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비지도학습 기반 자동 Wi-Fi Fingerprint 시스템

by Ju Hyeon Seong

Department of Electrical & Electronics Engineering

The Graduate School of Korea Maritime and Ocean University

Busan, Republic of Korea

Abstract

최근 스마트폰과 Wi-Fi가 실생활에 보편화되면서 위치기반 서비스에 대한 개
발 분야가 실내 환경으로 점차 확대되고 있다. GPS로 대표되는 실외 위치 인식
과 달리 위치기반 서비스를 제공하기 위한 실내 위치 인식 기술은 Wi-Fi, 
UWB, 블루투스 등과 같은 다양한 근거리 무선 통신 기반의 알고리즘들이 연구
되고 있다. 

대표적인 실내 위치인식 알고리즘 중 하나인 Fingerprint는 사용자가 수신한 
AP 신호의 상대적인 크기를 나타내는 RSSI를 사용하여 위치를 추정한다. 따라
서 Fingerprint기반의 알고리즘은 장애물이 많이 존재하는 비가시 거리에서 TOA 
방식에 비해 전파의 반사 및 굴절과 같이 왜곡된 무선 환경에 강인하다는 장점
이 있다. Fingerprint는 실내의 모든 AP의 RSSI들을 측정하여 Radio map을 제
작하는 과정인 학습 단계와 생성된 Radio map의 RSSI들을 실시간으로 측정된 
RSSI와 비교하여 사용자의 위치를 추정하는 위치인식 단계로 나누어진다. 학습 
단계에서는 위치를 구분하기 위하여 사용자가 2~3m의 일정한 간격으로 설정된 
참조 위치들마다 측정되는 모든 AP들의 RSSI를 수집하고 Radio map으로 제작
한다. 위치인식 단계에서는 학습 단계에서 제작된 Radio map과 사용자의 이동에 
의해 측정되는 RSSI의 비교를 통해 가장 유사한 RSSI 패턴을 가지는 참조 위치



- vii -

가 실시간 실내 위치로 추정된다.
 서포트 벡터 머신(SVM), 주성분 분석(PCA) 등과 같이 지도 및 준지도 학습

기반의 Fingerprint 알고리즘은 Radio map을 제작하기 위해 모든 실내 공간에서 
RSSI의 측정이 필수적이다. 이러한 알고리즘들은 건물이 대형화되고 구조가 복
잡해질수록 측정 공간이 늘어나면서 작업과 시간 소모가 또한 급격히 증가한다. 
채널모델링을 통한 Radio map 생성 알고리즘은 직접적인 측정 과정이 불필요한 
반면에 건물의 재질, 3차원적인 구조에 따른 반사 계수 및 모든 장애물에 대한 
수치적인 모델링이 필수적이기 때문에 상당히 많은 작업량이 요구된다. 

따라서 본 논문에서는 이러한 문제점들을 해결하고자 학습 단계에서 Wi-Fi 
신호의 수집시간을 최소화하면서 실내 환경이 고려된 Unsupervised Dual Radio 
Mapping (UDRM) 알고리즘과 위치인식 단계에서 Radio map의 최적화가 동시에 
가능한 Minimum description length principle (MDLP)기반의 Radio map 
Feedback (RMF) 알고리즘이 결합된 비지도학습기반의 자동 Wi-Fi Fingerprint
를 제안한다. 학습 단계에서 제안하는 UDRM 알고리즘은 뉴럴 네트워크 기반의 
비지도 학습 알고리즘인 Autoencoder와 Generative Adversarial Network 
(GAN)를 공간구조에 따라 선택적으로 적용하여 하나의 참조 층에서 측정된 
Radio map을 기반으로 건물전체의 Radio map을 생성한다. 제안하는 비지도 학
습 기반 UDRM 알고리즘은 지도 및 준지도 학습에서 필수적인 Labeled data가 
필요하지 않으며 RSSI 데이터 세트의 의존성이 상대적으로 낮다. 또한 2차원 실
내 지도를 통해 실내 환경을 동시에 학습하기 때문에 기존의 예측 모델에 비해 
Radio map의 예측 정확도가 높다. 제안한 알고리즘에 의해 제작된 Radio map은 
위치인식 단계에서 사용자의 실시간 위치인식에 적용된다. 동시에 제안하는 
MDLP 기반의 자동 Wi-Fi 업데이트 알고리즘은 새롭게 측정되는 AP들의 RSSI
의 분포특성을 분석하고 그 결과를 Radio map에 피드백한다. 제안한 알고리즘에 
적용된 MDLP는 무분별한 RSSI의 업데이팅을 방지하고 추가되는 AP를 Radio 
map에 업데이트함으로서 위치인식의 성능을 향상시키고 Radio map의 크기의 최
적화가 가능하다. 
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제안한 알고리즘은 실제 측정기반의 Radio map과 서로 비교를 통해 제안한 
Fingerprint 시스템의 높은 안정성과 정확도를 확인하였다. 또한 구조가 다른 실
내공간의 Radio map 생성 결과를 통해 실내 환경 변화에 강인함과 학습 시간 측
정을 통한 시간 비용이 감소함을 확인하였다. 마지막으로 Euclidean distance 기
반 실험을 통하여 실제 측정한 RSSI기반의 Fingerprint 시스템과 제안한 시스템
의 위치인식 정확도가 거의 일치함을 확인하였다.
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Automatic Wi-Fi Fingerprint System 

based on Unsupervised Learning

by Ju Hyeon, Seong

Department of Electrical & Electronics Engineering

Graduate School of Korea Maritime and Ocean University

Busan, Republic of Korea

Abstract

Recently, smartphones and Wi-Fi appliances have been generalized in daily 

life, and location-based service (LBS) has gradually been extended to indoor 

environments. Unlike outdoor positioning, which is typically handled by the 

global positioning system (GPS), indoor positioning technologies for providing 

LBSs have been studied with algorithms using various short-range wireless 

communications such as Wi-Fi, Ultra-wideband, Bluetooth, etc.

Fingerprint-based positioning technology, a representative indoor LBS, 

estimates user locations using the received signal strength indicator (RSSI), 

indicating the relative transmission power of the access point (AP). Therefore, 

a fingerprint-based algorithm has the advantage of being robust to distorted 

wireless environments, such as radio wave reflections and refractions, 

compared to the time-of-arrival (TOA) method for non-line-of-sight (NLOS), 
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where many obstacles exist. Fingerprint is divided into a training phase in 

which a radio map is generated by measuring the RSSIs of all indoor APs 

and positioning phase in which the positions of users are estimated by 

comparing the RSSIs of the generated radio map in real-time. In the training 

phase, the user collects the RSSIs of all APs measured at reference points set 

at regular intervals of 2 to 3 m, creating a radio map. In the positioning 

phase, the reference point, which is most similar to the RSSI, compares the 

generated radio map from the training phase to the RSSI measured from user 

movements. This estimates the real-time indoor position.

Fingerprint algorithms based on supervised and semi-supervised learning 

such as support vector machines and principal component analysis are 

essential for measuring the RSSIs in all indoor areas to produce a radio map. 

As the building size and the complexity of structures increases, the amount 

of work and time required also increase. The radio map generation algorithm 

that uses channel modeling does not require direct measurement, but it 

requires considerable effort because of building material, three-dimensional 

reflection coefficient, and numerical modeling of all obstacles. To overcome 

these problems, this thesis proposes an automatic Wi-Fi fingerprint system 

that combines an unsupervised dual radio mapping (UDRM) algorithm that 

reduces the time taken to acquire Wi-Fi signals and leverages an indoor 

environment with a minimum description length principle (MDLP)-based radio 

map feedback (RMF) algorithm to simultaneously optimize and update the 

radio map. The proposed UDRM algorithm in the training phase generates a 

radio map of the entire building based on the measured radio map of one 

reference floor by selectively applying the autoencoder and the generative 
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adversarial network (GAN) according to the spatial structures. The proposed 

learning-based UDRM algorithm does not require labeled data, which is 

essential for supervised and semi-supervised learning algorithms. It has a 

relatively low dependency on RSSI datasets. Additionally, it has a high 

accuracy of radio map prediction than existing models because it learns the 

indoor environment simultaneously via a indoor two-dimensional map (2-D map). 

The produced radio map is used to estimate the real-time positioning of users 

in the positioning phase. Simultaneously, the proposed MDLP-based RMF 

algorithm analyzes the distribution characteristics of the RSSIs of newly 

measured APs and feeds the analyzed results back to the radio map. The 

MDLP, which is applied to the proposed algorithm, improves the performance 

of the positioning and optimizes the size of the radio map by preventing the 

indefinite update of the RSSI and by updating the newly added APs to the 

radio map. 

The proposed algorithm is compared with a real measurement-based radio 

map, confirming the high stability and accuracy of the proposed fingerprint 

system. Additionally, by generating a radio map of indoor areas with different 

structures, the proposed system is shown to be robust against the change in 

indoor environment, thus reducing the time cost. Finally, via a euclidean 

distance-based experiment, it is confirmed that the accuracy of the proposed 

fingerprint system is almost the same as that of the RSSI-based fingerprint 

system.  
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Chapter 1  Introduction

1.1 Background and Necessity for Research

Global positioning system (GPS)-based location based services (LBS) have 

applications in various fields such as the automotive industry, logistics, and 

security, etc. However, it is difficult to provide such services in indoor 

spaces because of the low signal transmittance of GPS. Recently, as the 

structures of buildings have become larger and more complex, the necessity of 

LBS in indoor environments has increased, and indoor positioning technologies, 

which can replace GPS, are being studied continuously [1, 2].

The representative indoor positioning methods are broadly classified into 

the time of arrival (TOA) [3-5], in which the distance between a transmitter and 

a receiver is estimated by measuring a signal arrival-time, and a fingerprint

[6-9] in which a position is estimated by measuring an intensity of the 

relative signal of access point (AP) according to the indoor location.

Table 1.1 shows a comparison of the communication methods employed, 

advantages, and disadvantages of the fingerprint and TOA. The TOA, which 

includes the time difference of arrival (TDOA), a positioning technique of 

GPS, requires the signals to be received at three or more different points. 

