

Causal Relationship between Indian Ports' Originated Container Traffic and Total Transshipments of Port of Colombo: a Granger Causality Analysis

Supervisor Professor: Professor An, Ki- Myung

By J.R.M. Sooriya Bandara

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Shipping Management

The Graduate School of Korea Maritime and Ocean University Department of Shipping Management

August 2018

Approval Page

This dissertation, which is an original work undertaken by J.R.M. Sooriya Bandara in partial fulfillment of the requirements for the degree of Master of Shipping Management, is in accordance with the regulations governing the preparation of dissertation at the Graduate School in the Korea Maritime and Ocean University, Republic of Korea.

Approved by the Dissertation Committee:

Professor Ryoo, Dong-Keun
Chairman
Professor Cho, Seong-Cheol
Member
1945
Professor An, Ki-Myung
Member

Department of Shipping Management The Graduate School of Korea Maritime and Ocean University

August 2018

Contents

List of Tables

List of Figures

Abstract

Chapter 1 Introduction	1
1.1 Research Background	1
1.2 Objectives of the study	1
1.3 Methodology of the study	3
1.3 Methodology of the study 1.4 Organization of the study	4

Chapter 2 Container traffic through the Port of Colombo	.5
2.1 Port of Colombo: an overview	. 5
2.2 South Indian ports' originated container traffic in port of Colombo:	
an overview	. 13
2.3 SWOT analysis of port of Colombo	. 19

Chapter 3 Literature Review	35
3.1 Granger causality studies in public finance sector	35
3.2 Granger causality studies in transportation sector	35
3.3 Granger causality studies in shipping sector	37
3.4 Granger causality studies in ports sector	38

Chapter 4 Research Methodology and Empirical Results	43
4.1 Research methodology	43
4.2 Causal relationship between different time series	44
4.3 The Unit root test	44

4.4 Granger causality test	. 45
4.5 Test results	. 48

Chapter 5 Conclusions	54
5.1 Research findings	54
5.2 Policy recommendations	55
5.3 Limitations of the study	60

ences

List of Tables

Table 2.1 Shipping time from Colombo Port to selected locations	5
Table 2.2 Current facilities of Port of Colombo	6
Table 2.3 Container terminal wise total container throughput in	
Port of Colombo during 2010 – 2017	9
Table 2.4 Indian Sub Continent (ISC) ports' transshipments volumes	
through port of Colombo in year 2017	14
Table 2.5 SWOT analysis of port of Colombo	20
Table 2.6 Some of Mega vessels handled in CICT	26
Table 2.7 ISC ports and the deviation hours from the main shipping route	30
Table 2.8 Terminal handling charges at selected ports	33
Table 3.1 Contributions of Granger causality approaches	40
Table 4.1 Indian originated container traffic through port of	
Colombo monthly figures from 2008- 2017	49
Table 4.2 Unit root (ADF) test results	50
Table 4.3 Optimal Lag Order in the VAR System	52
Table 4.4 Results of Granger causality test for Total TS and Indian TS	53
Table 5.1 Planned development schedule under the master plan in	
port of Colombo	57
Table 5.2 Terminal handling charges in selected ports	59

List of Figures

Figure 2.1 Google map of Port of Colombo	7
Figure 2.1 Container throughput transshipment container throughput and	
container ship arrivals in Port of Colombo during 2010 – 2017	8
Figure 2.3 Container terminal wise total container throughputs in	
Port of Colombo during 2010 – 2017	9
Figure 2.4 Total transshipments and annual transshipment	
growth in port of Colombo	11
Figure 2.5 Transshipments percentage over the last eight years in	
port of Colombo	12
Figure 2.6 Container ports in South Asia	13
Figure 2.7 Country wise transshipment container traffic	
through port of Colombo	14
Figure 2.8 Colombo's share of Indian ports' transshipments	16
Figure 2.9 Indian ports' originated transshipments in port of Colombo	17
Figure 2.10 East Coast Indian ports' container traffic	
through Colombo 2010-2015	17
Figure 2.11 East Coast of India (ECI) & Bangladesh total container	
through port of Colombo, 2016-2017	18
Figure 2.12 West Coast Indian ports' container traffic	
through Colombo 2010-2015	18
Figure 2.13 West Coast of India ports' total container traffic through	
port of Colombo, 2016-2017	19
Figure 2.14 The strategic geographical location near to main	
East West shipping lane	23
Figure 2.15 The strategic location in the Southern tip of	

Collection @ kmou

Indian Sub Continent	23
Figure 2.16 Colombo Port Expansion Project	25
Figure 2.17 Colombo International Container Terminal (CICT	25
Figure 2.18 Total container throughput handled by CICT	26
Figure 2.19 Geographical location of port of Hambantota	28
Figure 2.20 Completion of the first phase of the Hambantota port	28
Figure 2.21 Category wise container throughputs in port of	
Colombo in 2017	31
Figure 2.22 Feeder network from ISC to port of Colombo and	
port of Singapore	34
Figure 4.1 Indian ports' originated transshipments and total transshipments	
in port of Colombo monthly data from 2008 to 2017	50
Figure 4.2 Indian originated transshipments in Port of Colombo graph	
of 1 st difference level	51
Figure 4.3 Total Transshipment throughput in Port of Colombo graph	
of 1 st difference level	51
Figure 5.1 Colombo Port development plan under the WRMMP	
(Western Region Megapolice Master Plan)	57

Acknowledgments

I would like to express my greatest gratitude to my supervisor, Professor An, Ki-Myung for his precious comments and recommendations that have added quality and depth to this dissertation. Without his guidance and patience, this research would have not been possible. Besides my advisor, I would like to thank the rest of my thesis committee: Professor Ryoo Dong-Keun, and Professor Cho, Seong-Cheol, for their encouragement, insightful comments, and valuable advices. A very special gratitude goes to Professor Ryoo Dong-Keun for his help and guidance, not only in my academic career, but also with everyday life for my successful graduation. He involved me in many activities and supported me in every way he could and I will be forever grateful; I am very proud I have been one of his students. Very big thanks go to Dr.Enrico, Mr.Nam, and department assistant teacher Ms. Kang, who greatly helped me to success my studies, in Korea Maritime and Ocean University. My special thanks go to my family: my wife and two sons in Sri Lanka and Sri Lanka Ports Authority staff. Without their encouragement and emotional support, my studies could not have been carried on so smoothly and successfully. Last but not least, I would like to thank the Korea Maritime and Ocean University, Faculty of Shipping Management, especially for awarding me scholarship to enrich my knowledge and experience in this beautiful country and the Center of International Affairs of the university specially, providing accommodations me and assisting me to develop Korean language skills. Many university faculty staff and university library staff have been very kind to me with warm assistance. The examiners are also greatly appreciated for their valuable comments.

Causal Relationship between Indian Ports' Originated Container Traffic and Total Transshipments of Port of Colombo: a Granger Causality Analysis

J.R.M. Sooriya Bandara

Department of Shipping Management The Graduate School of Korea Maritime and Ocean University

Abstract

India is both the number one port of destination for transshipments moving out of Colombo, and the number one port of origin for transshipments coming in the port. The port of Colombo is complementary to India's growth aspirations. Today out of 4.7 million (TEUs) transshipment volumes of port of Colombo, close to 40% are Indian transshipments coming from East and West multiple ports of India and a major portion of the Indian transshipment container traffic handled by the port of Colombo is down to India. Using the Granger causality approach, this research investigates the causality relationship between Indian ports' originated transshipments and total transshipments of port of Colombo based on monthly time series data (transshipments throughput in TEUs) from 2008 to 2017. It finds a unidirectional causality from total transshipments of Colombo to Indian ports' originated transshipments in port of Colombo. It suggested that the

ongoing port expansion projects, opening up for new markets and attracting new shipping lines in port of Colombo have been created a significant impact on Indian ports' container traffic through port of Colombo.

Key words: Unit root test, Granger causality, Total transshipments, Indian originated transshipments, Port of Colombo

Chapter 1 Introduction

1.1 Research Background

In Southern Asia, Sri Lanka has bypassed his neighbors. Colombo accommodates large container ships that are deployed on services between Asia and Europe, as well as some services to Africa and South America. Feedering from Colombo to ports in India can be done with ships under any flags, as these services are not affected by the Indian cabotage restrictions (UNCTAD 2017).

Colombo noticeably became the most economical gateway to the Indian subcontinent in both cost and time wise. Today out of its 4.7 million (TEUs) transshipment volumes, close to 40% are Indian transshipments coming from East and West multiple ports of India and a major portion of the traffic handled by the port of Colombo is down to India. India is both the number one port of destination for transshipments moving out of Colombo, and the number one port of origin for transshipments coming in the port. The port of Colombo is complementary to India's growth aspirations. To attract the biggest vessels with increased frequency in to Colombo, it is needed carries to think and rethink shipping networks so that Colombo can expand its current volume in the catchment area. Clearly an increased frequency sailing from West coast Indian ports will provide this much need increase in volume exchange to attract the bigger ships (Inaugurated Colombo maritime conference concludes 2016).

Many alliances and many new services showed their interest to call Colombo emphasizing the immediate need of capacity and capability building. Colombo Port Expansion Project (CPEP) started commencement

with the purpose of accommodating mega ships under the long term strategies of making Colombo the hub of South Asia.

1.2 Objectives of the study

The objective of this study is twofold: first, the research aims to identify the most effective factor to total transshipments throughput of port of Colombo through SWOT analysis in studying strength, weakness, opportunities and threats in the port of Colombo. The SWOT analysis is the archetypal approach to undertaking then summarizing a strategic evaluation. It embodies an internal analysis, in terms of strengths and weaknesses and an external analysis by reflecting on opportunities and threats. In relation to a sea port it is possible to apply this analysis as an overview of strengths, weaknesses, opportunities and threats to understand the port's perspective considering its inherent factors. The SWOT analysis is frequently applied when considering historical factors that have had a major impact in the past, current factors that are likely to impact on future performance, and actors that render the organization distinct from the competition. The best SWOT analysis is one that is supported by logic, argument and evidence (Gibson, 2012).

Through the SWOT analysis, it was clearly identified about the strength and opportunities of Colombo's strategic location in the Indian Ocean with enormous market potential to be the maritime hub of the Indian Ocean as well as the key transshipment port for the Indian sub continent region. Therefore, studying about the relationship between Indian ports' container traffic through port of Colombo is extremely important currently making sense of strategic planning and the policy implementation process in the port of Colombo.

In this context, the aim of this study is to investigate the causal relationship between Indian ports' originated container traffic and total transshipments of port of Colombo and also to identify the nature of the causality between the two variables, evaluating the Granger causality test results. The findings would be helpful for future forecasting of container traffic in Colombo port and the policy making process in the port as well.

