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유조선 시장의 수익 예측을 위한 인공신경망의 최적화 

정 영 준 
 

한국해양대학교 대학원, 냉동공조공학과 
 

요  약 

 

해운관련 기업들은 끊임 없이 변동하는 해운시항에 대하여 그 변동의 방향과 

크기를 정확하게 예측 함으로서 손실을 극소화하거나 이윤을 극대화하려 한다. 

따라서 보다 정확히 해운시황을 예측하기 위한 노력으로 해운서비스의 수요와 

공급, 운임 등 다양한 변수간의 경제학적 모델을 수립하여 예측을 수행하여 

왔으나 해운시황 결정요인이 매우 다양할 뿐 아니라 결정 메커니즘 또한 

복잡하고 급격하게 변동하는 만큼 그 변동의 방향과 크기에 대한 정확한 

예측은 여전히 어려운 과제로 남아있다.  

이 연구는 인공신경망 (Artificial Neural Networks, ANN)을 이용하여 VLCC, 

SUEZMAX, AFRAMAX 유조선 시장에 대한 경기 예측을 수행하고 유조선 시장 

예측을 위한 최적의 인공신경망 모델을 제시하고자 하였다. 이러한 인공신경망 

예측에 사용된 데이터는 2000년부터 2016년까지의 월간 시계열 자료 204개를 

사용하였으며, 인공신경망 학습 알고리즘으로 Levenberg-Marquardt algorithm과 

Bayesian regularization algorithm의 두 가지 방법을 적용하여 1개월, 3개월, 6개월, 

9개월, 12개월, 15개월 앞의 시황을 예측하였다. 이를 통하여 각 알고리즘 간의 

예측 정확도를 비교 하였으며, 또한 인공신경망 구조의 Hidden layer의 수와 

인공신경망의 학습에 사용되는 데이터의 크기를 변화시켜 예측결과를 비교 

분석하고 최적의 인공신경망 모델을 찾고자 하였다. 나아가, 인공신경망을 

이용한 예측에 있어 입력 변수의 크기가 변동할 때 입력변수와 목표 변수 간의 



xi 

 

상관 관계의 세기가 인공신경망 예측에 미치는 영향을 평가하였으며, 

유조선시장 시황 변동이 서로 다른 원유 운반선의 세가지 선종, VLCC, 

SUEZMAX, AFRAMAX에 대하여 인공신경망을 이용한 예측을 수행하여 각 

선종에 대한 인공신경망 예측의 정확도 등을 평가하였다. 

연구 수행 결과로, 유조선의 세가지 선종, VLCC, SUEZMAX, AFRAMAX에 대한 

예측은 3가지 선종 모두에서 Bayesian regularization algorithm에 의한 예측이 

Levenberg-Marquardt algorithm에 의한 예측보다 만족한 결과를 보이고 있다. 

또한, 1개월, 3개월, 6개월 및 9개월 앞선 예측에서는 인공신경망의 입력변수 

보다 적은 수의 Hidden layer Neuron을 갖는 인공신경망 구조에서, 입력변수 보다 

큰 수의 Neuron을 갖는 구조보다 만족한 결과를 얻을 수 있었으며, 12개월과 

15개월 앞선 예측에서는 입력변수보다 많은 수의 Neuron을 갖는 인공신경망 

구조에서 입력변수보다 적은 수의 Neuron을 갖는 구조보다 만족한 결과를 얻을 

수 있었다. 목표변수와 입력변수 간의 상관관계에 있어, 목표변수와 입력변수 

간의 상관관계 세기가 강한 입력변수의 크기가 변동할 경우에는 변동 전과 

예측결과의 오차 값에 큰 변화가 없었으나, 상관관계의 세기가 약한 

입력변수의 크기가 변동할 경우 예측오차가 크게 발생하였다.  

유조선 시장에 대한 수익 예측은 용선가격 협상이나 용선시기의 결정 및 

신조선 건조 투자결정 등 선대운영의 최적화와 자금운영의 위험을 최소화 할 

수 있을 것이며, 금융전략의 수립이나 리스크 평가 등에 있어 매우 실질적이고 

유효한 수단으로 활용될 수 있다. 그러나 이와 같이 인공신경망을 이용한 예측 

결과가 신뢰성 있는 정보로 활용되기 위하여는 예측하고자 하는 대상에 맞는 

최적의 인공신경망 모델을 선정하는 것이 무엇보다 중요하다. 

 

핵심어 : 인공신경망, 유조선시장 예측, VLCC, SUEZMAX, AFRAMAX 
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Abstract 

Shipping companies are looking to minimize losses or maximize profits by accurately 

predicting the direction and the magnitude of the fluctuations in a constantly changing 

maritime situation.  Therefore, in order to predict the maritime market more precisely, 

economic model between various variables such as demand, supply and freight rate etc. of 

shipping service has been established and forecasted.  However, the determinants of the 

maritime markets are very diverse and volatile, and the decision mechanism is complex.  

The accurate prediction of the direction and the magnitude of the variation remains as a 

difficult challenge.  

So, the purpose of this study is to propose an optimal Artificial Neural Network (ANN) 

model for dirty tanker markets forecasting through VLCC, SUEZMAX and AFRAMAX 

tanker market prediction using ANN.  The data used in this ANN forecasting are 204 

monthly time series data from 2000 to 2016.  The ANN training algorithm was applied in 

two methods, Levenberg-Marquardt algorithm and Bayesian regularization algorithm, to 

forecast the tanker markets with the multi-step advanced time of one month, 3 months, 6 

months, 9 months, 12 months and 15 months.  And the performance accuracy of each 

algorithm was compared with.  

In addition, the hidden layer size and the test data size of the Neural Network structure 

were changed and the predicted results were compared and evaluated to find an optimal 

ANN model for tanker market prediction.  Furthermore, it was investigated the effect of 

the correlation between input and target variables on the ANN prediction when the size of 

each input variables change, and ANN forecasts were performed for three types of VLCC, 

SUEZMAX, AFRAMAX of dirty tankers which have different market fluctuations, and 
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evaluated the accuracy and propriety of the results. 

As a result of the study, the predictions results for VLCC, SUEZMAX and AFRAMAX 

tanker by Bayesian regularization algorithm are more satisfactory than those predicted by 

the Levenberg-Marquardt algorithm.  In the one month, 3 months, 6 months and 9 months 

ahead predictions, the ANN structure with less number of hidden layer neurons than the 

number of input variables is more satisfactory than the structure with a larger number of 

hidden layer neurons.  In the 12 months and 15 months ahead predictions, satisfactory 

results are obtained in the ANN structure with a larger number of hidden layers than the 

input variables, rather than the structure with fewer neurons than the input variables.  

In the correlation between the target variable and the input variable, when the magnitude 

of the input variable has a strong correlation intensity with the target variable is changed, 

there is no significant change in the prediction performance error.  However, when the size 

of the input variable with weak correlation strength is changed, the prediction performance 

error varies greatly.  Predictions for the dirty tanker markets using ANN will help to 

minimize the risk of financial and operational problems.  

Also, the forecasting information can be used as a very practical and effective means for 

establishing financial strategy and risk assessment.  However, in order to use the prediction 

results as reliable information, it is most important to select the optimal artificial neural 

network model for the object to be predicted. 

 

Keywords : Artificial neural networks, Tanker market prediction, VLCC, SUEZMAX, 

AFRAMAX   
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Chapter 1  Introduction 

 

1.1  Background  

Without the heat and electricity from fuel combustion, economic activity would be 

limited and restrained.  Modern society uses more and more energy for industry, services, 

homes and transport.  Oils are an important source of energy for almost every human 

product used in human life and serve as a raw material for various products, which is a 

driving force of global economic growth.  This is particularly true for oil, which has 

become the largest traded commodity in world wide.  

