠르게 하여 양극액 내에서 발생하는 산화반응을 빠른 시간 내에 유도하는 것이 필요하므로 실험은 전류밀도를 250A/m²로 고정 후 전해채취 실험을 진행하였다.
Fig. 19 Effects of current density on current efficiency
(Experimental condition: concentration of Sn$^{2+}$ 10,000mg/L, concentration of HCl 1M, room temperature)

Fig. 20 Photos of anode and cathode electrodes surface after electrowinning
4.2.2 Sn\(^{2+}\) 농도에 따른 전해량 비교

전해 채취 중 액세액과 음액액으로부터 Sn의 농도 변화 기동과 전해 채취 기동을 관찰하기 위해 초기 Sn\(^{2+}\)의 농도를 7,000mg/L에서 13,000mg/L로 조절하여 실험을 진행하였다. 실험 조건은 HCl의 농도 1M, 전류밀도 250A/m\(^2\)의 조건에서 0.2025m\(^2\)의 가용 면적을 갖는 흰연 양극과 Ti 음극을 이용하여 배치형(batch type)으로 실험을 진행하였다. 식(15)을 통해 7,000mg/L, 10,000mg/L, 13,000mg/L 농도의 Sn\(^{2+}\)가 석출되기 위해서는 250A/m\(^2\)의 전류밀도 조건에서 각각 168, 240, 313분이 소요되는 것을 알 수 있으며, 모든 이온의 석출을 기대하기 위하여 3, 4, 6시간 동안 전해채취 실험을 진행하였다. Fig. 21은 7,000mg/L 농도의 Sn\(^{2+}\) 수용액을 이용한 경우 전해 과정에서 음액액과 양액액의 농도변화를 나타낸 결과이다. 실험 결과 7,000mg/L의 농도로 제작된 용액 내 Sn\(^{2+}\)은 전해채취 시간에 따라 점점 감소하여 3시간 경과 후 349mg/L로 나타나 약 95.19%의 Sn\(^{2+}\)이 금속으로 대부분 석출됨을 확인하였다. Fig. 22는 10,000mg/L 농도의 Sn\(^{2+}\) 용액을 이용한 결과를 나타내며 4시간 동안 96.97%의 Sn\(^{2+}\)이 금속으로 석출됨을 확인하였다. 13,000mg/L 농도의 Sn\(^{2+}\)용액을 이용한 결과는 Fig. 23에 나타내었으며 6시간 동안 전제 Sn\(^{2+}\)의 99.79%가 금속으로 회수됨을 확인할 수 있다. 반면에 양극액의 경우 음이온 교환막의 설치에 의해 3, 4, 6시간 후 농도의 변화량이 각각 1.42%, 0.03%, 2.82%로 나타나 Sn의 농도변화를 무시할 수 있다. 모든 실험 조건에서 시간별로 나타나는 Sn의 석출 형태를 Table 9에 나타내었다.
Fig. 21 Variation of Sn$^{2+}$ concentration in catholyte and anolyte from 7,000mg/L Sn$^{2+}$ during electrowinning with time (Experimental condition: concentration of Sn$^{2+}$ 7,000mg/L, concentration of HCl 1M, current density 250A/m2, room temperature)

Fig. 22 Variation of Sn$^{2+}$ concentration in catholyte and anolyte from 10,000mg/L Sn$^{2+}$ during electrowinning with time (Experimental condition: concentration of Sn$^{2+}$ 10,000mg/L, concentration of HCl 1M, current density 250A/m2, room temperature)
Fig. 23 Variation of Sn$^{2+}$ concentration in catholyte and anolyte from 13,000mg/L Sn$^{2+}$ during electrowinning with time (Experimental condition: concentration of Sn$^{2+}$ 13,000mg/L, concentration of HCl 1M, current density 250A/m2, room temperature)
Table 9: Shape of tin deposit from different concentration of Sn$^{2+}$ with time