1.3 Methodology of the study

Granger (1969) proposed a time-series data based approach in order to determine causality. In the Granger-sense X is a cause of Y if it is useful in forecasting Y. In this framework "useful" means that X is able to increase the accuracy of prediction of Y with respect to a forecast, considering only past values of Y.

Regression on non stationary time series directly may lead to a misleading conclusion, that is, it may show an apparently significant relationship between uncorrelated variables. The quality of the causality test is also sensitive to the stationary of the time series. Thus, it is needed first to determine whether the data series are stationary using the unit root test. For non stationary time series, then it is needed to test whether they are co-integrated. If the time series are neither stationary nor co-integrated, then it is determined the relationship between the two time series. If the two time series are stationary or co-integrated, then it is determined their Granger causality relationship using the Granger test (Granger 1969), and compute the long-run relationship coefficient by using the ADL model or co-integrating equation. The relationship between the two variables can be determined by the Granger causality relationship and long-run relationship coefficient.

1.4 Organization of the study

The study is structured as follows: chapter 1 provides a brief introduction, the research background and the methodology applied. Chapter 2 provides a brief introduction about port of Colombo, and Indian originated container traffic in the port of Colombo and a SWOT analysis of port of Colombo. Chapter 3 deals with the literature review, the challenges and the methodological approach. Chapter 4 discusses about the research methodology and empirical results for the unit root test and Granger causality test. Chapter 6 concludes by discussing about the research findings, the significance and the limitation of the study and policy recommendations.

Chapter 2 Container Traffic through the Port of Colombo

2.1 Port of Colombo: an overview

Growing ship sizes open up the opportunity for Colombo port to develop as the maritime hub of south Asia. Colombo has just 4 hours deviation from the main route, where the nearest next port in the Indian subcontinent has a deviation of 12 hours. With this inherent advantage, Colombo has already become a preferred shipping destination.

Table 2.1 Shipping time from Colombo Port to selected locations

PORT	SHIPPING TIME
Tuticorine, South India	8 Hours
Chennai, India 1945	2 days
Singapore	3 days
Mumbai, India	4 days
UAE	5 days
Sydney	11 days
Busan, South Korea	15 days
Amsterdam	18 days
New York	21 days

Source: Board of Investments in Sri Lanka

Containerization started in south Asia with Queen Elizabeth Container Terminal at Port of Colombo on 1st of August in 1980. But the internal conflict started in middle of 1980s pushed Sri Lanka back from

development. When the war is over in 2010, Colombo had 3 container terminals, Jaya Container Terminal (JCT), Unity Container Terminal (UCT) and South Asia Gateway Container Terminal (SAGT).

Terminal	Depth(m)	Length(m)	Annual capacity (TEUs)
In operation	-	-	
Jaya Container Terminal (JCT)	13 to 15	1640	2.70 million
Unity Container Terminal (UCT)	9 to 11	590	0.30 million
South Asia Gateway terminal (SAGT)	15	940	1.95 million
Colombo International container terminal (CICT)	18 1945	1200	2.40 million
Bandaranayake Quay (BQ)	4.8 to 9.45	608	-
Prince Vijaya Quay (PVQ)	9.45	330	-
Guide Pier (GP)	9.15	330	-
Constructing			
East Container Terminal (ECT)	18	440	0.80 million

Table 2.2 Current facilities of Port of Colombo

The new breakwater at Colombo port is about 6 km from length and it has a depth of 18 meters compared to the previous 14-15 meters, a crucial difference in a world in which ever bigger cargo ships require ever deeper berths. The construction of breakwater was completed in 2012. The first

container terminal of new Colombo South Port is completed in July 2013 and this made possible for Colombo port to accommodate the latest generation container ships which carry 18,000TEU and more. The completion of Colombo South Port Expansion Project will eventually increase the capacity of Colombo by 12.5 million TEUs per year. In April 2014 South Container Terminal which is named as Colombo International Container terminal (CICT) was fully completed and commenced its operations.

Figure 2.1 Google map of Port of Colombo

Colombo continued to record throughput growth following the opening of a third terminal, the only deep- water terminal in Southern Asia capable of handling ships with a capacity of 18,000 TEUs and above (UNCTAD 2017).

Port of Colombo has been ranked among the world's best 25 ports accordance with the Lloyd's rankings in 2017. According to the categorization, in 2016 Port of Colombo has been ranked for the 23rd place moving three places up in this list relative to the ranking in the 2015. In 2016, the annual growth was 10.5% from 5.2 million TEUs to 5.7 million TEUs recording as its rank as 25th (Lloyd's list 20017).



Figure 2.1 Container throughput transshipment container throughput and container ship arrivals in Port of Colombo during 2010 - 2017

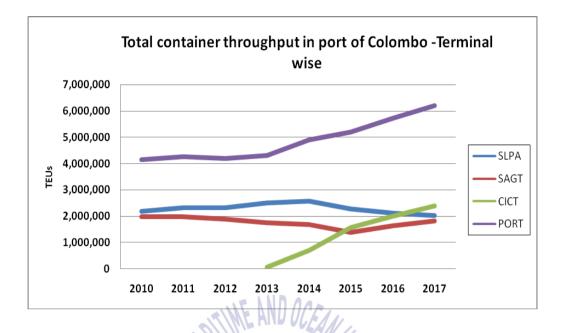


Figure 2.3 Container terminal wise total container throughputs in Port of Colombo during 2010 – 2017

Table 2.3 Container terminal wise total container throughput in Port ofColombo during 2010 - 2017

くのもと

TERMINAL	2010	2011	2012	2013	2014	2015	2016	2017
SLPA	2,167,173	2,299,446	2,316,849	2,501,863	2,559,339	2,252,323	2,100,117	2,010,702
SAGT	1,970,268	1,963,441	1,870,271	1,746,802	1,661,940	1,371,245	1,632,207	1,809,835
CICT	-	-	-	57,541	686,636	1,561,899	2,002,599	2,388,531
PORT	4,137,441	4,262,887	4,187,120	4,306,206	4,907,915	5,185,467	5,734,923	6,209,068

Source: Statistics section of SLPA

In December 2017, port of Colombo reached 6.2 million containers for the first time in the port's history. The port recorded a 16.4% year- overyear increase in its total container throughput as it handled 564,155 TEUs in January 2018, compared to 484,866 TEU seen in the corresponding month a year earlier. In addition, container volumes at the Sri Lanka Ports Authority controlled terminals rose by 24.8% to 194,688 TEUs in January 2018.

Transshipment operations at the port of Colombo also showed a 20.4% YOY increase. Together with the Jaya Container Terminal (JCT), South Asia Gateway Terminal (SAGT) and the Colombo International Container Terminal (CICT), the port of Colombo recorded 436,303 transshipment TEUs in January this year, against 362,451 TEUs reported in the same month of 2017.

The number of container ships, conventional cargo vessels, other cargo vessels and ships for repairs and bunkering also increased to 388 vessels in January 2018 from 339 in the same period of 2017. The port's January in 2018, figures show that a total of 332 contained vessels called at the port of Colombo, against 304 ships a year earlier. SLPA has prepared a three-year development plan in an effort to further increase container volumes aiming to make Colombo the maritime center in Asia (World Maritime News, February 23, 2018).

Colombo port is mainly a transshipment hub with 76% of throughput coming from transshipment as past records of container traffic of the port. In 2014 container transshipments were grown up by 15% and the growth in 2015, 2016 and 2017 respectively about 5%, 12% and 9% (see the Figure 2.4).

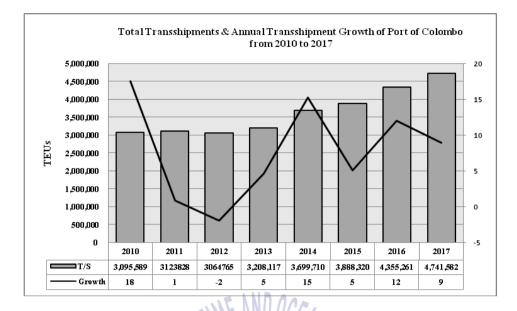


Figure 2.4 Total transshipments and annual transshipment growth in port of Colombo

Source: Statistics section of SLPA

Sri Lanka ports authority is currently looking to grow its' container handling volumes by developing East Container Terminal under the South port expansion project. According to the Asian Development Bank, which supported the port upgrade project with a \$ 300 million loan, made a bold projection that Colombo port will handle 10 million TEUs by 2020.

Ultra large container carriers and very large container carriers, many of a size that only the Colombo South Terminal (CICT) is capable of handling, had contributed 70% to the volumes it achieved in 2016.CICT is the first and currently the only deepwater terminal in South Asia equipped with facilities to handle the largest vessel afloat.

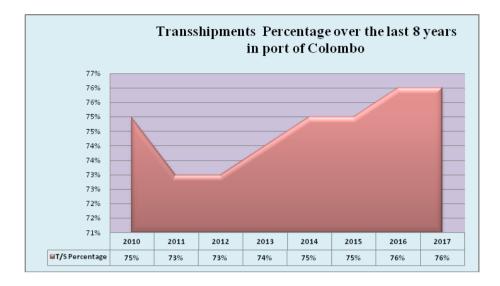
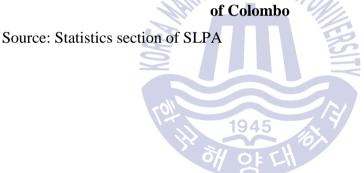



Figure 2.5 Transshipments percentage over the last eight years in port

2.2 South Indian ports' originated container traffic in port of Colombo: an overview

The transshipment container volumes over the port of Colombo are almost totally depend on volumes coming in/out of South Indian sub continent, mostly India, Bangladesh, Pakistan and Male Islands (see Figure 2.6).

