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Biodegradation of Azo dye using beneficial microorganisms
and transcriptomic analysis of the degradation pathway

Chaeyoung Rhee

Department of Civil & Environmental Engineering

Graduate School of Korea Maritime and Ocean University

Abstract

The goal of this study was to select the most appropriate microbial
consortium for efficient bioremediation of azo dye wastewater. A
consortium composed of two bacterial cultures (Mesorhizobium sp. and
Sphingomonas  melonis) and  two  yeast cultures  (Apiotrichum
mycotoxinivarans and Meyerozyma guilliermondi) achieved more than 80%
decolorization within 24 h (50 and 100 mg/L dye). The chemical oxygen
demand (COD) removal rate for the bacterial consortium (B-C) reached
97% in 72 h while the yeast consortium (Y-C) and the total microbial
consortium (T-C; bacterial and yeast consortia combined) achieved 98.0%
and 97.5%, respectively, in 24 h, indicating potential mineralization of the
azo dye Acid Blue 113. Moreover, there was a positive relationship
between cell growth and the azo dye degradation rate in all consortia.
The Fourier transform infrared (FT-IR) spectra profiles for
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yeast-containing consortia showed a rapid disappearance of absorbance at
the azo bond specific wavenumber (1455 cm™) (24 h), while the B-C
showed disappearance within 72 h. Metabolic products containing -NH;
groups were also detected based on the absorbance at the 1300 cm™
wavenumber, reflecting an occurrence of azo bond cleavage. It was
concluded that the data for decolorization, COD removal, cell growth, and
FT-IR spectra collectively provide evidence for azo dye decolorization and
potential mineralization of the dye by the bacterial and yeast consortium.
Moreover, transcriptomic analysis using RNA-sequencing further explained
the potential mechanisms of azo dye biodegradation by Sphingomonas
melonis. NAD(P)-dependent oxidoreductase and type 1 glutamine
amidotransferase were differentially expressed in the dye treatment,
indicating that degradations of the azo bond and the aromatic compounds
could be catalyzed by these enzymes. The selected microbial consortia
could be applied for the bioremediation of azo dye wastewater at the
industrial scale of varying environmental conditions.

Key words: Azo dye; Acid Blue 113; Decolorization; Biodegradation;
Wastewater treatment; transcriptomic analysis; RNA-sequencing
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Chapter 1. Introduction

Different classes of dyes are used in numerous industries including the
rubber, textile, cosmetic, plastic, leather, food, and paper manufacturing
industries. Various dyes are seen in wastewater discharged from these
industries [1]. Among these, the largest contributor to dye wastewater is
the textile industry, which is responsible for two-thirds of the total
production of dye wastes due to the high quantities of water used in
the dyeing processes [2-4]. The major problem is the unfixed dyes that
remain in the wastewater after textile processing [5]. During dyeing
processes, approximately 15 to 30% of the dyestuff fails to bind to the

fibers and is therefore released into the environment [6].

Dyes are usually recalcitrant and may be toxic to organisms [7].
Therefore, the release of wastewater containing dyes is quite harmful to
the environment. Their presence in an aquatic ecosystem reduces the
penetration of sunlight to benthic organisms, thus limiting the process of
photosynthesis [1, 8]. Furthermore, dyes reduce the solubility of oxygen
in water. Dyes also affect the aesthetic value of an aquatic ecosystem
due to the coloration of water resources.The key concern in the
treatment of wastewater is the release of dyes and their metabolites

into the environment, as some may be mutagens and carcinogens [9].

Azo dyes, being the largest group of synthetic dyes, constitute up to
70% of all known commercial dyes produced [10,11]. Their chemical
structure is characterized by highly substituted aromatic rings joined by
one or more azo groups (-N=N-) [7]. This double bond structure is a
chromophore that makes the color visible, and thus cleavage of the azo

bond will eventually decolorize the dye.Furthermore, some of the
_ 1 _
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decolorization products are even more toxic than their parent
compounds, and therefore, it is desirable to degrade and remove the
dyes in an eco-friendly manner—one that will affect neither the
environment nor human health.In particular, azo dyes are regarded as
xenobiotic in nature and recalcitrant to biodegradation (Guptaetal.,2013).
For this reason, Acid Bluell3 (AB113), one of the azo dyes, was

targeted for degradation in this research.

Chemical and physical treatment technologies have been well
developed and are widely used to treat dye wastewater. However, these
approaches have not been economically feasible due to a low rate of
color removal, high cost, the production of a large amount of sludge,
ineffectiveness in chemical oxygen demand (COD) removal, and
production of secondary wastes [3, 9, 12]. In contrast, the use of
microbial treatment technologies has advantages in treating azo dye
wastewater because they are environmentally friendly, cost-competitive,
and can produce less sludge and yield end-products that are non-toxic
or can mineralize the target chemicals and require less water

consumption compared to physicochemical methods [13].

Therefore, bioaugmentation, a biological treatment technology, has the
potential to sustainably and efficiently bioremediate dye wastewater [14].
The addition of specific microorganisms has been shown to be more
effective than using a consortium of non-specific functions because they
are selectively designed for individual degradative bioprocesses [15].
Bacterial and yeast decolorization methods are widely used due to their

high activity and adaptability [16].