<table>
<thead>
<tr>
<th>Concentration</th>
<th>0.5hr</th>
<th>1hr</th>
<th>2hr</th>
<th>3hr</th>
<th>4hr</th>
<th>6hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,000mg/L</td>
<td></td>
</tr>
<tr>
<td>10,000mg/L</td>
<td></td>
</tr>
<tr>
<td>13,000mg/L</td>
<td></td>
</tr>
</tbody>
</table>
4.3 양극액을 이용한 Sn의 침출

4.3.1 용매에 따른 Sn의 침출 비교

전해재취 후 발생하는 양극액을 이용하여 Sn을 침출함으로써 전해재취 과정에서 Sn⁺의 재생성 여부와 재생성되는 비율을 확인할 수 있다. 즉, Sn을 이온화 시킬 수 있는 물질인 Sn⁺만 용액 내에 존재할 경우 침출되는 Sn의 양은 초기에 존재하는 Sn⁺의 양과 동일함으로 그 침출율을 통해 Sn⁺의 재생성 여부를 확인할 수 있다. 하지만 전해재취 후 발생하는 양극액의 경우 Sn⁺ 뿐만 아니라 Sn²⁺도 일정 비율 존재한다. 또한, 침출액은 1M 농도의 HCl 수용액이므로 낮은 pH로 인해 Sn 금속의 침출에 영향을 미칠 수 있다. 따라서 실험에 앞서 Sn⁺ 외에 기타 변수들이 주석의 침출에 영향을 미치는지 여부를 확인할 필요가 있다. 이를 확인하기 위해 용매를 다음과 같은 3가지 조건으로 설정 후 실험을 진행하여 HCl의 농도 및 Sn²⁺가 Sn의 침출에 미치는 영향을 관찰하였다(용매조건: 1M 농도의 HCl, 10,000mg/L의 Sn⁺가 용해되어 있는 1M 농도의 HCl, 10,000mg/L의 Sn⁺가 용해되어 있는 1M 농도의 염산). 실험 조건은 교반속도 400rpm, 온도 50℃, 질소 가스 유량 400cc/min, 광액농도 10g/L로 설정하여 실험을 진행하였으며, 용액 내에 존재하는 용존산소의 영향을 제거하기 위해 실험 전 1시간 동안 질소를 주입해 주었다. Fig. 24는 다른 종류의 침출액을 이용한 주석의 침출 결과를 나타내고 있다. 실험 결과, Sn⁺가 용해되어있는 1M 농도의 염산을 사용한 경우 2시간 이내에 대부분의 Sn이 침출된 것을 확인할 수 있다. 반면에 1M 농도의 HCl과 Sn²⁺이 용해되어 있는 1M 농도의 HCl을 사용한 경우 Sn이 각각 1%, 3% 미만으로 침출되는 것을 확인할 수 있다. 1M HCl의 경우 열역학적 해석을 통해 화학반응의 표준전극전위를 계산하면 식(11)과 같이 음의 값을 가지므로 Sn이 산에 용해되는 반응이 자발적으로 일어날 수 있다고 결론지을 수 있다. 하지만 화학반응이 효과적으로 이루어지기 위해서는 대단히 높은 농도의 산과 온도 조건 필요하며, 선행 연구결과에 따르면 90℃이상의 온도 조건에서 3.5M, 4.5M, 5.5M 농도의 HCl을 사용 시 165분 내에 솔더에 존재하는 Sn이 5.36%, 54.84%, 95.97% 침출된다는 것을 확인할 수 있다(Jha et al., 2012). 따라서 본 실험의 실험 조건인 온도 50℃, HCl 농도 1M의 조건에서는 120분 동안 침출되는 주석의 양이 3%로 미미하며 Sn의 침출에 미치는 영향을 무시할 수
다고 말할 수 있다. 이를 통해 침출액 내에 존재하는 Sn⁴⁺와의 변수들은 Sn의 침출에 영향을 미치지 않으며, 오로지 Sn⁴⁺만 침출에 참여한다고 말할 수 있으므로 양극액을 이용한 주석의 침출 실험을 통해 Sn⁴⁺의 재생성 여부를 확인할 수 있다.