And communication techniques or protocols that are capable of measuring the 

arrival time of the signal are also essential. Additionally, it requires the spatial 

positional coordinates of the transmitter because it estimates the positions of 

users using the relative distances between the transmitters and receivers.
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Classification Fingerprint TOA 

Communication 
technology

§ Wi-Fi
§ Zigbee
§ Bluetooth low energy
   (BLE)

§ Ultrawide-band (UWB)
§ Chirp spread spectrum 

(CSS)

Advantages
§ Robust to Non-line of 

sight (NLOS)
§ High penetration rate

§ High positioning 
resolution(cm unit)

§ Low computational 
complexity

Disadvantages

§ Long construction time 
of system 

§ Low positioning 
resolution(m unit)

§ Large construction cost 
of system

§ Vulnerability to disturbance 
   (Refraction, Reflection, etc.)

Table 1.1  The comparison of fingerprint and TOA technology

The representative communication technologies of TOA are chirp spread 

spectrum (CSS) [10], ultrawide-band (UWB) [11,12], etc., and they have relatively 

higher positioning accuracies compared to the fingerprint. However, the cost 

of constructing such systems is many high because these communication 

systems are not universal radio systems.

Moreover, in the non-line-of-sight (NLOS) cases, where reflection and 

refraction of radio may occur, the position errors increase sharply because it 

will be difficult to measure the arrival time of the radio accurately.

The fingerprint has two phases. In the training phase, the intensities of the 
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radio signals measured at certain intervals in the indoor areas have generated 

a database called a “radio map”. In the positioning phase, the indoor positions 

of users is estimated based on the radio map generated in the training phase.

This method is suitable for most indoor communications such as Wi-Fi, 

BLE, and Zigbee [13-15], which can measure the received signal strength 

indicator (RSSI) that indicates the relative intensities of the radio signals 

measured according to the distance between a transmitter and a receiver. This 

method has the advantage that positioning is possible using the universal 

device alone, and does not require additional transmitters and receivers. 

Wi-Fi, which is the most widely used short-range wireless communication 

technology, is a communication method that has been attracting attention in 

the field of positioning because of its longer transmission distance and 

stronger transmission power compared to other communications. Wi-Fi-based 

indoor positioning is applicable to both the fingerprint and trilateration which 

is the positioning technique of TOA [16].

If an indoor area has been analyzed perfectly (components of a medium, 

transmittance, multi-path fading, etc.), the trilateration, which identifies the 

position by converting the RSSI into a distance value that depends on the 

channel modeling of the radio, can predict the position accurately than the 

fingerprint.

On the other hand, the fingerprint does not need an analysis of the indoor 

radio environment in the training phase because it uses a radio map, which 

stores the RSSI as it is. However, the fingerprint requires more time for 

system preparation than the TOA because it is necessary to measure the 

Wi-Fi signal at each of positions called the “reference points” after dividing 
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the indoor space at regular intervals, in order to produce the radio map 

[17,18].

Therefore, as the size of the building and the density of Wi-Fi increases, 

the size and generation time of the radio map for positioning also increases 

rapidly. It is becoming increasingly necessary to find solutions to these 

problems, because they not only increase the time cost rapidly but also slow 

down the real-time positioning speed (in the case of fingerprint).

1.2 Objectives and Contents for Research

In order to reduce the time cost and workload, this thesis proposes an 

automatic Wi-Fi fingerprint system based on unsupervised learning that 

combines an unsupervised dual radio mapping (UDRM) algorithm, which 

reduces the acquisition time of the Wi-Fi signals and considers an indoor 

environment, and a minimum description length principle (MDLP)-based radio 

map feedback (RMF) algorithm to optimize and update the radio map 

simultaneously.

However, Wi-Fi needs to consider a spatial environment due to the large 

attenuation of RSSI depending on indoor area and structure. To solve this 

problem, the proposed UDRM algorithm, which is divided into a modified 

autoencoder and modified generative adversarial network (GAN), is separately  

applied to these algorithms, depending on whether the indoor structures of 

building is the same or different for floors. Using the measured radio map of 

one floor called a “reference floor“ in the building, the modified autoencoder 

predicts and generates the radio maps of other floors that have the same 
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structure as the reference floor. The signals set of Wi-Fi APs measured at 

each reference point, which is a fixed interval set to acquire the Wi-Fi 

signals in the building, is learned using the modified autoencoder as input 

data. The input data which is consist of service set identifiers (SSIDs) and 

the RSSIs can be directly applied to the other floors of the same structures 

because they learn the changed RSSI according to the reference points around 

the APs, using the autoencoder. 

A modified GAN is applied to generate the radio maps for the other floors 

that have different indoor structures. The proposed modified GAN algorithm 

is designed to take in not only the Gaussian noise, which is the basic input 

signal but also a two-dimensional map (2-D map) and the coordinates of APs, 

as input data, to learn the indoor structure of the radio map. The designed 

input data are learned using a generator based on a neural network. When 

the learned data are input to a discriminator, along with the real measured 

radio map on the reference floor, the convolutional neural network (CNN) 

inside the discriminator compares and analyzes the space, placement of the 

APs, and entire RSSI distribution from the kernels which are filters of various 

sizes that can extract the characteristics of input data. The analyzed results of 

the discriminator are fed back to the generator. This process is repeated and 

the generator is gradually upgraded to an excellent learned generator that can 

similarly produce the real measured radio map. The modified GAN-based 

radio map at the new floors is generated through the learned generator by 

combining the 2-D map and the APs coordinates and various analyzed 

kernels data based on the real measured radio map at the reference floor. An 

entire radio map based on the proposed UDRM at the building is generated 
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by combining each radio map generated by selectively adapting the modified 

autoencoder and GAN.

Based on the entire radio map generated by the proposed UDRM 

algorithm, an MDLP-based RMF algorithm is proposed, to cope with not 

only the positioning but also the creation and removal of new APs in the 

positioning phase. The proposed MDLP-based RMF algorithm reduces the 

acquisition time of Wi-Fi RSSI through post-processing, by subordinating the 

measuring process of the RSSI in the training phase to the positioning phase. 

The MDLP, which is a discretization algorithm that discriminates and segments 

the continuity between the APs or RSSIs, preferentially removes the APs or 

RSSIs that have similar RSSI distributions because the coordinates of APs are 

spatially close and the RSSIs are not clearly distinguished according to the 

reference points. Using this algorithm, it is possible to manage the radio map 

continuously while preventing and reducing the indiscriminate updating of the 

radio map.
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Chapter 2  Wi-Fi Positioning and Unsupervised Learning

2.1 Wi-Fi Positioning

2.1.1 Wi-Fi Signal and Fingerprint

Wi-Fi, which uses information such as the SSID, RSSI, channel, and 

security type, is used frequently along with various indoor wireless 

communication technologies such as Bluetooth and Zigbee, because it uses 

the industrial, scientific, and medical (ISM) frequency-bands of 2.4 GHz and 5

GHz. The RSSIs of these communications are further distorted by reflection 

and diffraction from obstacles such as walls, doors, and rooms, as well as by 

the general signal attenuation over distance. Generally, the RSSI, which is 

attenuated in air can be estimated using the log-distance path loss model of 

equation (2.1) [19].

   


                   (2.1)

Where,  is the distance between the AP and the moving object,  is the 

reference distance,  is a normal random variable with zero means, reflecting 

the attenuation, and  is the coefficient of the path loss. The path loss 

coefficient  represents an environmental variable determined according to the 

surrounding communication and indoor environment. This is applied to adjust
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Fig.  2.1  The conventional attenuation of RSSI over distance

the path loss according to the surrounding medium, i.e., the indoor or outdoor 

conditions where the radio is measured. 

Fig. 2.1 shows the conventional attenuation of RSSI over distance between 

a transmitter and a receiver. The x-axis represents the relative distance 

between the transmitter and receiver, and the y-axis represents the RSSIs of 

the transmitter measured by the receiver. As the relative distance increases, 

the less the change in declining span width is as shown in the Fig. 2.1. 

Therefore, The log-distance path loss model, which indicates the variation of 

the RSSI according to the distance, finds it difficult to distinguish the 

distance because the RSSI gradually becomes weaker as the relative distance 

between the transmitter and receiver increases.

As shown in Table 2.1, there are 14 frequency channels available for indoor 

wireless devices. However, as the penetration rate of smart devices increases, 

the indoor density of Wi-Fi per unit area also increases. Therefore, as the 14
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Wi-Fi 
channels

Intermediate 
frequency (Ghz)

Channel 
frequency range (Ghz)

1 2.412 2.401 ~ 2.423
2 2.417 2.406 ~ 2.428
3 2.422 2.411 ~ 2.433
4 2.427 2.416 ~ 2.438
5 2.432 2.421 ~ 2.443
6 2.437 2.426 ~ 2.448
7 2.442 2.431 ~ 2.453
8 2.447 2.436 ~ 2.458
9 2.452 2.441 ~ 2.463
10 2.457 2.446 ~ 2.468
11 2.462 2.451 ~ 2.473
12 2.467 2.456 ~ 2.478
13 2.472 2.461 ~ 2.483
14 2.484 2.473 ~ 2.495

Table 2.1  The frequency allocation of 2.4 Ghz Wi-Fi

channels become saturated, many devices will use the same channel. If the 

AP density is high, despite the optimized frequency distribution, interference 

between the same or adjacent channels will occur.

Fig. 2.2 shows the Wi-Fi protocol applied to minimize the interference 

and collision of wireless communication, with a CSMA/CA protocol. The 

CSMA/CA is a typical medium-access method of the IEEE 802.11 wireless 

communication network (Wi-Fi), and is designed to avoid signal collisions 

between wireless devices. DIFS and SIFS, which indicate the time intervals 
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Fig.  2.2  The structure of CSMA/CA

 

between frames, are used to the receiver to detect the signal of receivers and 

avoid communication collisions with other senders, immediately before 

communicating with a connected sender. If it is determined that communication 

with another sender does not occur during a certain time interval, data 

communication occurs between the sender and receiver. When data are 

transmitted by multiple senders to the receiver, the senders wait and 

retransmit after a random back-off time, to prevent collisions from simultaneous 

transmissions. Since this protocol prevents data collisions in the same channel, 

information such as the SSID and RSSI of Wi-Fi devices using the same 

frequency band can be independently divided and measured according to APs. 