Figure 2.6 Container ports in South Asia

Source: Competitiveness of South Asia's container ports, World Bank group, 2016

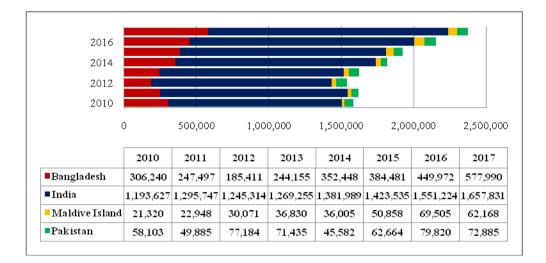


Figure 2.7 Country wise transshipment container traffic via port of Colombo

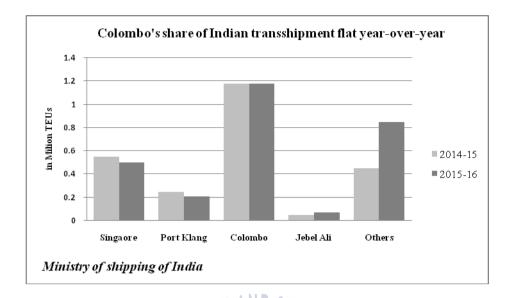
Source: Statistics section of SLPA

 Table 2.4 Indian Sub Continent (ISC) ports' transshipments volumes via

 port of Colombo in year 2017

Country	Port	Transship volumes through Colombo in 2017 (TEUs)	The share from the total throughput of Colombo (%)	Share in Colombo transshipment (%)
	Calcutta	187035 267519	3.0 4.3	3.9 5.6
India –	Chennai Haldia	66420	4.5	3.0 1.4
East Coast	Kakinada	10464	0.2	0.2
of India	Krishnapathnam	105938	1.7	2.2
	Tuticorin	531487	8.6	11.2
	Visakapatnam	126984	2.0	2.7
	Bombay	04	-	-
	Cochin	169186	2.7	3.6
	Goa(Marmagoa)	26760	0.4	0.6

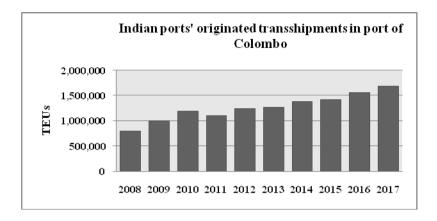
	Hazira	7322	0.1	0.1
India –	Kandla	102	-	-
West Coast	Mangalore	58382	0.9	1.2
of India	Mundra	117605	1.9	2.5
	Nava Sheva (JN port)	196317	3.2	4.1
	Pipavav	39936	0.6	0.8
Bangladesh	Chittagong	587335	9.5	12.4
Pakistan	Karachi	72885	1.2	1.5
Male	Male	62168	1.0	1.3
Others	Others	2107733	33.9	44.4
Total		4741582		100

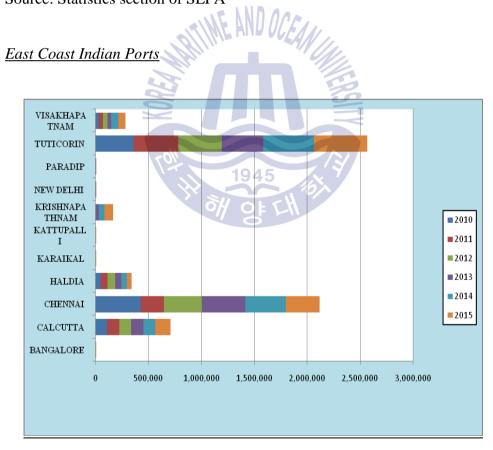

Source: Statistics section of SLPA

In the global shipping market too, the transshipment of cargo has a major role to play and it will continue to be so in the foreseeable future. Due to the increase in ship size & capacity, the cost of calling many ports in the same region is not a cost effective exercise to a shipping line.

Most of the Indian ports as they stand now are unable to accommodate the Ultra- large container carriers that are now being introduced to the main haul service this is mainly due to the restricted depth and other infrastructure and labor related issue which are perennial in nature. The geographical locations of some Indian ports may not ideally fit into the shipping line's requirement of minimum deviation and Colombo will continue to fit into the shipping lines equation.

India's extant major ports do not have such deep drafts, so quarter of all containers are transshipped through hub ports of other countries like Colombo, Singapore and Port Klang. Colombo (Sri Lanka), Singapore and Klang (Malaysia) handle more than 80% of India's transshipment cargo; of them, Colombo alone handles about 43% (Nidhi Jamwal, 2017).




Figure 2.8 Colombo's share of Indian ports' transshipments Source: Ministry of shipping of India

Statistics show in 2015- 2016 volume of transshipped containers moving through Colombo for India's major, or public, ports stayed flat with the prior year at 1.9million TEUs. Colombo had the largest share of the Indian transshipment throughput in last year accounting for 42%, while Singapore with the second largest gateway for Indian transshipments with 17% share followed by Port Kelang Malaysia at 8% (see Figure 2.8) (Indian demand for Colombo transshipment, 2016).

Figure 2.9 Indian ports' originated transshipments in port of Colombo Source: Statistics section of SLPA

Figure 2.10 East Coast Indian ports' container traffic via Colombo 2010-2015

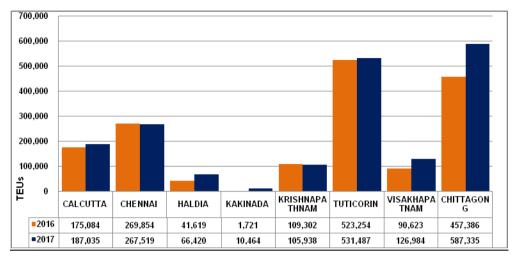


Figure 2.11 East Coast of India (ECI) & Bangladesh total container traffic via

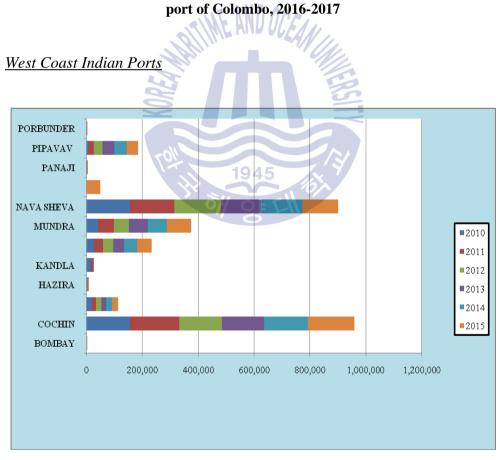
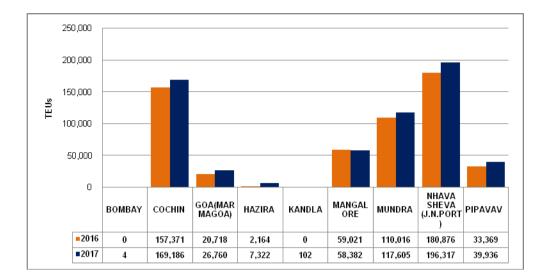



Figure 2.12 West Coast Indian ports' container traffic through Colombo

Figure 2.13 West Coast of India ports' total container traffic through port of Colombo, 2016-2017

2.3 SWOT analysis of port of Colombo

The idea came to the writer's mind of investigating the causal relationship between Indian ports' originated container traffic and total transshipment of port of Colombo, when studying the SWOT analysis of port of Colombo done by Japan International Cooperation Agency Padeco Co., Ltd in 2012 (Table 2.5). Even though, this SWOT analysis had been done in 2012, the internal and external factors which studied for this analyzes are both timely and very relevant to the port and these inherent factors to the port of Colombo give clues to even this current study about the port. Based on the JICA SWOT analysis, the current internal and external developments in the port of Colombo have been added in this discussion to make a truthful and updated analysis.

Through this analysis, it was identified the most important factor in port of Colombo to maintain its position as the maritime hub in the region, is not other than the strategic geographical location in the Indian Ocean and it can be highlighted in two aspects either strength or opportunity to the port.

Therefore, the studying about the causal relationship between Indian ports' originated container traffic via Colombo and the total transshipments of port of Colombo is highly useful for process of port policy planning and implementations. In this particular situation of 76% from the total container throughput are transshipments in the port of Colombo and the future hinterland will be the Indian sub continent (ISC) ports and Bay of Bengal. In this aspect, this research is both timely and essentially important to the port of Colombo.

Table 2.5 SWOT analysis of port of Colombo

20

	• Sri Lanka lacks an adequate domestic cargo base. Shipping lines' clear preference is to serve markets direct if justified by volume
	 Shipping lines prefer to serve markets where market conditions result in high fright rates. Higher rates would possibly further encourage direct calls India may build a rival transshipment port, modify its present hostility to foreign flag cabotage & introduce a tariff policy which simulates direct calls Transshipment is an interim, not a final solution. Sri Lanka
	has neither the range of services nor the frequency that
	 Singapore has No shipping lines are operating container terminals at Colombo port. Shipping lines cannot be relied upon to be loyal to a hub unless they run it
	Internal Factors,
	• Colombo productivity is still not competitive with the major
	hubs
	• The institutional situation is complex. SLPA does not
	always behave as neutral port authority
	• The port is not competitively priced against its Eastern
	competitors
	• Sri Lanka offers a law-cost & efficient transshipment alternative to ports on the Bay of Bengal. With service improvements, the cargo using Singapore could be won back
Opportunities	 Sri Lanka can compete with Middle East ports for Westerly transits from ports south of Mumbai on price, efficiency & speed of turnaround
	• For easterly cargoes, Sri Lanka is well placed to win west coast ISC transshipment for those lines without direct services
	• ISC might not grow to the extent forecasted
Threats	• Indian government may implement policies against foreign transshipment in future
	• Building appropriate infrastructure for a major hub port does not guarantee that it will be used, because the port is largely at the mercy of external events
	augery at the mercy of external events

Based on Data Collection Survey by JAICA

Strength

It is commonly understand that the main strength of Sri Lankan ports is the geographical location of Sri Lanka in the international maritime transport networks: Sri Lanka is located only 55 Nautical Miles away from the main shipping lane between Singapore and the Suez Canal. This sea lane connects Asia and Europe passing through the past growing economies of Asia and the India Sub Continent (ISC). This sea lane is one of the busiest trade routes in the world and is experiencing significant growth. The cargo volume transported along this sea lane is rapidly increasing and demand for Sri Lankan ports is also growing.

Sri Lanka is also located at the Southern tip of ISC, where a remarkable economical growth is generating considerable volume of maritime cargo. The Sri Lankan ports can geographically serve the whole of the growing ISC market in both easterly and westerly directions. To consolidate its strong geographic position in maritime container transport, SLPA has been developing the South Harbor of Colombo port under the Colombo Port Expansion Project.

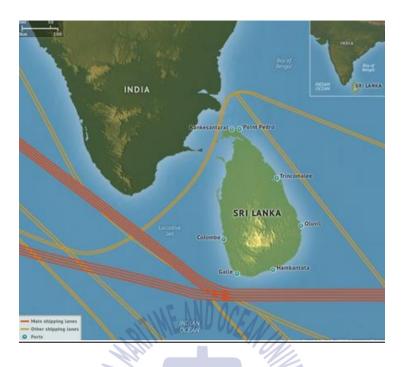


Figure 2.14 the strategic geographical location near to main East West shipping lane

Figure 2.15 the strategic location in the Southern tip of Indian Sub Continent

In 2011, China Merchant Holdings won the rights to develop the South Container Terminal with 35-year BOT and started operations as Colombo International Container Terminal (CICT) in 2013.Colombo International Container Terminals Ltd (CICT) is a Joint venture between China Merchant Holdings (International) Co. Ltd (85% ownership) and the Sri Lanka Ports Authority (15% ownership) under a 35 year build, operate and transfer (BOT) agreement.