The oil supply continues to grow in absolute terms, while total oil energy supply has been 

decreasing from 46.2% in 1973 to around 31.7% in 2016 with the growing importance of 

the environmental debate [1].  Furthermore, it is expected by some stakeholder that oil and 

natural gas will likely be about 60 percent of global supplies in 2040, while nuclear energy 

and renewables will grow about 50 percent and a 25 percent share of the world's energy mix 

[2].  The world crude oil production in 2016 was 4448 million-ton [1].  The total amount 

of crude oil transported by sea was 1949 million-ton [3], which accounted for 43.8% of the 

total crude oil production.  The crude tanker demand for world seaborne trade was 178.5 

million dwt for VLCC (200,000 dwt plus) and 56.8 million dwt for SUEZMAX (125-

199,999 dwt), and AFRAMAX (85-124,999 dwt) was 55.5 million dwt [3].   

However, the oil tanker markets, which accounts for a large portion of the world maritime 

transport, is highly influenced by the interaction of supply and demand for tanker 

transportation services, and is highly volatile.  Furthermore, there is a lot of real-time data 

available in the markets due to the rapid fluctuation of the markets.  In addition to the 
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traditional stakeholders, there are huge surges in many speculative powers.  Increasing risk 

due to changes in market price fluctuations makes decisions more complicated and difficult. 

Therefore, the predictions of these market changes are very important for stakeholders of 

the tanker market demand and supply side and other stakeholders.  Also, fast and accurate 

market predictions that can help financial and operational decision-making for the dirty 

tanker markets are highly needed. 

 

1.2  Research purposes and scope 

This paper focuses on the predictions of ANN for the Earnings for VLCC, SUEZMAX, 

and AFRAMAX which are in responsible for a major role in the marine transportation of 

crude oil.  The dirty tanker Earning can be derived from the time charter rates or the time 

charter equivalent of spot rates when the vessel is operating in the spot market.  Earnings 

are more representative of what a tanker operating produces [4].   

Meanwhile, the tanker contract freights in freight markets are calculated based on an 

international freight index called Worldscale (WS) [5][6].  The Worldscale index is 

essentially a measure of the breakeven rate of a standard tanker on a round trip between a 

loading port and a discharging port as a standard tanker route specific under certain 

assumptions, port charges, fuel prices and other factors [7].  Oil tanker spot (or voyage) 

freight rates that have been expressed, negotiated and agreed upon are reflected in the 

Worldscale index [8].  Therefore, when choosing the ANN prediction target for the oil 

tanker markets, the tanker Earning (USD/day) as the forecasting target, which is directly 

determined according to the markets condition, was selected instead of the oil tanker 

international freight index.   
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And the effect of correlation coefficient between dirty tanker Earnings and multiple input 

variables of the ANN model were assessed.  An optimal ANN prediction model has been 

developed and proposed by using the Levenberg-Marquardt algorithm and Bayesian 

regularization algorithm for ANN training for each ship type of VLCC, SUEZMAX and 

AFRAMAX. For dirty tanker markets so far, ANN predictions have been proved to be better 

by a number of researchers, through comparing ANN predictions with traditional statistical 

predictions.  

As a results of this study, the optimal ANN architecture can be used for dirty tanker 

markets forecasting with alternative training algorithms.  Furthermore the results of this 

study can help to improve the prediction accuracy of the market changes, so that it can 

provide information for more accurate judgment to many stakeholders.  Also it can be used 

as an information for establishing financial and operational strategies by predicting income 

forecasts and risks as well as determining the optimal timing for ship charter in / out, 

determination of fleet size, charter period and charter rate.  

This study also makes sense for the first on the ANN forecasting for the SUEZMAX and 

AFRAMAX tanker market as well as VLCC market.  And it can be deemed as a 

considerable contribution that this study prove that ANN forecast can be widely applied as 

a contributory information regardless of the ship type of maritime market. 

 

1.3  Predictions on shipping markets 

Demand and supply of international shipping services are influenced not only by various 

external factors such as economic growth, trade policies, changes in political conditions such 

as diplomatic relations, and changes in the natural environment, but also by factors such as 
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production price factors and technology development, shipbuilding, steel, petroleum 

industry and port condition.  The demand and supply change for the shipping service will 

be balanced through the freight rates determined in the shipping market.  The freight rates 

in the markets will affect the newbuilding market, the charter market and the second hand 

ship market.  Thereby forming a cyclic loop that affects an influence to the supply and 

demand of the global shipping market. 

Therefore, in order to predict maritime market, many diverse economists have studied 

how to interact and construct linkages in the maritime market under the interaction of supply 

and demand variables.  The factors influencing the demand for maritime transport are 

global economy, international maritime transport volume, profit margins, political events 

and transport costs.   

On the supply side is world fleet and its productivity, shipbuilding, shipbreaking and 

freights [9].  As a result of economic studies on the tanker market, Zannetos [10] and D. 

Gren et al [11] presented a framework for understanding the relationship between spot rates 

and the long-term charter rates in the oil tanker market.  Hawdon [12] derived an equations 

for the tanker freight rates under the hypothesis that the demand for oil freight services is a 

simple function of total world trade in oil, and Beenstock and Vergottis [13] established a 

theoretical model for the correlation between the freight markets and the ship market and 

applied it to the world tanker market.  

For the prediction and analysis of various factors that constitute the shipping market, one 

of the typical methods used when forecasting maritime market conditions is a time series 

analysis that predicts future changes by identifying empirical laws required for forecasting 

using only the information contained in the observed historical data.   
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The time series analysis technique began to be widely used in the mid-1970s by G.E.P. 

Box and G.M.  Since Jenkins proposed the Box-Jenkins model [14] which incorporates 

existing time series prediction theory.  In addition, a variety of forecasting and analysis 

techniques have been developed and applied, such as ARIMA models, ARCH, GARCH, and 

VAR models for forecasting the shipping market.  

In this study, Kavussanos [15] applied the GARCH model to investigate the volatility of 

freight rates in the spot and time charter markets of dry-bulk vessels.  Kavussanos [16] has 

evaluated the relative risks involved in operating tanker vessels in world spot and time 

charter markets through the use of Co-integration Error Correlation ARCH models.  

Kagkarakis et al [17] used the VAR model to estimate the price in the ship-demolition 

markets. 

The tanker freight market is characterized by the interaction between many determinants 

of supply and demand for tanker transportation services [9][10][18].  To forecast the 

dynamics and fluctuations of the freight rates in the tanker freight markets, many researches 

have been developed using univariate or multivariate time series analysis techniques 

[16][19]-[21], and ANN models [22]-[24]. 

Artificial Neural Networks (ANN) have powerful pattern classification and pattern 

recognition capabilities, and are being used for a wide variety of tasks in many different 

fields of business, industry and science.  One major application area of ANN is forecasting 

[25].  ANN are inspired by biological systems, particularly by research into the human 

brain, and be able to learn from and generalize from experience.  ANN is a massively 

parallel distributed processor that has a natural propensity for storing experimental 

knowledge and making it available for use.  ANN are also parameterized computational 

nonlinear algorithms for numerical data, signal and image processing.   
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These algorithms are either implemented on a general-purpose computer or are built into 

a dedicated hardware [26]. 

In order to verify the accuracy of this ANN, the researchers conducted a study comparing 

the prediction results by ANN with the prediction results by traditional time series 

techniques [24][27].  As a result of these studies, ANN can be more effective in forecasting 

by time series method in monthly and quarterly forecasting than annual time series 

forecasting, and ANN is more effective than statistical method in predicting three or more 

period horizon on the total forecasting horizon [28]. 

The first ANN predictions for tanker freight rates were made by Li & Parsons [22].  In 

their study, three variables were used in predicting the dirty tanker spot freight rates (WS) 

using the tanker demand data and tanker supply data for 190 monthly time series data points 

from Jan. 1980 to Oct. 1995.  And the ANN structure was consisted of one or three 

variables as inputs, one output and one hidden layer.  The best number of neurons in the 

hidden layer was varied from case to case to obtain the best performance error tolerances for 

all the cases. 