Fig. 24 Leaching efficiency of tin metal from different lixivants(Experimental condition: concentration of HCl 1M, agitation speed 400rpm, N₂ gas introduction 400cc/min, temperature 50℃)
4.3.2 침출을 통한 Sn⁴⁺의 재생성 확인

Fig. 25는 농도 13,000mg/L의 초기 Sn²⁺ 전해액을 이용하여 0.5, 1, 2, 3, 4, 6시간 동안 전해채취 실험 후 회수된 양극액을 사용하여 주석 분말을 침출한 결과이다. 실험조건은 HCl 농도 1M, 온도 50℃, 교반속도 400rpm, 질소 유량 400cc/min, 광액농도 13g/L에서 실험을 진행하였다. Sn⁺⁺은 1:1로 주석금속과 반응하여 침출 가능 한 사실을 바탕으로, 주석의 침출율의 비교를 위해 13,000mg/L 농도의 Sn⁺⁺ 침출액을 이용해 침출 실험을 동일 조건에서 수행하여 그 침출율과 양극액을 침출액으로 한 실험의 침출율을 비교하였다. 실험결과 Sn⁺⁺을 이용하여 제조한 침출액의 경우 120분의 침출 후 96%의 침출율을 보여 대부분의 Sn이 침출될을 확인할 수 있었다. 전해채취 후 회수한 양극액을 이용한 침출의 경우 0.5, 1, 2, 3, 4, 6시간으로 전해시간이 늘어날 시 주석의 침출율은 각각 18%, 29%, 46%, 61%, 74%, 79%로 상승함을 확인 하였다. 이는 전해채취 시간이 증가하여 음극액에서 석출되는 Sn의 양이 증가함으로 양극에서는 Sn⁺⁺이 Sn⁴⁺로 전기적으로 산화되는 양이 증가한다고 해석할 수 있다. 즉, 투입된 초기 Sn²⁺ 농도인 13,000mg/L 중 전해채취 시간이 0.5, 1, 2, 3, 4, 6시간으로 지남에 Sn⁺⁺로 산화되는 농도가 2,340mg/L, 3,770mg/L, 5,980mg/L, 7,930mg/L, 9,620mg/L, 10,270mg/L에 해당한다는 것을 의미한다. 이를 통해 음이온 교환막을 이용한 전해채취 시 Sn의 회수와 Sn⁴⁺의 재생성이 실제로 동시에 이루어질 수 있음을 확인할 수 있다.

다음으로 음극액에서 시간에 따라 전해채취 된 Sn²⁺의 비율과 양극액에서 Sn⁴⁺로 산화된 Sn²⁺의 비율을 통해 Sn⁴⁺ 재생성 효율을 비교하여 Fig. 26에 나타내었다. 그 결과 시간이 지남에 따라 음극액으로부터 Sn²⁺의 회수율은 15.22%, 37.01%, 54.24%, 69.79%, 91.85%, 99.78%의 값을 가진 반면에 양극액의 Sn⁴⁺으로부터 Sn⁺⁺로 산화된 비율은 18.01%, 29.11%, 45.66%, 60.86%, 74.03%, 79.43%로 회수율보다 다소 낮음을 확인하였다. 이는 시간이 지남에 따라 양극의 표면에서 기체 발생에 관여하는 전자의 양이 점차 증가하여 Sn²⁺의 산화에 관여하는 전자의 비율이 감소하기 때문으로 생각된다. 따라서 주석금속으로 회수되는 비율과 Sn⁺⁺으로 산화되는 비율을 식(18)를 이용해 수치화하여 재생효율을 계산한 후 Table 10에 나타내었다. 재생효율의 계산 결과 전해시간이 0.5, 1, 2, 3, 4, 6시간일 때 각각 118.37%, 78.67%, 84.18%, 87.19%, 80.60%, 79.61%의
재생효율을 갖는 것을 알 수 있다. 재생효율은 1, 2, 3, 4, 6시간 일 때 약 78~87%의 효율을 보이고 있으나, 0.5시간에서는 118.37%로 다소 높은 값을 가지는 것을 확인할 수 있다. 이는 음극액에서 회수된 Sn^{2+}의 양보다 양극에서 Sn^{4+}로 산화된 Sn^{2+}의 양이 더 높은 것을 의미한다. 이러한 결과는 이론상 성립되지 않는 결과로써, 이러한 오차가 발생한 이유를 생각해보면 0.5시간 동안 전해를 거친 양극액을 이용한 주석의 침출 시 주석금속이 Sn^{4+}와의 화학반응으로만 침출이 되는 것이 아니라 산에 의한 침출이 반응 초기에 집중적으로 일어나 다소 침출되는 주석의 양이 높아지기 때문으로 생각된다.