CICT (Colombo International Container Terminal) has reported a throughput of two million TEUs for the 12 months ending 31 December 2016 with annual growth of 28% in volume. Colombo South terminal is capable of handling ULCCS (Ultra Large Container Carriers) and VLCCS (Very Large Container Carrier). Colombo south terminal is the first and currently the only deep water terminal in South Asia equipped with facilities to handle the largest vessels afloat. CICT started in 2013 under public private partnership on BOT basis and in 2015, its full year of operation; CICT handled 1.561 million TEUs, with the ULCC and VLCC segments making a 67% contribution to the volume.

The concluded year also saw CICT winning the prestigious 'Highly Commended' award in the 'Port Operator' category at Lloyd's List Middle East and Indian Subcontinent Awards, and being cited as one of the factors in its parent company – China Merchants Port Holdings (CMPH) – being adjudged Port Operator of the Year at the Lloyd's List 2016 Global Awards

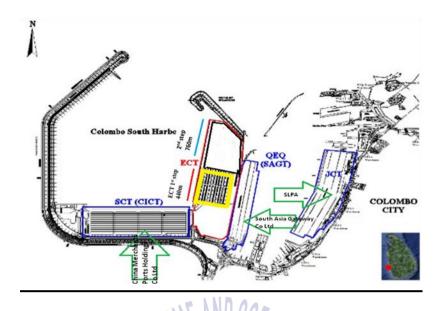


Figure 2.16 Colombo Port Expansion Project

Figure 2.17 Colombo International Container Terminal (CICT)

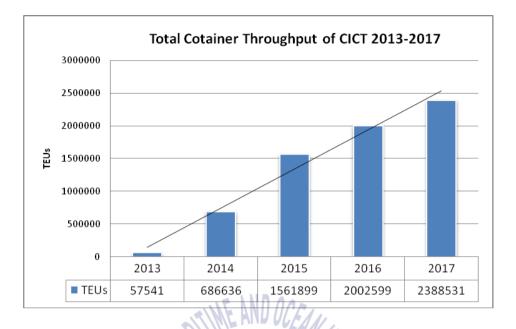


Figure 2.18 Total container throughput handled by CICT

T 11 A	C	C 3 4			1 11 1	· OTOT
Table 2.6	Some of	DT IVI	ega ve	essels	handled	In CICT

FUL			
Vessel Name	Capacity	LOA	Draft
MSC MAYA	19224 TEUs	396 m	16 m
MSC NEWYORK	16652 TEUs	399 m	11.6 m
CMA CGM MARCO POLO	16020 TEUs	396 m	16 m
EDITH MAERSK	13500 TEUs	399 m	12.6 m
EBBA MAERSK	15500 TEUs	397 m	16 m
ELLY MAERSK	15500 TEUs	397 m	16 m
EUGEN MAERSK	15500 TEUs	397 m	16 m

Under the circumstances, the developments of East Container Terminal of Phase 1 and 2 under the Colombo port expansion project will be a great advantage to attract a large share of the container transshipment traffic

originated from India as the fastest growing, largest economy of the South Asia. Under the Colombo expansion project, East Container Terminal (ECT) is the second deep water terminal and it is going to build in two stages and according to the master plan of Expansion project, the total length of East Container terminal is 1200m and the construction of a 440m stretch of the terminal already been completed (depth- 18m and capacity 2.4 million TEUs) under the 1st step and The second step of ECT, 760m in length and 18m in depth.

- A. The total length of East Container terminal is 1200m and the construction of a 400m stretch of the terminal already been completed (depth- 18m and capacity 2.4 million TEUs) under the 1st step. The government again would decide whether it handles by SLPA or PPP model and waiting until get the decision by ministers of cabinet.
- B. The second step of ECT, 760m/18m will be operated as PPP model and constructions should be completed in 2018 under the WRMMP but it will be delayed under current situation.
- C. East terminal bidding process involves the Asian Development Bank as the transactional advisor.

Figure 2.19 Geographical location of port of Hambantota

Figure 2.20 Completion of the first phase of the Hambantota port

On the other hand, SLPA has completed the phase 1 construction of Hambantota port on the southern coast of the island, which is the commercial port closest (only 15 Nautical miles away) to the main shipping lane between Singapore and Suez Canal (Figure 2.19).

China Merchant Holdings and China Harbor Engineering developed Hambantota port at a cost of about \$600 million and for the Hambantota project Sri Lanka government borrowed \$310 million from China with interest charged at 6.3%- well above the rate for soft loans from the WB and ADB, which ranged 0.25%-3%. Hambantota port and nearby airport (Mattala) opened in 2010.

In 2015 the new government aimed to cut the national debt of USD 64.9 billion of which about 12% is owed to China and Hambantota Port was handed over to a Chinese state- owned company (China Merchants Ports holding) with a 99 year lease deal worth US\$ 1.1 billion.

Hambantota port is located near the main shipping route from Asia to Europe and likely to play a key role in China's "Belt and Road initiative in future and there will be a plan for 99-year lease of 15000 acres (23 sq miles) to develop industrial zone and develop the tourism industry and related industries in the area. The port will be expanded according to the development plan but cargo that can be attracted to the port still to be clearly identified. As a wide hinterland is available for industrial use, the port can be flexibly developed to best utilize its geographic strength, and wide and available land for industries and logistics.

Containerization started in Queen Jetty in port of Colombo in 1970s in the South India region and American President Line (APL) involved for the first container handling at that time and so far, the world ranked main shipping lines were the best customers in the port and this is also a huge advantage. In the year 2018, Port of Colombo has been ranked as the 13th

best connectivity port in the world and the best connectivity port in the South Asia according to the Drewry Port Connectivity Index ranking (<u>https://www.drewry.co.uk/...container-index.../world-container-index-</u>). In ranking this connectivity index, the no of main line services calling at each port per week and the regions in the world to which each directly linked with the port are used as the variables.

So far, port of Colombo maintained very successful port policies and it was helped to keep the port as the maritime hub in the South India region. Sri Lanka Ports Authority was awarded as the ports authority of the year 2018 and South Asia Gateway Terminal received the award as the best terminal in the South Asia region by the Singapore based Global Ports Forum (GPF) in the same year. The GPF awards evaluate the organizations and professionals' contribution in different areas of the ports and terminals industry (globalportsforum.com).

 Table 2.7 ISC ports and the deviation hours from the main shipping route

Port	Deviation hours
Colombo – Sri Lanka	8
Tuticorin – India	20
Mumbai - India	31
Chennai - India	35
Khor Fakkan - UAE	65
Karachi - Pakistan	90
Chittagong – Bangladesh	100

Weakness

It is also commonly understood that the main weakness of Sri Lankan ports is lack of Sri Lankan domestic cargo. As shipping lines prefer when the export and import cargo exceeds a certain amount, they are likely to gradually put direct call service to such ports that have sizable domestic activity. This has already taken place at several Indian ports like JNPT. Transshipment to JNPT at Colombo port has virtually ceased since shipping lines put their mother vessels into direct call service to JNPT. It would be difficult for Sri Lankan ports to compete with JNPT for cargo that is directly transported by container mother vessels to JNPT (Data collection survey).

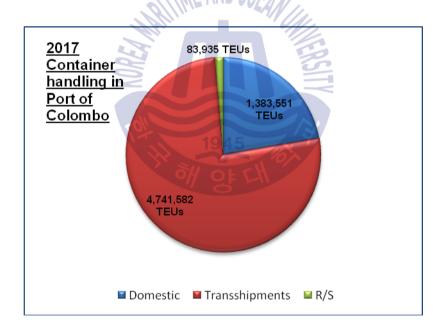


Figure 2.21 Category wise container throughputs in port of Colombo in 2017

One of the major weaknesses in Sri Lankan ports is that the lack of sufficient feeder services to attract mother vessels. Normally, shipping lines prefer faster connection of their cargo to feeder vessels at a hub port. The more feeders that call at a port the more mother vessels will call at that port. This is very true of Singapore port; even though the shipping route from Chittagong port to Singapore port is longer than to Colombo port, shipping lines use Singapore as their transshipment port not only for their easterly destined cargo but also westerly destined cargo (Data collection survey).

Opportunities

There are several opportunities for Sri Lankan ports to sustain their current strong position in the international maritime transport network and keep pace with competitor ports with ISC and Bengal Bay that are ambitiously planning to develop their infrastructure to meet demand generated by the growing economy of their hinterlands.

One of the opportunities which can be pursued is feeder service to small scale ports on both the east and west coast of ISC. When mega container vessels call Colombo port, more specially the South Harbor, feeder service will be put in between Colombo port and the small ports in both coasts of ISC. The mega container vessels and Colombo's geographic position will enable containers to be transshipped more economically through Colombo port than Indian ports. Competition for this service from JNPT and Cochin port on the India's west coast and Chennai port and Vishakhapatnam port on the east coast will also be hampered by India's sabotage restrictions on her coastal shipping which it appears will remain in place for the time being.

32

In addition, when lower transport cost is achieved by the mega container vessels calling South harbor in Colombo port and service raise to level similar to Singapore port, westerly bound cargo from/to Bangladesh can be captured. Similarly westerly bound cargo from/to Yangon port can also be regained from Singapore port (Data collection survey).

Port	Charge (US\$ / TEU)
Chennai	65
Chittagong	85
JNPT	95
Karachi	115
Mundra	116
Colombo	6151
Singapore	161
Shalala	194
Dubai	215
Rotterdam	268
Los Angeles	390
Male	415

 Table 2.8 Terminal handling charges at selected ports

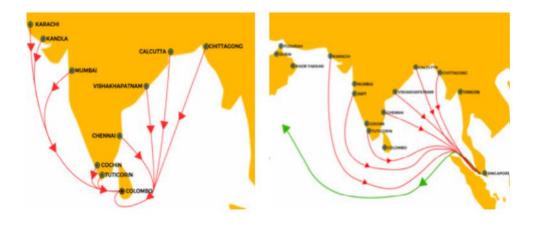


Figure 2.22 Feeder network from ISC to port of Colombo and port of

Chapter 3 Literature Review

3.1 Granger causality studies in public finance sector

The contribution of Granger (1969) regarding statistical causality was one of the main starting points for the empirical analysis to find the direction of causality between two variables. In the field of public finance, the majority of the Granger causality tests have been conducted in two directions. The first one is on the relationship between economic growth and government expenditures. The other one is the relationship between government expenditures and national income (Wan Kyu Park 1998).

Mihai Mutascu (2016) surveyed "Government revenues and expenditures in the East European Economies: A Bootstrp panel Granger Causality Approach" and found that a unidirectional causality from public expenditures to revenues in Bulgaria. For the Czech Republic, Hungary, and Slovenia, government revenues explain expenditures, and a two-way causality exists for the Slovak Republic and no Granger causality is found for Estonia, Lithuania, Poland, and Romania.

Wan Kyu Park (1998) also investigated the Granger causal relationship between government revenues and expenditures in Korea over the period of 1964 to 1992 using time series data and found that there was a unidirectional causal relationship from government revenues to expenditures.