In subsequent studies, in order to more accurately predict freight rate fluctuations in 

tanker markets, forecasts using ANN were made by applying more large number of 

independent variables affecting the freight markets. 

 Lyridis et al [23] investigated the VLCC spot freight rates (WS) by using ANN with 

monthly time series data from Oct. 1979 to Dec. 2002 as independent variables; demand for 

oil transportation, active fleet, crude oil production, crude oil price, surplus as a percentage 

of active fleet.  Their study attempted to uncover the benefits of using ANN in forecasting 

VLCC spot freight rates.   
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In order to obtain the best prediction result in ANN prediction, ANN forecasting was 

performed by changing the number of input variables for each prediction interval, and the 

number of optimal input parameters was observed by comparing the prediction results.   

Santos et al [24] performed ANN forecasts for VLCC period charter rates (USD/Day) 

instead of spot freight rates (WS), which were previously predicted by researchers. And in 

applying ANN forecasting model, two different ANN model of multi-layer perceptron and 

radial basis functions were applied and the results were compared.   

Eslami et al [29] developed a hybrid tanker spot freight rates (WS) prediction model 

based on an artificial neural networks and an adaptive genetic algorithm which searches a 

near-optimal combination of network parameters to improve the accuracy of ANN.  And 

the prediction results are compared with those of previous researchers. 

 

1.4  Structure of the paper 

The paper is organized as follows.   

In Chapter 2, it encompasses an essential and theoretical knowledge of ANN structure 

to design its architecture.  The backpropagation algorithm introduced in this chapter is a 

major breakthrough in neural network research.  And The Levenberg-Marquardt algorithm 

and Bayesian regularization algorithm that provide significant speedup and make the 

algorithm more practical are introduced to obtain reasonable results before ANN prediction 

execution. 

Chapter 3 concentrate on practical aspects of the methodology used in this study 

including data collection, data normalization, and ANN architecture etc. for ANN prediction. 

In collecting data, the ship type is distinguished to VLCC, SUEZMAX, and AFRAMAX in 
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accordance with the ship size, and the monthly data from January 2000 to December 2016 

for each vessel type are obtained from resources of the reliable institutes.  The Non-linear 

AutoRegressive model with eXogenous inputs (NARX network) is introduced as an ANN 

model which is applied in this study.  

In Chapter 4, it is described the actual application process using the methodology 

mentioned in Chapter 4.  And the schematic of ANN network for the tanker market 

prediction for applying Levenberg-Marquardt algorithm and Bayesian regularization 

algorithm is presented, and the details of the prediction calculation method and the 

verification method of the results to prove are presented.  Also the predictive results are 

evaluated according to the training algorithms of the ANN architectures.  

Finally, in Chapter 5, the thesis is wrapped up with conclusions including suggestions 

for tanker markets prediction by ANN. 
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Chapter 2  Artificial Neural Networks 

 

2.1  An overview of Artificial Neural Networks (ANN) 

The discipline of neural networks models human brains.  The average human brain 

consists of nearly 1011 neurons of various types, with each neuron connecting to up to tens 

of thousands of synapses.  As such, neural network models are also called connectionist 

models.  Information processing is mainly in the cerebral cortex, the out layer of the brain.  

Cognitive functions, including language, abstract reasoning, and learning and memory, 

represent the most complex brain operation to define in the terms of neural mechanisms. [30] 

Artificial Neural Networks (ANN) are composed of a number of highly interconnected 

simple processing elements called neurons or nodes.  Each node receives an input signal 

which is the total “information” from other nodes or external stimuli, process it locally 

through an activation or transfer function and produces a transformed output signal to other 

nodes or external outputs.  Although each individual neurons implements its function rather 

slowly and imperfectly, collectively a network can perform a surprising number of tasks 

quite efficiently.  This information processing characteristics make ANN a powerful 

computational device and are able to learn from examples and then to generalize to examples 

never before seen [25].  A basic elements of an artificial neural network is depicted in 

Figure 2.1 [31]. 

ANN can be treated as a general statistical tool for almost all disciplines of science and 

engineering.  The applications can be in function approximation, classification, clustering 

and vector quantization, associative memory, optimization, feature extraction and 

information compression [30]. 
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Figure 2.1  Multiple-input neuron 

 

The individual inputs P1, P2, ⋯, PR are each weighted by corresponding elements W11, 

W12, ⋯, W1R of the weight matrix W.  The neuron has a bias b, which is summed with the 

weighted inputs to form the net input n: 

n = W11 P1 + W12 P2 + ⋯ + W1R PR + b                               (1) 

The neuron output a of a transfer function can be written as  

a = ƒ(WP + b)                                                   (2) 

Many different ANN models have been proposed since 1980s.  One of the most 

influential models among them is the Multi-Layer Perceptron (MLP).  The MLP networks 

are used in variety of problems especially in forecasting because of their inherent capability 

of arbitrary input-output mapping. 

In feedforward MLP networks, the neurons are organized in the form of layers.  The 

neurons in a layer get input from the previous layer or first layer, and feed their output to the 

next layer.  The last layer or the highest layer of neurons is called the output layer and the 

one or more intermediate layers between the inputs and output layers are called the hidden 
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layers.  Artificial neuron mainly consists of weights, bias and activation function.   

In Figure 2.2 [31], third layer is called output layer and the other layers of the first and 

second layer are called hidden layers.  There are R inputs, S1, S2 and S3 neuron in the each 

layers.  And different layers can have different numbers of neurons.  Each layer has its 

own weight matrix W(for the first layer is written as W1), its own bias vector b, a net input 

vector n and an output vector a. 

 

 

Figure 2.2  Multiple layers of neurons 
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2.2  Design of ANN model 

2.2.1  Supervised learning  

Learning (training) is a fundamental capability of neural networks.  Learning rules are 

algorithm for finding suitable weights W and/or other network parameters.  Learning of a 

neural network can be viewed as a nonlinear optimization problem for finding a set of 

network parameters.  Learning methods are conventionally divided into supervised, 

unsupervised, and reinforcement learning [30].  Supervised learning adjusts network 

parameters by a direct comparison between the actual network output and the desired output.  

Supervised learning is a closed-loop feedback system, where the error is the feedback signal.   

The error measure, which shows the difference between the network output and the 

output from the training samples, is used to guide the learning process.  The error measure 

is usually defined by the mean squared error (MSE).  To decrease error toward zero, a 

gradient descent procedure is usually applied.  The gradient decent method always 

converges to a local minimum in a neighborhood of the initial solution of network 

parameters.  The least mean squared algorithm (LMS) and backpropagation algorithms are 

two most popular gradient descent based algorithms [30].   

The most commonly used learning algorithm for a supervised neural network is a 

backpropagation algorithm which is proposed for the MLP model in 1986 by Rumelhart et 

al [32].  The goal of the backpropagation, as with most training algorithms, is to iteratively 

adjust the weights in the network to produce the desired output by minimizing output error. 

The backpropagation is a gradient descent approach in that it uses the minimization of 

first order derivatives to find an optimal solution.  It works with a training set of input 

vectors and target output vectors.   



１３ 

 

The training algorithm iteratively tries to force the generated output vectors to the desired 

output vector by adjusting the weights in the network through the use of a generalized delta 

rule [33].  

 

2.2.2  Mean squared error (MSE) 

A quantitative measure of neural network performance is called the performance index, 

which is small when the network perform well and large when the network performs poorly.  

Many ANN researchers have investigated to develop algorithm to optimize a performance 

index.  In other word, “optimize” means to find the value of the minimized performance 

index. 

When the standard performance index (F(x)) is represented by Taylor series expansion 

and 𝒙𝒙 is the scalar parameter at iteration κ, the general minimization algorithm is: 

∆𝒙𝒙𝑘𝑘 = (𝒙𝒙𝑘𝑘+1 −  𝒙𝒙𝑘𝑘) = 𝛼𝛼𝑘𝑘𝑷𝑷𝑘𝑘                                       (3) 

Where the vector Pk represents a search direction at iteration κ, and αk is the learning rate. 