However, because many wireless devices share a single frequency, the waiting 

time for data transmission is long for CSMA/CA, which causes a speed 

reduction phenomenon [20, 21]. 

Even if the RSSIs are clearly different for the APs in which the channels 

overlap, the RSSI measured by the receiver has an irregular value with 

constant amplitude with respect to real-time. The reason for this is mainly the 

variation of the RSSI, which is distorted according to the structure or 
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material of the indoor area, and an inherent error caused by the hardware of 

the sender and receiver or the characteristics of the Wi-Fi frequency band, 

which has a high diffraction property. This is an important reason that 

reduces the user's positioning accuracy in the fingerprint. As the physical 

distance which is mean the interval of the reference point that can identify 

the position increases, the positioning resolution that can express the real 

position of the user, is reduced. Because the fluctuation of RSSI differs 

depending on the indoor environment, it is necessary to derive the physical 

distance over which the RSSI can be distinguished by measuring the basic 

signal and apply the optimized fingerprint unique to the environment and 

structure. The disadvantage of this Wi-Fi RSSI is that the positioning 

resolution that can represent the position is reduced to m units, compared to 

the TOA, which can recognize the position in cm units. However, compared 

to the TOA, the fingerprint has many advantages in indoor environments, 

such as large Wi-Fi scalability, low construction cost, and no requirement for 

separate receiver [22].

Fig. 2.3 shows the structure of the conventional fingerprint technique. The 

fingerprint technique is divided into the training phase that generates the 

radio map and the positioning phase that performs the positioning in 

real-time. The training phase generates the radio map using the measured 

RSSI for each reference point, set at regular intervals of 2 to 3 m, in order 

to position the user's location. The Wi-Fi signals measured at the reference 

point are used to generate the radio map through preprocessing such as 

averaging or partition of RSSIs that are attenuated by the relative distance 

between the transmitter and receiver, and surrounding structures. The RSSI, 
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Fig.  2.3  The structure of conventional fingerprint

which is influenced by the relative distance and presence of obstacles, is an 

important value for positioning the user's location. The more accurate the 

classification of the RSSI of the AP measured according to each reference 

point is, the higher the accuracy of the positioning will be.

Fig. 2.4 shows the structure of the conventional radio map. The x-axis 

represents the RSSI of an arbitrary SSID, according to the changes in the 

reference point, and the y-axis represents all the measured APs at any one 
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Fig.  2.4  The structure of conventional radio map

reference point. Since the x-axis is the reference point set of the entire area 

for positioning, the size of the x-axis will be constant according to the size 

of the area, irrespective of whether or not the RSSI of a specific AP is 

received at all reference points. On the other hand, since the y-axis indicates 

the number of APs, the larger the number of measured APs in space is, the 

larger the size of the radio map will be. Therefore, the x-axis, which is 

determined according to the indoor environment such as size and structures, 

can be determined according to the number of reference points; however, it 

will be difficult to reduce the reference points. Since the y-axis can control 

the number of APs, it is necessary to design a system that minimizes the 

APs and exhibits a high accuracy of positioning.

Fig. 2.5 shows the placement of the reference points, which are indicated 

by circles set at intervals of 2 ~ 3 m, and APs on the indoor map. According 

to the reference points, the SSID and RSSI of the Wi-Fi are measured 

several times, and the result of summarizing the measured Wi-Fi signals is 

called the radio map. Generally, the RSSI of any one AP is not measured at 

all reference points because one Wi-Fi cannot cover the entire indoor area. 

However, since the radio map must contain information about all reference 
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Fig.  2.5  The placement of reference points

points, the matrix of the radio map is given by [ the number of reference 

points x the number of APs ]. Therefore, even if only one AP is installed in 

the indoor area, the matrix of the radio map will be increased by [the

number of reference points x 1 ].

In the positioning phase, the real-time position is estimated by comparing 

the radio map produced in the training phase with the measured Wi-Fi RSSI 

from the user's receiver. The RSSIs measured in real-time while the user is 

moving have reference points with similar RSSIs in the previously created 

radio map. The RSSIs measured by the user in real-time estimate the 

reference point with the highest similarity, from among the reference points 

with similar distributions in the previously created radio map, as the user 's 

location. In this method, since the reference point can be expressed by the 

user's position only, the positioning performance is determined according to 

the intervals of the reference point. Therefore, since the fingerprint method 

estimates the position based on the similarity of RSSIs, probabilistic or 

deterministic algorithms are applied [23]. Among them, the euclidean distance 

algorithm based on a k-nearest neighbor (K-NN), which is a non-parametric 
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method used for classification and regression, is often used for real-time 

multi-positioning because it is relatively uncomplicated for computation. The 

euclidean distance algorithm is as follows.

  min



  



    
                    (2.2)

Here,   is the final position of the user,  is the measured real-time, and 

  is the RSSI at the reference point   of the radio map. The reference 

point with the highest similarity is identified as the current position of the 

user by comparing  , which represents the RSSIs measured in real-time, 

and  , which represents the RSSIs at all stored reference points in the 

radio map [24, 25]. Therefore, fingerprint, which is highly dependent on the 

radio map, requires much time cost and workload to implement the system in 

the training phase. The kinds of applied techniques are also highly varied 

when compared to the positioning phase.

2.1.2 Fingerprint Techniques

Fig.  2.6  The typical application algorithm according to the phase
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Fig.  2.7  The method of typical walking survey

The acquisition process of the RSSIs, which is the basic step for 

generating the radio map, is based on an inertial-sensor-based method [6,

26-28], a walking survey method [28], and a channel-modeling-based prediction 

method [29, 30], as shown in Fig. 2.6.

As shown in Fig. 2.7, the walking survey method is divided into a 

point-by-point calibration that concentrates signals only at reference points and 
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a fusion-sensor-based calibration that classifies consecutive Wi-Fi signals 

obtained by walking according to the reference points. Point-by-point calibration

is a method of measuring RSSIs several tens of times, with enough time per 

reference point (indicated by a red circle). This method generates the highest 

time costs because all the reference points consume a certain amount of time. 

Nevertheless, the accuracy of the radio map is high, owing to sufficient 

signal collection at the reference points.

On the other hand, the fusion-sensor–based classification is a method of 

measuring the RSSIs of APs while moving according to a predetermined 

movement route by using fusion of a walking and inertial sensor. The inertial 

sensor is the most commonly used sensor because it is built in the 

smartphone. Therefore, the fusion-sensor–based calibration is less time 

consuming than the point-by-point calibration because it can be measured 

while walking through predetermined reference points. However, because of 

the cumulative error of the inertial sensor, generated during movement, there 

may be a decrease in the positioning accuracy due to a mismatch between 

the reference points and measurement location [31-33].

The radio map prediction based on the channel modeling extracts the 

radio-characteristics model of Wi-Fi and estimates the position of the user 

from the obstacles and distances, based on the coordinates of fixed APs.

The finite-difference-time-domain (FDTD) and log-distance path loss models 

are the most widely used indoor channel modeling in the fingerprint. The 

FDTD is widely used for modeling the radio emission characteristics of small 

electronic devices; however, it is necessary to specify the accurate physical 

coefficients for the characteristics of the surrounding medium in which 
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reflection and absorption of the radio occur. Therefore, a comprehensive 

mathematical analysis of the propagation, reflection, and absorption 

coefficients, and the distortions due to the arrangements of a wide variety of 

indoor structures such as walls and windows, is needed over a relatively 

large area. The Wi-Fi signals obtained for generating a radio map, using 

these methods, are subjected to preprocessing such as optimization and 

relocation.

In these pre-processes, the data are processed according to the format of 

the radio map suggesting the measured Wi-Fi signals, and the user finally 

generates the desired radio map. Here, the typical RSSI classification and 

optimization techniques used for processing the radio map are supervised and 

semi-supervised learning algorithms such as the support vector machine (SVM) 

or principal component analysis (PCA), and discretization and classification 

algorithms such as the MDLP or chi-squared test, and etc [34-36].

The SVM is an algorithm that classifies the RSSI measured by the 

walking survey method, according to the magnitude, and generates the radio 

map by matching it with the reference points. The RSSIs measured by the 

fusion-sensor–based classification of the walking survey are continuous, but 

the classification for the reference point is not clear. The SVM classifies data 

according to the magnitudes of the RSSIs and matches each reference point 

to these unclear RSSIs. This algorithmic feature is applicable to the real-time 

Wi-Fi signals measured from users in the positioning phase, as an algorithm 

that can determine positions based on the classified RSSIs [37-39].

The PCA, which is an algorithm for re-dimensioning multi-dimensional 

data by realigning large-sized data according to their orders of magnitude, is 



- 19 -

widely applied for the size reduction and optimization of the radio map. The 

PCA used to optimize the generated radio map disassembles the APs according 

to the order of magnitude of the variance values when mapping the RSSIs 

on a single axis in the radio map. The dispersion values of each AP indicate 

the characteristics of each AP, and the RSSIs of the radio map can be 

reduced according to the number of principal components [40, 41].

As one of the discretization algorithms that can separate data into several 

signals, according to continuity, the MDLP is an algorithm that can simultaneously 

optimize and classify data. This algorithm divides the sets of RSSIs using 

entropy, which is a measure of disorder, for discretization [42, 43]. Entropy 

can express the probability that a certain value will appear in one data set, 

which is expressed by equation (2.3).

  

                          (2.3)

Where   represents the total number of data, and   indicates the number 

of times any arbitrary value has appeared. Therefore,   is equal to the 

probability that a single value will come from the entire data. According to 

the definition of the log function, it can be expressed by the equation given 

by

 log                         (2.4)

Here,  is an information amount and   denotes an arbitrary value in the 
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set. When =1, where the data set is constant, it can be confirmed that this 

data set has regularity as an amplitude of one RSSI. On the other hand, if 

=0, it means that the value   in the data set does not exist. The amount 

of information of such a value can be expressed mathematically, and it is 

expressed by equation (2.5).

    log                       (2.5)

Here,   represents the entropy, which is the average information amount. 

