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Automatic Wi-Fi Fingerprint System

based on Unsupervised Learning

by Ju Hyeon, Seong

Department of Electrical & Electronics Engineering
Graduate School of Korea Maritime and Ocean University

Busan, Republic of Korea

Abstract

Recently, smartphones and Wi-Fi appliances have been generalized in daily
life, and location-based service (LBS) has gradually been extended to indoor
environments. Unlike outdoor positioning, which is typically handled by the
global positioning system (GPS), indoor positioning technologies for providing
LBSs have been studied with algorithms using various short-range wireless
communications such as Wi-Fi, Ultra-wideband, Bluetooth, etc.

Fingerprint-based positioning technology, a representative indoor LBS,
estimates user locations using the received signal strength indicator (RSSI),
indicating the relative transmission power of the access point (AP). Therefore,
a fingerprint-based algorithm has the advantage of being robust to distorted
wireless environments, such as radio wave reflections and refractions,

compared to the time-of-arrival (TOA) method for non-line-of-sight (NLOS),

_ix_
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where many obstacles exist. Fingerprint is divided into a training phase in
which a radio map is generated by measuring the RSSIs of all indoor APs
and positioning phase in which the positions of users are estimated by
comparing the RSSIs of the generated radio map in real-time. In the training
phase, the user collects the RSSIs of all APs measured at reference points set
at regular intervals of 2 to 3 m, creating a radio map. In the positioning
phase, the reference point, which is most similar to the RSSI, compares the
generated radio map from the training phase to the RSSI measured from user
movements. This estimates the real-time indoor position.

Fingerprint algorithms based on supervised and semi-supervised learning
such as support vector machines and principal component analysis are
essential for measuring the RSSIs in all indoor areas to produce a radio map.
As the building size and the complexity of structures increases, the amount
of work and time required also increase. The radio map generation algorithm
that uses channel modeling does not require direct measurement, but it
requires considerable effort because of building material, three-dimensional
reflection coefficient, and numerical modeling of all obstacles. To overcome
these problems, this thesis proposes an automatic Wi-Fi fingerprint system
that combines an unsupervised dual radio mapping (UDRM) algorithm that
reduces the time taken to acquire Wi-Fi signals and leverages an indoor
environment with a minimum description length principle (MDLP)-based radio
map feedback (RMF) algorithm to simultaneously optimize and update the
radio map. The proposed UDRM algorithm in the training phase generates a
radio map of the entire building based on the measured radio map of one

reference floor by selectively applying the autoencoder and the generative
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adversarial network (GAN) according to the spatial structures. The proposed
learning-based UDRM algorithm does not require labeled data, which is
essential for supervised and semi-supervised learning algorithms. It has a
relatively low dependency on RSSI datasets. Additionally, it has a high
accuracy of radio map prediction than existing models because it learns the
indoor environment simultaneously via a indoor two-dimensional map (2-D map).
The produced radio map is used to estimate the real-time positioning of users
in the positioning phase. Simultaneously, the proposed MDLP-based RMF
algorithm analyzes the distribution characteristics of the RSSIs of newly
measured APs and feeds the analyzed results back to the radio map. The
MDLP, which is applied to the proposed algorithm, improves the performance
of the positioning and optimizes the size of the radio map by preventing the
indefinite update of the RSSI and by updating the newly added APs to the
radio map.

The proposed algorithm is compared with a real measurement-based radio
map, confirming the high stability and accuracy of the proposed fingerprint
system. Additionally, by generating a radio map of indoor areas with different
structures, the proposed system is shown to be robust against the change in
indoor environment, thus reducing the time cost. Finally, via a euclidean
distance-based experiment, it is confirmed that the accuracy of the proposed
fingerprint system is almost the same as that of the RSSI-based fingerprint

system.

_xi_
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Chapter 1 Introduction

1.1 Background and Necessity for Research

Global positioning system (GPS)-based location based services (LBS) have
applications in various fields such as the automotive industry, logistics, and
security, etc. However, it is difficult to provide such services in indoor
spaces because of the low signal transmittance of GPS. Recently, as the
structures of buildings have become larger and more complex, the necessity of
LBS in indoor environments has increased, and indoor positioning technologies,
which can replace GPS, are being studied continuously [1, 2].

The representative indoor positioning methods are broadly classified into
the time of arrival (TOA) [3-5], in which the distance between a transmitter and
a receiver is estimated by measuring a signal arrival-time, and a fingerprint
[6-9] in which a position is estimated by measuring an intensity of the
relative signal of access point (AP) according to the indoor location.

Table 1.1 shows a comparison of the communication methods employed,
advantages, and disadvantages of the fingerprint and TOA. The TOA, which
includes the time difference of arrival (TDOA), a positioning technique of
GPS, requires the signals to be received at three or more different points.
And communication techniques or protocols that are capable of measuring the
arrival time of the signal are also essential. Additionally, it requires the spatial
positional coordinates of the transmitter because it estimates the positions of

users using the relative distances between the transmitters and receivers.
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Table 1.1 The comparison of fingerprint and TOA technology

Classification Fingerprint TOA
= Wi-Fi _
o . Ultrawide-band (UWB)
Communication | = Zigbee

technology ]

Bluetooth low energy
(BLE)

Chirp spread spectrum
(CSS)

Robust to Non-line of

High positioning

resolution(cm unit)

Advantages sight (NLOS) .
) ) Low computational
= High penetration rate .
complexity
= Long construction time Large construction cost
) of system of system
Disadvantages

Low positioning

resolution(m unit)

Vulnerability to disturbance
(Refraction, Reflection, etc.)

The representative

spectrum (CSS) [10],

communication technologies

ultrawide-band (UWB) [11,12],

of TOA are chirp spread

etc., and they have relatively

higher positioning accuracies compared to the fingerprint. However, the cost

of constructing such systems is many high because these communication

systems are not universal radio systems.

Moreover, in the non-line-of-sight (NLOS) cases, where reflection and

refraction of radio may occur, the position errors increase sharply because it

will be difficult to measure the arrival time of the radio accurately.

The fingerprint has two phases. In the training phase, the intensities of the
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radio signals measured at certain intervals in the indoor areas have generated
a database called a “radio map”. In the positioning phase, the indoor positions
of users is estimated based on the radio map generated in the training phase.

This method is suitable for most indoor communications such as Wi-Fi,
BLE, and Zigbee [13-15], which can measure the received signal strength
indicator (RSSI) that indicates the relative intensities of the radio signals
measured according to the distance between a transmitter and a receiver. This
method has the advantage that positioning is possible using the universal
device alone, and does not require additional transmitters and receivers.

Wi-Fi, which is the most widely used short-range wireless communication
technology, is a communication method that has been attracting attention in
the field of positioning because of its longer transmission distance and
stronger transmission power compared to other communications. Wi-Fi-based
indoor positioning is applicable to both the fingerprint and trilateration which
is the positioning technique of TOA [16].

If an indoor area has been analyzed perfectly (components of a medium,
transmittance, multi-path fading, etc.), the trilateration, which identifies the
position by converting the RSSI into a distance value that depends on the
channel modeling of the radio, can predict the position accurately than the
fingerprint.

On the other hand, the fingerprint does not need an analysis of the indoor
radio environment in the training phase because it uses a radio map, which
stores the RSSI as it is. However, the fingerprint requires more time for
system preparation than the TOA because it is necessary to measure the

Wi-Fi signal at each of positions called the “reference points” after dividing
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the indoor space at regular intervals, in order to produce the radio map
[17,18].

Therefore, as the size of the building and the density of Wi-Fi increases,
the size and generation time of the radio map for positioning also increases
rapidly. It is becoming increasingly necessary to find solutions to these
problems, because they not only increase the time cost rapidly but also slow

down the real-time positioning speed (in the case of fingerprint).

1.2 Objectives and Contents for Research

In order to reduce the time cost and workload, this thesis proposes an
automatic Wi-Fi fingerprint system based on unsupervised learning that
combines an unsupervised dual radio mapping (UDRM) algorithm, which
reduces the acquisition time of the Wi-Fi signals and considers an indoor
environment, and a minimum description length principle (MDLP)-based radio
map feedback (RMF) algorithm to optimize and update the radio map
simultaneously.

However, Wi-Fi needs to consider a spatial environment due to the large
attenuation of RSSI depending on indoor area and structure. To solve this
problem, the proposed UDRM algorithm, which is divided into a modified
autoencoder and modified generative adversarial network (GAN), is separately
applied to these algorithms, depending on whether the indoor structures of
building is the same or different for floors. Using the measured radio map of
one floor called a “reference floor* in the building, the modified autoencoder

predicts and generates the radio maps of other floors that have the same
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structure as the reference floor. The signals set of Wi-Fi APs measured at
each reference point, which is a fixed interval set to acquire the Wi-Fi
signals in the building, is learned using the modified autoencoder as input
data. The input data which is consist of service set identifiers (SSIDs) and
the RSSIs can be directly applied to the other floors of the same structures
because they learn the changed RSSI according to the reference points around
the APs, using the autoencoder.