Various types of enzymes, including bacterial azoreductases, lignin

peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) from
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yeast, are able to effectively degrade xenobiotics such as azocompounds
[17,18]. However, decolorization intermediates, such as aromatic amines,
can inhibit the biodegradation activity of bacteria [19]. Yeast, however,
can efficiently degrade recalcitrant organics using the enzymes
mentioned above [20]. They also have been found to be efficient in
treating high-strength organic wastewater [21]. It is therefore assumed
that treatment systems with mixed microbial populations could be more
effective because of the concerted metabolic activities of the microbial

community [22-24].

The goal of this study was to evaluate the decolorization efficiency of
candidate microbial cultures for effective bioremediation of azo dye
wastewater. Herein, two bacterial cultures and two yeast cultures were
isolated from a commercial microbial consortium acclimated with the azo
dye ABI113. It was hypothesized that bacteria and vyeast efficiently
degrade ABI113 under aerobic conditions and their enzymes either
directly or indirectly affect the biodegradation process. Also, it was
assumed that presence of azo dye affect the microbial gene expression.
Results showed that a consortium composed of bacterial and yeast
cultures appeared to more efficiently and stably degrade ABI113,
indicating possibility of application for bioremediation of azo dye
wastewaters on an industrial scale. Therefore, this study suggested the
potential biodegradation pathway of Acid Blue 113 and its mechanism

was explained through transcriptomic analysis using RNA-sequencing.
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Chapter 2. Literature Review

2.1 Principles of color chemistry

Dyes have a unique characteristic (i.e. the color) that are different
from the most organic compounds. They absorb light in the visible
spectrum (400-700 nm), have at least one chromophore (color-bearing
group), have a conjugated system, i.e. a structure with alternating double
and single bonds, and exhibit resonance of electrons, which is a
stabilizing force in organic compounds [25]. All conditions must be
satisfied for the molecular structure to have color. In other words, if
any of these features is not satisfied, the color will be lost. In addition
to chromophores, most dyes also contain auxochromes (color helping
supplements), for instance, carboxylic acid, sulfonic acid, amino and
hydroxyl groups. These are not responsible for color; however, their
presence can shift the color of a colorant and they are most often used
to adjust dye solubility. Table 2.1 shows the ranges of wavelength

absorbed and respective color absorbed/observed.

Table 2.1 Wavelength of absorption versus color in organic dyes [25]

m‘;%:&gﬂ(lnm) Color Absorbed Color Observed

400 — 435 Violet Yellow — Green

435 — 480 Blue Yellow

480 — 490 Green — Blue Orange

490 — 500 Blue — Green Red

500 — 560 Green Purple

560 — 580 Yellow — Green Violet

580 — 595 Yellow Blue

595 — 605 Orange Green — Blue

605 — 700 Red Blue — Green
_ 4 _



Azo dyes, which contain one or more azo groups, comprise the largest
group of organic dyes. Prominent types are acid dyes for polyamide and
protein substrates such as nylon, wool, and silk; disperse dyes for
hydrophobic substrates such as polyester and acetate, and direct and
reactive dyes for cellulosic substrates such as cotton, rayon, linen, and

paper [26].

2.2 Azo dye decolorization and degradation
2.2.1 Azo dye treatment

Azo dyes are known as electron deficient xenobiotic compounds
because they possess electron withdrawing groups, generating electron
deficiency in the molecule (dyes) which makes them resistant to
degradation [27]. Approximately 80% of azo dyes are used in the dyeing
process of textile industries [26]. The presence of these dyes in the
water ecosystem is the cause of serious environmental and health
problems [28,291.

Despite of numerous physico-chemical approaches for azo dye
decolorization such as adsorption, chemical treatment and ion pair
extractions, these methods were not sustainable due to their high cost
and large amounts of sludge produced after treatment. Also, coagulation
or flocculation techniques that are widely used create massive amounts
of sludge, which requires further process for safe disposal. Adsorption
and membrane filtration techniques lead to secondary waste streams as
well [26].
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2.2.2 Biological treatment of azo dyes

Biological approaches are widely used for azo dye treatment due to
their cost effectiveness, ability to produce less sludge, and eco-friendly
nature [30,31]. Various taxonomic groups of microorganisms like bacteria,
fungi, yeast, and algae have been reported for their capability of
degrading azo dyes under anaerobic and aerobic conditions [32]. In most
cases, presence of oxygen prevents the cleavage of azo dyes in
conventional sewage treatment plants while anaerobic conditions are
preferred by various microorganisms to reduce the azo dyes into their
corresponding aromatic amines, which are further degraded in presence
of oxygen [33,34]. Azo dyes easily accumulate in the environment up to
very high extent due to highly resistant nature to cleavage of azo bonds
(-N=N-). Under aerobic condition, bacterial treatment of azo dyes usually
shows low efficiencies since oxygen IS a stronger electron acceptor than
azo dyes. It has been reported that anaerobic and static condition
increases the color removal efficiency of azo dyes. Anaerobic treatment,
regardless of types of microorganisms involved in the process,
contributes to the reduction of dyes [33]. On the other hand, aerobic
decolorization may be more cost-effective as it can degrade the

secondary metabolites at the same time.