\[
\text{재생효율 (regeneration efficiency, %)} = \frac{E_L}{E_E} \times 100 \%
\]

\(E_L= \text{Leaching efficiency}\)

\(E_E= \text{Electrodeposition efficiency}\)

동일한 조건에서 초기 Sn^{2+}의 농도가 재생효율에 미치는 영향을 살펴보기 위하여 Sn^{2+}농도 10,000mg/L, 7,000mg/L로 조절하며 추가 실험을 진행하였다. 실험조건은 HCl 농도 1M, 온도 50℃, 교반속도 400rpm, 질소 유량 400cc/min에서 각각 광액농도 7g/L, 10g/L로 진행하였다. 먼저 Sn^{4+}농도를 10,000mg/L로 조절한 경우 주석의 침출 거동을 Fig. 27에 나타내었다. 양극액의 전해 시간에 따른 침출율의 경우 15.24%, 27.87%, 36.42%, 65.35%, 81.03%로 시간이 0.5, 1, 2, 3, 4시간이 지남에 따라 침출율이 증가하였으며, 최종적으로 초기 Sn^{2+}농도의 약 80%가 Sn^{4+}로 전환됨을 확인 하였다. 음극액과 양극액으로부터 전해제취 된 비율과 침출율을 비교한 결과를 Fig. 28에 나타내었으며, 서로 비례하여 증가하는 것을 확인할 수 있다. 재생효율의 경우 Table 11에 나타내었으며, 30분 및 2시간의 전해 양극액을 제외한 나머지는 약 80%의 전해 효율을 보이는 것을 확인 하였다. 30분 결과의 경우 앞서 설명한 내용과 같은 이유로 100% 이상의 효율을 나타내는 것으로 생각된다. 30분 결과의 경우 약 60%로 다소 전환율이 낮은 것을 확인 할 수 있다. 이는 Fig. 27에서 확인 할 수 있듯이, 2시간 용액을 사용한 경우 90분에서 120분으로 시간이 경과 할 때 침출율이 감소하였기
때문에 전환율 계산 시 분자가 해당하는 침출율이 기댓값보다 낮게 입력된 결과로 생각된다. 여기서 관찰된 침출율이 감소하는 현상은 분석과정에서 발생한 오차로 생각된다. 동일 조건에서 Sn^{2+}농도를 7,000mg/L로 설정하여 실험한 결과를 Fig. 29에 나타내었다. 실험결과 읍극액의 전해시간에 따라 21.22%, 41.29%, 57.77%, 84.44%의 침출율을 보임을 확인하였고, 최종적으로 약 84%의 Sn^{4+} 재생성이 이루어짐을 확인 할 수 있다. Fig. 30에서 확인 할 수 있듯이 전해채취 된 비율과 침출율은 다른 조건에서와 같이 서로 비례하여 증가함을 확인할 수 있으며, 재생효율의 경우 0.5시간을 제외한 나머지 값은 평균 약 80%의 재생효율을 가지는 것을 Table 12에서 확인할 수 있다.
Fig. 25 Effects of different spent time of anolyte from 13,000mg/L of Sn$^{2+}$ on Sn leaching test (Experimental condition: concentration of HCl 1M, agitation speed 400rpm, N$_2$ gas introduction 400cc/min, temperature 50℃, initial concentration of Sn$^{2+}$ of anolyte 13,000mg/L).
Fig. 26 Relationship between leaching efficiency and electro-deposition efficiency in 13,000mg/L of Sn\(^{2+}\) (Experimental condition: concentration of HCl 1M, agitation speed 400rpm, \(\text{N}_2\) gas introduction 400cc/min, temperature 50\(^\circ\)C, initial concentration of Sn\(^{2+}\) of anolyte 13,000mg/L)