A modified GAN is applied to generate the radio maps for the other floors
that have different indoor structures. The proposed modified GAN algorithm
is designed to take in not only the Gaussian noise, which is the basic input
signal but also a two-dimensional map (2-D map) and the coordinates of APs,
as input data, to learn the indoor structure of the radio map. The designed
input data are learned using a generator based on a neural network. When
the learned data are input to a discriminator, along with the real measured
radio map on the reference floor, the convolutional neural network (CNN)
inside the discriminator compares and analyzes the space, placement of the
APs, and entire RSSI distribution from the kernels which are filters of various
sizes that can extract the characteristics of input data. The analyzed results of
the discriminator are fed back to the generator. This process is repeated and
the generator is gradually upgraded to an excellent learned generator that can
similarly produce the real measured radio map. The modified GAN-based
radio map at the new floors is generated through the learned generator by
combining the 2-D map and the APs coordinates and various analyzed
kernels data based on the real measured radio map at the reference floor. An

entire radio map based on the proposed UDRM at the building is generated
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by combining each radio map generated by selectively adapting the modified
autoencoder and GAN.

Based on the entire radio map generated by the proposed UDRM
algorithm, an MDLP-based RMF algorithm is proposed, to cope with not
only the positioning but also the creation and removal of new APs in the
positioning phase. The proposed MDLP-based RMF algorithm reduces the
acquisition time of Wi-Fi RSSI through post-processing, by subordinating the
measuring process of the RSSI in the training phase to the positioning phase.
The MDLP, which is a discretization algorithm that discriminates and segments
the continuity between the APs or RSSIs, preferentially removes the APs or
RSSIs that have similar RSSI distributions because the coordinates of APs are
spatially close and the RSSIs are not clearly distinguished according to the
reference points. Using this algorithm, it is possible to manage the radio map
continuously while preventing and reducing the indiscriminate updating of the

radio map.

Collection @ kmou



Chapter 2 Wi-Fi Positioning and Unsupervised Learning

2.1 Wi-Fi Positioning

2.1.1 Wi-Fi Signal and Fingerprint

Wi-Fi, which uses information such as the SSID, RSSI, channel, and
security type, is used frequently along with various indoor wireless
communication technologies such as Bluetooth and Zigbee, because it uses
the industrial, scientific, and medical (ISM) frequency-bands of 2.4 GHz and 5
GHz. The RSSIs of these communications are further distorted by reflection
and diffraction from obstacles such as walls, doors, and rooms, as well as by
the general signal attenuation over distance. Generally, the RSSI, which is
attenuated in air can be estimated using the log-distance path loss model of

equation (2.1) [19].

P(r) = Plr,) —10nlog(%) +X, 2.1

Where, 7 is the distance between the AP and the moving object, 7, is the
reference distance, X, is a normal random variable with zero means, reflecting
the attenuation, and n is the coefficient of the path loss. The path loss

coefficient n represents an environmental variable determined according to the

surrounding communication and indoor environment. This is applied to adjust
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Fig. 2.1 The conventional attenuation of RSSI over distance

the path loss according to the surrounding medium, i.e., the indoor or outdoor
conditions where the radio is measured.

Fig. 2.1 shows the conventional attenuation of RSSI over distance between
a transmitter and a receiver. The x-axis represents the relative distance
between the transmitter and receiver, and the y-axis represents the RSSIs of
the transmitter measured by the receiver. As the relative distance increases,
the less the change in declining span width is as shown in the Fig. 2.1.
Therefore, The log-distance path loss model, which indicates the variation of
the RSSI according to the distance, finds it difficult to distinguish the
distance because the RSSI gradually becomes weaker as the relative distance
between the transmitter and receiver increases.

As shown in Table 2.1, there are 14 frequency channels available for indoor
wireless devices. However, as the penetration rate of smart devices increases,

the indoor density of Wi-Fi per unit area also increases. Therefore, as the 14
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Table 2.1 The frequency allocation of 2.4 Ghz Wi-Fi

Wi-Fi Intermediate Channel

channels frequency (Ghz) frequency range (Ghz)
1 2.412 2.401 ~ 2.423
2 2.417 2.406 ~ 2.428
3 2.422 2.411 ~ 2.433
4 2.427 2.416 ~ 2.438
) 2.432 2.421 ~ 2.443
6 2.437 2.426 ~ 2.448
7 2.442 2.431 ~ 2.453
8 2.447 2.436 ~ 2.458
9 2.452 2.441 ~ 2.463
10 2.457 2.446 ~ 2.468
11 2.462 2.451 ~ 2.473
12 2.467 2.456 ~ 2.478
13 2.472 2.461 ~ 2.483
14 2.484 2.473 ~ 2.495

channels become saturated, many devices will use the same channel. If the
AP density is high, despite the optimized frequency distribution, interference
between the same or adjacent channels will occur.

Fig. 2.2 shows the Wi-Fi protocol applied to minimize the interference
and collision of wireless communication, with a CSMA/CA protocol. The
CSMA/CA is a typical medium-access method of the IEEE 802.11 wireless
communication network (Wi-Fi), and is designed to avoid signal collisions

between wireless devices. DIFS and SIFS, which indicate the time intervals
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Fig. 2.2 The structure of CSMA/CA

between frames, are used to the receiver to detect the signal of receivers and
avoid communication collisions with other senders, immediately before
communicating with a connected sender. If it is determined that communication
with another sender does not occur during a certain time interval, data
communication occurs between the sender and receiver. When data are
transmitted by multiple senders to the receiver, the senders wait and
retransmit after a random back-off time, to prevent collisions from simultaneous
transmissions. Since this protocol prevents data collisions in the same channel,
information such as the SSID and RSSI of Wi-Fi devices using the same
frequency band can be independently divided and measured according to APs.
However, because many wireless devices share a single frequency, the waiting
time for data transmission is long for CSMA/CA, which causes a speed
reduction phenomenon [20, 21].

Even if the RSSIs are clearly different for the APs in which the channels
overlap, the RSSI measured by the receiver has an irregular value with
constant amplitude with respect to real-time. The reason for this is mainly the

variation of the RSSI, which is distorted according to the structure or

- 10 -
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material of the indoor area, and an inherent error caused by the hardware of
the sender and receiver or the characteristics of the Wi-Fi frequency band,
which has a high diffraction property. This is an important reason that
reduces the user's positioning accuracy in the fingerprint. As the physical
distance which is mean the interval of the reference point that can identify
the position increases, the positioning resolution that can express the real
position of the user, is reduced. Because the fluctuation of RSSI differs
depending on the indoor environment, it is necessary to derive the physical
distance over which the RSSI can be distinguished by measuring the basic
signal and apply the optimized fingerprint unique to the environment and
structure. The disadvantage of this Wi-Fi RSSI is that the positioning
resolution that can represent the position is reduced to m units, compared to
the TOA, which can recognize the position in cm units. However, compared
to the TOA, the fingerprint has many advantages in indoor environments,
such as large Wi-Fi scalability, low construction cost, and no requirement for
separate receiver [22].

Fig. 2.3 shows the structure of the conventional fingerprint technique. The
fingerprint technique is divided into the training phase that generates the
radio map and the positioning phase that performs the positioning in
real-time. The training phase generates the radio map using the measured
RSSI for each reference point, set at regular intervals of 2 to 3 m, in order
to position the user's location. The Wi-Fi signals measured at the reference
point are used to generate the radio map through preprocessing such as
averaging or partition of RSSIs that are attenuated by the relative distance

between the transmitter and receiver, and surrounding structures. The RSSI,
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Fig. 2.3 The structure of conventional fingerprint

which is influenced by the relative distance and presence of obstacles, is an
important value for positioning the user's location. The more accurate the
classification of the RSSI of the AP measured according to each reference
point is, the higher the accuracy of the positioning will be.

Fig. 2.4 shows the structure of the conventional radio map. The x-axis
represents the RSSI of an arbitrary SSID, according to the changes in the

reference point, and the y-axis represents all the measured APs at any one

- 12 -
Collection @ kmou



Rssmimery Rssmigeyy Rssmigeyy - Rssmimen

Rssmomery Rssmamezy Rssmogesy - Rssmomen

Dpy = RSSIDS(RPI) Rssms(sz) RSSIDS(RPB) RSSED}(RPn)

Rssmamey Rssmsmezy Rssmamesy - Rssmamen

Fig. 2.4 The structure of conventional radio map

reference point. Since the x-axis is the reference point set of the entire area
for positioning, the size of the x-axis will be constant according to the size
of the area, irrespective of whether or not the RSSI of a specific AP is
received at all reference points. On the other hand, since the y-axis indicates
the number of APs, the larger the number of measured APs in space is, the
larger the size of the radio map will be. Therefore, the x-axis, which is
determined according to the indoor environment such as size and structures,
can be determined according to the number of reference points; however, it
will be difficult to reduce the reference points. Since the y-axis can control
the number of APs, it is necessary to design a system that minimizes the
APs and exhibits a high accuracy of positioning.

Fig. 2.5 shows the placement of the reference points, which are indicated
by circles set at intervals of 2~3 m, and APs on the indoor map. According
to the reference points, the SSID and RSSI of the Wi-Fi are measured
several times, and the result of summarizing the measured Wi-Fi signals is
called the radio map. Generally, the RSSI of any one AP is not measured at
all reference points because one Wi-Fi cannot cover the entire indoor area.

However, since the radio map must contain information about all reference
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Fig. 2.5 The placement of reference points

points, the matrix of the radio map is given by [the number of reference
points x the number of APs]. Therefore, even if only one AP is installed in
the indoor area, the matrix of the radio map will be increased by [the
number of reference points x 1 ].