2.2.3 Enzymatic decolorization and degradation of azo dyes

The primary step in bacterial decolorization of azo dyes, in both
anaerobic and aerobic conditions, is the reduction of the azo bond
(-N=N-). This reduction may be achieved by various mechanisms, such

as enzymes, low molecular weight redox mediators, chemical reduction

_6_
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by biogenic reductants like sulfide, or a combination of these. Also, the
location of the reactions may be either intracellular or extracellular sites
as (Fig. 2.1). According to previous researches, two enzyme families,
azoreductase and Laccases have shown remarkable potential in
enzymatic decolorization and degradation of azo dye. Laccases,
especially, have great potential to decolorize a wide range of known
industrial dyes [35,36]. Recently, promising enzymes like manganese
peroxidase (MnP), lignin peroxidase (LiP) and polyphenol oxidase (PPO)
have been also reported to be involved in the decolorization and
degradation of azo dyes. Azoreductase is the major group of enzymes
expressed in azo dye degrading bacteria and fungi. It cleaves the azo
bonds of dyes, thus, reduces the dye into their corresponding colorless
aromatic amines [37]. Azoreductases catalyze the reaction with the
presence of reducing agents such as NADH, NADPH and FADH,. These
agents act as an electron donor and are involve in the cleavage of azo
bond at intracellular or extracellular site of the bacterial cell membrane
[38,39].
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Direct Enzymatic Method Direct Chemical Method

Azo dve H,S Azo dye

Aromatic 3 Aromatic

amines °© amines

Biological Method (Mediated)

ED RMx Azo dye

EDox RMpp Aromatic

amines

Figure 2.1 Various methods of degradation of azo dyes (RM = Redox

mediator; ED = Electron donor; b = bacteria)

In the past decade, several bacteria that produce azoreductase were
reported (Table 2.2). Catalytic proteins that possess azoreductase activity
have been identified in various bacterial groups such as Xenophilus
azovorans KF46F, Pigmentiphaga kullae K24, Enterococcus faecalls,
Staphylococcus —aureus, Escherichia coll, Bacillus sp. QOYI-2, and
Rhodobacter sphaeroides [40-46]. However, actual involvement or
efficiency of intracellular azoreductase in bacterial decolorization has
been doubted in recent years since most of azo dyes have complex
structures and high polarities which make them difficult to diffuse

through cell membranes for reducing process.
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Table 2.2 Decolorization of various azo dyes by Azoreductase producing

bacterial culture

Time Decoloriz
No. Bacterial culture Name of dye Ref.
(h) ation (%)
Acinetobacter _
1 . . Acid Red 48 >70 [47]
radioresistens
Alcaligenes sp. _
2 Reactive Red BL 24 100 [48]
AA09
Bacillus lentus _
3 Reactive Red 141 6 99.11 [49]
BI377
Bacillus
4 . Red 2G NA 64.89 [50]
megaterium
Bacillus strain - Reactive Black 5 86
5 24 [51]
SF Mordant Black 9 38
Bacillus subtilis
Methyl Red 48 40-98 [52]
ORB7106
Brevibacterium
RY107 96 98 [53]
sp. strain VN-15
Escherichia coli
8 JMI109 Direct Blue 71 12 100 [54]
(pGEX-AZR)
Enterococcus .
Direct Black 38 20 100 [55]
gallinarum
Mutant Bacillus
Congo Red 37-48 12-30 [56]
sp. ACT2
Pseudomonas
11 . Remazol Orange 24 94 [57]
aeruginosa
12 Proteus sp. Congo Red 48 67 [58]
— 9 —



The typical mechanism of bacterial cells for the redox mediator
dependent reduction of azo dyes under anaerobic conditions is shown in
Fig. 2.2. In the cell supernatant, however; the outcome of the reduction
of the azo dyes is a mostly chemical redox reaction and mediators rely
on cytoplasmic enzymes to supply electrons [59]. It is also reported that
this chemical redox reaction works together with a direct enzymatic
reaction involving an azoreductase, possibly a cytoplasmic dehydrogenase
enzyme that is synthesized and secreted without intracellular

accumulation [60].

Azo Dye Amines

Chromophore NK\N f \ NH,
Redox Redox
. « NH,
Mediator oy; Mediator .4

(

Azoreductase

)

NADH NAD* X

Carbon
Source
(e donar)

Oxidation
Product

(

Dehydrogenase

Bacterial Cell

Figure 2.2 Proposed mechanism for degradation of azo dyes by

azoreductase [61]

_‘]O_
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2.3 RNA sequencing for transcriptomic analysis

The transcriptome is the complete set of transcripts in a cell for a
specific stage or physiological condition. It is essential to understand the
transcriptome in order to interpret the functional elements of the
genome and reveal the molecular constituents of cells and tissues, and
also to understand the development and disease. The transcriptomics
mainly aims to catalogue all species of transcript, including mRNASs,
non-coding RNAs and small RNAs; for determination of the
transcriptional structure of genes, in terms of their start sites, 5 and
3’ ends, splicing patterns and post-transcriptional modifications. Also, it
iIs to quantify the changes in expression levels of each transcript during

development and under specific conditions [62].

Recently, ‘omics’ analysis has revealed the mechanisms of various
biological processes. Especially, technology like proteomics enabled better
understanding of fungal degradation of hazardous compounds including
azo dyes [63,64]. However, it was still difficult to detect how those
identified enzymes work each other in certain circumstance. Thus, there
have been numerous attempts to monitor the expression of the some of
the specific genes during azo dye degradation [65]. In that sense, RNA
sequencing is a promising technology that will allow overall
understanding of the entire genes expressed during azo dye degradation

and their relationships.