Table 10 Regeneration efficiency of Sn\(^{4+}\) from the 13,000mg/L of Sn\(^{2+}\) solution with electrowinning time

<table>
<thead>
<tr>
<th>Elements</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaching efficiency</td>
<td>18.01%</td>
<td>29.11%</td>
<td>45.66%</td>
<td>60.86%</td>
<td>74.03%</td>
<td>79.43%</td>
</tr>
<tr>
<td>Electrodeposition efficiency</td>
<td>15.22%</td>
<td>37.01%</td>
<td>54.24%</td>
<td>69.79%</td>
<td>91.85%</td>
<td>99.78%</td>
</tr>
<tr>
<td>Regeneration efficiency</td>
<td>118.37%</td>
<td>78.67%</td>
<td>84.18%</td>
<td>87.19%</td>
<td>80.60%</td>
<td>79.61%</td>
</tr>
</tbody>
</table>
Fig. 27 Effects of different spent time of anolyte from 10,000mg/L of Sn\(^{2+}\) on Sn leaching test (Experimental condition: concentration of HCl 1M, agitation speed 400rpm, \(N_2\) gas introduction 400cc/min, temperature 50°C, initial concentration of Sn\(^{2+}\) of anolyte 10,000mg/L).
Fig. 28 Relationship between leaching efficiency and electro-deposition efficiency in 10,000mg/L of Sn²⁺ (Experimental condition: concentration of HCl 1M, agitation speed 400rpm, N₂ gas introduction 400cc/min, temperature 50°C, initial concentration of Sn²⁺ of anolyte 10,000mg/L)

Table 11 Regeneration efficiency of Sn⁴⁺ from the 10,000mg/L of Sn²⁺ solution with electrowinning time

<table>
<thead>
<tr>
<th>Elements</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaching efficiency</td>
<td>15.24%</td>
<td>27.87%</td>
<td>36.42%</td>
<td>65.35%</td>
<td>81.03%</td>
</tr>
<tr>
<td>Electrodeposition efficiency</td>
<td>14.05%</td>
<td>36.65%</td>
<td>62.82%</td>
<td>87.75%</td>
<td>96.97%</td>
</tr>
<tr>
<td>Regeneration efficiency</td>
<td>108.47%</td>
<td>74.06%</td>
<td>57.98%</td>
<td>74.48%</td>
<td>83.56%</td>
</tr>
</tbody>
</table>
Fig. 29 Effects of different spent time of anolyte from 7,000mg/L of Sn on Sn leaching test (Experimental condition: concentration of HCl 1M, agitation speed 400rpm, N₂ gas introduction 400cc/min, temperature 50℃, initial concentration of Sn²⁺ of anolyte 7,000mg/L)
Fig. 30 Relationship between leaching efficiency and electro-deposition efficiency in 7,000mg/L of Sn2+ (Experimental condition: concentration of HCl 1M, agitation speed 400rpm, N\textsubscript{2} gas introduction 400cc/min, temperature 50°C, initial concentration of Sn2+ of anolyte 7,000mg/L).

Table 12 Regeneration efficiency of Sn4+ from the 7,000mg/L of Sn2+ solution with electrowinning time

<table>
<thead>
<tr>
<th>Elements</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaching efficiency</td>
<td>21.22%</td>
<td>41.29%</td>
<td>57.77%</td>
<td>84.44%</td>
</tr>
<tr>
<td>Electrodeposition</td>
<td>20.34%</td>
<td>50.77%</td>
<td>78.91%</td>
<td>94.76%</td>
</tr>
<tr>
<td>efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regeneration efficiency</td>
<td>104.31%</td>
<td>81.33%</td>
<td>73.21%</td>
<td>89.10%</td>
</tr>
</tbody>
</table>
Fig. 31 Expected PCB recycling system with dismantling step through reusable Sn^{4+}
제 5 장 결론