In the positioning phase, the real-time position is estimated by comparing
the radio map produced in the training phase with the measured Wi-Fi RSSI
from the user's receiver. The RSSIs measured in real-time while the user is
moving have reference points with similar RSSIs in the previously created
radio map. The RSSIs measured by the user in real-time estimate the
reference point with the highest similarity, from among the reference points
with similar distributions in the previously created radio map, as the user 's
location. In this method, since the reference point can be expressed by the
user's position only, the positioning performance is determined according to
the intervals of the reference point. Therefore, since the fingerprint method
estimates the position based on the similarity of RSSIs, probabilistic or
deterministic algorithms are applied [23]. Among them, the euclidean distance

algorithm based on a k-nearest neighbor (K-NN), which is a non-parametric
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method used for classification and regression, is often used for real-time
multi-positioning because it is relatively uncomplicated for computation. The

euclidean distance algorithm is as follows.

P=min(y/ Y, (4P, — AP, )*) (2.2)

Here, P is the final position of the user, r is the measured real-time, and
AP; is the RSSI at the reference point j of the radio map. The reference
point with the highest similarity is identified as the current position of the
user by comparing AP,;, which represents the RSSIs measured in real-time,
and AP;, which represents the RSSIs at all stored reference points in the
radio map [24, 25]. Therefore, fingerprint, which is highly dependent on the
radio map, requires much time cost and workload to implement the system in
the training phase. The kinds of applied techniques are also highly varied

when compared to the positioning phase.

2.1.2 Fingerprint Techniques

,f";;\\ I i | —!.. !
o

Training phase Positioning phase |
]
i= Walking Survey = KNN
i =  Sensor method = Bayesian
i= Propagation model(FDTD) = Chi-squared test
= Supervised/semi-supervised learning
[}

Fig. 2.6 The typical application algorithm according to the phase
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Fig. 2.7 The method of typical walking survey

The acquisition process of the RSSIs, which is the basic step for
generating the radio map, is based on an inertial-sensor-based method [6,
26-28], a walking survey method [28], and a channel-modeling-based prediction
method [29, 30], as shown in Fig. 2.6.

As shown in Fig. 2.7, the walking survey method is divided into a

point-by-point calibration that concentrates signals only at reference points and
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a fusion-sensor-based calibration that -classifies consecutive Wi-Fi signals
obtained by walking according to the reference points. Point-by-point calibration
is a method of measuring RSSIs several tens of times, with enough time per
reference point (indicated by a red circle). This method generates the highest
time costs because all the reference points consume a certain amount of time.
Nevertheless, the accuracy of the radio map is high, owing to sufficient
signal collection at the reference points.

On the other hand, the fusion-sensor—based classification is a method of
measuring the RSSIs of APs while moving according to a predetermined
movement route by using fusion of a walking and inertial sensor. The inertial
sensor is the most commonly used sensor because it is built in the
smartphone. Therefore, the fusion-sensor—based calibration is less time
consuming than the point-by-point calibration because it can be measured
while walking through predetermined reference points. However, because of
the cumulative error of the inertial sensor, generated during movement, there
may be a decrease in the positioning accuracy due to a mismatch between
the reference points and measurement location [31-33].

The radio map prediction based on the channel modeling extracts the
radio-characteristics model of Wi-Fi and estimates the position of the user
from the obstacles and distances, based on the coordinates of fixed APs.

The finite-difference-time-domain (FDTD) and log-distance path loss models
are the most widely used indoor channel modeling in the fingerprint. The
FDTD is widely used for modeling the radio emission characteristics of small
electronic devices; however, it is necessary to specify the accurate physical

coefficients for the characteristics of the surrounding medium in which
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reflection and absorption of the radio occur. Therefore, a comprehensive
mathematical analysis of the propagation, reflection, and absorption
coefficients, and the distortions due to the arrangements of a wide variety of
indoor structures such as walls and windows, is needed over a relatively
large area. The Wi-Fi signals obtained for generating a radio map, using
these methods, are subjected to preprocessing such as optimization and
relocation.

In these pre-processes, the data are processed according to the format of
the radio map suggesting the measured Wi-Fi signals, and the user finally
generates the desired radio map. Here, the typical RSSI classification and
optimization techniques used for processing the radio map are supervised and
semi-supervised learning algorithms such as the support vector machine (SVM)
or principal component analysis (PCA), and discretization and -classification
algorithms such as the MDLP or chi-squared test, and etc [34-36].

The SVM is an algorithm that classifies the RSSI measured by the
walking survey method, according to the magnitude, and generates the radio
map by matching it with the reference points. The RSSIs measured by the
fusion-sensor—based classification of the walking survey are continuous, but
the classification for the reference point is not clear. The SVM classifies data
according to the magnitudes of the RSSIs and matches each reference point
to these unclear RSSIs. This algorithmic feature is applicable to the real-time
Wi-Fi signals measured from users in the positioning phase, as an algorithm
that can determine positions based on the classified RSSIs [37-39].

The PCA, which is an algorithm for re-dimensioning multi-dimensional

data by realigning large-sized data according to their orders of magnitude, is
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widely applied for the size reduction and optimization of the radio map. The
PCA used to optimize the generated radio map disassembles the APs according
to the order of magnitude of the variance values when mapping the RSSIs
on a single axis in the radio map. The dispersion values of each AP indicate
the characteristics of each AP, and the RSSIs of the radio map can be
reduced according to the number of principal components [40, 41].

As one of the discretization algorithms that can separate data into several
signals, according to continuity, the MDLP is an algorithm that can simultaneously
optimize and classify data. This algorithm divides the sets of RSSIs using
entropy, which is a measure of disorder, for discretization [42,43]. Entropy
can express the probability that a certain value will appear in one data set,

which is expressed by equation (2.3).

P == (2:3)

Where 7 represents the total number of data, and D, indicates the number

of times any arbitrary value has appeared. Therefore, P,

K3

is equal to the
probability that a single value will come from the entire data. According to
the definition of the log function, it can be expressed by the equation given

by
—log, P, = I(m) 24)
Here, 7 is an information amount and m denotes an arbitrary value in the
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set. When P,=1, where the data set is constant, it can be confirmed that this
data set has regularity as an amplitude of one RSSI. On the other hand, if
P,=0, it means that the value m in the data set does not exist. The amount
of information of such a value can be expressed mathematically, and it is

expressed by equation (2.5).

E= =) Plog,P, (2.5)

Here, £ represents the entropy, which is the average information amount.
Therefore, if the elements in the set have regularity or appear as one value,
the entropy is lowered. The more irregular the data is, the more the entropy
will increase. Thus, a set, which explicitly presents the distinction of the
measured elements in a continuous time order, indicates that the number of
subsets divided by the discretization increases, and that the values of the
subset are clearly different from each other. The MDLP with these properties

is expressed by equation (2.6).

|51
|.S]

|5

MDLP(X,T,S) = TS

E(]8,])+ E([S]) (2.6)

Here, S means the whole data in the set, 7" means the dividing point for
the condition X, and S, and .S, indicate two subsets of S divided by 7.
Therefore, as the number of subsets due to the discretization of the set
increases, it means that the reference points are properly classified

automatically. Based on this, if MDLP is applied to the relationship of AP
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aggregates rather than to a single set, the APs can be removed by using the
property that signals that should have similar distributions of elements are not
divided. Since the MDLP itself splits the continuous data, there is no
numerical value to check the result separately. Therefore, to verify the
performance of the MDLP, the information gain (IG), which indicates the
amount of entropy applied to determine the continuity of data after applying
the MDLP.

In this case, the IG values of the RSSI set, which clearly distinguish the
data, appear larger and the APs that the RSSIs find difficult to distinguish are
converged to 0 by the IG. In other words, the RSSI set of APs with a value
of 0 can be defined as an AP that can cause confusion in positioning because
the measured RSSI results at the different reference points are similar [44].

Fig. 2.8 shows the IG values obtained as a result of applying MDLP and
IG to the RSSI aggregates of each AP. The x-axis represents the SSID of
each AP and the y-axis represents the value obtained by applying the MDLP
and IG. As described above, the APs with an IG value of O indicate that it
is difficult to distinguish the measured RSSIs according to the reference
points. Especially, Wi-Fi signals have high standard deviations because they
have large variations of RSSIs even at one reference point. Therefore, this
removal of APs is effective in reducing the size of the radio map or
increasing the iteration speed.

The class-attribute interdependency maximization (CAIM) and class-attribute
contingency coefficient (CACC) are discretization algorithms similar to the
MDLP. Unlike the MDLP based on entropy, both these algorithms partition data

based on probability-based interdependencies. Therefore, since these algorithms
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Fig. 2.9 The performance comparison of MDLP, CAIM, and CACC

do not use the entropy in the computation process,

an entropy derivation

process is needed to apply the IG; the discretization performance is also lower
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than that of the MDLP.

Fig. 2.9 shows the results of an experiment comparing the performance of
MDLP, CAIM, and CACC. The x-axis is the SSID of the AP and the y-axis
is the difference value of the IG of the MDLP with respect to the IGs of
CAIM and CACC. Since they are derived from the same algorithm, the
discretization performances of CAIM and CACC are similar; the IG results of
both algorithms are also the same. Among the three algorithms, the
discretization of MDLP is the best, but the difference is very small. To
distinguish 1it, the y-axis is expressed as the difference by setting the IGs of
CAIM and CACC to the reference value of zero. The size of the y-axis is
very fine, but these results have a large impact on the ability of removing

the APs.