_11_
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Chapter 3. Materials and methods

3.1 Isolation of efficient microorganisms for azo dye biodegradation and
their identification

In order to select cultures that would be effective for dye degradation,
a commercial microbial consortium product for general wastewater
treatment from Bayo, Inc., Jinju, South Korea was acclimated to the azo
dye AB113 (200 mg/L). Upon noticeable decolorization while shaking at
120 rpm at room temperature for 6 days, various microorganisms were
isolated on spread plates of tryptic soy agar (TSA). Initially, two
dominant bacterial cultures (B-1 and B-2) and two yeast cultures (Y-1
and Y-2) were isolated and further tested for decolorization

effectiveness compared with the parental consortium culture itself.

The four different cultures were taxonomically identified based on
sequencing of the 16S or 26S rRNA genes, as shown in Fig. 1. The two
bacterial cultures (B-1 and B-2) were identified using the 16S rRNA
gene sequencing method. The target gene fragments were obtained
using a modified colony PCR method in which the primers 27F
(5’-AGAGTTTGATCCTGGCTCAG-3"), 1492R (5'-GGTTACCTTGTTACGACT
T-3"), 518R, and 785F were used in PCR amplification. The amplified
genes were purified using the PCR Product Purification Kit (Qiagen,
Boston, MA, USA) and gene sequencing was performed using the Genetic
Analyzer 3730xl (Applied Biosystems, USA).A homology search for the
analyzed sequences within the NCBI Genebank database was conducted,
and their phylogenetic positions were identified using CLUSTAL-W and
MEGA6 software.According to the NCBI BLAST Search, B-1 was
identified as Mesorhizobium sp. NBIMC_P2 (KF040403) with 99%

_12_
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similarity. B-2 was identified as Sphingomonas melonis DAPP-PG 224T
(KB900605) according to the EzbioCloud database (Chunlab, Seoul, South
Korea). The two yeast cultures (Y-1 and Y-2) were identified using the
265 rRNA sequencing method.The primers Y-F
(5’-GCATATCAATAAGCGGAGGAAAAG-3’) and Y-R (5’-GGTCCGTGTTTC
AAGACG-3") were used in PCR amplification. The amplification,
purification, and homology search processes were performed following
the same procedures used for bacterial identification. According to the
NCBI BLAST Search, Y-1 and Y-2 were identified as Apiotrichum
mycotoxinivarans CBS: 10094 (KB900605) and Meyerozyma guilliermondi
GJ8-2 (KU316708), both with 99% homology.

All individual cultures were incubated on TSA, and pure cultures were
preserved in phosphate buffer with glycerol (15%) at 80 C. Prior to the
experiment, frozen cultures were recovered on TSA, and then inoculated
into mineral salts medium (MSM) and incubated in a shaking incubator at
27 C and 150 rpm for 24 hours.

_13_
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(a) Bacteria1 (B-1)
Mesorhizobium sp.

(b) Bacteria 2 (B-2)
Sphhgmas melanis

—

(c) Yeast1(v)

Figure 3.1 Colonial and cellular morphologies of the cultures isolated and
identified in this study
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3.2 Experimental culture setup for biodegradation of the azo dye Acid
Blue 113

The Acid Blue 113 (CAS No. 3351-05-1) dye used in this study was
purchased from Sigma Aldrich, South Korea. The cultures for
biodegradation testing were set up according to the plan shown in Table
3.1, each culture carried 100 ml of MSM containing 0.03% (w/v) of
glucose and 0.0006% (w/v) of yeast extract. The MSM had the following
composition (g/L): Na,HPO,, 3.6; (NH..SO4, 1.0; KH,PO4, 1.0; MgSO4, 1.0;
Fe(NH,) citrate, 0.01; CaCl..2H,O, 0.1, and 10 mL of a trace element
solution of the following composition (mg/L) was added to 1 L of the
MSM:  ZnSOy - 7TH,O, 10.0; MnCl, - 4H,O, 3.0; CoCl, - 6H,O , 1.0;
NiCl, - 6H,O, 2.0; Na;MoOy « 2H,0, 3.0; HsBOs, 30.0 and CuCl, - 2H,O, 1.0
[5].

After autoclaving the MSM, the stock solution of glucose and yeast
extract, which was filter-sterilized using Acrodisc syringe filters (0.2 x«m;
Pall Laboratory, Westborough, MA, USA), was added to the medium with
AB113 dye at different dye concentrations (20, 50, and 100 mg/L). The
medium of each culture was inoculated with an aliquot of each of the
24 h grown cultures (5%, v/v) and incubated at 27 ° C while shaking at
150 rpm. An appropriate amount of culture in each culture was
withdrawn for spectrophotometric measurement of growth (at 600 nm)

and azo dye biodegradation (at 560 nm).
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Table 3.1 Setup of microcosms for biodegradation testing of the azo dye
Acid Blue 113 using various cultures