This equation is written in matrix form.  

Three different categories of optimization algorithm to minimize the performance index 

through training of neural networks are the steepest descent, Newton’s method and conjugate 

gradient. 

In the training algorithms of ANN, the Least Mean Squared (LMS) algorithm is an 

example of supervised training, in which the learning rule is provided with a set of examples 

of proper network behavior. 

{𝑃𝑃1, 𝑡𝑡1}, {𝑃𝑃2, 𝑡𝑡2}, {𝑃𝑃3, 𝑡𝑡3}, …… , {𝑃𝑃𝑞𝑞 , 𝑡𝑡𝑞𝑞}                             (4)  
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Where Pq is an input to the network, and tq is the corresponding target output. 

The LMS algorithm and the backpropagation algorithm for multilayer networks adjusts 

the weights and biases of the network in order to minimize the mean square error, where the 

error is the difference between the target output and the network output.  

𝐹𝐹(𝑥𝑥) = E[ℯ2] = E[(𝑡𝑡 − 𝑎𝑎)2)]                                      (5) 

Where F(x) is the performance index of the neural network, E[  ] is denoted as an 

expected value and the expectation is taken over all sets of input/target pairs [36]. And the 

mean square error is expressed: 

MSE = 1
𝑄𝑄
∑ (𝑡𝑡𝑞𝑞 −  𝑎𝑎𝑞𝑞 )2𝑄𝑄
𝑞𝑞=1                                          (6) 

In the multilayer networks having multiple outputs, the performance index F(x) is 

expressed: 

𝐹𝐹(𝒙𝒙) =  ∑ �𝑡𝑡𝑞𝑞 −  𝑎𝑎𝑞𝑞�
𝑇𝑇𝒬𝒬

𝑞𝑞=1 (𝑡𝑡𝑞𝑞 − 𝑎𝑎𝑞𝑞)                                  (7) 

Where aq is the network output for input pq. and tq is the target output corresponding to 

the input pq. 

 

2.2.3  Least-mean squared (LMS) algorithm 

The LMS algorithm achieves a robust separation between the patterns of different classes 

by minimizing the MSE rather than the number of misclassified patterns through the 

gradient-descent method [30].  The following two equations make up the LMS algorithm 

to minimize the MSE through adjusting the weights and biases of the ADALINE, and these 

equations which are referred to as the delta rule or the Widrow-Hoff learning algorithm can 
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be written in matrix notation [31]. 

𝑾𝑾(𝑘𝑘 + 1) =  𝑾𝑾(𝑘𝑘) + 2𝛼𝛼𝓮𝓮(𝑘𝑘)𝑷𝑷𝑇𝑇(𝑘𝑘)                                 (8) 

𝒃𝒃(𝑘𝑘 + 1) = 𝒃𝒃(𝑘𝑘) + 2𝛼𝛼𝓮𝓮(𝑘𝑘)                                        (9) 

Where 𝑾𝑾(κ) is the weight at iteration κ, 𝓮𝓮(κ) and b(𝜅𝜅+1) are the error at iteration 𝜅𝜅 

and the biases at iteration 𝜅𝜅 + 1, α is the learning rate, and PT(𝜅𝜅) is the input at iteration 𝜅𝜅.  

 

2.2.4  Backpropagation learning algorithm 

Backpropagation learning is the most popular learning for performing supervised 

learning tasks [32].  The backpropagation algorithm is a generalization of the delta rule 

called the LMS algorithm.  Thus it is also called the generalized delta rule.  The 

backpropagation algorithm propagates to backward the error between the desired target and 

the network output through the network.  After providing an input, the output of the 

network is then compared with a given target and the error of each output unit calculated. 

This error is propagated backward, and a closed loop control system is established.  The 

weights can be adjusted by a gradient-descent based algorithm [30].  The backpropagation 

can be used to train multilayer networks.  As with the LMS learning law, the performance 

index of the backpropagation is mean squared error. 

The difference between the LMS algorithm and backpropagation is only in the way in 

which the derivatives are calculated.  In order to calculate the derivatives, it is needed to 

use the chain rule of calculus [31].  

As shown in Figure 2.2, for multilayer networks the output of one layer becomes the 

input to the following layer. 
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This operation are described as follows : 

𝒂𝒂𝑚𝑚+1 =  𝑓𝑓𝑚𝑚+1(𝑾𝑾𝑚𝑚+1𝒂𝒂𝑚𝑚 +  𝒃𝒃𝑚𝑚+1)     for 𝑚𝑚 = 0, 1, 2, … . ,𝑀𝑀− 1         (10) 

Where M is the number of layers in the network. 

For the multilayer network the error is an indirect function of the weights in the hidden 

layer, therefore the chain rule of calculus to calculate the derivatives are applied to.  The 

approximate steepest descent algorithm using the chain rule of calculus can be written in 

matrix notation. 

𝑾𝑾𝓂𝓂(𝑘𝑘 + 1) =  𝑾𝑾𝑚𝑚(𝑘𝑘)−  𝛼𝛼𝑺𝑺𝑚𝑚(𝒂𝒂𝑚𝑚−1)𝑇𝑇                             (11) 

𝒃𝒃𝑚𝑚(𝑘𝑘 + 1) =  𝒃𝒃𝑚𝑚(𝑘𝑘) −  𝛼𝛼𝑺𝑺𝑚𝑚                                      (12) 

Where 𝑺𝑺𝑚𝑚  is the sensitivity at layer m. 

 

2.2.5  Levenberg-Marquardt algorithm 

The basic backpropagation algorithm is too slow for most practical application.  This 

has encouraged considerable research on methods to accelerate the convergence of the 

algorithm.  As a consequence, several variations of backpropagation to provide significant 

speedup and make the algorithm more practical have been developed using heuristic 

techniques [37] and numerical optimization techniques [38].  

The Levenberg-Marquardt algorithm, which is one of numerical optimization techniques, 

was designed for minimizing functions that are sums of squares of other nonlinear functions 

in neural network training where the performance index is the mean squared error.  
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When the performance index is 𝐹𝐹(𝔁𝔁) , the Levenberg-Marquardt algorithm for  

optimizing the performance index 𝐹𝐹(𝔁𝔁) is represented as [39]:  

𝒙𝒙𝑘𝑘+1 =  𝒙𝒙𝑘𝑘   − [ 𝑱𝑱𝑇𝑇(𝒙𝒙𝑘𝑘)𝑱𝑱(𝒙𝒙𝑘𝑘)  +  𝜇𝜇𝜅𝜅]−1𝑱𝑱𝑇𝑇(𝒙𝒙𝑘𝑘)𝑽𝑽(𝒙𝒙𝑘𝑘)                   (13) 

Here, as the changing value of 𝜇𝜇𝐾𝐾, the performance index 𝐹𝐹(𝔁𝔁) of the network can be 

adjusted with the optimization algorithms in small learning rate. Where 𝑱𝑱(𝒙𝒙𝑘𝑘)  and 𝑽𝑽(𝒙𝒙𝑘𝑘) 

are the matrix elements to compute the gradient. 

 

2.2.6  Generalization and Bayesian regularization algorithm 

In operation a multilayer network, if the number of neuron is too large, the network will 

over-fit the training data.  This means that the error on the training data will be very small, 

but the network will fail to perform as well when presented with new data.  A network that 

generalizes well will perform as well on new data as it does on the training data.  The 

complexity of neural network is determined by the number of free parameters that weights 

and biases, which is determined by the number of neurons.  If network is too complex for 

a given data set, then it is likely to over-fit and to have a poor generalization [31]. 

There are two approaches to improve the generalization capability of neural network: 

restricting the number of weights or restricting the magnitude of the weights called the 

regularization.  The simplest method for improving generalization is early stopping [40]. 