2.2 Unsupervised Leamning

2.2.1 Neural Network

Recently, research on neural networks has been increasing, and machine
learning algorithms are fundamentally classified into neural network-based and
non-neural network-based learning algorithms.

SVM and PCA, which are non-neural network-based supervised and
semi-supervised learning algorithms, can be used as positioning and RSSI
classification and optimization for the fingerprint. Because these algorithms do
not use a neural network, their computation complexity is relatively low.

However, their application scope is somewhat limited.
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Fig. 2.10 The network structure of supervised/semi-supervised learning

As shown in Fig. 2.10, neural network-based supervised and semi-supervised
learning algorithms interpret features through interconnections of the hidden
layer between the input and output data. Neural network algorithms (e.g.,
convolutional neural networks (CNN) and recurrent neural networks (RNN))
use supervised and semi-supervised learning from the endpoints, based on the
correct answer data, to update the connected weights (W;, W,") around the

hidden layer. Thus, these algorithms require minimum training data and
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labeling with correct answer data.

Labeling refers to the process of inducing the output of the desired data
by allowing the user to compare expected output data directly to trained
output data. This is identical to the concept of passive clustering. Data
created through this process is called “labeled data” and is an essential
process for acquiring a properly trained model for supervised and
semi-supervised learning. Therefore, learning performance is determined by the
quality of the label, the size of training data, and the training volume. It is
applied to regression, classification, prediction, etc., depending on the method
of use [45-48].

Table 2.2 shows the result of comparing the characteristics by the learning

Table 2.2 The the result of comparing the characteristics by the learning

algorithm type

L Supervised Semi-supervised Unsupervised
Classification
learning learning learning
Organization Labeled data,
Labeled data Raw data
of data sets Raw data
KNN, SVM, _
) ) Label propagation, | PCA, Autoencoder,
Algorithms Linear model,
Neural networks | K-means, DBSCAN
Neural networks
Regression, Regression, Clustering,
Application Classification, Classification, Prediction,
Prediction Prediction Feature extraction
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algorithm type. While developing and training a learning algorithm, the labeling
process consumes a considerable cost and lowers the accuracy of the algorithm,
making it dependent on the initial design. By contrast, unsupervised learning
has the advantage of not requiring labeled data. Thus, it learns the original
data as input data with no separate processing of features to derive the
desired result. Therefore, when applying supervised and semi-supervised
learning to a radio map, must be directly measured at the same location and
input as labeled data. Furthermore, because the distribution of RSSIs can be
greatly distorted and unclear, depending on the indoor structures and radio
environment, there is limited scope for improving the label quality in order

to enhance the accuracy of the learning algorithm. Therefore, the proposed
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Fig. 2.11 The structure of dense layer and kernel configuration
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algorithm adopts unsupervised learning, which does not require unsupervised
learning, which does not require direct measurement. Neural network-based
machine learning algorithms are designed based on a deep learning structure,
stacked with multi-layers. Each layer can be designed to output the user
specified results.

Generally, neural networks have a dense network structure in which all
input and output nodes are interconnected, as shown in Fig. 2.11. Here,
I(z,y) represents the 2-D input data consisting of h;, which is the feature
vector set of the hidden layer and o,;, which is the output feature vector set
calculated through the multiplication operation of the weight group. A group
of independent weights is a “kernel”. In the case of DenseNet, an entire layer is

one kernel, because all weights are independent. Because this layer can perform
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Fig. 2.12 The structure of CNN layer and kernel configuration
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all types of operations, it also has the fundamental disadvantage of being unable
to extract widely used layers, local characteristics, and biased characteristics.
To overcome this disadvantage, the CNN, which is often used for images,
shares the weights without making them independent in one layer.

Fig. 2.12 shows the structure of CNN layer and kernel configuration.
Here, I(z,y), h;, and o; are the input data, the feature vectors of the hidden
layer, and the output layer, respectively. Furthermore, the solid, dotted, and
double-dotted arrows denote connections of w,, w, and w,, which are shared
amongst the nodes. The CNN layer, which has a group of non-independent
weights, can have multiple small weight groups, unlike the DenseNet, and
thus can have diversity of expressions with n kernels expressing various

characteristics.

2.2.2 Autoencoder

Neural networks are classified into backward and forward types, depending
on the weight (W) update method. The backward type represents supervised
learning in which the relationship between input and output is functionalized
with all input and output data acquired as training data. Here, training data is
labeled data, because the label, or the result of the classifier, is input with
the data. For most learning algorithms, it is critical to acquire a large
quantity of high quality data before learning, because the quantity and quality
have a significant effect on performance.

However, because the labeled data are mainly created manually, it is time

consuming and difficult to acquire a large quantity of data consistently.
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Encoder

Fig. 2.13 The structure of conventional autoencoder

Therefore, researches are being conducted to reduce labeled data by using an
unsupervised algorithm or by improving a supervised learning algorithm.

As a representative example, to avoid using labeled data, an autoencoder
performs labeling by itself based on the probability distribution of features by
simply using the input data. It copies the learned training data to new output
data. In the image processing field, this technology is applied for the creation

and restoration of images as an image reproduction algorithm.
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Fig. 2.13 shows the structure of the most basic autoencoder. Using
training data consisting of input data and one datum having the value of 1,
the autoencoder encodes signals feature vector C of the deterministic function
type according to each feature. Then it carries out data restoration by
decoding it again.

Additionally, the input value, 1, is a bias to maximize the approximation
by quickly adjusting the characteristic curve of probability distribution to
derive C, based on the training data. The operation process of each input
value can be shortened by adjusting this value.

The input function, X,, can be expressed as follows with weight value

(W) and bias (b):
C=co(Wz+b) 2.7

where W is the weight value according to each input data, z, in the
feature vector function, C, and b is the bias of data. This function is used to
recreate output from the decoder, as shown in equation (2.8). As the amount
of training data increases, W and b are trained as a function with a more

accurate output value.
y=fl)=c(Waz+b) (2.8)
Because this cloned data do not require any featured function setting or

labeled data, and the input and output data are always identical, the

autoencoder cannot use complex input data, and the scope of its application
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is also limited [49-51]. To improve the performance of this autoencoder,
recent researches apply a deep autoencoder by dividing it into encoder and
decoder and reconstructing it into deep neural networks performing the same

role.

2.2.3 Generative Adversarial Network

A neural network based on probability distribution is a method of
weighted learning that maximizes the log-likelihood. Generally, numerous
approximations are required for the log-likelihood gradient. Thus, a generative
machine is applied, which can derive results simply through a pre-trained
machine. The back-propagation, which is a core algorithm of the supervised
learning based neural networks, definitely requires ground truth. Thus, as it is
inappropriate for the generative model with no training data, which is the
objective of learning. Past researches applied such methods to an autoencoder,
which uses input data as training data. However, GAN is recently proposed
to improve prediction performance through mutual learning of the training
model.

GAN, a generative machine, was developed as a technology to generate
images. It is a network that creates the learning function while increasing
accuracy by itself via competition between the CNN-based “generator,” which
creates images, and the CNN-based “discriminator,” which compares the
actual and created images.

Fig. 2.14 shows the structure of this network. For an initial training, the
generator, which receives Gaussian noise as input, generates fake data per the

predefined pixel size. The discriminator compares the real data to be trained
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Fig. 2.14 The structure of conventional GAN

with the fake data and trains only the matching pixels by comparing them.
Simultaneously, the generator receives only the information of unmatched
pixels from the discriminator, and the recreation process of fake data is

performed repeatedly. This competition process (i.e., minimax game) can be

_32_

Collection @ kmou



expressed as the function, V(D, @), as follows [52].

mingmaxp V(D G)=E ) [logD(@)]+E, _, (,)[log(1 = D(G(2))](2.8)

X ™ Pdata

Where, for the generator to learn the distribution curve, K, of input data,
z, the derivative function (fake data), G, of the first multi-layer perceptron
having the Gaussian noise N(z) as general noise data. Parameter, 6,, is
expressed as G(z;6,) in the data space. Here, when the second multi-layer
perceptron outputs a single scalar, expressed as D(z;0,), D(x) is the
probability of appearing in input, x, rather than in the distribution curve, K.
D 1is trained to maximize the probability of the real data, and fake data, G,
is used to create the correct label. Simultaneously, G is trained to minimize
log(1— D(G(2))).

The learning process of this operation is expressed in Fig. 2.15. The data,
r = G(z), are the results of projecting the input noise, z, by the generator.
(a) represents the data distribution status prior to initial learning. The random
green (G function generates values in the shape of a Gaussian distribution,
and the blue D function represents a random curve, because it occurs before
distinguishing the blue D from the actual data. When learning begins, as
shown in (b), the discriminator, D, is generated as a sigmoid function curve,
because it distinguishes the true and false data. In step (c), where all signals
are determined to be true, and the generator generates actual signals, D

appears as a straight line, because it only has true values. When the

generator becomes a generative machine that generates data close to the real
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Fig. 2.15 The data learning process by GAN

data through this process, the discriminator is finally removed to use this learning

machine, and it is applied as shown in Fig. 2.16. Here, the learned
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Fig. 2.16 The application of learned generator

generator is a network that generates the number 9. When a generative machine
consisting of these multiple generators is composed, a new network that can
distinguish and create more various images from the input data can be

created [53].
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Chapter 3 Proposed Fingerprint System

3.1 Unsupervised Dual Radio Mapping Algorithm

In this chapter, the proposed unsupervised

learning-based fingerprint

system, which leverages the proposed UDRM algorithm in the training phase

The measured Wi-Fi signals
at the reference floor
(SSIDs, RSSIs)

i

i

The identical
Wi-Fi arrangement

The Non-identical
Wi-Fi arrangement

Autoencoder

GAN

Antoencoder
based radio

GAN
based radio
map

The proposed

radio map based
on unsupervised
learning

Fig. 3.1 The structure of proposed UDRM algorithm

in the training phase
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and the proposed MDLP-based RMF algorithm in the positioning phase, is
described in detail.