3.2 Granger causality studies in transportation sector

A number of causality studies can be found in investigating about the transportation sector as well as in shipping and port related matters during

the past years. Elton Fernandes & Ricardo Rodrigues Pacheco (2010) surveyed "The casual relationship between GDP and Domestic air passenger traffic in Brazil" and explored that there is a unidirectional Granger causal relationship from economic growth to domestic air transport demand in Brazil. The methodology followed time series causality analysis procedures and total domestic passenger-kilometers are used as a proxy for air transport demand and gross domestic product (GDP) as a proxy for economic growth.

The study points out the finding the causality relationship between GDP and domestic route passenger-kilometers in Brazil were important implications for planning national air transport infrastructure and should be studied in greater depth. Causality studies show that there may be unidirectional or bidirectional causality between historical time series or there may be no evidence of a causal relation between two or more series.

Air transport is a business requiring a large capital investment and also very high operating cost. In recent years, Brazilian market has shown signs of imbalance between service potential, supply and quality. So this analysis of air transport demand was important for formulating a national air transport policy and for defining capital investment for parties interested in scaling infrastructure and related business appropriately. This research can be considered as a case study for understanding air transport sector behavior.

The Granger causality test conducted in this paper revealed that there is a unidirectional Granger causality from GDP to domestic route passenger kilometers (RPK) in Brazil. This study results indicate that air transport policy in Brazil, as an element of considerable importance to the country's socio-economic development, should take account of the sectors' significant income elasticity and its sensitivity to market structure.

3.3 Granger causality studies in shipping sector

In shipping sector, Granger causality analysis was used by Amir H. Alizadeh & Nikos K.Nomikos (2003) in their survey of "The price-volume relationship in the sale and purchase market for dry bulk vessels" and causality tests between the two variables indicated that price changes Granger cause trading volume in the market for handysize and Panamax vessels as well as in the aggregate dry bulk price index. Through this research, the impact of trading volume on price variability has been studied.

Investigating the price-volume relationship in the market for secondhand ships is also extremely interesting due to the unique features that this market possesses. This paper investigates, for the first time, the relationship between prices and trading activity in a market where real assets are traded. Investigation of this issue is of interest since the level of trading activity may contain information about the sentiment and the future direction of the prices in the market.

Several important conclusions emerge from this analysis. It is found that price changes are useful in predicting trading volume, which suggests that higher capital gains encourage more transactions in the market. Additionally, it seems that volume has a negative impact on the volatility of price changes. More specially, in contrast to what is reported for financial markets, it was found evidence that, in the market for ships, increases in trading activity lead to a reduction in market volatility. This can be explained by the unique underlining characteristics of the market for ships, including thin trading, which imply that increase in trading activity result in price transparency and stability. These findings indicate that practitioners in the market may use that information contained in the level of trading activity so as to guide their market decisions in the sale and purchase market.

3.4 Granger causality studies in ports sector

In applying Granger causality test for ports sector, causality between port performance and traffic had been studied by Prabir De Buddhadeb Ghosh (2003) and surveyed "Causality between performance and traffic: an investigation with Indian ports". For this study, port performance index and port/transport statistics over 15 years of the 11 Indian ports were used as the data and applied Unit Root tests, Co integration tests and Granger causality tests in sequential manner to judge the nature and strength of this causality.

The major finding of this study was port traffic does not course port performance but port performance does course port traffic in the ports of India. Policies to increase efficiency have been pursued in the port sector in many countries by changing the structure and institutional framework of this industry. The changes have been introduced across the globe by such measures as privatization and deregulation so that the role of governments has been reduced significantly.

The countries in which the policy changes have been greatest are those in which national policies exerted a strong influence on port performance. The more competitive environment has implications for national port policies and for port management. The paper point out that Indian government has taken some discrete initiatives in the recent period for expanding their port capacity.

Lili Song & Jianing Mi (2016) surveyed "Port infrastructure and regional economic growth in China: a Granger causality analysis". This article investigated the Granger causality between port investment and economic growth in China both at the full regional level and the sub-regional level. By applying the panel data for the period of 1999-2009, the error correlation model (ECM) is employed to test the Granger causality between

port investment and economic growth. The results showed that short-term bidirectional causality exists between port investment and economic growth, and the long-term unidirectional causality exists between port investment and the economic growth.

A port's development is highly related to its regional economy because port activities such as transferring, loading and unloading, warehousing, processing, packaging, logistics services, and value added activities have multiplier effects on the local, regional, and national economy. Chinese ports play a crucial role in the development of the world port system. China has made substantial capital investment in its port facilities in recent years.

Jiang (2010) calculated the contribution of the seaport investments to the gross domestic product of the entire country using time series data of China, and the results showed that the seaport investments have a positive impact on the economic growth both in the long-term and short-term.

Yoo (2006) investigated the causality between seaport infrastructure investment and economic growth in Korea by applying time series data from 1970 to 2002. The results showed that unidirectional causality runs from seaport infrastructure investment to economic growth without any feedback, which means that there is no strong causality running from economic growth to seaport infrastructure investment in Korea.

Wen and Shen (2008) applied the Granger causality test to investigate the relationship between the five modes of transportation infrastructure and economic growth in China; the conclusion indicated that transport infrastructure has a positive impact on the economic growth in China, and the railway, inland navigation, and civil aviation infrastructures have bidirectional causality with economic growth.

An another Granger causality study related ports was conducted by Xin Tian, Liming Liu & Shouyang Wang (2015) to find the competing relationship between Shenzhen port and Hong Kong port in their research named "Evolving competition between Hong Kong and Shenzhen ports".

This study used Container throughput monthly time series data of the two ports and conducted the Unit root test and the Granger causality test to determine the relationship between the two time series and concluded that Hong Kong port does not affect Shenzhen port, whereas Shenzhen port has competitive power over Hong Kong port. The same methodology presented here was applied to understand of the port transport sector and analyze container traffic behavior in port of Colombo in this research as well.

Field	Authors	Analysis	Conclusion
	Mihai Mutascu	Government	A unidirectional causality
	(2016)	revenues and	Expenditures \rightarrow revenues
		expenditures in the	in Bulgaria
Public		East European	Revenues \rightarrow expenditures
finance		Economies	in Czech Republic,
			Hungary, and Slovenia
			A bidirectional causation
			in Slovak Republic
	Wan Kyu Park	Granger causal	A unidirectional causal
	(1998)	relationship between	relationship
Public		government	government revenues \rightarrow
finance		revenues and	expenditures
		expenditures in	
		Korea over the	