In a multilayer network, after removing the test data set from the input data set, the 

available data is divided into two parts: a training data set and validation data set. The 

training data set is used to determine the weight update at each iteration.  The validation 

data set is an indicator of what is happening to the network function in between the training 
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points, and the error of the validation data set is monitored during the training process.  

When the error on the validation data set goes up for several iteration, the training stopped, 

and the weights that produced the minimum error on the validation data set are used as the 

final trained network weights.  The test data set is used to calculate its error.  The error of 

the test data set, which is a measure of the generalization capability of the network, will give 

an indication of how the network will perform in the future. 

This method to stop the training is called cross-validation [41].  And another method 

for generalization is called regularization [42].  This regularization can be written as the 

sum of squares of the network weights, as follows: 

𝐹𝐹(𝔁𝔁) =  𝛽𝛽𝐸𝐸𝐷𝐷 + α𝐸𝐸𝑊𝑊 = 𝛽𝛽∑ (𝒕𝒕𝑞𝑞 −  𝒂𝒂𝑞𝑞)𝑇𝑇𝒬𝒬
𝑞𝑞=1 (𝒕𝒕𝑞𝑞 −  𝒂𝒂𝑞𝑞) + 𝛼𝛼∑ 𝓧𝓧𝒾𝒾

2𝓃𝓃
𝒾𝒾=1      (14) 

Where 𝐹𝐹(𝔁𝔁) is called the regularized performance index, and the ratio α/β control the 

effective complexity of the network solution.  There are several technics for setting the 

regularization parameter.  Bayesian Regularization among these methods is an automatic 

selection of the regularization parameter [43]. 

𝛼𝛼𝑀𝑀𝑀𝑀 = 𝛾𝛾
2𝐸𝐸𝐸𝐸(𝑥𝑥𝑀𝑀𝑀𝑀)

  and  𝛽𝛽𝑀𝑀𝑀𝑀 =  𝑁𝑁− 𝛾𝛾
2𝐸𝐸𝐷𝐷(𝑥𝑥𝑀𝑀𝑀𝑀)

                           (15) 

Where γ = n − 2𝛼𝛼𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡(𝐻𝐻𝑀𝑀𝑀𝑀)−1 is called the effective number of parameters, and n 

is the total number of parameters in the network.  The 𝛾𝛾  is a measure of how many 

parameters (weights and biases) in the neural network are effectively used in reducing the 

error function. 
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Chapter 3  Methodology 

 

3.1  Data and pre-processing  

3.1.1  Data collection 

For all data used in forecasting of oil tanker markets in this study, global oil production, 

world GDP, active fleets, new building prices, second-hand ship prices, demolition prices, 

time-charter rates, bunker prices, and crude oil prices were selected as independent variables, 

whereas dirty tanker earnings was selected as the dependent variable. 

To collect the data sets for tanker markets prediction, firstly the ship type is distinguished 

to VLCC, SUEZMAX, and AFRAMAX tanker.  The monthly data sets from January 2000 

to December 2016 for each tankers were obtained from Clarkson research services, the 

International Energy Agency (IEA), the Organization of the Petroleum Countries (OPEC) 

[44] and related organizations.   

The two larger size tankers of VLCC and SUEZMAX are exclusively involved in crude 

oil transportation.  AFRAMAX vessels are also involved in transportation of crude oil, 

however, they contribute to product transportation time to time.  In this paper, the data set 

related to AFRAMAX is also restricted to the vessel transporting crude oil exclusively. 

The purpose of this study is to provide an optimal ANN training architecture.  To do 

this, it was tried to derive the optimal ANN training architecture by comparing the results 

obtained from the Levenberg-Marquardt algorithm and Bayesian regularization algorithm 

by each ship type, and by changing the computing parameters of the ANN training algorithm 

for the actual prediction application and evaluating the results.  
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Therefore, when collecting data sets for each ship type, data samples such as unit and 

size were applied with the identical conditions [45].  

European brent spot oil prices is applied for crude oil prices, and the average prices for 

the new building prices, second hand ship prices and demolition prices are applied to.  And 

the time charter rates and the targeting earnings for each ship type adapt its average values.  

Also, bunker prices are 180 CST rotterdam prices.  World GDP time series data from 

UNCTAD [46] were converted from quarterly values to monthly using interpolation method.  

The aggregated data is made up of nine independent variables and one dependent variable, 

and each variable has 204 monthly observations from January 2000 to December 2016.  

 

3.1.2  Data normalization 

One of the most common tool to obtain better results of neural network is to utilize data 

normalization. Data normalization can also speed up training time by starting the training 

process for feature within the same scale.  

Data normalization is especially useful for modeling applications where the inputs are 

generally on widely different scale. Data normalization is performed before the training 

process begins. Nonlinear activation functions are normalized to a value (0, 1) for logistic 

function or (-1, 1) for hyperbolic tangent function. When nonlinear transfer functions are 

used at the output nodes, the desired output values must be transformed to the range of the 

actual outputs of the network [25]. In this study, prediction is performed with a multilayer 

networks using sigmoid transfer functions in the first layer of hidden layer. 

This sigmoid transfer functions are open used in the hidden layer. In the first layer, the 

net input is a products of the input times the weight plus the bias. If the input is very large, 
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the weight must be small in order to prevent the transfer function from becoming saturated. 

In contrary, if the input values are very small, large weights are needed to produce a large 

net input. Thus, it is standard practice to normalize the inputs before applying them to the 

network.  When the input values are normalized, the magnitudes of the weights have a 

consistent meaning in using regularization.  The normalization step is applied to the input 

values and target values in the data sets [31][33].  The normalization can be done by the 

following equation: 

𝒑𝒑𝓃𝓃 =  2 (𝒑𝒑−  𝒑𝒑𝑚𝑚𝑚𝑚𝑚𝑚 )
 𝒑𝒑𝑚𝑚𝑚𝑚𝑚𝑚− 𝒑𝒑𝑚𝑚𝑚𝑚𝑚𝑚

  − 1                                  (16) 

Where 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is the vector containing the minimum values of each element of the input 

vectors in the data set, 𝒑𝒑𝑚𝑚𝑚𝑚𝑥𝑥 contains the maximum values, and 𝒑𝒑𝓃𝓃  ( from − 1 to 1) is 

the resulting normalized input vector.  

 

3.2  Identification of ANN architecture 

After collecting the data for forecasting of tanker markets, the type of ANN architecture 

is to be determined to solve the problem of tanker market prediction, and the specific details 

of how many neurons and layers it will be used in the network are to be decided.  In ANN 

dynamic networks, the output depends not only on the current input to the network, but also 

current or previous inputs, outputs or states of the network.  Tanker markets prediction is 

part of a time series analysis that predicts the future value of a time series.  Therefore in 

this paper, the dynamic networks had been selected as an appropriate ANN model to forecast 

dirty tanker markets.  The Non-linear Auto Regressive model with eXogenous inputs 

(NARX networks) [30][31], a widely used network for applying predictions, is a recurrent 
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dynamic network with feedback connections that encompass multiple layers of the network, 

as shown in Figure 3.1 [31].  

Until now, prediction using ANN for the VLCC tanker market has been done by the 

Levenberg-Marquardt training algorithm [22]-[24][29], but no Bayesian regularization 

algorithm was used to predict the VLCC tanker market.  Therefore this paper focuses on 

the prediction of ANN with the Levenberg-Marquardt algorithm and Bayesian regularization 

algorithm to evaluate the prediction accuracy of these two training algorithms. 

After determining the network structure, the number of hidden layers in these two 

learning algorithms is decided to one to allow easy comparison of performance results and 

functions, and the ANN model implementing the backpropagation algorithm do not have too 

many layers, since the time for training of the network grows exponentially.  

The number of neurons in the hidden layer are determined by the complexities of the 

function that is being approximated or the decision boundaries that are being implemented.  