Fig. 3.1 shows the structure of the proposed UDRM algorithm in the
training phase. The proposed UDRM algorithm, based on the autoencoder and
the GAN described in chapter 2, is applied two modified algorithms that
generate a radio map according to indoor structures and measured Wi-Fi data
within the reference floor. First, to minimum learning, the proposed algorithm
measures the SSID and relative RSSI according to a set reference point on
the reference floor of the building where user locations can be recognized.
Based on the measured Wi-Fi, a real radio map for learning is preferentially
generated on the reference floor. The RSSIs in the radio map only measures
fixed AP that do not change. Generally, the main APs installed in a building
cover the entire area and are always fixed and operated. Additionally, the
coordinates of the APs are easily obtained via indoor 2-D maps.

After that, based upon the floor where the radio map is to be generated,
the autoencoder or the GAN is selectively applied according to the indoor
map and the coordinates of APs on other floors. If the 2-D maps and the
coordinates of APs on new floors exists, the proposed algorithm can be
applied automatically. To reduce iteratively learning-time and to ensure
positioning accuracy in the positioning phase, the initially measured APs (i.e.,
learning objects) are selected only for the main APs of Wi-Fi having an
extremely low probability of being removed.

The modified autoencoder in the proposed UDRM algorithm is then
applied to other floors having nearly the same indoor structures and the

coordinates of APs, like the reference floor.
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Fig. 3.2 The type of input/output data of modified autoencoder

Fig. 3.2 shows the structure and input/output data of the modified
autoencoder for applying the fingerprint. D, is a set of RSSIs measured from
the walking survey. The RSSIs measured on the reference floor are learned
to generate the RSSIs on the other floors. The form of input to the

autoencoder is shown in equation (3.1).

AP'=[AP{, AP}, AP, ..., AP}]" G.D
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where, R is the location of the reference point, and AP’ is the set of
RSSIs according to the reference point of the i-th AP. When AP’ is learned
as input data, their RSSI distribution curves are obtained for the entire radio
map. As the amount of iterative learning for the same AP gradually
increases, so does the accuracy of the distribution curve. Even if the
positions of the reference points change, the prediction accuracy of RSSI
between a receiver and a transmitter increases.

Fig. 3.3 shows the comparison of the autoencoder performance according
to the learning iterations. (a) is the result of the replicated signal with a
small amount of learning, and (c) is the result of the replicated signal when
the amount of learning is sufficient. The black dots represent the data learned
from the input data, and the green line represents the result of the prediction
data between the black dots. Thus, with much iterative learning, (c) can
predict the signals more accurately than (a). This algorithmic feature is
advantageous for the replication of signals when the same data is learned, but

can be advantageous for prediction when intermittent signals such as Wi-Fi,
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Fig. 3.3 The performance of autoencoder according to iterations

_39_

Collection @ kmou



RSSI /\—‘ Input map

Reference point

Encodel

h

Output map

Fig. 3.4 The learning of the modified autoencoder

are learned. Therefore, the Wi-Fi RSSIs measured is inputted the proposed
unsupervised learning based on autoencoder without any additional processing
and replicate their signals. In addition, if only the coordinates of APs are
added as input data with the measured RSSIs of APs, it is robust to the

reference points change, because the RSSIs between the reference points are
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predicted to high accuracy. Therefore, the radio map is predicted and generated
with the proposed algorithm on the other floors of the same structure.
Therefore, the radio map is predicted and generated by the proposed
algorithm on the other floors of the same structure.

Fig. 3.4 shows the structure of an modified autoencoder that maps input
RSSIs to the 2-D map and uses the data as input for the autoencoder to
learn the characteristics of the RSSIs emitted from the Wi-Fi APs on the
other floors of the same structure. The inputted radio map, which is
measured on the reference floor, is updated by comparing the weight of the
autoencoder against the generated radio map, and the autoencoder consists of
encoders and decoders.

In the modified autoencoder, the encoders and decoders are designed
symmetrically to compress and expand the types of input data. Because the
input data is output as RSSI for each referenced position, (Fig. 3.4), it is
necessary to combine it with real 2-D maps. During the real prediction
process, the measured RSSIs are not used as input data, because a new floor
1s an unmeasured area. Thus, the coordinates of the APs on the new floors
should be input.

Fig. 3.5 shows the prediction process of the modified autoencoder, which
belongs to a generation model that inputs similar data or noise, and outputs
the result using the same distribution as the input data. The measured RSSIs
on the reference floor and coordinates of APs on the other floor are input
simultaneously. The dotted-line graph atop the Fig.3.5 indicate a linearly
approximated Wi-Fi signal attenuation for coordinates of AP. As in the

learning process, the estimated RSSI value is mapped to the 2-D map to
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Fig. 3.5 The prediction of the modified autoencoder

generate input data, and the predicted radio map is generated with the learned
algorithm. The generated radio map of each AP is predicted considering the
coordinates of the installed APs on the new floors, assuming the same
structure as the measured reference floor and the learned indoor structures. In

case the floors with different indoor structures, the modified GAN is applied
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Fig. 3.6 The structure of the modified GAN

instead of the modified autoencoder. The modified GAN-based radio map
generation algorithm can be applied to indoor environments where the
reflection and refraction characteristics of the radio are the same, even if the
installed coordinates of the APs and indoor structures are different.

Fig. 3.6 shows the structure of the proposed GAN. Unlike the general

GAN structure, where only Gaussian noise is input to the generator, the
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Fig. 3.7 The learning principle of the discriminator

modified GAN is inputted Gaussian noise as initial data along with a 2-D
map and coordinates of APs on the new floors. The 2-D map is the input
data for effective radio map-matching, because it grasps the indoor structures
of the floors through the measured radio map on the reference floor.

Thus, the coordinates of APs are essential data for generating the radio
map at the correct position and predicting the RSSIs. An initially non-learned
generator creates random RSSI distributions from the Wi-Fi signals generated
by Gaussian noise through the input 2-D map and coordinates of APs.

The fake radio map, which is generated by the Gaussian noise, divides
the real measured RSSI on the reference floor and each generated RSSI by
the discriminator into true or false per a pixel in the map.

Fig. 3.7 shows the learning process of the CNN-based radio map, which
is the basic structure of the discriminator that classifies the generated radio
map into true and false. The discriminator is learned the data of the fake
radio map which is combined the 2-D map and the coordinates APs. The
fake radio map is compared to the real radio map, and the discriminator is

only given the false RSSI pixels in the fake radio map as the input data of
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Fig. 3.8 The application method of the modified learned generator

the generator for learning. This process re-predicts the accurate radio map via
iterative learning. The kernel can freely acquire information of the combined
radio map according to the shape of the sample, and it can predict the
partial 2-D map and RSSI distributions of various kernels simultaneously
using learning generator in GAN. The kernel applied in the proposed
algorithm learns from a wide range of pixel sizes and shapes: from 2x1 to
the entire map size. If enough generation data is learned through iterative
learning, it becomes a radio map generator, which stores the APs and indoor
environments of the learned building into the various kernel forms.

Fig. 3.8 shows the radio map generation by the learned generator of GAN
of new floors. The learned generator combines the various learned types of
kernels and predicts the RSSI distributions using the 2-D map and the
coordinates of the APs on the floors that are different. Thus, the proposed
radio map generated by the combined autoencoder and GAN maps, so that
the RSSI distributions of all floors and areas are generated without complex

measurement processes in a new area.
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Fig. 3.9 shows the process of combining the generated radio map into an

entire radio map. The RSSI distributions, according to the transmission power

_46_

Collection @ kmou



of AP, are predicted and combined to generate a radio map of all floors.
Because the modified autoencoder and GAN-based unsupervised learning
algorithms are designed around networks like CNN and RNN, they respond
flexibly to data input for iterative learning. In this process, over-fitting
happens when an algorithm learns 100 % of the detail and noise from the
training data such that it negatively impacts the performance of the model.
Often, the noises or random fluctuations of the training data are picked up
and learned as concepts by the model. Therefore, networks that are robust to
this phenomenon have prediction errors in the range of 5 to 10 %. However,
prediction errors of 10 % or more begin to deteriorate learning performance.
It is necessary to the stabilize the prediction accuracy through sufficient

measurement data and iterative learning.

3.2 MDLP-based Radio Map Feedback Algorithm

The generated radio maps for each floor, using the proposed autoencoder
and GAN, do not measure or predict high-mobility APs, thus reducing
time-cost and workloads for RSSI measurement. Therefore, additional updating
of individual APs is required to improve positioning accuracy. To accomplish
this, an MDLP-based RMF algorithm is proposed, which can update during
positioning using the generated radio map of the UDRM.