Table 3.1 Contributions of Granger causality approaches

Image: Ports sector Elion The casual relationship between causal relationship economic growth → domestic air ransport demand in Brazil Amir H. The price-volume relationship in the sale and purchase K.Nomikos (2003) A unidirectional Granger causal relationship economic growth → domestic air transport demand in Brazil Ports sector Prabir De Buddhadeb Ghosh (2003) Causality between performance and traffic: an investigation with Indian ports A unidirectional Granger causal relationship price changes → trading volume Ports sector Prabir De Buddhadeb Ghosh (2003) Causality between performance and traffic: an investigation with Indian ports A short-term bidirectional Granger causal relationship port performance → port traffic in the ports of Indian ports Ports sector Lili Song & Port infrastructure Jianing Mi (2016) Port infrastructure causality analysis A short-term bidirectional causality port investment → the economic growth			period of 1964 to	
Image: bit i			•	
Transpor tationFernandes & Ricardorelationship between GDP and Domesticcausal relationship economic growth → domestic air transport domestic air transport demand in BrazilsectorRodriguesair passenger traffic in Brazildomestic air transport demand in BrazilAmir H.The price-volume relationship in the sale and purchase (2003)A unidirectional Granger volumeShipping sectorNikossale and purchase market for dry bulk volumevolumePorts sectorPrabir De Buddhadeb Ghosh (2003)Causality between investigation with Indian portsA unidirectional Granger causal relationship port performance and investigation with Indian portsPorts sectorLili Song & Inaing Mi (2016)Port infrastructure causality analysisA short-term bidirectional causality port investment → causality port investment → causality port investment → causality				
tationRicardoGDP and Domesticeconomic growth →sectorRodriguesair passenger trafficdomestic air transportPacheco (2010)in Brazildemand in BrazilAmir H.The price-volumeA unidirectional GrangerAlizadeh &relationship in thecausal relationshipNikossale and purchaseprice changes → tradingK.Nomikosmarket for dry bulkvolume(2003)vesselsvolumePortsBuddhadebperformance andcausal relationshipSectorIndian portsport performance -> portItili Song &Port infrastructureA short-term bidirectionalJianing Miand regionalcausality(2016)economic growth inport investment →sectorChina: a Grangercausalityjaning Micausality analysisA long-term unidirectionalsectorinvestigation withport investment →janing Micausality analysisA long-term unidirectionalsectorinvestigation growth inport investment →sectorinvestigation growth inport investment →sectorinvestigation growth inport investment →sectorinvestigation growth inport investment →		Elton	The casual	A unidirectional Granger
sectorRodriguesair passenger traffic in Brazildomestic air transport demand in BrazilShipping sectorAmir H.The price-volume relationship in the sale and purchase market for dry bulk (2003)A unidirectional Granger causal relationship volumePorts sectorPrabir De Buddhadeb Ghosh (2003)Causality between performance and traffic: an investigation with Indian portsA unidirectional Granger causal relationship port performance \rightarrow port traffic in the ports of Indi Indian portsPorts sectorLili Song & Jianing Mi (2016)Port infrastructure causality analysisA short-term bidirectional causality port investment \rightarrow economic growth a long-term unidirection causality port investment \rightarrow the economic growth	Transpor	Fernandes &	relationship between	causal relationship
Pacheco (2010) in Brazil demand in Brazil Amir H. The price-volume A unidirectional Granger Alizadeh & relationship in the causal relationship Nikos sale and purchase price changes → trading K.Nomikos market for dry bulk volume (2003) vessels volume Ports Buddhadeb performance and causal relationship Buddhadeb performance and causal relationship Buddhadeb performance and port performance → port finian ports Indian ports A short-term bidirectional geotod investigation with traffic in the ports of Indi jianing Mi and regional causality (2016) economic growth in causality port investment → causality port investment → sector China: a Granger causality investigation analysis A long-term unidirection iauting Mi and regional causality iport investment → causality port investment → isochool causality analysis A long-term unidire	tation	Ricardo	GDP and Domestic	economic growth \rightarrow
Shipping sectorAmir H.The price-volume relationship in the sale and purchase market for dry bulk vesselsA unidirectional Granger causal relationship price changes → trading volumePorts sectorPrabir De Buddhadeb Ghosh (2003)Causality between performance and investigation with Indian portsA unidirectional Granger causal relationship port performance → port investigation with investigation with indian portsPorts sectorLili Song & (2016)Port infrastructure causality analysisA short-term bidirectional causality port investment → causality port investment → the economic growth	sector	Rodrigues	air passenger traffic	domestic air transport
Shipping sectorAlizadeh & Nikosrelationship in the sale and purchase market for dry bulk volumecausal relationship price changes → trading volumePorts sectorPrabir De Buddhadeb Ghosh (2003)Causality between performance and traffic: an investigation with Indian portsA unidirectional Granger causal relationship port performance → port traffic in the ports of Indi Indian portsPorts sectorLili Song & (2016)Port infrastructure causality analysisA short-term bidirectional causality port investment → the economic growth		Pacheco (2010)	in Brazil	demand in Brazil
Shipping sectorNikossale and purchase market for dry bulkprice changes → trading volume(2003)vesselsvolumePorts sectorPrabir De Buddhadeb Ghosh (2003)Causality between performance and traffic: an investigation with Indian portsA unidirectional Granger causal relationship port performance → port traffic in the ports of Indian port performance → port traffic in the ports of Indian (2016)Ports sectorLili Song & I aning Mi (2016)Port infrastructure causality analysisA short-term bidirectional causality port investment → economic growth causality analysisPorts sectorI and regional causality analysisA long-term unidirection causality port investment → the economic growth		Amir H.	The price-volume	A unidirectional Granger
sectorNikossale and purchaseprice changes → tradingK.Nomikosmarket for dry bulkvolume(2003)vessels-PortsBuddhadebperformance andcausal relationshipBuddhadebperformance andport performance → portGhosh (2003)traffic: anport performance → portIndian portsIndian ports-Lili Song &Port infrastructureA short-term bidirectionalJianing Miand regionalcausality(2016)economic growth inport investment →sectorChina: a Grangereconomic growth incausality analysisA long-term unidirectioncausalityport investment → theeconomic growth-investigation with-juaning Miand regionalcausality analysis-functional growth-investigation growth-investigation growth-juaning Mi-investigation growth-genter-investigation growth-investigation growth-	Shinning	Alizadeh &	relationship in the	causal relationship
K.Nomikosmarket for dry bulkvolume(2003)vessels-Prabir DeCausality betweenA unidirectional GrangerBuddhadebperformance andcausal relationshipGhosh (2003)traffic: anport performance → portinvestigation withIndian ports-Lili Song &Port infrastructureA short-term bidirectionalJianing Miand regionalcausality(2016)economic growth inport investment →causality analysisA long-term unidirectionsectorII <t< th=""><th></th><td>Nikos</td><td>sale and purchase</td><td>price changes \rightarrow trading</td></t<>		Nikos	sale and purchase	price changes \rightarrow trading
Ports sectorPrabir De Buddhadeb Ghosh (2003)Causality between performance and investigation with Indian portsA unidirectional Granger causal relationship port performance → port traffic in the ports of Indi Talianing Mi (2016)PortsLili Song & Jianing Mi (2016)Port infrastructure economic growth in causality analysisA short-term bidirectional causality port investment → economic growth causality port investment → the economic growth	sector	K.Nomikos	market for dry bulk	volume
Ports sectorBuddhadeb Ghosh (2003)performance and traffic: an investigation with Indian portscausal relationship port performance → port traffic in the ports of Indian Dort infrastructureLili Song & Jianing MiPort infrastructure and regionalA short-term bidirectional causalityPortsChina: a Granger causality analysiseconomic growth in causalityPortsIndian portsA long-term unidirection causalityPortsIndian portsport investment → causality analysis		(2003)	vessels	
Ports Ghosh (2003) traffic: an investigation with investigation with Indian ports port performance → port traffic in the ports of Indian ports Lili Song & Lili Song & Port infrastructure Jianing Mi (2016) Port infrastructure economic growth in China: a Granger A short-term bidirectional causality Ports China: a Granger economic growth in causality analysis A long-term unidirection causality port investment → economic growth in causality analysis A long-term unidirection causality		Prabir De	Causality between	A unidirectional Granger
sectorGhosh (2003)traffic: an investigation with Indian portsport performance \rightarrow port traffic in the ports of Indi Taffic in the ports of Indi (2016)PortsLili Song & Jianing Mi (2016)Port infrastructure economic growth in China: a Granger causality analysisA short-term bidirectional causality economic growth in causality port investment \rightarrow economic growth causality port investment \rightarrow the economic growth	Dorts	Buddhadeb	performance and	causal relationship
investigation with traffic in the ports of Indian ports Lili Song & Port infrastructure A short-term bidirectional Jianing Mi and regional causality (2016) economic growth in port investment → Ports China: a Granger economic growth sector causality analysis A long-term unidirection causality port investment → the economic growth		Ghosh (2003)	traffic: an	port performance \rightarrow port
Lili Song & Port infrastructure A short-term bidirectional Jianing Mi and regional causality (2016) economic growth in port investment → Ports China: a Granger economic growth sector causality analysis A long-term unidirection causality port investment → the economic growth	sector		investigation with	traffic in the ports of India
Jianing Mi and regional causality (2016) economic growth in port investment → Ports China: a Granger economic growth sector causality analysis A long-term unidirection causality port investment → the economic growth		107	Indian ports	
(2016) economic growth in port investment → Ports China: a Granger economic growth sector causality analysis A long-term unidirection causality port investment → the economic growth		Lili Song &	Port infrastructure	A short-term bidirectional
Ports China: a Granger economic growth sector causality analysis A long-term unidirection causality port investment → the economic growth economic growth		Jianing Mi	and regional	causality
sector causality analysis A long-term unidirection causality port investment → the economic growth		(2016)	economic growth in	port investment \rightarrow
causality port investment → the economic growth	Ports		China: a Granger	economic growth
port investment → the economic growth	sector		causality analysis	A long-term unidirectional
economic growth				causality
				port investment \rightarrow the
Xin Tian, Evolving A unidirectional Granger				economic growth
		Xin Tian,	Evolving	A unidirectional Granger
PortsLiming Liu &competition betweencausal relationship on	Ports	Liming Liu &	competition between	causal relationship on
Shouyang Hong Kong and competitive power		Shouyang	Hong Kong and	competitive power
sectorWang (2015)Shenzhen portsShenzhen port \rightarrow Hong	sector	Wang (2015)	Shenzhen ports	Shenzhen port \rightarrow Hong
Kong port				Kong port

	Jiang. N (2010)	Seaport investment	A unidirectional Granger
		and economic	causal relationship on The
Ports		development in	seaport investments \rightarrow the
sector		China	economic growth both in
			the long-term and short-
			term
	Yoo, S.H.	Seaport	A unidirectional causality
Ports	(2006)	Infrastructure	Seaport infrastructure
		Investment and	investment \rightarrow economic
sector		Economic Growth in	growth
		Korea	
	Wen.H. and Y.	Granger causality	A unidirectional causality
	Shen (2008)	analysis on the	transport infrastructure \rightarrow
		economy and	the economic growth in
Ports	JE .	transportation	China, and the railway,
	K	infrastructure	inland navigation, and
sector		construction	civil aviation
	[Or	1945	infrastructures have
			bidirectional causality
			with economic growth

Chapter 4 Research Methodology and Empirical Results

4.1 Research methodology

The Granger causality test is a statistical hypothesis test for determining whether one time series is useful in forecasting another, first proposed in 1969. Ordinarily, regressions reflect "mere" correlations, but Clive Granger argued that causality in economics could be tested for by measuring the ability to predict the future values of a time series using prior values of another time series. If a time series is a stationary process, the test is performed using the level values of two (or more) variables. If the variables are non-stationary, then the test is done using first (or higher) differences.

The number of lags to be included is usually chosen using an information criterion, such as Akaike information criterion or the Schwarz information criterion. Any particular lagged value of one of the variables is retained in the regression if it is significant according to a t-test and it and the other lagged values of the variable jointly add explanatory power to the model according to an F-test. Then the null hypothesis of no Granger causality is not rejected if and only if no lagged values of an explanatory variable have been retained in the regression.

The two variables studying in this research are Indian ports originated container traffic through port of Colombo and total transshipment throughput in port of Colombo and the monthly container throughput in TEUs for the year 2008- year 2017, relevant these two variables were used for the test.

4.2 Causal relationship between different time series

The world does not consist of independent stochastic processes. Just the contrary: in accordance with general equilibrium theory, economists usually assume that everything depends on everything else. Therefore, the next question that arises is about (causal) relationships between different time series.

In principle, we can answer this question in two different ways. Following a bottom up strategy, one might first assume that the data generating processes of the different time series are independent of each other. In a second step, one might ask whether some specific time series are related to each other. This statistical approach follows the proposals of Clive W.J.Granger (1969) and is today usually employed when causality tests are performed. The alternative is a top down strategy which assumes that the generating processes are not independent and which, in a second step, asks whether some specific time series are generated independently of the other time series considered.

This approach is pursued when using vector auto-regressive processes by the methodology, which goes back to Christopher A. Sims (1980). Both approaches are employed to investigate the causal relationships which potentially exist between different time series.

4.3The Unit root test

When considering the unit root test, we first use the Augmented Dickey-Fuller (ADF) test (Said and Dickey 1984) to determine whether the data should be differentiated to render stationary data. The ADF test here consists of estimating the following regression:

$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \sum_{j=1}^p \delta_j \, \Delta Y_{t-j} + \varepsilon_t \tag{1}$$

where, Δ is the first deference operator, *t* is the time trend, α is an intercept consistent called drift, β is the coefficient on a time trend, γ is the coefficient presenting process root, i.e. the focus of testing (if $\gamma = 0$, Y has a unit root), ε_t is an independent identically distributes residual term. In addition, *p* is the lag order of the first-differences autoregressive process, which is chosen carefully using the Akaike information criterion (Akaike 1973) and Schwarz information criterion (Schwarz 1978).

4.4 Granger causality test

Granger (1969) proposed a test for the direction of causality, and this was commonly used as a convenient and general approach by later researches to detect the presence of a causal relationship between two variables, using time series data. The definition of causality between two series, given by Granger (1969), is entirely in terms of predictability. Essentially, X is said to cause Y if a prediction of Y on the basis of its' previous history can be improved by taking in to account past values of X. It is also possible for causation to proceed in the reverse direction, given the validity of a symmetric statement. That is, reverse causality or feedback from Y to X can be said to exist if X can be predicted better by taking account of past values of Y than by not using them. Therefore, the causal relationship between X and Y can be bidirectional, if the causation is found to run in both directions simultaneously (Lili Song & Jianing Mi 2016).

There are three different types of situation in which a Grangercausality test can be applied:

- In a simple Granger-causality test there are two variables and their lags.
- In a multivariate Granger-causality test more than two variables are included, because it is supposed that more than one variable can influence the results.
- Finally Granger-causality can also be tested in a VAR framework; in this case the multivariate model is extended in order to test for the simultaneity of all included variables.