Therefore, to determine the number of neurons in the hidden layer to find the best prediction 

performance for the VLCC tanker market, it is adjusted the number of neurons in the hidden 

layer of the ANN structure using the Levenberg-Marquardt algorithm to find the best 

performance without any overfitting.  Also, in the prediction using Bayesian regularization 

algorithm, the ANN performs prediction using 8 and 10 neurons of the hidden layer based 

and evaluates the performance results of these two cases.   

The inputs of the ANN model have 9 nodes for input signals.  The hidden layer is made 

up the neurons with the tan-sigmoid transfer function selected as their activation function, 

and the output layer has the linear transfer function.  The number of neurons in the output 

layer is the same size with the target.  
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For multi-step ahead prediction, the output is fed back to the input of the feedforward 

neural network as part of the standard network.  The predicted value is fed back as input to 

network for next prediction and all other inputs are shifted to back ward one unit of time.  

It is called the closed loop which is useful for multi-step prediction.  

For one step ahead predictions, the true output, which is available during the training of 

the network, is used instead of feeding back the estimated output.  This means that the 

network is trained by ℓ-step (ℓ > 1) apart differenced data as input for network.  It is called 

the open loop and is useful for training.  The typical workflow is to fully create the network 

in open loop, and only when it has been trained (which includes validation and testing steps), 

it is transformed to closed loop for multi-step ahead prediction [22]. 

The prediction for tanker markets earning with the advanced time of one-step (month) 

ahead, 3-step, 6-step, 9-step, 12-step and 15-step are performed by MATLAB with the neural 

network toolbox. 

 

 
Figure 3.1  NARX network (Closed loop) for the tanker market prediction 
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3.3  Training and post training validation  

For training the network, the Levenberg-Marquardt algorithm and the Bayesian 

regularization training algorithm are applied for VLCC tanker, and the Bayesian 

regularization training algorithm are only applied for SUEZMAX and AFRAMAX tanker.   

These algorithms are implemented batch learning scheme for weight updating.  In batch 

learning scheme, the training samples are fed into the network and the change in all weights 

is computed from each sample.  Then at the end it is updated the weights according to the 

sum of all updates. 

For multilayer network, the weights and biases are generally set to small random values. 

In the case where the input are normalized to fall between -1 and 1, it is uniformly 

distributed between -0.5 and 0.5. 

As an important tool for neural network validation, the regression coefficient between 

the network output and the target, known as the R value, should be close to 1 to ensure 

reliable ANN performance results.  

And where applying the dynamic networks for prediction, such as the focused time-delay 

neural network, there are two important concepts when analyzing the trained prediction 

network.  One is that the prediction errors should not be correlated in time.  And another 

one is that the prediction errors should not be correlated with the input sequence. 

 In order to test the correlation of the prediction in time, the autocorrelation function is 

used: 

𝑅𝑅ℯ(τ) =  1
𝒬𝒬−𝜏𝜏 

 ∑ ℯ(𝑡𝑡)ℯ(𝑡𝑡 + 𝜏𝜏)𝒬𝒬−𝜏𝜏
𝑡𝑡=1                                     (17) 
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If the prediction errors are uncorrelated (white noise), it can be expected that 𝑅𝑅ℯ(τ) is 

close to zero, except when τ = 0. To determine if 𝑅𝑅ℯ(τ) is close to zero, it can be defined 

by approximate 95% confidence interval [14] using the range: 

−2𝑅𝑅ℯ(0)
�𝒬𝒬

 <  𝑅𝑅ℯ(𝜏𝜏)  <  2𝑅𝑅ℯ(0)
�𝒬𝒬

                                     (18) 

To test the correlation between the prediction errors and the input sequence, the cross-

correlation function is used: 

𝑅𝑅𝑝𝑝ℯ(𝜏𝜏) =  1
𝒬𝒬−𝜏𝜏 

 ∑ 𝑝𝑝(𝑡𝑡)ℯ(𝑡𝑡 + 𝜏𝜏)𝒬𝒬−𝜏𝜏
𝑡𝑡=1                                   (19) 

If there is no correlation between the prediction errors and the input sequence, it can be 

expected that 𝑅𝑅𝑝𝑝ℯ(τ) is close to zero for all τ.  To determine if 𝑅𝑅𝑝𝑝ℯ(τ) is close to zero, it 

can be defined by approximate 95% confidence interval [14] using the range: 

−2�𝑅𝑅ℯ(0) �𝑅𝑅𝑝𝑝(0)

�𝒬𝒬
  < 𝑅𝑅𝑝𝑝ℯ(𝜏𝜏) <  

2�𝑅𝑅ℯ(0) �𝑅𝑅𝑝𝑝(0)

�𝒬𝒬
                        (20) 
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Chapter 4  Implementation of Methodology 

 

4.1  Implementation 

4.1.1  Data processing 

In order to predict the dirty tanker Earning as Target variable for VLCC, SUEZMAX and 

AFRAMAX, ANN prediction was performed using 9 Input variables- Global oil production, 

World GDP, Active fleets, New building prices, Second hand ship  prices, Demolition 

prices, Time charter rates, Bunker prices and Crude oil prices as in the section 3.1.1 above.  

Of the 204 monthly data from January 2000 to December 2016, the data used for ANN 

training were 180 monthly data from January 2000 to December 2014.  The rest period 

from January 2015 to December 2016 was used as a multistep ahead forecasting, and the 

actual average Earing data of this period was used as target data for ANN supervised learning.  

Total 180 data points of each variables ranged from January 2000 to December 2014 was 

randomly sampled and divided into three data sets during computation: training, validation 

and test data set.  It is important that each of these data be representative of the full data set.  

In general, the validation and test data set cover the same region of the input space as the 

training data set.  In the study by Jun li et al [22] and Lyridis et al [23] applying the 

Levenberg-Marquardt algorithm to VLCC, the test sequence was constructed as a continuous 

segment of the original data set with specifying the test data sampling range of the last 2 and 

3 years monthly data of the full data set which applied. 

Also, when applying the Levenberg-Marquardt algorithm to VLCC in this study, the 

training set made up about 70% of the full data set with about 15% for each validation and 
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test set, during its iterative computing.  And when applying the Bayesian regularization 

training technique to VLCC, SUEZMAX and AFRAMAX, the ANN prediction was 

performed in two cases: the data set for testing is 15% and the case is 20%, and the results 

of the two cases were compared.  The reason for dividing the test data set into two types, 

15% and 20%, is to broaden the test data and to compare the results by varying the width of 

the training data.  The validation set is not necessary to be assigned to the Bayesian 

regularization algorithm. 

 

4.1.2  ANN model for tanker markets prediction 

The schematic diagram of ANN network for the tanker market prediction is shown below 

Figure 4.1.   

When the Levenberg–Marquardt algorithm was applied to VLCC, the number of neurons 

in the hidden layer was adjusted to improve the accuracy of the prediction performance.  In 

addition, when the Bayesian regularization algorithm was applied, the number of neurons in 

the hidden layer was fixed to eight and 10 to compare the performance results of these two 

cases with those from the Levenberg–Marquardt algorithm.   

And the number of neurons in the output layer with the linear function as its activation 

function is the same as the size of the target.  The schematic diagram of ANN network for 

the tanker market prediction is presented in the bellow Figure 4.1. 
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Figure 4.1  Schematic diagram of ANN network for the tanker market prediction 

 

4.1.3  Computation  

Experiments have been carried out to identify the optimal ANN architecture for the 

forecasting of the Earning of tanker markets with an advanced time of one-step (i.e. one 

month) ahead, 3-step ahead, 6-step ahead, 9-step ahead, 12-step ahead and 15-step ahead.  

The value of the tagged delay line as a time delay was 2 months without any changing during 

implementation.  

Each implementation for the prediction was repeated several times to identify the optimal 

parameters and conditions of the network.  When the results were dissatisfied with the 

network's performance on the target data, it was trained again or retrained after reinitializing 

the weights and bias.  Each time a neural network is trained, can result in a different 

solution due to different initial weight and bias values and different data points into training, 
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validation, and test sets.  As a result, different neural networks trained on the same problem 

can give a different output for the same input.  