Fig. 3.10 shows the structure of the proposed algorithm in the positioning
phase. To recognize user locations through the radio map, it is essential
thatthe users have smart devices capable of measuring Wi-Fi. When the radio

map is acquired through this device in real-time, the radio map based on
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Fig. 3.10 The proposed flowchart of the positioning phase

the UDRM and the measured APs signals are compared by the euclidean
distance algorithm of equation (2.2). Through this operation, the coordinates of
the reference points having the highest similarity are determined to be the
user locations.
Whereas the above-described process occurs in the conventional positioning
phase, the proposed MDLP-based RMEF  algorithm optimizes and updates the
new APs that is not present in the radio map during the calculation using
the euclidean distance algorithm. This method improves the performance of
positioning by filtering unnecessary AP signals and automatically reducing a
dimension of the radio map in the area where the number of users is many
and the density of Wi-Fi APs is high.

The measured Wi-Fi signals in real-time are able to positioning and
compare RSSIs of the radio map. Also, they are arranged in the form of the
proposed radio map according to their measured locations. It is even possible

to input them into the UDRM-based radio map. However, if all measured APs
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Fig. 3.11 The calculation method and output of MDLP

are input, as APs are newly created or discovered, the radio map increases,
causing the operation speed to slow.

Therefore, the MDLP-based RMF algorithm should remove unnecessary
APs and update the map, as shown in Fig. 3.11. Input data consists of a set
of red rectangles, which are separated into several subsets via discretization of
the MDLP operations performed. If the number of disjoint subsets is smaller
than the reference point of the corresponding layer, the entire set of

measured RSSIs can be determined to be APs that cannot distinguish RSSIs
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from each reference point.

Unlike the existing method that discriminates and processes a set of
continuous RSSIs measured at one AP, the proposed algorithm grasps the
signal distribution characteristics among APs and obtains a plurality of them,
having substantially the same signal characteristics according to the reference
points, as one AP to reduce the radio map.

APs with similar signal characteristics have a very small influence on
positioning, but they increase the amount of computation and the size of the
radio map. The conventional MDLP. algorithm cannot numerically express the
degree of signal separation according to the signal reference points. So, after
applying the MDLP, the proposed algorithm performs the IG operation to
quantify it. The data characteristics of the quantified AP numerically represent
the similarity between the different AP signals, so that only those with the
best classification among the signals of similar distribution remain. Thus, each
AP can visually confirm the RSSIs distinguishing ability according to the
reference points and can manage the Wi-Fi signal strictly through that
threshold. Therefore, the proposed MDLP-based RMF algorithm is designed to

update and optimize collected Wi-Fi signals simultaneously with positioning.
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Chapter 4 Experiment and Result

4.1 Experimental Environment and Configuration

To verify the performance of the proposed UDRM algorithm and
MDLP-based RMF algorithm, an experimental area was selected at the
College of Engineering, No. 1 Building, Korea Maritime and Ocean University,
as shown in Fig. 4.1 and Fig. 4.2 The first floor, which was difficult to
positioning, was excluded from the experimental area, owing to the low
number of APs. Because the 2nd, 3rd, and 4th floors have the same structure,
a radio map could be generated through a modified autoencoder, and a

modified GAN could be applied to the 5th floor: a different indoor structure.
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Fig. 4.1 The structure of reference floor
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Fig. 4.2 The structure of experimental floor

The 2nd floor, where APs were sufficiently measured, was set as a
reference floor for obtaining real RSSIs for learning. RSSIs were measured at
each reference point through the walking survey. The RSSIs were measured
using point-by-point calibration to collect the accurate RSSIs and to compare
the proposed algorithm. In this process, 63 reference points were set to
generate a radio map for learning, and 284 AP signals were measured along
the entire floors. In the training phase, because the personal APs could easily

change via generation and movement, only the public APs were measured on
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(a) Android-based Wi-Fi app (b) Management server ofradio map (MYSQL)

Fig. 4.3 The produced program for operating the proposed algorithm

entire floors. Personal APs omitted in the training phase could be updated
through the modified MDLP in the positioning phase.

As shown in Fig. 4.3, an Android-based measurement app was created
using a smartphone to measure RSSIs throughout the walking survey. The
measurement items were SSIDs and RSSIs, and the generated radio map was
used MySQL, allowing management of the radio map in real-time. The
modified autoencoder applied the measurement data as input data without
pre-processing. Thus, it directly transmitted the collected Wi-Fi data to
MySQL and generated the radio map. Because the modified GAN was
required for input of the 2-D maps and the coordinates of APs, their
information had to be secured. The 2-D map, essential for applying the
modified GAN, was a 23x29-pixel image based on the reference points.

It was directly manufactured using CAD, as shown in Fig. 4.1 and Fig.
4.2. If a design drawing of the building can be secured as an image file, a

separate indoor map-drawing process is unnecessary, and the size of the
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image can be easily changed without any initial cost through the settings
during pre-processing. In a corridor of the reference floor, the measured
public APs from the walking survey were 8 APs out of 139. Their
coordinates, the 2-D map image, and the Gaussian noise were input as initial
learning data for the modified GAN. A setting of the 2-D map for learning
assumed a line on the image to be a structure that completely blocked Wi-Fi
signals. In contrast, the measured RSSIs of APs in the corridor spaces
outside the boundaries were designed to estimate the Wi-Fi signal in a
multi-path environment, reflected by its unique characteristics.

Generating a radio map wused in the conventional fingerprint system
required a simple arrangement of the measured RSSIs according to the
reference points. This* was unsuitable for the proposed UDRM, considering
the spatial structure. Therefore, the structure of the radio map was
reconfigured to fit the proposed UDRM, designed with the modified

autoencoder and GAN.

2-D map

The radio map for training

radio map

Fig. 44 The combined radio map for learning
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Fig. 4.4 shows combined indoor structure and Wi-Fi radio maps. In the
2-D map on the upper left of the Fig. 4.4, the area represented by the hatching
is a wall surface, and the remaining space for RSSIs is represented by the
empty space. The radio map stores RSSIs up to the area where weak signals
reach each reference point, and normalizes it to fit the neural network.

Unlike the conventional radio map, which is applied for fingerprint, the
radio map applied to the proposed system is learned not only propagation
characteristics but also indoor structures of the building. The real radio map
of the reference floor as the input. data used in the learning of the
autoencoder, which were applied in similar areas and floors, remained the
same. However, the outputs derived from the prediction of the autoencoder

were interpolated, generating RSSIs that were not 100 % identical. Therefore,

The coordinates of APs on new floor Gaussian noise (RSSIs)
i

< The iterative learning > —S

Discriminator s Generator —

-

A
é’
The measured radio map The generated radio map
on the reference floor on the other floor

Fig. 4.5 The iterative learning of GAN
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the radio map was preferentially generated using fake RSSIs, which linearly
approximated the attenuation of the RSSI. Then, the generated RSSIs were
inputted at the coordinates of the APs and a modified autoencoder-based
radio map was finally completed.

Unlike the autoencoder method, the real measured radio map was not used
as input data in the generator of modified GAN. The modified GAN applied
areas where AP coordinates and indoor structures were difficult to estimate
from the 2-D map, coordinates of APs, and Gaussian noise.

Fig. 4.5 shows the input and output data structure of the modified GAN.
The coordinates on the left side are the location coordinates obtained by
converting those of the real APs to the reference points. The spaces other
than the indoor structures were subject to the estimated RSSIs through the

GAN by inputting Gaussian noise.

4.2 Results of Unsupervised Dual Radio Mapping Algorithm

To wverify the performance of the proposed UDRM, comprised of the
modified autoencoder and GAN, the generated radio map was compared and
analyzed with the real radio map measured from the walking survey.

Fig. 4.6 shows the result of the real RSSIs of measured APs on the
reference floor and the result of the predicted RSSIs using the modified
autoencoder in the corresponding of coordinate the AP. One pixel on the x
and y-axes is an interval of 3m on the 2-D map plane. (a) shows the real
measured radio map by the walking survey. (b) shows the generated radio
map predicted by the modified autoencoder on the 2nd floor. The RSSIs of

the propagated Wi-Fi signal from the AP in the corridor is expressed in color
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(a) The measured radio map
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(b) The generated radio map (Autoencoder)

Fig. 4.6 The result of radio map by modified autoencoder (2nd floor)

intervals of 3 m to the reference points. Those expressed in red color are
stronger. Blue color indicates a weaker signal. Based on the AP coordinates,
the real RSSIs and the modified autoencoder-based radio map are replicated

almost identically. However, differences between the predicted and measured
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RSSIs occurred when the relative distance from the AP coordinate was more
than 30 m. Because the AP signal is measured weaker when the distance is
longer, the indoor interval where the RSSI of the Wi-Fi was measured from
-90 to —100 dBm was reduced by the number of measurements, compared to
the RSSI of the other strong Wi-Fi. That is, whereas the same number of
times was measured, APs with strong signal strength measured closer to 100
%. APs with weak signal intensity had relatively low collection rates, compared
to the number of measurements. Therefore, because it was difficult to acquire
a sufficient measurement signals in the area where the RSSI was weak, per
the increasing relative distance between the AP and the reference point, a
difference occurred in the amount of learning, causing an error between the
real measured radio map and the generated radio map by learning.

Fig. 4.7 shows the generated radio map of the 3rd floor by the measured
RSSIs of the 2nd floor. One pixel on the x and y-axis is an interval of 3 m
on the 2-D map plane. (a) shows the real measured radio map by the
walking survey. (b) shows the generated radio map by the modified
autoencoder on the 3rd floor. The 2nd and 3rd floors acquired nearly the
same radio map, because the indoor structures and the coordinates of AP
were the same. Analyzing this result in detail, unlike Fig. 4.6, the AP shows
a unique signal result: an RSSI measured at an unexpected location, P. This
is the result a unique indoor structure where RSSIs by a window cannot be
measured sequential distance. Since P is a relatively large distance from the
AP, the error occurs.