. Species of cultures grown in Inoculation Applied conc. of
Microcosms*
microcosm amount (%) AB 113 (mg L-1)
B-1 Mesorhizobium sp. 5 20, 50, 100
B-2 Sphingomonas melonis 5 20, 50, 100
Y-1 Apiotrichum mycotoxinivarans 5 20, 50, 100
Y-2 Meyerozyma guillermondi 5 20, 50, 100
Mesorhizobium sp. 2.5
B-C ? 20, 50, 100
Sphingomonas melonis 2.5
b Apiotrichum mycotoxinivarans 2.5
Y-C 20, 50, 100
Meyerozyma guillermondi 2.5
Mesorhizobium  sp. 1.25
Sphingomonas -~ melonis 1.25
T-C ¢ 20, 50, 100
Apiotrichum mycotoxinivarans 1.25
Meyerozyma guillermondi 1.25

* Each microcosm contains 100 mL of mineral salts medium (MSM) 1n an
Erlenmeyer flask (250 mL) together with 0.03% glucose and 0.0006% yeast
extract, incubated at 27 C for 4 days in a shaking incubator (150 rpm).

@ Bacteria consortium, ° Yeast consortium, ¢ Total microbial consortium.

3.3 UV-vis spectrophotometric analysis for cell growth and dye
biodegradation

For cell growth monitoring, one milliliter of sample from each

microcosm was regularly withdrawn and its growth monitored at A goonm.

For dye degradation monitoring, samples were withdrawn at regular
intervals and centrifuged at 8000 rpm for 15 min. The absorbance of

each supernatant was measured at maximum absorbance wavelength,
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A séonm, USINg a UV visible spectrophotometer (Optizen POP, K Lab, South
Korea). The decolorization efficiency was expressed as in the following

equation, as previously described [66]:

o A —A,
Decolorization rate (%) = ——tel /7l 100
Ainitial

where Ainitial and Afinal represent the initial and final absorbances at

A 560nm-

3.4 Monitoring of azo dye biodegradation based on FT-IR analysis

Samples were withdrawn at regular intervals and centrifuged at 8000
rpm for 15 min. The supernatants were then lyophilized without
exposure to light. The lyophilized samples were examined in a Fourier
transform infrared (FT-IR) spectrophotometer (Spectrum GX, PerkinElmer
LST, South Korea) over the wavelength (4000-650 cm™) using the
attenuated total reflection (ATR) method.

3.5 Monitoring of the fate of organic compounds (azo dye and glucose)
based on COD analysis

It was necessary to monitor changes in concentrations of the only
organic compounds (glucose as a reducing agent and azo dye ABI113).
This was because an absolute disappearance might be linked to the
mineralization of these substrates through COZ2generation.COD was
measured using a commercial water analysis kit (HS-COD(Mn)-L, HUMAS,
Daejon, South Korea). Samples were procured at regular intervals and

analyzed according to the manufacturer’ s protocol.
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3.6. RNA isolation and sequencing procedure for RNA-seq analysis for
the dye degradation

In order to examine the different gene expression profiles and to
perform gene annotation on set of useful genes based on gene ontology
pathway information, whole transcriptome sequencing of Sphingomonas
melonis was performed. The analysis compared the two groups of S.
melonis growth depending on the experimental conditions the control
(cultured in absence of azo dye Acid Blue 113 at 50mg/L) and the
treatment (cultured in presence of azo dye Acid Blue 113 at 50mg/L)
using RNA-sequencing. Total RNA from the control and treated samples
were isolated and contaminated DNA was eliminated. The Ribo-Zero
rRNA Removal Kit (Bacteria: Illumina, San Diego, CA, United States) was
used to purify the RNA. The sequencing library was constructed using
TruSeq Stranded Total RNA Sample Prep Kit (llumina, San Diego, CA,
United States) according to the manufacturer” s protocol. These purified
RNA molecules were randomly fragmented for short read sequencing and
reverse transcribed into cDNA. Then, sequencing adapter is ligated onto
both ends of the cDNA fragments. After amplifying fragments using
PCR, fragments with insert sizes between 200-400 bp were selected and

sequenced using [Mumina’ s HiSeq 4000.
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Chapter 4. Results and discussion

4.1 Dye decolorization by various cultures

The time courses for the decolorization rates (%) for all cultures at
different concentrations of AB113 dye are shown in Fig. 4.1. Cultures
B-1 and B-2 achieved maximum decolorization rates of approximately
67.8% and 75.4% in 50 mg/L dye within 72 h and 48 h, respectively (Fig.
4.1a and b).

The lower decolorization rate for B-1 seemed to be linked to its slow
growth, and its maximum decolorization ability appeared after 60 h. In
the consortium B-C, the slow growth of B-1 appeared to retard the
faster growth of B-2 (50 and 100 mg/L dye), while B-1 did not interfere
with the decolorization activity of B-2 at the lower dye concentration
(20 mg/L).

As shown in Fig. 4.1d and e, Y-1 decolorized approximately 77.1% in 9
h while Y-2 achieved a decolorization rate of about 60% in 48 h (50
and 100 mg/L dye), indicating that Y-1 was a significantly faster
degrader of the dye. However, when both of the yeast cultures were
combined, not much of a synergistic effect was observed in
decolorization, and even the speed was retarded. This might be because
there was competition among these two cultures for glucose as the

reducing agent required for decolorization.