When training with the Levenberg-Marquardt algorithm, the number of neurons can be 

adjusted to prevent overfitting or extrapolation.  If the performance on the training set is 

good, but the validation and test performance is significantly worse, then can be reduced the 

number of neurons to improve the results.  If training performance is poor, then it can be 

increased the number of neurons. 

The computational results from the Levenberg-Marquardt algorithm were considered as 

reasonable, when the algorithm was fitted with the following considerations: 

- The final mean performance index (MSE) was small 

- The test set error (test performance index (MSE)) and validation set error                         

(validation performance index (MSE)) had a similar characteristics 

- Expert judgement considering various parameters and performance indices 

When training with the Bayesian Regularization training technique, there are a total 221 

parameters in the 9(input)-10(number of neurons of the hidden layer)-1(output) network, 

and a total 177 parameters in the 9-8-1 network.  The effective number of parameters was 

about min. 56 and max. 171 during training the 9-10-1 network for VLCC.  The training of 

the 9-10-1 network effectively used it less than 77.3% of the total number of the weights and 

biases.  In 9-8-1 network, the effective number of parameters was about min. 51.9 and max. 

133 and used it less than 75.1%. 

The computational results of the Bayesian Regularization training algorithm were 

considered as reasonable, when the algorithm was fitted with the following considerations: 

- The final mean performance index (MSE) was small 
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-  The training error (training performance index (MSE)) was small 

- Expert judgement considering various parameters and performance indices 

The computer specification used for the calculation was Intel® Core ™ i5-5200U CPU @ 

2.20GHz 

 

4.1.4  Validation 

The regression plots display the network outputs with respect to targets for training, 

validation and test sets.  For a perfect fit, the data will fall along a 45 degree line, where the 

network outputs are equal to the targets.  Regression is considered appropriate when the R 

value is at least 0.93.  The R value is an indication of the relationship between the outputs 

and targets.  If R=1, this indicates that there is a linear relationship between the outputs and 

targets.  If R is close to 0, then there no linear relationship between the outputs and targets.  

The autocorrelation function of the prediction error and the cross-correlation function to 

measure the correlation between the input and the prediction error were used for the ANN 

prediction model validation with the help of the graphics. 

 

4.2  Prediction performance results 

In this study, the multi-step ahead predictions were performed for VLCC, SUEZMAX 

and AFRAMAX tanker market from January 2015 to December 2016.  Of the 204 monthly 

data from January 2000 to December 2016, the data used for ANN training were 180 

monthly data from January 2000 to December 2014.  The rest period from January 2015 to 

December 2016 was used as a multistep ahead predictions.   



３１ 

 

This actual average Earing data over the two years was used as supervised learning target 

data to compute the ANN predictive performance.  

Figure 4.2 shows the average Earning trend for VLCC, SUEZMAX and AFRAMAX 

tanker markets by time series data from January 2000 to December 2016 [3].   

The Earning value of SUEZMAX is the largest among the three ship type, and the width 

of the change is also large.  Also, the variation of this Earning is the largest SUEZMAX.  

For VLCC, the size of the change is relatively small compared to other tanker types, and for 

AFRAMAX, the middle fluctuation value between SUEZMAX and VLCC is displayed.  

However, it can be seen that the average earning of each type of tanker changes to bigger or 

smaller depending on the market condition of the tanker types. 

 

 
Figure 4.2  Dirty tanker average Earning in time series trend 
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4.2.1  Prediction performance results for VLCC 

Table 4.1 - Table 4.6 and Figure 4.3 - Figure 4.14 show the prediction results for VLCC 

Earning by the Levenberg-Marquardt algorithm and the Bayesian regularization algorithm.  

For the representation of the line in the figures, the observation value is represented by a 

solid black line, and the predicted result is also represented by the solid red line in case of 

the best performance.  And the remained performance results are illustrated by the dashed 

line. 

 

4.2.1.1  One-month ahead prediction 

Table 4.1 shows the performance details of one-month ahead prediction using the 

Levenberg-Marquardt algorithm and Bayesian regularization algorithm.  

In the Bayesian regularization algorithm, as the size of the hidden layer neuron increased, 

the iteration increased, the computing time increased, and the gradient value and train 

performance error (MSE) converged to a smaller value.  Also, the effective number of 

parameters in 8 neurons or 10 neurons was about 60% - 70% of the total number of 

parameters.  Increasing the test sampling data size from 15% to 20% did not show any 

significant change in performance results. In addition, the overall mean performance index 

was not improved.  The train, validation and test performance errors by the Levenberg-

Marquardt algorithm are comparable in size, indicating no overfitting or extrapolation. 

In the LMA.TDS-15.NN-9 network, the performance error of the network is 12.22.  In 

the BRA.TDS-15.NN-8 network, the results is 6.7013, and 6.7026 in the BRA.TDS-15.NN-

10 network, 8.79 in the BRA.TDS-20.NN-10 network.  The mean performance error of the 

BRA.TDS-15.NN-8 network and the BRA.TDS-15.NN-10 network are almost the same 
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values, but the train performance error of the BRA.TDS-15.NN-10 network is 0.266, which 

is much lower than the BRA.TDS-15.NN-8 network of 1.3874 as shown in Table 4.1. 

However, when comparing the ANN performance results of these two networks, in the 

case of that the mean performance error (MSE) of the two networks is very similar value but 

the train performance error (MSE) of one network is more converged to smaller value than 

the other, the researcher is an option to take a final choice of which the case of smaller 

training error is adapted as a final prediction results.  As shown in Figure 4.3, the 

BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks and bottoms of the observation value, and it shows a certain time lag.  

 

Table 4.1  Comparison of ANN performance for one-month ahead prediction 

 
LMA    : Levenberg-Marquardt Algorithm 

BRA    : Bayesian regularization algorithm 

TDS-    : Test data set for full input data set (%) 

NN-     : Number of neurons of hidden layer 
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Figure 4.3  One-month ahead prediction 

 

The correlation coefficient between the outputs and targets shows bellow Figure 4.4 as 

R value of 0.98175.  If R = 1, this indicates that there is an exact linear relationship between 

outputs and targets.  If R is close to zero, then there is no linear relationship between outputs 

and targets.  The R value of 0.98175 shows that all the data does not fall exactly on the 

regression line, but the variation is pretty much small. 
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Figure 4.4  Regression between outputs and targets 

 

For the prediction error to be uncorrelated, the autocorrelation function should be an 

impulse at τ = 0, with all other values equal to 0.  However in fact the values at τ ≠ 0 is 

never be exactly equal to zero because of white noise.  The dashed red lines in Figure 4.5 

indicate the confidence bounds.  The estimated autocorrelation function for the prediction 

errors falls outside these confidence bounds at a number of points.  

This indicates that it may need to increase the length of the tapped delay line, which was 

set to 2.  However, in this study, we applied the external adjustment variables as constant 

as possible to compare the results of the training algorithm according to ANN architecture. 

And the correlation between the prediction errors and the input sequence in Figure 4.6 shows 

that it does not fall outside the confidence bounds at any points.  
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Figure 4.5  Autocorrelation of errors after 1-month prediction training 

 

 

Figure 4.6  Correlation between input and errors  
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Figure 4.7 illustrates the training mean squared error versus iteration number which 

shows that the reduction in the training performance index per iteration remain almost 

constant for a number of iterations before stopping.  The minimum training error occurred 

at iteration 442 and indicated by the circle. It can be verified as a stable convergence. 

 

Figure 4.7  Training mean squared error vs. iteration number 

 

The Figure 4.8 shows the adjusted network parameters to optimize the performance of 

the network at the final stage of 442 iterations.  It can be confident that a stable convergence 

is illustrated. 