However, it can be confirmed that the signal measured in the unexpected

area by the indoor structure predicted almost similarly to P'. K represents a
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(b) The generated radio map (Autoencoder)

Fig. 4.7 The result of radio map by modified autoencoder (3rd floor)

missing data space caused by non-receipt of the signal. This is often caused
by the walking survey. Despite the existence of this space, the replicated Wi-Fi
distribution generates an RSSI via prediction, indicating that the resilience

against the missing signal is excellent.
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(a) The measured radic map
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(b) The generated radio map (Autoencoder)

Fig. 4.8 The result of radio map by modified autoencoder (4th floor)

Fig. 4.8 (a) and (b) show the results of the measured radio map and the
predicted radio map, based on the modified autoencoder on the 4th floor. The
predicted radio map, (b), is similar to the previous Fig. 4.6 and Fig. 4.7,

indicating that the prediction accuracy is slightly reduced in spaces where
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RSSI is very weak.

Thus, the modified autoencoder can accurately predict the signals of AP in
the area where the measured RSSIs are strong, and the predicted RSSI
accuracy is lower in the area where the measured RSSIs are weak.

Because the relatively weak RSSI reduced the number of measurement, the
same RSSI measurement time was used for the reference points for designing
a radio map. There is a limit to increasing the measurement time at each
reference point. However, if the RSSIs per reference points of all the APs
were designed as a radio map, there would be many measured APs with
strong signals, and the influences on the positioning would be relatively
reduced.

Fig. 4.9 (a) and (b) show the measured radio map and the predicted radio
map based on the modified GAN on the 5th floor. One pixel on the x and
y-axes indicates an interval of 3m on the 2-D map plane. The 5th floor has
fewer public APs and a different floor plan, and the indoor area is smaller.
Compared to Fig. 4.8, the coordinate of the AP is slightly different. Because
the right area is outdoors, the AP is arranged to cover the indoor area. Thus,
the RSSIs that learned from the reference floor only containing the indoor
space became an area excluded from prediction, because it cannot learn about
RSSI characteristics in the outdoor environment. The unlearned area is
interpolated through the proposed MDLP-based RMF algorithm in the
positioning phase. The 5th floor is different from the other floors, based on

indoor structures. However, because learning is done using various kernels,
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(a) The measured radio map
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(b) The generated radio map (GAN)

Fig. 4.9 The result of radio map by modified GAN (5th floor)

as shown in Fig. 3.7, all those other than 1x1 are applied to combine the
RSSI and the indoor structures. Therefore, the modified GAN also shows that
the predicted radio map is similar to the real radio map only when the

coordinates of APs are input exactly like the autoencoder.
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(b) The learned radio map (GAN-count 2000)

Fig. 4.10  The comparison of the radio map according to

iterative learning count of the modified GAN

Fig. 4.10 shows the accuracy of the predicted radio map based on the
modified GAN, according to the amount of learning. (a) shows the result of

predicting the radio map using the generator through 5,000 learning iterations,
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and (b) shows the result of predicting the radio map using the generator
through 9,000 learning iterations. This result shows that not only the obtained
RSSIs from the reference floor, but also the amount of learning, are
important factors for prediction, because the measured RSSI does not have a
constant value at one reference point. The difference in learning makes
predicting the radio map slower, but the time can be drastically reduced,
compared to the generation process of the radio map from the walking
survey. The RSSIs of each AP were digitized and created as the radio map
and stored in MySQL to complete preparation for interworking with a
smartphone. The size of the predicted radio map through the proposed
UDRM was 42x54. The x-axis is the relative RSSI, according to the distance
between the AP and reference points. The y-axis represents the SSID of AP.

The predicted radio map of the UDRM was compared to the real
measured radio map as follows.

Fig. 4.11 shows the errors between the results of the predicted radio map
and the measured radio map, on the 2nd and 3rd floors. The x-axis
represents the reference points, and the y-axis represents the error rate of the
RSSIs. Because the distance at which the signal is measured varies according
to the indoor structures and the installation coordinate of the corresponding
AP, the size of the x-axis differs. In (a), the error occurs nearly 30 % at the
three reference points. However, because the average error for all reference
points is as low as 10%, a positioning error may occur at a specific
location. Because the measured RSSIs in various APs are used for positioning

at one reference point, this error rate does not indicate a positioning error.
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Fig. 411 The accuracy of generated RSSI on the 2nd and 3rd floors

Fig. 4.12 shows the accuracy of the predicted radio map on the 4th and
5th floors. (a) shows the error rate of the predicted radio map on the 4th

floor by the modified autoencoder, and (b) shows the error rate on the 5Sth
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Fig. 4.12 The accuracy of generated RSSI on the 4th and 5th floors

floor by the modified GAN. (a) shows the lowest performance of the
predicted radio map among the AP signals on the fourth floor, and the

average error rate is 9.67 % (less than 10 %). (b) shows that the performance
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of the modified GAN is excellent, even if the position and the indoor space
of the AP are changed by predicting the RSSIs nearly perfectly.

Table 4.1 shows the error rate of the predicted radio map for each floor.
The total error rate of the generated radio map for each floor by the
modified autoencoder is within 10 %, and the modified GAN on the 5thfloor
is almost the same that the measured radio map: about 1 %.

Because these results fall within ranges less than 10 %, we have a stable
error rate to prevent over-fitting. Despite these errors, there is an effect of
Table 4.2 shows the accuracy of the two type radio maps generated by the
UDRM. As a result of applying the algorithm to generate the radio map for

all floors, when the directly measured radio map based on the walking

Table 4.1 The generation error rate of radio map on each floor

Floors 2nd 3rd 4th 5th

The prediction
6.74 % 4.42 % 9.67 % 0.97 %
error rate of RSSIs

Table 4.2 The accuracy of radio map according to the UDRM

Algorithms The modified autoencoder The modified GAN

The radio map
90.40 % 92.70 %
accuracy
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Table 4.3 The algorithm processing speed according to the iterations

Algorithms 1 batch 20 batch 20 batch /5000 times
Autoencoder | 334 psec/step 2 msec/step 18.12 min
GAN 1 msec/step 8 msec/step 65.40 min

survey is set the reference to 100 %, the modified autoencoder and the
modified GAN are 90.40 % and 92.70 %, respectively. Whereas there is a
limitation in generating an exact 100 % radio map, the error rates of the two
algorithms were 9.6 % and 7.3 %, respectively, and were within the range of
5 to 10 %, which is a stable error rate for a general learning network. In
conclusion, the UDRM results confirm that a stable system is an aspect of
neural networks.

Table 4.3 shows the computation time of the proposed algorithms
according to the size of the dataset using the proposed algorithm. A batch
represents part of the total data, and an epoch represents the number of
iterations of data. In the proposed algorithm, 120 epochs (the size of all
RSSIs) were divided into 20 epochs each to prevent over-fitting instead of
slowing down the operation, even if it were to increase the number of RSSI
data for learning. However, decreasing the epoch increases the computation
speed, but it causes over-fitting owing to the stronger data characteristic of
each epoch.

Therefore, the 20epochs were repeated 5,000times in the proposed
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UDRM, and total learning time was 18.12 min for the modified autoencoder
and 65.40 min for the modified GAN. Thus, the autoencoder showed a
relatively fast processing speed. In a 1time operation, the processing speed of
the two algorithms was 3 times the difference. However, in the case of 20
time operations, the difference was 4 fold. Thus, the difference of processing
speed also increased with the number of operations. Owing to the structural
characteristics of the GAN, the processing speed increased sharply with the
number of operations. The modified autoencoder had a nearly constant
learning time when the iteration count was 5,000. However, the modified
GAN took 65.40 min less than the expected time, because the generator had
learned, and the operation speed was faster.

Therefore, the time—cost required to create the radio map based on

proposed UDRM in a building, except the first floor, was less than 2 Ars.

4.3 Result of MDLP-based Radio Map Feedback Algorithm

To update the Wi-Fi data measured simultaneously during positioning,
measurement, and analysis phases, experiments were conducted to verify the
proposed MDLP-based RMF algorithm.

Fig. 4.13 shows the result of outputting an IG for each AP using the
radio map based on the modified autoencoder. The x-axis represents the
number of personal APs measured on the 2nd floor and the y-axis represents
the IG values of the corresponding APs. IG is a measure of independence
within a group of APs or RSSIs. The measurement results not adapting the

MDLP appear only as IG values on the 2nd floor. Therefore, all 170 APs
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Fig. 4.13 The IG results of measured APs on the 2nd floor

measured on the 2nd floor were expressed as IG values without being
removed.

Fig. 4.14 shows the result of AP removal by MDLP. the x-axis represents
the number of personal APs measured on the 2nd floor, and the y-axis
represents the IG values of the corresponding APs. Compared to the results
shown in Fig. 4.13, the proposed MDLP removes 90 of the 170 APs. During
this process, the measured radio map is input as-is, in real-time. The
side-effect of the radio map taking an indiscriminate update is prevented in
advance. Thus, only the necessary APs were added to the radio map.
Through the gradual slope of the IG values of Fig. 4.13, it can be deduced

that the distributions of RSSIs and the indoor structures of the 2nd floor were
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Fig. 4.14 The MDLP results of measured APs on the 2nd floor

not very complicated.