Obviously, the Y-C decolorization rate was much higher than that of
the B-C. Yeasts seemed to be less sensitive to the dye concentration
gradient, while B-C decolorization was more negatively affected by the

higher dye concentration. In general, however, decolorization rates
— 19 —
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gradually increased over time. The total consortium carrying all four
cultures (B-1, B-2, Y-1, and Y-2) achieved more than 80% decolorization
after 24 h (50 and 100 mg/L dye) since the slow decolorization of B-C
was overcome by the Y-C (Fig. 4.1).

Overall, T-C might be useful in bioremediation of azo dye materials
and its degradative products since the consortium carrying all four
members in an interaction would be more resilient to fluctuations in
environmental conditions (e.g., kinds and amounts of target substrates,

salinity, pH, temperature, ORP, etc.) than individual cultures [22,23].

The relatively lower decolorization activity of B-1 (20 mg/L dye)
seemed to be due to a high concentration of carbon source compared to
its initial dye concentration. Previous research reported that in biological
decolorization of azo dyes, microorganisms require a carbon source as
they are unable to use the azo compounds as a sole carbon source [67].
Nevertheless, excessive amounts of carbon can reduce the decolorization
rate as microorganisms prefer to consume external carbon sources
rather than dyes [68].
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Figure 4.1 Time course for the azo dye decolorization rates for various
pure cultures and consortia of bacteria and yeasts. (a) B-1, (b) B-2, (0
B-C, (d Y-1, (e) Y-2, (f) Y-C, and (g) T-C
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4.2 Monitoring of organics through COD analysis

The starting COD was in the range of 1314-1780 mg/L in the
presence of glucose (300 mg/L) and the dye (50 mg/L); the control
without inoculum showed the highest COD (Fig. 3). Higher COD removal
rates of bacteria were observed in the order of B-2, B-1, and B-C,
while those of yeasts were in the order of Y-1 (equal to Y-C) and Y-2,
indicating there was little synergistic effect of COD removal for the
B-C. The COD removal rate for B-C reached 97% in 72 h while Y-C
and T-C achieved 98.0% and 97.5%, respectively, in 24 h. Therefore, the
COD removal rates of Y-C (69.3 mg h™") and T-C (66.0 mg h™') were
about 3-fold faster than that of B-C (22.2mgh-1). This appeared to be
because the bacteria grew relatively slowly and took longer in COD
removal, although the final COD removal rate was similar to other
treatment. Also, the COD removal rate of T-C was slightly lower than
that of Y-C, probably due to bacterial interference with the yeast cell
metabolism of the organic substrates. In all, three different consortia
showed similar COD removal rates after 3 days. It is worth mentioning
that higher degrees of COD removal seemed to be related to higher
decolorization rates regardless of whether pure cultures or consortia

were used.
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Figure 4.2 Time course for COD removal by various pure cultures and
consortia of bacteria and yeasts during biodegradation of the azo dye Acid

Blue 113 (50 mg/L). (a) bacteria, (b) yeasts, and (c) consortia
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4.3 Comparison of cultural growth and concomitant decolorization activity

in the microbial consortia

The cell population density (ODgy) and its concomitant decolorization
activity at 560nm over time were comparatively analyzed (Fig. 4.3). At
the beginning (Days 1 and 2), the growth of the B-C was much slower
than that of the yeast. In the overall consortia, there was a strong
negative correlation between ODgyp and the Asgnm because ODgy
increased as the absorbance at 560nm decreased. The B-C had a longer
lag phase (2days) while the Y-C seemed to have a shorter lag period.
B-C reached its plateau growth after 3 days, while it took only a day

for Y-C to reach its plateau.

There was a good positive relationship between the cell growth and
the azo dye degradation rate. The ODgy for the Y-C decreased by 50%
after significant decolorization due to the rapid depletion of glucose as a
substrate for growth metabolism and the azo bond (-N=N-) reduction.
However, T-C maintained its level (1.5 ODsgy) due to the presence of
B-C. This may indicate that the bacteria community could help the yeast

community survive under adverse growth conditions.

The collaborative interaction between bacterial and yeast communities
provides a great advantage for the bioremediation of azo dye compounds
on a field scale as it has been shown that they can stably maintain a
specific consortium that is more resilient to the target degradative
compounds, their potentially toxic metabolites, and other nearby

hazardous substrates as well as to varying environmental conditions.
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Figure 4.3 Comparative analysis of consortium cultural growth and
concomitant decolorization of the azo dye Acid Blue 113 (50 mg/L) over

time. (a) B-C, () Y-C, and (¢) T-C
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44 FT-IR and GC-MS analyses of the biodegradation process by
microbial consortia for the azo dye AB113

The FT-IR profiles for the three different consortia during dye
biodegradation are shown in Fig. 4.4. FT-IR spectra analysis enables the
determination and understanding of the wvarious functional groups
involved in the process of biotransformation [69]. The peak at 1455 cm™
indicates the presence of N=N stretching due to azo bonds [70]. The
disappearance of this particular peak, therefore, means that
decolorization has been achieved. As shown in Fig. 4.4, the arrows may
indicate evidence of azo bond cleavage. All profiles showed decreasing
intensity of peaks at the wavenumber 1455 cm™, in which the
decreasing rate of yeast-containing consortia (Y-C and T-C) were much
faster than that of B-C. These results corroborated with the previous
decolorization results (Fig. 4.1) and both results confirm that significant
decolorization was achieved after 72 h for B-C and 24 h for both Y-C
and T-C. It was also observed that the number of OH or NH groups
increased in all the consortia as the intensity of the 3210 cm™ region
increased as the dye degraded. The presence of OH group is expected
to be related with the aromatic compounds that were detected by
GC-MS (Table 4.1) Decanedioic acid and propanoic acid possess the OH
group in their chemical structures. Again, the transmittance at 3210 cm™
showed a similar trend to that of 1455 cm™ for the azo bond. Moreover,
the NH, groups were detected in the degraded samples at the 1300 cm™
wavenumber. This is evidence of the biodegradation of AB113 [66, 71l
These NH, groups are also present in aniline which was detected as
metabolites after decolorization. In addition, the size of the peak at 1100
cm™ representing SO, decreased over time in B-C (Fig. 4.4a) due to