Therefore, if the elements in the set have regularity or appear as one value, 

the entropy is lowered. The more irregular the data is, the more the entropy 

will increase. Thus, a set, which explicitly presents the distinction of the 

measured elements in a continuous time order, indicates that the number of 

subsets divided by the discretization increases, and that the values of the 

subset are clearly different from each other. The MDLP with these properties 

is expressed by equation (2.6).

  





            (2.6)

Here,   means the whole data in the set,   means the dividing point for 

the condition  , and   and   indicate two subsets of   divided by  . 

Therefore, as the number of subsets due to the discretization of the set 

increases, it means that the reference points are properly classified 

automatically. Based on this, if MDLP is applied to the relationship of AP 
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aggregates rather than to a single set, the APs can be removed by using the 

property that signals that should have similar distributions of elements are not 

divided. Since the MDLP itself splits the continuous data, there is no 

numerical value to check the result separately. Therefore, to verify the 

performance of the MDLP, the information gain (IG), which indicates the 

amount of entropy applied to determine the continuity of data after applying 

the MDLP.

In this case, the IG values of the RSSI set, which clearly distinguish the 

data, appear larger and the APs that the RSSIs find difficult to distinguish are 

converged to 0 by the IG. In other words, the RSSI set of APs with a value 

of 0 can be defined as an AP that can cause confusion in positioning because 

the measured RSSI results at the different reference points are similar [44].

Fig. 2.8 shows the IG values obtained as a result of applying MDLP and 

IG to the RSSI aggregates of each AP. The x-axis represents the SSID of 

each AP and the y-axis represents the value obtained by applying the MDLP 

and IG. As described above, the APs with an IG value of 0 indicate that it 

is difficult to distinguish the measured RSSIs according to the reference 

points. Especially, Wi-Fi signals have high standard deviations because they 

have large variations of RSSIs even at one reference point. Therefore, this 

removal of APs is effective in reducing the size of the radio map or 

increasing the iteration speed.

The class-attribute interdependency maximization (CAIM) and class-attribute 

contingency coefficient (CACC) are discretization algorithms similar to the 

MDLP. Unlike the MDLP based on entropy, both these algorithms partition data 

based on probability-based interdependencies. Therefore, since these algorithms
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Fig.  2.8 The visualization of MDLP via IG

Fig.  2.9 The performance comparison of MDLP, CAIM, and CACC

do not use the entropy in the computation process, an entropy derivation 

process is needed to apply the IG; the discretization performance is also lower 
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than that of the MDLP.

Fig. 2.9 shows the results of an experiment comparing the performance of 

MDLP, CAIM, and CACC. The x-axis is the SSID of the AP and the y-axis 

is the difference value of the IG of the MDLP with respect to the IGs of 

CAIM and CACC. Since they are derived from the same algorithm, the 

discretization performances of CAIM and CACC are similar; the IG results of 

both algorithms are also the same. Among the three algorithms, the 

discretization of MDLP is the best, but the difference is very small. To 

distinguish it, the y-axis is expressed as the difference by setting the IGs of 

CAIM and CACC to the reference value of zero. The size of the y-axis is 

very fine, but these results have a large impact on the ability of removing 

the APs.

 

2.2 Unsupervised Learning

2.2.1 Neural Network

Recently, research on neural networks has been increasing, and machine 

learning algorithms are fundamentally classified into neural network-based and 

non-neural network-based learning algorithms. 

SVM and PCA, which are non-neural network-based supervised and 

semi-supervised learning algorithms, can be used as positioning and RSSI 

classification and optimization for the fingerprint. Because these algorithms do 

not use a neural network, their computation complexity is relatively low. 

However, their application scope is somewhat limited. 
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Fig.  2.10  The network structure of supervised/semi-supervised learning

As shown in Fig. 2.10, neural network-based supervised and semi-supervised 

learning algorithms interpret features through interconnections of the hidden 

layer between the input and output data. Neural network algorithms (e.g., 

convolutional neural networks (CNN) and recurrent neural networks (RNN)) 

use supervised and semi-supervised learning from the endpoints, based on the 

correct answer data, to update the connected weights ( , ′) around the 

hidden layer. Thus, these algorithms require minimum training data and 
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labeling with correct answer data. 

Labeling refers to the process of inducing the output of the desired data 

by allowing the user to compare expected output data directly to trained 

output data. This is identical to the concept of passive clustering. Data 

created through this process is called “labeled data” and is an essential 

process for acquiring a properly trained model for supervised and 

semi-supervised learning. Therefore, learning performance is determined by the 

quality of the label, the size of training data, and the training volume. It is 

applied to regression, classification, prediction, etc., depending on the method 

of use [45–48].

Table 2.2 shows the result of comparing the characteristics by the learning 

Classification
Supervised 

learning
Semi-supervised 

learning
Unsupervised 

learning

Organization 
of data sets

Labeled data
Labeled data,

Raw data
Raw data

Algorithms
KNN, SVM, 

Linear model, 
Neural networks

Label propagation,
Neural networks

PCA, Autoencoder, 
K-means, DBSCAN

Application
Regression,

Classification,
Prediction

Regression,
Classification,

Prediction

Clustering,
Prediction,

Feature extraction

Table 2.2 The the result of comparing the characteristics by the learning 

algorithm type
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algorithm type. While developing and training a learning algorithm, the labeling 

process consumes a considerable cost and lowers the accuracy of the algorithm, 

making it dependent on the initial design. By contrast, unsupervised learning 

has the advantage of not requiring labeled data. Thus, it learns the original 

data as input data with no separate processing of features to derive the 

desired result. Therefore, when applying supervised and semi-supervised 

learning to a radio map, must be directly measured at the same location and 

input as labeled data. Furthermore, because the distribution of RSSIs can be 

greatly distorted and unclear, depending on the indoor structures and radio 

environment, there is limited scope for improving the label quality in order 

to enhance the accuracy of the learning algorithm. Therefore, the proposed 

Fig.  2.11  The structure of dense layer and kernel configuration
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algorithm adopts unsupervised learning, which does not require unsupervised 

learning, which does not require direct measurement. Neural network-based 

machine learning algorithms are designed based on a deep learning structure, 

stacked with multi-layers. Each layer can be designed to output the user 

specified results.

Generally, neural networks have a dense network structure in which all 

input and output nodes are interconnected, as shown in Fig. 2.11. Here, 

  represents the 2-D input data consisting of , which is the feature 

vector set of the hidden layer and , which is the output feature vector set 

calculated through the multiplication operation of the weight group. A group 

of independent weights is a “kernel”. In the case of DenseNet, an entire layer is 

one kernel, because all weights are independent. Because this layer can perform

Fig.  2.12  The structure of CNN layer and kernel configuration
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all types of operations, it also has the fundamental disadvantage of being unable 

to extract widely used layers, local characteristics, and biased characteristics. 

To overcome this disadvantage, the CNN, which is often used for images, 

shares the weights without making them independent in one layer. 

Fig. 2.12 shows the structure of CNN layer and kernel configuration. 

Here, , , and  are the input data, the feature vectors of the hidden 

layer, and the output layer, respectively. Furthermore, the solid, dotted, and 

double-dotted arrows denote connections of  ,   and  , which are shared 

amongst the nodes. The CNN layer, which has a group of non-independent 

weights, can have multiple small weight groups, unlike the DenseNet, and 

thus can have diversity of expressions with  kernels expressing various 

characteristics.

2.2.2 Autoencoder

Neural networks are classified into backward and forward types, depending 

on the weight () update method. The backward type represents supervised 

learning in which the relationship between input and output is functionalized 

with all input and output data acquired as training data. Here, training data is 

labeled data, because the label, or the result of the classifier, is input with 

the data. For most learning algorithms, it is critical to acquire a large 

quantity of high quality data before learning, because the quantity and quality 

have a significant effect on performance.

However, because the labeled data are mainly created manually, it is time 

consuming and difficult to acquire a large quantity of data consistently. 
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Fig.  2.13  The structure of conventional autoencoder

Therefore, researches are being conducted to reduce labeled data by using an 

unsupervised algorithm or by improving a supervised learning algorithm. 

As a representative example, to avoid using labeled data, an autoencoder 

performs labeling by itself based on the probability distribution of features by 

simply using the input data. It copies the learned training data to new output 

data. In the image processing field, this technology is applied for the creation 

and restoration of images as an image reproduction algorithm. 
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Fig. 2.13 shows the structure of the most basic autoencoder. Using 

training data consisting of input data and one datum having the value of 1, 

the autoencoder encodes signals feature vector   of the deterministic function 

type according to each feature. Then it carries out data restoration by 

decoding it again.

Additionally, the input value, 1, is a bias to maximize the approximation 

by quickly adjusting the characteristic curve of probability distribution to 

derive  , based on the training data. The operation process of each input 

value can be shortened by adjusting this value. 

The input function,  , can be expressed as follows with weight value 

() and bias ():

                            (2.7)

where  is the weight value according to each input data,  , in the 

feature vector function,  , and   is the bias of data. This function is used to 

recreate output from the decoder, as shown in equation (2.8). As the amount 

of training data increases,  and  are trained as a function with a more 

accurate output value.

    ′ ′                     (2.8)

Because this cloned data do not require any featured function setting or 

labeled data, and the input and output data are always identical, the 

autoencoder cannot use complex input data, and the scope of its application 
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is also limited [49–51]. To improve the performance of this autoencoder, 

recent researches apply a deep autoencoder by dividing it into encoder and 

decoder and reconstructing it into deep neural networks performing the same 

role.

2.2.3 Generative Adversarial Network

A neural network based on probability distribution is a method of 

weighted learning that maximizes the log-likelihood. Generally, numerous 

approximations are required for the log-likelihood gradient. Thus, a generative 

machine is applied, which can derive results simply through a pre-trained 

machine. The back-propagation, which is a core algorithm of the supervised 

learning based neural networks, definitely requires ground truth. Thus, as it is 

inappropriate for the generative model with no training data, which is the 

objective of learning. Past researches applied such methods to an autoencoder, 

which uses input data as training data. However, GAN is recently proposed 

to improve prediction performance through mutual learning of the training 

model.