본 연구에서는 폐 인쇄회로기판으로부터 효율적인 금속의 회수를 위해 HCl 용액 중 Sn⁴⁺을 이용하여 부품의 해체 실험을 진행하였다. 실험은 HCl 농도 1M 조건에서 교반속도, 온도, Sn⁴⁺ 농도를 변화시키며 인쇄회로기판의 해체율 변화에 미치는 영향을 관찰하였다. 더 나아가 해체에 사용된 침출액으로부터 Sn⁴⁺을 재생성함으로써 친환경적이고 경제적인 재활용 공정을 제시하고자 하였다.

1. 교반속도가 부품의 해체율에 미치는 영향을 관찰하기 위해 HCl 1M, 온도 50℃, Sn⁴⁺ 농도 10,000mg/L의 실험조건에서 교반속도를 100~300rpm으로 조절하며 실험한 결과 모든 조건에서 부품의 해체가 완료되는 시간은 1시간이 소요됨을 확인하였다. 또한 시간별 부품의 해체 거동을 살펴본 결과 해체된 부품의 종류가 유사함을 확인할 수 있었고 시간별 해체율 또한 1시간, 2시간, 3시간, 4시간 동안 100rpm의 경우 12%, 89%, 98%, 100%, 200rpm의 경우 12%, 87%, 98%, 100%, 그리고 300rpm의 경우 8%, 87%, 94%, 100%가 해체됨으로써 큰 차이를 보이지 않음을 확인하였다. 이를 통해 교반속도가 해체율 변화에 미치는 영향은 미미함을 확인할 수 있었다.

2. 온도 변화에 따른 해체율의 거동을 관찰하기 위해 HCl 농도 1M, 교반속도 300rpm, Sn⁴⁺ 농도 10,000mg/L의 실험조건에서 30℃, 50℃, 70℃, 90℃로 조절하며 실험한 결과 온도가 상승할수록 해체가 완료되는 시간이 7시간, 4시간, 3시간, 45분이 소요되어 해체시간을 6시간 이상 단축시킬 수 있음을 확인하였다.

3. Sn⁴⁺ 농도에 따른 해체율 변화를 관찰하기 위해 HCl 농도 1M, 교반속도 300rpm, 온도 50℃의 실험조건에서 Sn⁴⁺ 농도를 7,000mg/L, 10,000mg/L, 13,000mg/L로 조절한
결과 부품의 해체에 완료되는 시간이 2시간, 4시간, 5시간이 소요되어 해체시간을 3시간 단축 시킬 수 있음을 확인하였다.

4. 해체 실험 후 부품을 분류하여 금속조성을 분석한 결과 금속 성분을 성공적으로 부품에 농축시킬 수 있음을 확인하였다. Cu의 경우 해체되지 않은 시료에 17.5%, 해체 후 부품이 실장되지 않은 기판에 31.7%가 존재하여 그 함량이 향상됨을 확인할 수 있었다. 금속성분으로는 Au, Ag가 0.164%, 0.085%로 상승하였으며, 저항기에는 Ag가 3.118%로 상당히 농축됨을 확인하였다. 캐패시터에는 Ti, Ni, Ag가 15.4%, 14.8%, 0.599%로 상승하여 농축된 금속을 해체되지 않은 시료보다 효과적으로 회수할 수 있을 것으로 기대할 수 있다.

5. Sn4⁺의 재생성을 위한 전해체취 실험에서 최적의 전류효율을 갖는 전류밀도를 결정하기 위하여 HCl농도 1M, Sn²⁺농도 10,000mg/L의 수용액을 이용하여 전류밀도를 100A/m², 150A/m², 200A/m², 250A/m², 300A/m²로 조절하며 주석의 전해체취 실험을 진행한 결과 250A/m²의 전류밀도까지 전류효율은 94.38%, 95.38%, 97.36%, 98.68%로 증가하였고, 300A/m²에서는 다소 효율이 감소하였다. 이를 통해 250A/m²조건에서 최적의 전류 효율을 갖는 것을 확인할 수 있었다.