The Granger causality test is applied in this study to explore the causality between Indian originated container traffic and total transshipments of Colombo with using monthly time series data from 2009 to 2017. Causality tests assuming that both variables are stationary are performed using the following Vector Autoregressive (VAR) model,

$$IND_{t} = \alpha_{1,0} + \sum_{i=1}^{p} \alpha_{1,i} IND_{t-1} + \sum_{i=1}^{p} \beta_{1,i} COL_{t-1} + \varepsilon_{1,t}$$
(2)

$$COL_{t} = \alpha_{2,0} + \sum_{i=1}^{p} \propto_{2,i} IND_{t-1} + \sum_{i=1}^{p} \beta_{2,i} COL_{t-1} + \varepsilon_{2,t}$$
(3)

In terms of this model, total transshipments of Colombo Granger causes Indian ports' originated transshipments if the coefficients $\beta_{1,i}$ for i = 1, 2, ..., p in the first equation are jointly significant, i.e. the null hypothesis of $\beta_{1,i} = 0$ for i = 1, 2, ..., p is rejected. Similarly, Indian ports'

Collection @ kmou

originated transshipments Granger cause Colombo transshipments if the null hypothesis of $\propto_{2,i} = 0$ for i = 1, 2, ..., p is rejected.

With respect to this model we can distinguish the following cases:

- 1 If $\{\alpha_{11}, \alpha_{12}, \dots, \alpha_{1k}\} \neq 0$ and $\{\beta_{21}, \beta_{22}, \dots, \beta_{2k}\} = 0$, there exists a unidirectional causality from X_t to Y_t , denoted as $X \rightarrow Y$.
- 2 If $\{\alpha_{11}, \alpha_{12}, \dots, \alpha_{1k}\} = 0$ and $\{\beta_{21}, \beta_{22}, \dots, \beta_{2k}\} \neq 0$, there exists a unidirectional causality from Y_t to X_t , denoted as $Y \rightarrow X$.
- 3 If $\{\alpha_{11}, \alpha_{12}, \dots, \alpha_{1k}\} \neq 0$ and $\{\beta_{21}, \beta_{22}, \dots, \beta_{2k}\} \neq 0$, there exists a bilateral causality between Y_t to X_t , denoted as $X \Leftrightarrow Y$.

In order to test the hypotheses referring to the significance or not of the sets of the coefficients of the VAR model of equations and the usual Wald F-statistic could be utilized, which is the following:

$$\mathbf{F}_{c} = \frac{(SSR_{r} - SSR_{u})/k}{SSR_{u}/(n - 2k - 1)} \sim \mathbf{F}(\mathbf{k}, n - 2k - 1)$$

where:

 SSR_u = sum of squared residuals from the complete equation (unrestricted) SSR_r = sum of squared residuals from the equation under the assumption that a set of variables is redundant (restricted) The hypotheses in this test may be formed as follows; H_0 : X does not Granger cause Y, i.e. { $\alpha_{11}, ..., \alpha_{1k}$ } = 0, if F_c < critical value of F H_a : X does Granger cause Y, i.e. { $\alpha_{11}, ..., \alpha_{1k}$ } ≠ 0, if F_c < critical value of F

(1)

Collection @ kmou

47

and

H₀: Y does not Granger cause X, i.e. {β₂₁, ..., β_{2k}} = 0, if $\mathbf{F}_{\mathbf{c}}$ < critical value of F H_a: Y does Granger cause X, i.e. {β₂₁, ..., β_{2k}} ≠ 0, if $\mathbf{F}_{\mathbf{c}}$ < critical value of F

(2)

It has to be noted here that in the hypothesis (1) and (2) it is not tested if 'X causes Y', but instead it is tested if 'X causes Y according to the Granger type'. This is because the Granger test is just a statistical test based not on specific theory of causation but based on the ability of the equation to predict better the dependent variable. Furthermore, the validity of the test depends on the order of the VAR model and on the stationary or not the variables. The validity of the test is reduced if the variables involved are non-stationary (Seddighi Lawler & Katos, 2000).

4.5 Test results

Only stationary series are involved in terms of the definition of Granger causality (Granger 1969). To check whether the variables used in this study are stationary, we run the augment Dickey-Fuller (ADF) test on the Indian ports' originated transshipments and total transshipments in port of Colombo as a first step. As the empirical findings show, when the ADF test is applied on the original value of both variables, the results indicate that the null hypothesis of a unit root cannot be rejected at the 5% level; however, the null hypothesis of non-stationary can be rejected for the first difference of each of the two variables at a 5% level of significance (see Table 4.2).

1945

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Jan	47,095	75291	95667	87876	99843	100873	109832	117342	128098	135289
Feb	50,053	78560	88625	87543	98043	105458	112020	120215	126098	137898
March	58,902	79340	93065	89021	100563	99843	138700	119001	129431	139043
Apr	66,224	83132	96812	90342	99053	105440	101530	117089	128042	140093
May	68,098	83498	99101	93215	105678	107920	116789	121430	128227	141087
June	69,875	79499	98981	98219	108931	99982	112345	119043	130032	137094
July	70,062	83678	97832	89031	99043	106753	109953	118076	130043	146021
Aug	70,210	89542	109012	98021	108043	108732	117808	118977	131021	139043
Sept	73,392	91411	106567	95043	118932	109975	118630	113943	131092	141097
Oct	73,092	92875	110123	88021	109041	106776	117632	117798	129021	148092
Nov	75,021	85243	99970	90120	98065	109730	110050	120841	131021	141054
Dec	78,032	83701	97872	90211	100079	107773	116700	119780	129098	141043
Total	800,056	1005770	1193627	1096663	1245314	1269255	1381989	1423535	1551224	16557831
1945										

Table 4.1 Indian originated container traffic through port of Colombomonthly figures (TEUs) from 2008- 2017

Source: Statistics section of SLPA, South Asia Gateway Terminal and Colombo International Container Terminal data base

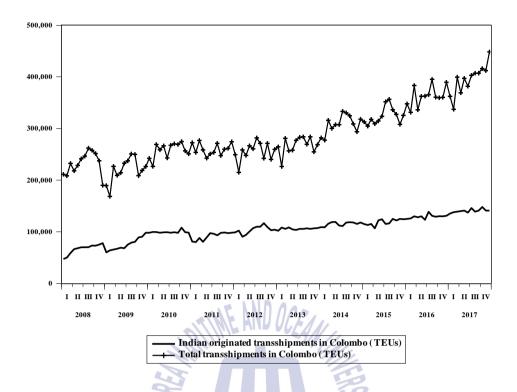


Figure 4.1 Indian ports' originated transshipments and total transshipments in port of Colombo monthly data from 2008 to 2017

1945 Table 4.2 Unit root (ADF) test results

	Level		Level ADF1st difference A		
Variables	Critical	<i>p</i> -value	Critical	<i>p</i> -value*	
	values		values		
Total TS	-3.448	0.2247	-3.452	0.0000**	
Indian TS	-3.448	0.0009**	-3.449	0.0000**	

Note: *MacKinnon (1996) one sided p- values.

**Denotes the rejection of null hypothesis at the 5% level

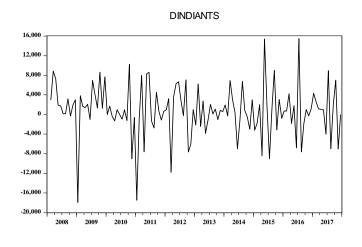


Figure 4.2: Indian originated transshipments in Port of Colombo graph

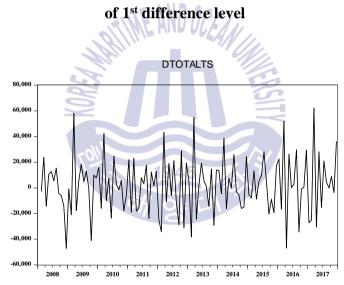


Figure 4.3: Total Transshipment throughput in Port of Colombo graph of 1st difference level

The optimal lag length is important to identify the true dynamics of the model. VAR system is used to determine the optimal lag length. We employed the popular criteria to choose the optimal lag order and the results shown in the Table 4.3.

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2568.241	NA	2.94e+17	45.89716	45.94571	45.91686
1	-2380.673	365.0887	1.11e+16	42.61915	42.76479	42.67824
2	-2370.333	19.75498	9.89e+15	42.50596	42.74868*	42.60444
3	-2363.268	13.24821*	9.37e+15*	42.45121*	42.79102	42.58908*
4	-2363.144	0.227375	1.00e+16	42.52043	42.95733	42.69770
5	-2361.188	3.528326	1.04e+16	42.55693	43.09092	42.77358
6	-2360.664	0.926667	1.11e+16	42.61899	43.25007	42.87504
7	-2356.125	7.861592	1.10e+16	42.60938	43.33755	42.90482
8	-2353.926	3.730311	1.14e+16	42.64154	43.46680	42.97637

Table 4.3 Optimal Lag Order in the VAR System

Note: *indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

- FPE: Final prediction error
- AIC: Akaike information criterion
- SC: Schwarz information criterion
- HQ: Hannan-Quinn information criterion

From the Table 4.3 it is clear that lag order 3 is the optimal lag according to sequential modified LR test statistic, FPE, AIC and HQ information criterion. Hence, we accept the judgment of the four criteria which indicates optimal lag order of 3.

1945

Table 4.4 reports the results for the Granger causality tests on the Indian Ports' TS between Total TS in the port of Colombo. The empirical findings show that there is a unidirectional Granger causality from Total TS to Indian TS in the port of Colombo but there seems not to be any causality from Indian TS to Total TS.

Table 4.4 Results of Granger causality test for Total TS and Indian TS

Null hypothesis	Granger causality test results (p-value)
Total TS does not Granger-cause Indian TS	0.0048*
Indian TS does not Granger-cause Total TS	0.2594

Note: *means that the null hypothesis should be rejected at a significance level of 5%.

Chapter 5 Conclusions

5.1 Research findings

Granger (1969) pointed out that if co-integration exists in a pair of series, there must be causation in at least one direction. The study investigates the relationship between Indian ports' originated transshipments and total transshipments in the port of Colombo and to identify any possible direction of causality between them. The result of the study shows that total transshipments in the port of Colombo has much to contribute to Indian ports' originated transshipment traffic via the port of Colombo. This Granger causality test result can be interpreted in different ways,

- Colombo total transshipments throughput has a positive impact on Indian originate container traffic via port of Colombo
- Colombo total transshipment throughput guides the Indian originate container traffic via port of Colombo

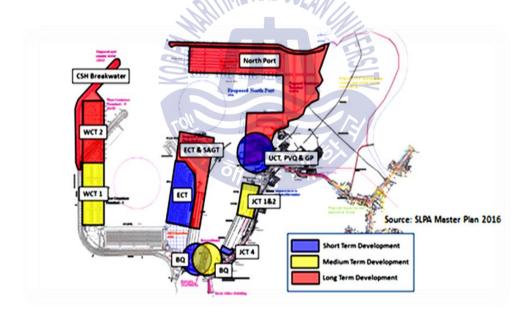
Furthermore, this sends an important message to policymakers to take immediate actions to improve total transshipments volumes and container handling capacity in the port and through that level it would be easy to attract more transshipments volumes from Indian sub continent ports.