GAN, a generative machine, was developed as a technology to generate 

images. It is a network that creates the learning function while increasing 

accuracy by itself via competition between the CNN-based “generator,” which 

creates images, and the CNN-based “discriminator,” which compares the 

actual and created images.

Fig. 2.14 shows the structure of this network. For an initial training, the 

generator, which receives Gaussian noise as input, generates fake data per the 

predefined pixel size. The discriminator compares the real data to be trained 
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Fig.  2.14  The structure of conventional GAN

with the fake data and trains only the matching pixels by comparing them. 

Simultaneously, the generator receives only the information of unmatched 

pixels from the discriminator, and the recreation process of fake data is 

performed repeatedly. This competition process (i.e., minimax game) can be 
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expressed as the function,  , as follows [52].

min max    Ex ∼ pdata x   log Ez ∼ pz z   log    (2.8)

Where, for the generator to learn the distribution curve,  , of input data, 

, the derivative function (fake data),  , of the first multi-layer perceptron 

having the Gaussian noise  as general noise data. Parameter,  , is 

expressed as    in the data space. Here, when the second multi-layer 

perceptron outputs a single scalar, expressed as   ,  is the 

probability of appearing in input,  , rather than in the distribution curve,  . 

  is trained to maximize the probability of the real data, and fake data,  , 

is used to create the correct label. Simultaneously,   is trained to minimize 

log  .

The learning process of this operation is expressed in Fig. 2.15. The data, 

   , are the results of projecting the input noise,  , by the generator. 

(a) represents the data distribution status prior to initial learning. The random 

green   function generates values in the shape of a Gaussian distribution, 

and the blue   function represents a random curve, because it occurs before 

distinguishing the blue   from the actual data. When learning begins, as 

shown in (b), the discriminator,  , is generated as a sigmoid function curve, 

because it distinguishes the true and false data. In step (c), where all signals 

are determined to be true, and the generator generates actual signals,   

appears as a straight line, because it only has true values. When the 

generator becomes a generative machine that generates data close to the real 
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Fig.  2.15  The data learning process by GAN

data through this process, the discriminator is finally removed to use this learning 

machine, and it is applied as shown in Fig. 2.16. Here, the learned 
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Fig.  2.16  The application of learned generator

generator is a network that generates the number 9. When a generative machine 

consisting of these multiple generators is composed, a new network that can 

distinguish and create more various images from the input data can be 

created [53].
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Chapter 3  Proposed Fingerprint System

3.1  Unsupervised Dual Radio Mapping Algorithm

In this chapter, the proposed unsupervised learning-based fingerprint 

system, which leverages the proposed UDRM algorithm in the training phase

Fig.  3.1 The structure of proposed UDRM algorithm 

in the training phase
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and the proposed MDLP-based RMF algorithm in the positioning phase, is 

described in detail. 

Fig. 3.1 shows the structure of the proposed UDRM algorithm in the 

training phase. The proposed UDRM algorithm, based on the autoencoder and 

the GAN described in chapter 2, is applied two modified algorithms that 

generate a radio map according to indoor structures and measured Wi-Fi data 

within the reference floor. First, to minimum learning, the proposed algorithm 

measures the SSID and relative RSSI according to a set reference point on 

the reference floor of the building where user locations can be recognized. 

Based on the measured Wi-Fi, a real radio map for learning is preferentially 

generated on the reference floor. The RSSIs in the radio map only measures 

fixed AP that do not change. Generally, the main APs installed in a building 

cover the entire area and are always fixed and operated. Additionally, the 

coordinates of the APs are easily obtained via indoor 2-D maps.

After that, based upon the floor where the radio map is to be generated, 

the autoencoder or the GAN is selectively applied according to the indoor 

map and the coordinates of APs on other floors. If the 2-D maps and the 

coordinates of APs on new floors exists, the proposed algorithm can be 

applied automatically. To reduce iteratively learning-time and to ensure 

positioning accuracy in the positioning phase, the initially measured APs (i.e., 

learning objects) are selected only for the main APs of Wi-Fi having an 

extremely low probability of being removed.

The modified autoencoder in the proposed UDRM algorithm is then 

applied to other floors having nearly the same indoor structures and the 

coordinates of APs, like the reference floor. 
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Fig.  3.2  The type of input/output data of modified autoencoder

Fig. 3.2 shows the structure and input/output data of the modified 

autoencoder for applying the fingerprint.   is a set of RSSIs measured from 

the walking survey. The RSSIs measured on the reference floor are learned 

to generate the RSSIs on the other floors. The form of input to the 

autoencoder is shown in equation (3.1).

  
  

  
   

                    (3.1)
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where,  is the location of the reference point, and   is the set of 

RSSIs according to the reference point of the -th AP. When   is learned 

as input data, their RSSI distribution curves are obtained for the entire radio 

map. As the amount of iterative learning for the same AP gradually 

increases, so does the accuracy of the distribution curve. Even if the 

positions of the reference points change, the prediction accuracy of RSSI 

between a receiver and a transmitter increases.

Fig. 3.3 shows the comparison of the autoencoder performance according 

to the learning iterations. (a) is the result of the replicated signal with a 

small amount of learning, and (c) is the result of the replicated signal when 

the amount of learning is sufficient. The black dots represent the data learned 

from the input data, and the green line represents the result of the prediction 

data between the black dots. Thus, with much iterative learning, (c) can 

predict the signals more accurately than (a). This algorithmic feature is 

advantageous for the replication of signals when the same data is learned, but 

can be advantageous for prediction when intermittent signals such as Wi-Fi, 

  

Fig.  3.3  The performance of autoencoder according to iterations
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Fig.  3.4  The learning of the modified autoencoder

are learned. Therefore, the Wi-Fi RSSIs measured is inputted the proposed 

unsupervised learning based on autoencoder without any additional processing 

and replicate their signals. In addition, if only the coordinates of APs are 

added as input data with the measured RSSIs of APs, it is robust to the 

reference points change, because the RSSIs between the reference points are 
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predicted to high accuracy. Therefore, the radio map is predicted and generated 

with the proposed algorithm on the other floors of the same structure. 

Therefore, the radio map is predicted and generated by the proposed 

algorithm on the other floors of the same structure.

Fig. 3.4 shows the structure of an modified autoencoder that maps input 

RSSIs to the 2-D map and uses the data as input for the autoencoder to 

learn the characteristics of the RSSIs emitted from the Wi-Fi APs on the 

other floors of the same structure. The inputted radio map, which is 

measured on the reference floor, is updated by comparing the weight of the 

autoencoder against the generated radio map, and the autoencoder consists of 

encoders and decoders. 

In the modified autoencoder, the encoders and decoders are designed 

symmetrically to compress and expand the types of input data. Because the 

input data is output as RSSI for each referenced position, (Fig. 3.4), it is 

necessary to combine it with real 2-D maps. During the real prediction 

process, the measured RSSIs are not used as input data, because a new floor 

is an unmeasured area. Thus, the coordinates of the APs on the new floors 

should be input.

Fig. 3.5 shows the prediction process of the modified autoencoder, which 

belongs to a generation model that inputs similar data or noise, and outputs 

the result using the same distribution as the input data. The measured RSSIs 

on the reference floor and coordinates of APs on the other floor are input 

simultaneously. The dotted-line graph atop the Fig. 3.5 indicate a linearly 

approximated Wi-Fi signal attenuation for coordinates of AP. As in the 

learning process, the estimated RSSI value is mapped to the 2-D map to 
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Fig.  3.5  The prediction of the modified autoencoder

generate input data, and the predicted radio map is generated with the learned 

algorithm. The generated radio map of each AP is predicted considering the 

coordinates of the installed APs on the new floors, assuming the same 

structure as the measured reference floor and the learned indoor structures. In 

case the floors with different indoor structures, the modified GAN is applied 
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Fig.  3.6 The structure of the modified GAN 

instead of the modified autoencoder. The modified GAN-based radio map 

generation algorithm can be applied to indoor environments where the 

reflection and refraction characteristics of the radio are the same, even if the 

installed coordinates of the APs and indoor structures are different.

Fig. 3.6 shows the structure of the proposed GAN. Unlike the general 

GAN structure, where only Gaussian noise is input to the generator, the 
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Fig.  3.7  The learning principle of the discriminator

modified GAN is inputted Gaussian noise as initial data along with a 2-D 

map and coordinates of APs on the new floors. The 2-D map is the input 

data for effective radio map-matching, because it grasps the indoor structures 

of the floors through the measured radio map on the reference floor.

Thus, the coordinates of APs are essential data for generating the radio 

map at the correct position and predicting the RSSIs. An initially non-learned 

generator creates random RSSI distributions from the Wi-Fi signals generated 

by Gaussian noise through the input 2-D map and coordinates of APs.

The fake radio map, which is generated by the Gaussian noise, divides 

the real measured RSSI on the reference floor and each generated RSSI by 

the discriminator into true or false per a pixel in the map. 

Fig. 3.7 shows the learning process of the CNN-based radio map, which 

is the basic structure of the discriminator that classifies the generated radio 

map into true and false. The discriminator is learned the data of the fake 

radio map which is combined the 2-D map and the coordinates APs. The 

fake radio map is compared to the real radio map, and the discriminator is 

only given the false RSSI pixels in the fake radio map as the input data of
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Fig.  3.8  The application method of the modified learned generator

the generator for learning. This process re-predicts the accurate radio map via 

iterative learning. The kernel can freely acquire information of the combined 

radio map according to the shape of the sample, and  it can predict the 

partial 2-D map and RSSI distributions of various kernels simultaneously 

using learning generator in GAN. The kernel applied in the proposed 

algorithm learns from a wide range of pixel sizes and shapes: from 2x1 to 

the entire map size. If enough generation data is learned through iterative 

learning, it becomes a radio map generator, which stores the APs and indoor 

environments of the learned building into the various kernel forms.