6. 전해과정에서 발생할 수 있는 Sn4⁺의 재생성 여부를 확인하기 위해 전해체취 후 회수된 음극액을 이용하여 Sn 침출을 실시한 결과 Sn²⁺농도가 7,000mg/L, 10,000mg/L, 13,000mg/L인 경우 각각 180분, 240분, 360분 만에 전체 농도 중 약 84.44%, 81.03%, 79.43%의 주석 Sn⁴⁺이 재생성 됨을 확인하였다. 또한, 금속으로 석출된 비율에 대한 Sn⁴⁺의 재생성 비율을 살펴보면 0.5시간을 제외한 모든 경우에서 70~90%의 재생효율을 갖는 것을 확인 할 수 있다.

모든 결과를 종합하여 다음과 같은 결론을 제시할 수 있다. 폐인쇄로기판의 재활용
과정에서 해체(dismantling)공정을 통해 금속 성분을 부품으로 농축시킴으로써 회수 효율 상승을 기대할 수 있음을 확인하였고, Sn⁴⁺과 HCl 1M 농도의 비교적 낮은 산을 이용한 습식제련공법을 통해 효과적으로 인쇄회로기판을 해체할 수 있음을 실험을 통해 관찰할 수 있었다. 또한, 해체에 사용된 Sn⁴⁺은 금속의 회수 공정에서 재생성 가능함을 확인하여, Fig 31과 같은 추가적인 산화제의 투입이 필요하지 않는 순환 가능하고 경제적인 WPCBs의 재활용 공정을 구축하는데 토대가 될 것으로 기대된다.
참고문헌

Chang, R., 2008. 일반화학 제 5판. Translated from Chemistry by 일반화학교재 연구회. 자유아카데미.

Kim, M.S. et al., 2005. Leaching of copper from waste printed circuit boards

Chemosphere, 46, pp.745-755.

department of mechanical engineering, Energy Engineering and Environmental Protection Publications, Espoo, Finland.

감사의 글

짧고도 긴 2년간의 석사 과정의 결실로 본 논문을 완성하였습니다. 여기까지 올 수 있게도 도와주신 분들께 깊게나마 감사의 말씀 전달 드리고자합니다.

먼저 항상 생각하는 사람이 되게끔 이끌어주시고 아김없는 조언을 해주신 지도교수님인 유경근 교수님께 감사의 말씀 전합니다. 매 순간 올바른 선택을 하게끔 해주신 조언들 덕분에 항상 자신감 있는 태도로 후회 없는 선택을 해 올 수 있었습니다. 교수님으로부터 받은 2년간의 길고도 짧은 이 배움에 제 평생 가장 값진 경험이 되었다고 생각합니다. 앞으로 자랑스러운 제자가 될 수 있도록 매시에 노력하는 사람이 되도록 하겠습니다. 그리고 논문을 심사해주신 장원일 교수님, 윤태호 교수님께도 무한한 감사의 말씀을 드립니다. 또한 4년간의 학부 생활동안 배움이 있는 강의와 예정 어린 조언을 해주신 신성렬 교수님, 임종세 교수님, 정우근 교수님께도 감사의 말씀 전합니다.

다음으로 대학원 생활동안 동고동락한 상현이, 은옥이, 경남이, 현지, tam, 주미, 수진이에게도 감사합니다. 여러분 덕분에 2년간의 생활이 더욱 빛나게 기억 될 수 있을 것 같습니다. 그리고 숙현이 누나, 김민혜 실장께도 감사의 마음 전달하고 싶습니다. 글에 담지는 못하였지만 2년 동안 도움주신 모든 분들에게 감사의 말씀 전합니다.

마지막으로 저의 전부인 우리 가족에게도 감사의 말씀 전합니다. 앞으로 더욱 빛나는 사람이 되어 행복하게 해드리겠습니다. 사랑합니다.