Therefore to expand container handling capacity and transshipment throughput in the port the following long-term and short term strategies and related activities should be implemented rapidly in the port of Colombo.

5.2 Policy recommendations

Given the research findings described in the previous paragraph, policy makers in port of Colombo may utilize partially the result of the study in order to analyze thoroughly the new port system reform; first of all, it may be useful to understand the importance of the transshipments throughput of port of Colombo and how can be developed it. The biggest advantage of port of Colombo as discussed earlier not other than the strategic geographical location. To keep the position of the maritime hub in the South Indian region it is important to keep the highest volumes in transshipments and the policy makers have to give their attention for this without delay.

Secondly, this causality relationship shows the total transshipment throughput of port of Colombo has a positive impact on Indian container traffic and this can be used to make the policy improvement process. Particular attention should be given to other transshipment sources like Bangladesh, Pakistan, Myanmar and Male ports and have proven to be essential for the local, regional and national economy, but are currently not as efficient as others.


To strengthen the total transshipments in port of Colombo here recommends the implement the following policy decisions in port of Colombo,

- Implementing the proposed Colombo port development plan without delay
- Attracting new transshipment volumes, introducing new services and new shipping lines
- Explore new transshipment market volumes like Bangladesh, Myanmar and attract new business opportunities
- Success management policy implementation

Implementing the proposed Colombo port development plan without delay

This sends an important message to policymakers to carry out the Colombo port expansion project and other proposed development plans (Figure 5.1) under the master plan of port of Colombo in order to attract much more strong transshipment volumes from the Indian subcontinent region specially, India, Bangladesh, Pakistan and Male. With increased use of larger vessels in the South Asia transshipments markets, development of additional deep water berths are urgently needed as the only port in the South Asia region with a deep water terminal that can accommodate the latest generation of mega ships.

Short Term Development	Medium Term Development	Long Term Development
Completion of ECT (phase2)	WCT 1	Extension of CSH break water
JCT4 expansion	Deepening of JCT 1&2	WCT phase 2

Improvement of UCT, PVQ & GP	Passenger Terminal at BQ	North port
Recreational facilities deepening at BQ		Extension of ECT & SAGT

Figure 5.1: Colombo Port development plan under the WRMMP

(Western Region Megapolis Master Plan)

Table 5.1 Planned development schedule under the master plan in port of Colombo

INE IND OCE.				
No	Development Plan	Commencement	Completion	
01	Completion of ECT	2013	2018	
02	Commencement of WCT 1	2018	2020	
03	Construction of Port Shipping &	2016	2018	
	Business Centre 1945	15-		
04	Development of BQ as a passenger	2016	2018	
	Terminal			
05	Shifting of conventional cargo to JCT	2016	2017	
	1&2			
06	Establishment of CFS for LCL in the in	2016	2018	
	JCT 1&2			
07	Allocation of SAGT and JCT 3&4 for	2018	2020	
	feeder handling			
08	Cargo inspection facilities close to the	2015	2017	
	port of Colombo			
09	Development of 250ha of land adjacent	2015	2025	
	to port of Colombo for CFS operation &			

	cargo value added services		
10	Extension of CSH breakwater	2021	2025
11	Construction WCT 2	2022	2025
12	Improvement to UCT, PVQ & Guide	2023	2025
	Pier for conventional cargo operation		
13	Commercial developments in JCT 1&2	2024	2026
14	Development of yacht terminal	2025	2026
15	Development of North port	2025	2040

Source: WRMMP Western Region Megapolis Master Plan – 2013

Success management policy implementation

 Port privatization policy – Public private Partnership (PPP)/ Build Operating and Transfer (BOT) model.

In 1999 the SLPA established a joint venture operation a consortium South Asia Gateway Terminal (SAGT) led by P&O ports. This is on a 30year concession on a BOT basis in Sept 1999, the concession was awarded to a consortium led by P&O ports and the new facility was fully operational in 2003 and the SLPA, which secured a 15 per cent equity in SAGT paid rental and royalty for the containers handled in this terminal.

In 2011 China Merchant Holdings won the rights to develop the South Container Terminal with 35-year BOT and started operations in 2013.Colombo International Container Terminals Ltd (CICT) is a Joint venture between China Merchant Holdings (International) Co. Ltd (85% ownership) and the Sri Lanka Ports Authority (15% ownership) under a 35 year build, operate and transfer (BOT) agreement. These two terminals are doing their terminal operations very successfully and the future terminal

operation will be implemented under this success policy frame work in port of Colombo especially in South Harbor Expansion project.

• Rebates

East coast of India & Bangladesh rebates: Transshipment rebates of 10% will be granted on containers to and from East coast of India & Bangladesh to improve transshipment volumes from Indian Sub Continent ports.

Volume rebates are granted to the main line operators for the pure volumes generated by the individual lines in port of Colombo.

• Keeping the competitive tariff rates to attract more business

Port	Charge (US\$ / TEU)
Chennai roll	65
Chittagong	45 16 85
JNPT 04	2F CH 95
Karachi	115
Mundra	116
Colombo	151
Singapore	161
Shalala	194
Dubai	215
Rotterdam	268
Los Angeles	390
Male	415

Table 5.2 Terminal handling charges in selected ports

• Improve the image of port of Colombo to attract more shipping lines

Recently signed a MOU between container terminals in the port of Colombo, in order to promote Colombo collectively to share the resources to market & protect the greater interest of the port. Compete with each other but cooperate with each other in order to better service to clients and moving from competition to co-competition. The coordination in between all the three terminals to develop the image of Colombo port is very important and to introduce this kind of important policy and implementing them is the responsibility of ministry of port and shipping of Sri Lanka.

NE AND OCEAN

5.3 Limitations of the study

Granger causality is a statistical method for investigating the flow of information between time series. The relationship of the test is depends on the time series data we use for the test and when the range of data is high the reliability of the test results are high. To get success results of the causality test the number of lags level should be kept high and in this test, we used monthly container throughput data in port of Colombo from the year 2009 to 2017. But normally, in most Granger causality tests use 10- 20 years monthly data, but it is really hard to collect monthly data such a long time in relating this type of study. In Colombo, since there are four container terminals involved in container operations and most of the terminals doesn't keep monthly data such a long time in their terminal management systems. So, this study depends on the available limited data and it is one of the major problems to hinder the success of the research.

In considering the methodology in this research, the Granger causality has common limitations and arguments in itself. Some argues that as its name implies, Granger causality is not necessarily true causality. The

definition of Granger causality did not mention anything about possible instantaneous correlations between x_t and y_t . If the innovation to y_t and innovation to x_t are correlated we say there is instantaneous causality. It will be usually found instantaneous correlation between two time series, but since the causality (in that "real" sense) can go either way, one usually does not test instantaneous correlation.

References

- [1] Akaike,H (1973). Information theory and an extension of the maximum likelihood principle.In Proceedings of the Second International Symposium on Information Theory, edited by B.N. Petrov and F. Caski, 267-281. Budapest: Akademiai Kiado.
- [2] Amir H,Alizadeh & Nikos K, Nomikos (2003). The price-volume relationship in the sale and purchase market for dry bulk vessels, Maritime Policy & Management, 30:4, 321-337.
- [3] Data Collection Survey on International Logistics Centered on Sri Lanka. Final Report. (November 2012). Japan International Cooperation Agency Padeco.Co.,Ltd.
- [4] Elton, Fernandes & Ricardo Rodrigues, Pacheco (2010). The causal relationship between GDP and domestic air passenger traffic in Brazil, Transportation Planning & Technology, 33:7, 569-581.
- [5] Gibson, Philip. (2012) Cruise operations management: hospitality perspectives. New York: Routledge, 122.
- [6] Granger, C., 1969, Investigating causal relations by econometric models and cross spectral methods. Econometrica, 37-3, 424-438.
- [7] H.R. Seddighi, K.A. Lawler and A.V. Katos. (2000). Econometrics A practical approach, 7, 310-311. London: Routledge.
- [8] Inaugurated Colombo Maritime Conference concludes (2016). Retrieved February 26, 2018, from http://www.slpa.lk/port-colombo-page.
- [9] Indian special correspondent (2016, December 27). Indian demand for Colombo transshipment slowing, data shows. Retrieved January 5, 2018 from <u>http://www.joc.com/port-news/asian-ports.html</u>.

- [10] Jiang, N. (2010). Seaport investment and economic development in China. Dalian: Dalian Marine University Press.
- [11] Lili Song & Jianing Mi (2016). Port infrastructure and regional economic growth in China: a Granger causality analysis, Maritime Policy & Management, 43:4,456-468.
- [12] Lloyd's list top hundred container ports: ranking, Maritime Intelligence informa 2017, <u>https://maritimeintelligence.informa.com/content/top-100success</u>.
- [13] Mihai Mutascu (2016). Government revenues and expenditures in the East European Economies: A Bootstrap Panel Granger Causality Approach, Eastern European Economics, 54:6, 489-502.
- [14] Nidhi Jamwal (2017 December 10), Does South India need three transshipment ports to compete with Colombo? Retrieved January 5, 2018, from <u>http://thewire.in/201652/south-india-trans-shipment-portsenayam/html</u>.
- [15] Prabir De Buddhadeb Ghosh (2003). Causality between performance and traffic: an investigation with Indian ports, Maritime Policy & Management, 30:1, 5-27.
- [16] Said, S. E., and D. Dickey. 1984. "Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order." Biometrika Trust, 71-3,599-607
- [17] Schwarz, G. 1978. Estimating the Dimension of a Model. Annals of Statistics 6-2, 461-464.
- [18] Statistics section of Sri Lanka Ports Authority (SLPA).
- [19] UNCTAD (United Nations Conference on Trade and Development) Review of Maritime Transport 2017, 64,102.

63

- [20] Wan Kyu Park (1998). Granger causality between government revenues and expenditures in Korea, Journal of Economic Development, 23-1,145-155.
- [21] Wen, H. and Y, Shen. 2008. Granger causality analysis on the economy and transportation infrastructure construction. Technology and Economy in Areas of Communication 10 (2): 82-84.
- [22] World Maritime News, (February 23, 2018), Colombo Port Reaches 6.2 million TEUs Container Mark. Retrieved March 22, 2018, from https://worldmaritimenews.com/archives/245445/colombo-port-reaches-6-2-mn-container-mark.
- [23] Xin Tian, Liming Liu and Shouyang Wang (2015). Evolving competition between Hong Kong and Shenzhen ports, Maritime Policy & Management, 42:7-8, 729-745.
- [24] Yoo, S.H. 2006. Seaport Infrastructure Investment and Economic Growth in Korea. International Journal of Critical Infrastructures.

1945