Fig. 3.8 shows the radio map generation by the learned generator of GAN 

of new floors. The learned generator combines the various learned types of 

kernels and predicts the RSSI distributions using the 2-D map and the 

coordinates of the APs on the floors that are different. Thus, the proposed 

radio map generated by the combined autoencoder and GAN maps, so that 

the RSSI distributions of all floors and areas are generated without complex 

measurement processes in a new area. 
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Fig.  3.9  The order of construction the entire radio map

Fig. 3.9 shows the process of combining the generated radio map into an 

entire radio map. The RSSI distributions, according to the transmission power 
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of AP, are predicted and combined to generate a radio map of all floors. 

Because the modified autoencoder and GAN-based unsupervised learning 

algorithms are designed around networks like CNN and RNN, they respond 

flexibly to data input for iterative learning. In this process, over-fitting 

happens when an algorithm learns 100 % of the detail and noise from the 

training data such that it negatively impacts the performance of the model. 

Often, the noises or random fluctuations of the training data are picked up 

and learned as concepts by the model. Therefore, networks that are robust to 

this phenomenon have prediction errors in the range of 5 to 10 %. However, 

prediction errors of 10 % or more begin to deteriorate learning performance. 

It is necessary to the stabilize the prediction accuracy through sufficient 

measurement data and iterative learning.

3.2  MDLP-based Radio Map Feedback Algorithm

The generated radio maps for each floor, using the proposed autoencoder 

and GAN, do not measure or predict high-mobility APs, thus reducing 

time-cost and workloads for RSSI measurement. Therefore, additional updating 

of individual APs is required to improve positioning accuracy. To accomplish 

this, an MDLP-based RMF algorithm is proposed, which can update during 

positioning using the generated radio map of the UDRM.

Fig. 3.10 shows the structure of the proposed algorithm in the positioning 

phase. To recognize user locations through the radio map, it is essential 

thatthe users have smart devices capable of measuring Wi-Fi. When the radio 

map is acquired through this device in real-time, the radio map based on  
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Fig.  3.10  The proposed flowchart of the positioning phase

the UDRM and the measured APs signals are compared by the euclidean 

distance algorithm of equation (2.2). Through this operation, the coordinates of 

the reference points having the highest similarity are determined to be the 

user locations. 

Whereas the above-described process occurs in the conventional positioning 

phase, the proposed MDLP-based RMF algorithm optimizes and updates the 

new APs that is not present in the radio map during the calculation using 

the euclidean distance algorithm. This method improves the performance of 

positioning by filtering unnecessary AP signals and automatically reducing a 

dimension of the radio map in the area where the number of users is many 

and the density of Wi-Fi APs is high.

The measured Wi-Fi signals in real-time are able to positioning and 

compare RSSIs of the radio map. Also, they are arranged in the form of the 

proposed radio map according to their measured locations. It is even possible 

to input them into the UDRM-based radio map. However, if all measured APs
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Fig.  3.11  The calculation method and output of MDLP

are input, as APs are newly created or discovered, the radio map increases, 

causing the operation speed to slow.

Therefore, the MDLP-based RMF algorithm should remove unnecessary 

APs and update the map, as shown in Fig. 3.11. Input data consists of a set 

of red rectangles, which are separated into several subsets via discretization of 

the MDLP operations performed. If the number of disjoint subsets is smaller 

than the reference point of the corresponding layer, the entire set of 

measured RSSIs can be determined to be APs that cannot distinguish RSSIs 
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from each reference point. 

Unlike the existing method that discriminates and processes a set of 

continuous RSSIs measured at one AP, the proposed algorithm grasps the 

signal distribution characteristics among APs and obtains a plurality of them, 

having substantially the same signal characteristics according to the reference 

points, as one AP to reduce the radio map. 

APs with similar signal characteristics have a very small influence on 

positioning, but they increase the amount of computation and the size of the 

radio map. The conventional MDLP algorithm cannot numerically express the 

degree of signal separation according to the signal reference points. So, after 

applying the MDLP, the proposed algorithm performs the IG operation to 

quantify it. The data characteristics of the quantified AP numerically represent 

the similarity between the different AP signals, so that only those with the 

best classification among the signals of similar distribution remain. Thus, each 

AP can visually confirm the RSSIs distinguishing ability according to the 

reference points and can manage the Wi-Fi signal strictly through that 

threshold. Therefore, the proposed MDLP-based RMF algorithm is designed to 

update and optimize collected Wi-Fi signals simultaneously with positioning.
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Chapter 4  Experiment and Result

4.1 Experimental Environment and Configuration

To verify the performance of the proposed UDRM algorithm and 

MDLP-based RMF algorithm, an experimental area was selected at the 

College of Engineering, No. 1 Building, Korea Maritime and Ocean University, 

as shown in Fig. 4.1 and Fig. 4.2 The first floor, which was difficult to 

positioning, was excluded from the experimental area, owing to the low 

number of APs. Because the 2nd, 3rd, and 4th floors have the same structure, 

a radio map could be generated through a modified autoencoder, and a 

modified GAN could be applied to the 5th floor: a different indoor structure.

Fig.  4.1  The structure of reference floor
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Fig.  4.2  The structure of experimental floor

The 2nd floor, where APs were sufficiently measured, was set as a 

reference floor for obtaining real RSSIs for learning. RSSIs were measured at 

each reference point through the walking survey. The RSSIs were measured 

using point-by-point calibration to collect the accurate RSSIs and to compare 

the proposed algorithm. In this process, 63 reference points were set to 

generate a radio map for learning, and 284 AP signals were measured along 

the entire floors. In the training phase, because the personal APs could easily 

change via generation and movement, only the public APs were measured on 
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Fig.  4.3  The produced program for operating the proposed algorithm

entire floors. Personal APs omitted in the training phase could be updated 

through the modified MDLP in the positioning phase. 

As shown in Fig. 4.3, an Android-based measurement app was created 

using a smartphone to measure RSSIs throughout the walking survey. The 

measurement items were SSIDs and RSSIs, and the generated radio map was 

used MySQL, allowing management of the radio map in real-time. The 

modified autoencoder applied the measurement data as input data without 

pre-processing. Thus, it directly transmitted the collected Wi-Fi data to 

MySQL and generated the radio map. Because the modified GAN was 

required for input of the 2-D maps and the coordinates of APs, their 

information had to be secured. The 2-D map, essential for applying the 

modified GAN, was a 23x29-pixel image based on the reference points.

It was directly manufactured using CAD, as shown in Fig. 4.1 and Fig. 

4.2. If a design drawing of the building can be secured as an image file, a 

separate indoor map-drawing process is unnecessary, and the size of the 
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image can be easily changed without any initial cost through the settings 

during pre-processing. In a corridor of the reference floor, the measured 

public APs from the walking survey were 8 APs out of 139. Their 

coordinates, the 2-D map image, and the Gaussian noise were input as initial 

learning data for the modified GAN. A setting of the 2-D map for learning 

assumed a line on the image to be a structure that completely blocked Wi-Fi 

signals. In contrast, the measured RSSIs of APs in the corridor spaces 

outside the boundaries were designed to estimate the Wi-Fi signal in a 

multi-path environment, reflected by its unique characteristics.

Generating a radio map used in the conventional fingerprint system 

required a simple arrangement of the measured RSSIs according to the 

reference points. This was unsuitable for the proposed UDRM, considering 

the spatial structure. Therefore, the structure of the radio map was 

reconfigured to fit the proposed UDRM, designed with the modified 

autoencoder and GAN.

Fig.  4.4  The combined radio map for learning
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Fig. 4.4 shows combined indoor structure and Wi-Fi radio maps. In the 

2-D map on the upper left of the Fig. 4.4, the area represented by the hatching 

is a wall surface, and the remaining space for RSSIs is represented by the 

empty space. The radio map stores RSSIs up to the area where weak signals 

reach each reference point, and normalizes it to fit the neural network. 

Unlike the conventional radio map, which is applied for fingerprint, the 

radio map applied to the proposed system is learned not only propagation 

characteristics but also indoor structures of the building. The real radio map 

of the reference floor as the input data used in the learning of the 

autoencoder, which were applied in similar areas and floors, remained the 

same. However, the outputs derived from the prediction of the autoencoder 

were interpolated, generating RSSIs that were not 100 % identical. Therefore, 

Fig.  4.5  The iterative learning of GAN
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the radio map was preferentially generated using fake RSSIs, which linearly 

approximated the attenuation of the RSSI. Then, the generated RSSIs were 

inputted at the coordinates of the APs and a modified autoencoder-based 

radio map was finally completed. 

Unlike the autoencoder method, the real measured radio map was not used 

as input data in the generator of modified GAN. The modified GAN applied 

areas where AP coordinates and indoor structures were difficult to estimate 

from the 2-D map, coordinates of APs, and Gaussian noise.

Fig. 4.5 shows the input and output data structure of the modified GAN. 

The coordinates on the left side are the location coordinates obtained by 

converting those of the real APs to the reference points. The spaces other 

than the indoor structures were subject to the estimated RSSIs through the 

GAN by inputting Gaussian noise.

 

4.2 Results of Unsupervised Dual Radio Mapping Algorithm

To verify the performance of the proposed UDRM, comprised of the 

modified autoencoder and GAN, the generated radio map was compared and 

analyzed with the real radio map measured from the walking survey.

Fig. 4.6 shows the result of the real RSSIs of measured APs on the 

reference floor and the result of the predicted RSSIs using the modified 

autoencoder in the corresponding of coordinate the AP. One pixel on the x  

and y-axes is an interval of 3 m on the 2-D map plane. (a) shows the real 

measured radio map by the walking survey. (b) shows the generated radio 

map predicted by the modified autoencoder on the 2nd floor. The RSSIs of 

the propagated Wi-Fi signal from the AP in the corridor is expressed in color 
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Fig.  4.6  The result of radio map by modified autoencoder (2nd floor)

intervals of 3 m to the reference points. Those expressed in red color are 

stronger. Blue color indicates a weaker signal. Based on the AP coordinates, 

the real RSSIs and the modified autoencoder-based radio map are replicated 

almost identically. However, differences between the predicted and measured 
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RSSIs occurred when the relative distance from the AP coordinate was more 

than 30 m. Because the AP signal is measured weaker when the distance is 

longer, the indoor interval where the RSSI of the Wi-Fi was measured from 

-90 to –100 dBm was reduced by the number of measurements, compared to 

the RSSI of the other strong Wi-Fi. That is, whereas the same number of 

times was measured, APs with strong signal strength measured closer to 100

%. APs with weak signal intensity had relatively low collection rates, compared 

to the number of measurements. Therefore, because it was difficult to acquire 

a sufficient measurement signals in the area where the RSSI was weak, per 

the increasing relative distance between the AP and the reference point, a 

difference occurred in the amount of learning, causing an error between the 

real measured radio map and the generated radio map by learning.