bacterial biodegradation, as shown in a previous report [70]. In contrast,
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the yeast group was not able to degrade this group, while gradual
decrease of this peak was observed in T-C, which carried the B-C (Fig.
4.4c). In terms of secondary metabolites after decolorization, both the

bacterial cultures showed their efficient degradative activity.
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Figure 4.4 Time course for the FT-IR profiles of the three microbial

consortia during biodegradation of the azo dye Acid Blue 113. (a) B-C, (b)
Y-C, and (¢) T-C
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1-Butanol, propanoic acid, ethyl ester, 1,2-Benzenedicarboxylic acid
(phthalic  acid), mono(2-ethylhexyl) ester, decanedioic acid and
bis(2-ethylhexyl) ester appeared to be background materials that might
have been present as contaminants in Acid Blue 113. Butanoic acid
(butyric acid) and aniline could be potential metabolites from the dye.
There should be a further experiment to elucidate more metabolites in

order to identify the degradation pathway of the dye.

Table 4.1 Metabolites from degradation of Acid Blue 113 detected using
GC-MS

RT Metabolites Control’ An-1 An-3 An4 An-5 Mixed
(min)
4.651 1-Butanol + + + + ND ND

Propanoic acid,
4.904 + + “ + ND +
ethyl ester

Butanoic acid
5.296 ND ND + + ND ND

(butyric acid)
8.194 Aniline ND ND ND + ND ND

1,2-Benzenedic
arboxylic acid,

26.02 + + + + + +
mono(2-ethylhe

xyl) ester

Decanedioic
28.85 acid,bis(2-ethyl + + + + + +
hexyl) ester
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4.5 Implications of the synergistic effects of inter genus co-culture in

terms of bioremediation of azo dyes

Despite well-reported research on the biodegradation of azo dyes using
a single culture, more successful degradation and complete mineralization
can be achieved when a mixed culture is used [3, 24, 72]. In particular,
bacteria are regarded as one of the most powerful means of
bioremediation in terms of dye degradation. However, bacteria are
sensitive to intermediate products such as carcinogenic aromatic amines,
which can inhibit their large-scale activity [19, 73]. On the other hand,
yeast can rapidly degrade these compounds using extracellular enzymes
[20]. In this sense, the synergistic effect of a yeast-bacterial consortium
may lead to enhanced degradation and detoxification of azo dyes, and
thus provide a promising method for the efficient removal of azo dye

contaminants [19, 741].

Therefore, a consortium of selected cultures could provide an effective
approach for treating wastewater containing complex dye materials [72].
The physicochemical condition of wastewater is unstable, especially when
the treatment system is exposed to the atmosphere. A combination of
several cultures is able to easily adjust to the environment and
effectively degrade the dyes [24]. Multi-strains of microcosm are able to
attack the recalcitrant dye molecule at different stereo-specific positions
or can collaboratively degrade the subsequencing metabolites further and
may lead to eventual mineralization of the dyes with its ecological

relevance [6,75].
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4.6. Transcriptomic analysis of degradation of Acid Blue 113

The transcriptome represents the complete set of transcript in a cell
under specific condition or stage [62]. For transcriptomic analysis, RNA
sequencing is now actively applied in many research fields. Figure 4.5
shows the brief mechanism and process of RNA sequencing that was
applied in this study. The analysis compared the two groups of &.
melonis growth depending on the experimental conditions the control
(cultured in absence of azo dye Acid Blue 113 at 50mg/L) and the
treatment (cultured in presence of azo dye Acid Blue 113 at 50mg/L)
using RNA-sequencing. Total RNA was extracted for both groups and
the cDNA was prepared through the reverse transcription. Then, all the
genes were sequenced after several trimming process. Also, their
quantity was identified so that it allowed the comparison of gene
expression under the non-induction condition and induction condition
using the dye. In the actual analysis for the study, the expressed values

were normalized as shown in Fig 4.6.

= Normal Sphingomonas melonis J =5p h!ngomona; melonis
exposed to Acid Blue 113

AL A
: N - N AL
R TS r A T A T A
gene A gene B gene C gene A gene B gene C

Figure 4.5 Scheme of RNA-seq analysis for the degradation of the azo dye
Acid Blue 113 by Sphingomonas melonis under non-induction (eft) and

induction (right) conditions
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Figure 4.6 Box plots for normalization of the number of expressed genes
during the degradation of the azo dye Acid Blue 113 by Sphingomonas

melonis under non-induction ( “C” ) and induction ( “B” ) conditions

After RNA sequencing, trimming and normalization, 3830 differentially
expressed genes (DEGs) were identified. Among them, significantly
different DEGs were 272: 131 DEGs were up-regulated and 141 DEGs
were down-regulated. This meant that 131 DEGs were expressed
significantly higher in S. melonis exposed to Acid Blue 113 than that of
the non-induction condition while 141 DEGs were expressed less than

the control experiment.