APs having very low IG values were removed by the proposed MDLP,
because the change in RSSIs was small overall and was difficult to
distinguish from reference points. Additionally, the APs were well-separated,
but the RSSIs lacked continuity. Thus, the APs having large IG values were
clustered with APs having similar RSSI distributions. Otherwise, the APs
having the same RSSI randomly appeared at other reference points. Therefore,
the IG value was not a criterion for the removal of the APs, but was a
technique for visually confirming the RSSIs of an AP. Their removal was
determined by the MDLP, according to the continuity of RSSIs and the

distribution of APs.
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Fig. 4.15 The IG results of measured APs on the 3rd floor

Fig. 4.15 shows the result of IG analysis for each AP using the radio
map based on the modified autoencoder on the 3rd floor. The x-axis
represents the number of measured APs on the 3rd floor and the y-axis
represents the IG of the corresponding APs. The APs not using the MDLP
on the 3rd floor were not removed, resulting is almost the same configuration
as the 2nd floor. From the slope of the IG values, it is possible to confirm
that the AP distribution is partially deflected, unlike the 2nd floor. Fig. 4.16
shows the result of APs removal by MDLP and IG on the 3rd floor.

Compared to the results in Fig. 4.14, the proposed MDLP removed 77 of
181 APs. Thus, the discretization of APs was high. These APs can update the

positioning accuracy and cover the shadow area. Additionally, when compared
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Fig. 4.16 The MDLP results of measured APs on the 3rd floor

with Fig. 4.14 and Fig. 4.15, the radio map to be updated is reduced by
automatically deleting biased APs.

Fig. 4.16 shows the result of IG analysis for each AP using the radio
map based on the modified GAN on the 5th floor. The x-axis represents the
number of measured APs. The y-axis represents the IG of the corresponding
APs. Only 75 signals were detected, unlike the number of measured APs on
the other floors. Additionally, the measured APs on the 5th floor were
updated via the same method as the other floors. In Fig. 4.16, the 1G values
were spread out evenly, and the number of measured APs on the 5th floor
was much smaller than that of the 2nd, 3rd, and 4th floors. The distribution

was very stable.

_73_

Collection @ kmou



3.5

&3
Ln 5]

Information Gain
8]

_.
n

0.5

0 10 20 30 40 50 60 70 80
The number of AP

Fig. 4.17 The IG results of measured APs on the 5th floor

Fig. 4.17 shows the result of IG analysis for each APs using the radio
map based on the modified GAN on the 5th floor. The x-axis represents the
number of measured APs and the y-axis represents the IG of the
corresponding APs. It can be seen that only 75 signals are detected, unlike
the number of measured APs on other floors. In addition, the measured APs
on the 5th floor are updated in the same method as the other floors. In Fig.
4.16, the 1G values are spread out evenly, and the number of measured APs
on the 5th floor is much smaller than that on the 2nd, 3rd, and 4th floors,
and the distribution is very stable.

Fig. 4.18 shows the result of APs removal by MDLP and IG using the
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Fig. 4.18 The MDLP results of measured APs on the 5rd floor

radio map based on the GAN. It can be seen that the signal measured in
Fig. 4.17 is finally reduced to 46 signals through the MDLP and IG.
Through these experimental results, the proposed MDLP-based RMF
algorithm is confirmed and can be applied to APs on all floors, reducing
their number by more than 50 % in the experimental building. The proposed
algorithm can be applied in the training phase and shows excellent
performance for data discretization via the continuity of RSSIs. In particular,
the effect of discretization using MDLP is maximized in a space where AP
distribution is spread evenly. Therefore, the proposed MDLP-based RMF

algorithm is an optimization algorithm that prevents the rapid increase
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Table 4.4 The euclidean distance based positioning accuracy to the walking

survey based radio map and the proposed UDRM

Floor The Walking suervey The proposefl UDRM
based radio map based radio map

2nd 86.07 % 80.25 %

3rd 88.36 % 85.19 %

4th 92.56 % 85.81 %

5th 89.73 % 85.61 %

of the radio map as the indoor AP increases, and it minimizes the
degradation of the processing speed of positioning.

UDRM-based radio map and the walking survey-based radio map. It is
confirmed that the positioning errors on the 2nd, 3rd, and 4th floors applied
by the autoencoder were about 6 %, 3.2 %, and 6.8 %, respectively, which is
still less than about 10 % of the map errors in the predicted radio map,
based on UDRM. Because positioning was computed as the priority of the
lower error rate of all APs rather than the error for each, the positioning
accuracy was less affected than the RSSI error of the predicted AP. The
acquired positioning result on the 5th floor had a low computation speed, but
the positioning error rate was less than the other floors. Because the
positioning result was applied to a different indoor structure, it was necessary
to select the autoencoder and the GAN selectively, according to the indoor

environment.
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Table 4.5 The positioning results of MDLP applied radio maps

The measured radio map The measured radio map and
Floor based positioning MDLP based positioning
(The number of APs) (The number of APs)
2nd 90.00 % (248) 89.40 % (20)
3rd 89.12 % (248) 89.10 % (16)
4th 89.75 % (248) 89.74 % (20)
Sth 89.77 % (248) 89.77 % (9)

Table 4.5 shows the positioning accuracy of MDLP applying the walking
survey-based radio map and the UDRM-based radio map. When MDLP was
applied based on 248 APs, which is the number of all APs measured
between 2nd and 5th floors, the MDLP and IG were applied. The remaining
APs were 20, 16, 20, and 9, respectively. When positioning was performed
based on the euclidean distance algorithm, different sizes of APs were used,
but the same positioning performance was obtained.

Table 4.6 shows the positioning result of the automatic Wi-Fi fingerprint
system, based on unsupervised learning, combining UDRM and MDLP-based
RMF algorithms. The positioning performance of the proposed system and the
conventional fingerprint algorithm were, on average, 88.59 % and 89.66 %,
respectively. The difference of positioning performance between the two
systems was not nearly the same. This result is similar to the proposed

algorithm, because the real radio map could not be 100 % correct,
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Table 4.6 The positioning accuracy of the proposed fingerprint algorithm

and the measured based fingerprint

Floor i ?_:zzzul;er;lmbased The proposed fingerprint
2nd 90.00 % 90.00 %
3rd 89.12 % 88.77 %
4th 89.75 % 89.41 %
5th 89.77 % 86.17 %

owing to the inherent wvariation of RSSI. As this result shows, the
conventional fingerprint produced a radio map of all the APs, and the
proposed algorithm assumes that enough AP RSSIs were collected during the
moving processes. If a user does not have sufficient updates, owing to
insufficient movement, the positioning performance will be degraded.
However, the same performance can be obtained when the data is sufficiently
acquired by user movement, making it a very effective system for generating

a radio map.
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Chapter 5 Conclusion

To minimize the time taken to acquire Wi-Fi signals in automatic
fingerprint systems when the indoor area becomes complicated and the size
increases, we studied the radio characteristics of indoor environments based
on unsupervised learning and proposed the combined UDRM and
MDLP-based RMF algorithm. UDRM selects either the modified autoencoder
or the modified GAN according to the indoor structure of each floor to
improve the processing speed and to better predict the radio map. Because
these algorithms use unsupervised learning, it iS not necessary to create
additional labeled data, making application easy, using the SSIDs and RSSIs
of APs in the building. The concordance rates of the radio map generated by
the proposed UDRM and the walking survey are relatively accurate, within
10 %. These errors of the radio map based on UDRM are within a very
stable range from the viewpoint of a neural network-based learning algorithm,
and the stability of the proposed UDRM is ensured by the concordance rates.

The MDLP-based RMF algorithm copes with changes (e.g., positioning,
installation, and AP removal), reducing the time taken to acquire RSSIs by
subordinating the generation process of the radio map in the training phase to
the positioning phase. The experimental results of the proposed automatic
Wi-Fi fingerprint system, based on unsupervised learning, are as follows.

In the proposed UDRM algorithm, the learning times of the 20 batches

used for learning and prediction of the modified autoencoder and GAN-based
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radio map were 2 ms/step and 8 ms/step, respectively. Thus, the modified
GAN, which is more complex than the modified autoencoder, reduced the
learning time by 4. Then, when the measured radio map based on the
walking survey was 100 %, the concordance rates of the generated radio map
obtained by the modified autoencoder and GAN were 90.4 % and 92.7 %,
showing 9.6 % and 7.3 % prediction errors, respectively. These errors were at
an ideal rate to prevent over-fitting caused by a high prediction accuracy of
more than 95 % while training the neural network. Although the accuracy
was lowered by about 10 %, compared to the measured radio map from the
walking survey, the proposed system showed good performance, and the
designed network is very stable as a neural network.

In the positioning phase, when the MDLP-based RMF algorithm was
applied to the radio map of the modified autoencoder and GAN, the update
rate of the radio map was 52.9% and 60.5 %, respectively. Additionally, the
positioning accuracy of the proposed fingerprint system was 88.59 %,
compared to the 89.66 % accuracy obtained with the measured radio map
based on the walking survey, showing that there was almost no error. In
other words, the automatic Wi-Fi fingerprint system, based on unsupervised
learning, reduced the radio map by 43.3% on average, even when the
positioning accuracy was almost the same. The time taken to acquire RSSIs
and the workload are the biggest problems in fingerprinting; however, these
can be significantly shortened by automatically updating and creating the

radio maps.
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