Fig. 4.7 shows the generated radio map of the 3rd floor by the measured 

RSSIs of the 2nd floor. One pixel on the x and y-axis is an interval of 3 m 

on the 2-D map plane. (a) shows the real measured radio map by the 

walking survey. (b) shows the generated radio map by the modified 

autoencoder on the 3rd floor. The 2nd and 3rd floors acquired nearly the 

same radio map, because the indoor structures and the coordinates of AP 

were the same. Analyzing this result in detail, unlike Fig. 4.6, the AP shows 

a unique signal result: an RSSI measured at an unexpected location, P. This 

is the result a unique indoor structure where RSSIs by a window cannot be 

measured sequential distance. Since P is a relatively large distance from the 

AP, the error occurs. 

However, it can be confirmed that the signal measured in the unexpected 

area by the indoor structure predicted almost similarly to P'. K represents a 
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Fig.  4.7  The result of radio map by modified autoencoder (3rd floor)

missing data space caused by non-receipt of the signal. This is often caused 

by the walking survey. Despite the existence of this space, the replicated Wi-Fi 

distribution generates an RSSI via prediction, indicating that the resilience 

against the missing signal is excellent.
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Fig.  4.8  The result of radio map by modified autoencoder (4th floor)

Fig. 4.8 (a) and (b) show the results of the measured radio map and the 

predicted radio map, based on the modified autoencoder on the 4th floor. The 

predicted radio map, (b), is similar to the previous Fig. 4.6 and Fig. 4.7, 

indicating that the prediction accuracy is slightly reduced in spaces where 
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RSSI is very weak. 

Thus, the modified autoencoder can accurately predict the signals of AP in 

the area where the measured RSSIs are strong, and the predicted RSSI 

accuracy is lower in the area where the measured RSSIs are weak.

Because the relatively weak RSSI reduced the number of measurement, the 

same RSSI measurement time was used for the reference points for designing 

a radio map. There is a limit to increasing the measurement time at each 

reference point. However, if the RSSIs per reference points of all the APs 

were designed as a radio map, there would be many measured APs with 

strong signals, and the influences on the positioning would be relatively 

reduced. 

Fig. 4.9 (a) and (b) show the measured radio map and the predicted radio 

map based on the modified GAN on the 5th floor. One pixel on the x and 

y-axes indicates an interval of 3 m on the 2-D map plane. The 5th floor has 

fewer public APs and a different floor plan, and the indoor area is smaller. 

Compared to Fig. 4.8, the coordinate of the AP is slightly different. Because 

the right area is outdoors, the AP is arranged to cover the indoor area. Thus, 

the RSSIs that learned from the reference floor only containing the indoor 

space became an area excluded from prediction, because it cannot learn about 

RSSI characteristics in the outdoor environment. The unlearned area is 

interpolated through the proposed MDLP-based RMF algorithm in the 

positioning phase. The 5th floor is different from the other floors, based on 

indoor structures. However, because learning is done using various kernels, 
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Fig.  4.9  The result of radio map by modified GAN (5th floor)

as shown in Fig. 3.7, all those other than 1x1 are applied to combine the 

RSSI and the indoor structures. Therefore, the modified GAN also shows that 

the predicted radio map is similar to the real radio map only when the 

coordinates of APs are input exactly like the autoencoder.
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Fig.  4.10  The comparison of the radio map according to 

iterative learning count of the modified GAN

Fig. 4.10 shows the accuracy of the predicted radio map based on the 

modified GAN, according to the amount of learning. (a) shows the result of 

predicting the radio map using the generator through 5,000 learning iterations, 
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and (b) shows the result of predicting the radio map using the generator 

through 9,000 learning iterations. This result shows that not only the obtained 

RSSIs from the reference floor, but also the amount of learning, are 

important factors for prediction, because the measured RSSI does not have a 

constant value at one reference point. The difference in learning makes 

predicting the radio map slower, but the time can be drastically reduced, 

compared to the generation process of the radio map from the walking 

survey. The RSSIs of each AP were digitized and created as the radio map 

and stored in MySQL to complete preparation for interworking with a 

smartphone. The size of the predicted radio map through the proposed 

UDRM was 42x54. The x-axis is the relative RSSI, according to the distance 

between the AP and reference points. The y-axis represents the SSID of AP.

 The predicted radio map of the UDRM was compared to the real 

measured radio map as follows.

Fig. 4.11 shows the errors between the results of the predicted radio map 

and the measured radio map, on the 2nd and 3rd floors. The x-axis 

represents the reference points, and the y-axis represents the error rate of the 

RSSIs. Because the distance at which the signal is measured varies according 

to the indoor structures and the installation coordinate of the corresponding 

AP, the size of the x-axis differs. In (a), the error occurs nearly 30 % at the 

three reference points. However, because the average error for all reference 

points is as low as 10 %, a positioning error may occur at a specific 

location. Because the measured RSSIs in various APs are used for positioning 

at one reference point, this error rate does not indicate a positioning error. 



- 65 -

Fig.  4.11  The accuracy of generated RSSI on the 2nd and 3rd floors

Fig. 4.12 shows the accuracy of the predicted radio map on the 4th and 

5th floors. (a) shows the error rate of the predicted radio map on the 4th 

floor by the modified autoencoder, and (b) shows the error rate on the 5th
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Fig.  4.12  The accuracy of generated RSSI on the 4th and 5th floors

floor by the modified GAN. (a) shows the lowest performance of the 

predicted radio map among the AP signals on the fourth floor, and the 

average error rate is 9.67 % (less than 10 %). (b) shows that the performance 
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of the modified GAN is excellent, even if the position and the indoor space 

of the AP are changed by predicting the RSSIs nearly perfectly.

Table 4.1 shows the error rate of the predicted radio map for each floor. 

The total error rate of the generated radio map for each floor by the 

modified autoencoder is within 10 %, and the modified GAN on the 5thfloor 

is almost the same that the measured radio map: about 1 %.

Because these results fall within ranges less than 10 %, we have a stable 

error rate to prevent over-fitting. Despite these errors, there is an effect of 

Table 4.2 shows the accuracy of the two type radio maps generated by the 

UDRM. As a result of applying the algorithm to generate the radio map for 

all floors, when the directly measured radio map based on the walking 

Floors 2nd 3rd 4th 5th

The prediction 
error rate of RSSIs

6.74 % 4.42 % 9.67 % 0.97 %

Table 4.1  The generation error rate of radio map on each floor

Algorithms The modified autoencoder The modified GAN

The radio map 
accuracy

90.40 % 92.70 %

Table 4.2  The accuracy of radio map according to the UDRM
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Algorithms 1 batch 20 batch 20 batch / 5000 times

Autoencoder 334 sec 2  18.12 

GAN 1  8  65.40 

Table 4.3  The algorithm processing speed according to the iterations

survey is set the reference to 100 %, the modified autoencoder and the 

modified GAN are 90.40 % and 92.70 %, respectively. Whereas there is a 

limitation in generating an exact 100 % radio map, the error rates of the two 

algorithms were 9.6 % and 7.3 %, respectively, and were within the range of 

5 to 10 %, which is a stable error rate for a general learning network. In 

conclusion, the UDRM results confirm that a stable system is an aspect of 

neural networks.

Table 4.3 shows the computation time of the proposed algorithms 

according to the size of the dataset using the proposed algorithm. A batch 

represents part of the total data, and an epoch represents the number of 

iterations of data. In the proposed algorithm, 120 epochs (the size of all 

RSSIs) were divided into 20 epochs each to prevent over-fitting instead of 

slowing down the operation, even if it were to increase the number of RSSI 

data for learning. However, decreasing the epoch increases the computation 

speed, but it causes over-fitting owing to the stronger data characteristic of 

each epoch.

Therefore, the 20 epochs were repeated 5,000 times in the proposed 
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UDRM, and total learning time was 18.12 min for the modified autoencoder 

and 65.40 min for the modified GAN. Thus, the autoencoder showed a 

relatively fast processing speed. In a 1 time operation, the processing speed of 

the two algorithms was 3 times the difference. However, in the case of 20

time operations, the difference was 4 fold. Thus, the difference of processing 

speed also increased with the number of operations. Owing to the structural 

characteristics of the GAN, the processing speed increased sharply with the 

number of operations. The modified autoencoder had a nearly constant 

learning time when the iteration count was 5,000. However, the modified 

GAN took 65.40 min less than the expected time, because the generator had 

learned, and the operation speed was faster. 

Therefore, the time–cost required to create the radio map based on 

proposed UDRM in a building, except the first floor, was less than 2 hrs.

4.3 Result of MDLP-based Radio Map Feedback Algorithm

To update the Wi-Fi data measured simultaneously during positioning, 

measurement, and analysis phases, experiments were conducted to verify the 

proposed MDLP-based RMF algorithm. 

Fig. 4.13 shows the result of outputting an IG for each AP using the 

radio map based on the modified autoencoder. The x-axis represents the 

number of personal APs measured on the 2nd floor and the y-axis represents 

the IG values of the corresponding APs. IG is a measure of independence 

within a group of APs or RSSIs. The measurement results not adapting the 

MDLP appear only as IG values on the 2nd floor. Therefore, all 170 APs 
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Fig.  4.13  The IG results of measured APs on the 2nd floor

measured on the 2nd floor were expressed as IG values without being 

removed.