Out of the 272 significantly expressed DEGs, top 25 genes which had

the highest differences between the groups were shown in Fig 4.7 as a
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heatmap. In case of NAD(P)-dependent oxidoreductase, its expression was
higher in treatment than control group. It is assumed that this
oxidoreductase is responsible for azo group degradation, or hydroxyl
acids and amino acids degradation [76]. Type 1 glutamine
amidotransferase was also differentially expressed in the dye treatment.
This enzyme is known to be involved in or responsible for aromatic
compounds degradation pathways [75,78]. In addition, quinone
oxidoreductase was highly expressed in treatment group (data not shown)
and it was reported that it could enhance the azo dye decolorization
[79].
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Figure 4.7 Heatmap for the top 26 genes differentially expressed under the

azo dye Acid Blue 113 induction (treatment) condition
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The 272 DEGs grouped according to functional categorization of gene
ontology (Fig 4.8). They were mainly divided into three -categories:
biological process, cellular component and molecular function. The high
number of genes was observed in cellular process and metabolic process
in biological process and catalytic activity in molecular function. The
genes that were mentioned were all included in metabolic process and
catalytic activity. Furthermore, the genes were categorized according to
species specific functional annotation as shown in Table 4.2. The
eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous
Groups) functional annotation of the genes produced the 16 different
categories including 6 up-regulated categories and 10 down-regulated
categories. Among the various categories, the carbohydrate transport and
metabolism category was dominantly up-regulated and this might be due
to the presence of carbon sources (.e., glucose or dye) and their

degradative products which can be utilized by the dye degrader.
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Figure 4.8 Functional categorization as gene ontology of genes
differentially expressed under the azo dye Acid Blue 113 induction

(treatment) condition
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Table 4.2 eggNOG functional annotation and respective number of genes

eggNOG functional annotation Number of genes Up Down
Amino acid transport and metabolism 12 12 0
Carbohydrate transport and metabolism 24 24 0
Cell motility, Intracellular trafficking, 1 1 ;

secretion, and vesicular transport
Cell wall/membrane/envelope biogenesis 6 6 0
Energy production and conversion 11 11 0
Function unknown 39 39 0
General function prediction only 9 0 9
Inorganic ion transport and metabolism 11 0 11
Lipid transport and metabolism 11 0 11
Nucleotide transport and metabolism 4 0 4
Post-translational modification, protein . . -
turnover, and chaperones
Replication, recombination, and repair 2 0 2
Secondary metabolites biosynthesis, transport, . ; ;
and catabolism

Signal transduction mechanisms 2 0 2
Transcription 12 0 12
Translation, Ribosomal structure, and 1 0 1

biogenesis
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Chapter 5. Conclusion

In this study, two bacterial cultures (Mesorhizobium sp. and
Sphingomonas  melonis) and two  yeast cultures  (Apiotrichum
mycotoxinivarans and Meyerozyma guilliermondl) successfully decolorized
the azo dye Acid Blue 113 and further showed the potential for an
efficient biodegradation of secondary metabolites in the wastewater.
More than 80% of decolorization within 24 h (50 and 100 mg/L dye) was
achieved by the selected consortium composed of two bacterial cultures
(Mesorhizobium sp. and Sphingomonas melonis) and two yeast cultures
(Apiotrichum mycotoxinivarans and Meyerozyma guilliermondi). The yeast
consortium and the total consortium (bacterial and yeast consortia
combined) showed 98.0 % and 975 % of COD removal rates,
respectively in 24 h, while the rate for the bacterial consortium reached
97% in 72 h, indicating a synergism between these inter-genus cultures
and a potential mineralization of the azo dye Acid Blue 113. Moreover,
there was a good positive relationship between the cell growth and the
azo dye degradation rate which can also support the mineralization
potential. It was concluded that all the data of decolorization, COD
removal, cell growth, FT-IR spectra and GC-MS analysis results
collectively provide a consistent evidence for the azo dye decolorization
and a potential mineralization of the dye by the stably maintained
bacterial and yeast cultures. Furthermore, transcriptomics data based on
the RNA-sequencing showed that there was a significant difference in
the gene expression of Sphingomonas melonis depending on the exposure
to azo dye Acid Blue 113. Out of 3830 DEGs, the number of
significantly different DEGs were 272: 131 DEGs were up-regulated and
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141 were down-regulated. Especially, some of the highly up-regulated
genes such as NAD(P)-dependent oxidoreductase from the treated group
that was exposed to Acid Blue 113 appeared to be related to
azoreductase which is a major enzyme responsible for cleavage of azo
bond in the azo dye. In overall, these results may support that biological
wastewater treatment using the bacterial-yeast consortium has a
potential to be applied in many other related industrial wastewater
treatments as well as the azo dye wastewater treatment in the future.
Moreover, the transcriptomics technology based on RNA-sequencing to
determine the unique gene expressions could enable the understanding

of the azo dye biodegradation mechanisms of various microorganisms.
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