Fig. 4.14 shows the result of AP removal by MDLP. the x-axis represents 

the number of personal APs measured on the 2nd floor, and the y-axis 

represents the IG values of the corresponding APs. Compared to the results 

shown in Fig. 4.13, the proposed MDLP removes 90 of the 170 APs. During 

this process, the measured radio map is input as-is, in real-time. The 

side-effect of the radio map taking an indiscriminate update is prevented in 

advance. Thus, only the necessary APs were added to the radio map. 

Through the gradual slope of the IG values of Fig. 4.13, it can be deduced 

that the distributions of RSSIs and the indoor structures of the 2nd floor were
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Fig.  4.14  The MDLP results of measured APs on the 2nd floor

not very complicated.

APs having very low IG values were removed by the proposed MDLP, 

because the change in RSSIs was small overall and was difficult to 

distinguish from reference points. Additionally, the APs were well-separated, 

but the RSSIs lacked continuity. Thus, the APs having large IG values were 

clustered with APs having similar RSSI distributions. Otherwise, the APs 

having the same RSSI randomly appeared at other reference points. Therefore, 

the IG value was not a criterion for the removal of the APs, but was a 

technique for visually confirming the RSSIs of an AP. Their removal was 

determined by the MDLP, according to the continuity of RSSIs and the 

distribution of APs. 
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Fig.  4.15  The IG results of measured APs on the 3rd floor

Fig. 4.15 shows the result of IG analysis for each AP using the radio 

map based on the modified autoencoder on the 3rd floor. The x-axis 

represents the number of measured APs on the 3rd floor and the y-axis 

represents the IG of the corresponding APs. The APs not using the MDLP 

on the 3rd floor were not removed, resulting is almost the same configuration 

as the 2nd floor. From the slope of the IG values, it is possible to confirm 

that the AP distribution is partially deflected, unlike the 2nd floor. Fig. 4.16 

shows the result of APs removal by MDLP and IG on the 3rd floor. 

Compared to the results in Fig. 4.14, the proposed MDLP removed 77 of 

181 APs. Thus, the discretization of APs was high. These APs can update the 

positioning accuracy and cover the shadow area. Additionally, when compared



- 73 -

Fig.  4.16  The MDLP results of measured APs on the 3rd floor

with Fig. 4.14 and Fig. 4.15, the radio map to be updated is reduced by 

automatically deleting biased APs. 

Fig. 4.16 shows the result of IG analysis for each AP using the radio 

map based on the modified GAN on the 5th floor. The x-axis represents the 

number of measured APs. The y-axis represents the IG of the corresponding 

APs. Only 75 signals were detected, unlike the number of measured APs on 

the other floors. Additionally, the measured APs on the 5th floor were 

updated via the same method as the other floors. In Fig. 4.16, the IG values 

were spread out evenly, and the number of measured APs on the 5th floor 

was much smaller than that of the 2nd, 3rd, and 4th floors. The distribution 

was very stable.
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Fig.  4.17  The IG results of measured APs on the 5th floor

Fig. 4.17 shows the result of IG analysis for each APs using the radio 

map based on the modified GAN on the 5th floor. The x-axis represents the  

number of measured APs and the y-axis represents the IG of the 

corresponding APs. It can be seen that only 75 signals are detected, unlike 

the number of measured APs on other floors. In addition, the measured APs  

on the 5th floor are updated in the same method as the other floors. In Fig. 

4.16, the IG values are spread out evenly, and the number of measured APs 

on the 5th floor is much smaller than that on the 2nd, 3rd, and 4th floors, 

and the distribution is very stable.

 Fig. 4.18 shows the result of APs removal by MDLP and IG using the 
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Fig.  4.18  The MDLP results of measured APs on the 5rd floor

radio map based on the GAN. It can be seen that the signal measured in 

Fig. 4.17 is finally reduced to 46 signals through the MDLP and IG. 

Through these experimental results, the proposed MDLP-based RMF 

algorithm is confirmed and can be applied to APs on all floors, reducing 

their number by more than 50 % in the experimental building. The proposed 

algorithm can be applied in the training phase and shows excellent 

performance for data discretization via the continuity of RSSIs. In particular, 

the effect of discretization using MDLP is maximized in a space where AP 

distribution is spread evenly. Therefore, the proposed MDLP-based RMF 

algorithm is an optimization algorithm that prevents the rapid increase
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Floor The walking suervey 
based radio map

The proposed UDRM 
based radio map

2nd 86.07 % 80.25 %

3rd 88.36 % 85.19 %

4th 92.56 % 85.81 %

5th 89.73 % 85.61 %

Table 4.4  The euclidean distance based positioning accuracy to the walking 

survey based radio map and the proposed UDRM

 of the radio map as the indoor AP increases, and it minimizes the 

degradation of the processing speed of positioning.

UDRM-based radio map and the walking survey-based radio map. It is 

confirmed that the positioning errors on the 2nd, 3rd, and 4th floors applied 

by the autoencoder were about 6 %, 3.2 %, and 6.8 %, respectively, which is 

still less than about 10 % of the map errors in the predicted radio map, 

based on UDRM. Because positioning was computed as the priority of the 

lower error rate of all APs rather than the error for each, the positioning 

accuracy was less affected than the RSSI error of the predicted AP. The 

acquired positioning result on the 5th floor had a low computation speed, but 

the positioning error rate was less than the other floors. Because the 

positioning result was applied to a different indoor structure, it was necessary 

to select the autoencoder and the GAN selectively, according to the indoor 

environment.
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Floor
The measured radio map 

based positioning 
(The number of APs)

The measured radio map and 
MDLP based positioning 

(The number of APs)

2nd 90.00 % (248) 89.40 % (20)

3rd 89.12 % (248) 89.10 % (16)

4th 89.75 % (248) 89.74 % (20)

5th 89.77 % (248) 89.77 % (9)

Table 4.5  The positioning results of MDLP applied radio maps

Table 4.5 shows the positioning accuracy of MDLP applying the walking 

survey-based radio map and the UDRM-based radio map. When MDLP was 

applied based on 248 APs, which is the number of all APs measured 

between 2nd and 5th floors, the MDLP and IG were applied. The remaining 

APs were 20, 16, 20, and 9, respectively. When positioning was performed 

based on the euclidean distance algorithm, different sizes of APs were used, 

but the same positioning performance was obtained.

Table 4.6 shows the positioning result of the automatic Wi-Fi fingerprint 

system, based on unsupervised learning, combining UDRM and MDLP-based 

RMF algorithms. The positioning performance of the proposed system and the 

conventional fingerprint algorithm were, on average, 88.59 % and 89.66 %, 

respectively. The difference of positioning performance between the two 

systems was not nearly the same. This result is similar to the proposed 

algorithm, because the real radio map could not be 100 % correct, 
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Floor The measured based 
fingerprint The proposed fingerprint

2nd 90.00 % 90.00 %

3rd 89.12 % 88.77 %

4th 89.75 % 89.41 %

5th 89.77 % 86.17 %

Table 4.6  The positioning accuracy of the proposed fingerprint algorithm 

and the measured based fingerprint

owing to the inherent variation of RSSI. As this result shows, the 

conventional fingerprint produced a radio map of all the APs, and the 

proposed algorithm assumes that enough AP RSSIs were collected during the 

moving processes. If a user does not have sufficient updates, owing to 

insufficient movement, the positioning performance will be degraded. 

However, the same performance can be obtained when the data is sufficiently 

acquired by user movement, making it a very effective system for generating 

a radio map.
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Chapter 5  Conclusion 

To minimize the time taken to acquire Wi-Fi signals in automatic 

fingerprint systems when the indoor area becomes complicated and the size 

increases, we studied the radio characteristics of indoor environments based 

on unsupervised learning and proposed the combined UDRM and 

MDLP-based RMF algorithm. UDRM selects either the modified autoencoder 

or the modified GAN according to the indoor structure of each floor to 

improve the processing speed and to better predict the radio map. Because 

these algorithms use unsupervised learning, it is not necessary to create 

additional labeled data, making application easy, using the SSIDs and RSSIs 

of APs in the building. The concordance rates of the radio map generated by 

the proposed UDRM and the walking survey are relatively accurate, within 

10 %. These errors of the radio map based on UDRM are within a very 

stable range from the viewpoint of a neural network-based learning algorithm, 

and the stability of the proposed UDRM is ensured by the concordance rates.

The MDLP-based RMF algorithm copes with changes (e.g., positioning, 

installation, and AP removal), reducing the time taken to acquire RSSIs by 

subordinating the generation process of the radio map in the training phase to 

the positioning phase. The experimental results of the proposed automatic 

Wi-Fi fingerprint system, based on unsupervised learning, are as follows.

In the proposed UDRM algorithm, the learning times of the 20 batches 

used for learning and prediction of the modified autoencoder and GAN-based 
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radio map were 2 ms/step and 8 ms/step, respectively. Thus, the modified 

GAN, which is more complex than the modified autoencoder, reduced the 

learning time by 4. Then, when the measured radio map based on the 

walking survey was 100 %, the concordance rates of the generated radio map 

obtained by the modified autoencoder and GAN were 90.4 % and 92.7 %, 

showing 9.6 % and 7.3 % prediction errors, respectively. These errors were at 

an ideal rate to prevent over-fitting caused by a high prediction accuracy of 

more than 95 % while training the neural network. Although the accuracy 

was lowered by about 10 %, compared to the measured radio map from the 

walking survey, the proposed system showed good performance, and the 

designed network is very stable as a neural network.

In the positioning phase, when the MDLP-based RMF algorithm was 

applied to the radio map of the modified autoencoder and GAN, the update 

rate of the radio map was 52.9 % and 60.5 %, respectively. Additionally, the 

positioning accuracy of the proposed fingerprint system was 88.59 %, 

compared to the 89.66 % accuracy obtained with the measured radio map 

based on the walking survey, showing that there was almost no error. In 

other words, the automatic Wi-Fi fingerprint system, based on unsupervised 

learning, reduced the radio map by 43.3 % on average, even when the 

positioning accuracy was almost the same. The time taken to acquire RSSIs 

and the workload are the biggest problems in fingerprinting; however, these 

can be significantly shortened by automatically updating and creating the 

radio maps.
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