 

Figure 4.8  Conjugate gradient of parameters 
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The Figure 4.9 shows the variation of the effective number of parameters and 

convergence to 146.8694 at the 442 iterations.  The training algorithms have a total of 221 

parameters in this 9 (input) -10 (number of neurons of the hidden layer) -1 (output) network, 

so this network was using about 66.5% of the weights and biases.  

This training algorithm is insured that the number of parameters needed for the training 

performance were used effectively. 

 

 
Figure 4.9  Effective number of parameters 

 

4.2.1.2  3-months ahead prediction 

Table 4.2 shows the performance details of 3-months ahead prediction using the 

Levenberg-Marquardt algorithm and Bayesian regularization algorithm. 

In the Bayesian regularization algorithm, as the size of the hidden layer neuron increased, 

the iteration increased, the computing time increased, and the gradient value and train 

performance error (MSE) converged to a smaller value.  However, even though the size of 

the hidden layer neuron increased in the short term ahead prediction, the mean performance 

error of 8 neurons as 8.6425 show better results than 8.9288 of 10 neurons in the same 
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forecasting horizon.  Also, the effective number of parameters in 8 neurons or 10 neurons 

was about 55% -65% of the total number of parameters.   

When increasing the test sampling data size from 15% to 20% in the Bayesian 

regularization algorithm did not show any significant change in performance results.  In 

addition, the overall mean performance index was not improved.  The results of the 

correlation coefficient between the outputs and targets show that the test sampling data size 

20% is worse than 15%.  

The train, validation and test performance errors by the Levenberg-Marquardt algorithm 

show a significant error in size even though no indication overfitting or extrapolation. 

In Figure 4.10 of 3-month ahead prediction, the network of BRA.TDS-15.NN-8 has 

appeared relatively good convergence with the total course of the peaks and bottoms of the 

observation value.  Forecasts of market uptrends around June 2015 tend to be unstable but 

show better behavior during market recession. 
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Table 4.2  Comparison of ANN performance for 3-months ahead prediction 

 

 

 

Figure 4.10  3-months ahead prediction 
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4.2.1.3  6-months ahead prediction 

As shown in Table 4.3, as the hidden layer neurons are increased from 8 neurons to 10 

neurons, the iteration was increased and the gradient value and the train performance error 

(MSE) converged to a smaller value.  And also in the short term ahead prediction of six 

months, the mean performance error of 8 neurons as 7.8063 show better results than 8.9288 

of 10 neurons and other training algorithm in the same forecasting horizon.  

Also, the effective number of parameters in 8 neurons or 10 neurons was about 55% - 

65% of the total number of parameters.  As a singular point, in the case of the BRA.TDS-

15.NN-10 3-months-ahead prediction and the BRA.TDS-15.NN-10 6-months-ahead 

prediction, all results were the same except for multistep ahead performance error (MSE).  

This seems to be due to the fact that the random sampling points were almost identical.  

When increasing the test sampling data size from 15% to 20% in the Bayesian 

regularization algorithm did not show any significant change in performance results.  In 

addition, the results of the correlation coefficient between the outputs and targets show that 

the test sampling data size 20% is worse than 15%.  The train, validation and test 

performance errors by the Levenberg-Marquardt algorithm show a significant error in size 

even though no indication overfitting or extrapolation. 

In Figure 4.11 of 6-months ahead prediction, the network of BRA.TDS-15.NN-8 has 

appeared relatively good convergence with the total course of the peaks and bottoms of the 

observation value.  However, In the case of sudden up and down changes of market, 

unstable prediction is shown. 
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Table 4.3  Comparison of ANN performance for 6-months ahead prediction 

 

 

 

Figure 4.11  6-months ahead prediction 
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4.2.1.4  9-months ahead prediction 

As shown in Table 4.4, as the hidden layer neurons were increased from 8 neurons to 10 

neurons, the iteration was increased, and the gradient value and the train performance error 

(MSE) converged to a smaller value.  And also the size of the hidden layer neurons 

increased in the short term ahead prediction, the mean performance error of 8 neurons as 

6.7013 showed better results than 7.6663 of 10 neurons and other training algorithm in the 

same forecasting horizon.  

Also, the effective number of parameters in 8 neurons or 10 neurons was about 59% - 

68% of the total number of parameters.  When increasing the test sampling data size from 

15% to 20% in BRA did not show any significant change in performance results.  In 

addition, the results of the correlation coefficient between the outputs and targets show that 

the test sampling data size 20% is worse than 15%.  The train, validation and test 

performance errors by the Levenberg-Marquardt algorithm show a significant error in size 

even though no indication overfitting or extrapolation. 

In Figure 4.12 of 9-months ahead prediction, the network of BRA.TDS-15.NN-8 has 

appeared relatively good convergence with the total course of the peaks and bottoms of the 

observation value.  However, In the case of sudden up and down changes of market, 

unstable prediction is shown also with the 6-months ahead prediction. 
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Table 4.4  Comparison of ANN performance for 9-months ahead prediction 

 

 

 

Figure 4.12  9-months ahead prediction 
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4.2.1.5  12-months ahead forecast 

As shown in Table 4.5, as the hidden layer neurons were increased from 8 neurons to 10 

neurons, the iteration was increased, and the gradient value and the train performance error 

(MSE) converged to a smaller value.  The mean performance error of 10 neurons in 12-

months as 4.9389 showed better results than 9.3915 of 8 neurons and other training algorithm 

in the same forecasting horizon.  As shown here, in the long term ahead forecasting such 

as 12-months ahead prediction, the training algorithm which has a larger size of the hidden 

layer neuron exhibits better forecasting performance than the smaller.  

Also the effective number of parameters in 8 neurons or 10 neurons was about 33% - 70% 

of the total number of parameters, and BRA.TDS-20.NN-20 network showed that the 

number of parameters used was drastically reduced to 33%.  When increasing the test 

sampling data size from 15% to 20% did not show any significant change in performance 

results.  In addition, the results of the correlation coefficient between the outputs and targets 

show that the test sampling data size 20% is worse than 15%.  The train, validation and test 

performance errors by the Levenberg-Marquardt algorithm show a significant error in size 

even though no indication overfitting or extrapolation. 

In the Figure 4.13 of 12-months ahead prediction, the network of BRA.TDS-15.NN-10 

has appeared relatively good convergence with the total course of the peaks and bottoms of 

the observation value.  However, In the case of sudden up and down changes of market, 

unstable prediction is shown also with the 3, 6, 9-months ahead prediction.  
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Table 4.5  Comparison of ANN performance for 12-months ahead prediction 

 

 

 

Figure 4.13  12-months ahead prediction 
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4.2.1.6  15-months ahead prediction 

As shown in Table 4.6, as the hidden layer neurons were increased from 8 neurons to 10 

neurons, the iteration was increased, and the gradient value and the train performance error 

(MSE) converged to a smaller value.  The mean performance error of 10 neurons in 15-

months as 8.243 showed better results than 10.5656 of 8 neurons and other training algorithm 

in the same forecasting horizon.  As shown here, there is a similar performance results with 

the 12-month ahead prediction such as long-term ahead forecasting, the training algorithm 

which has a larger size of the neuron exhibits better forecasting performance than the smaller. 

Also, the effective number of parameters in 8 neurons or 10 neurons was about 23% - 

67% of the total number of parameters and BRA.TDS-20.NN-20 network showed that the 

number of parameters used was drastically reduced to 23%.  When increasing the test 

sampling data size from 15% to 20% did not show any significant change in performance 

results. In addition, the results of the correlation coefficient between the outputs and targets 

show that the test sampling data size 20% is worse than 15%.  

The train, validation and test performance errors by the Levenberg-Marquardt algorithm 

show a significant error in size even though no indication overfitting or extrapolation. 

In the Figure 4.14 of 15-months ahead prediction, BRA.TDS-15.NN-10 network has 

appeared relatively good convergence with the total course of the recession tendency of the 

observation value.  
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Table 4.6  Comparison of ANN performance for 15-months ahead prediction 

 

 

 

Figure 4.14  15-months ahead prediction 
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4.2.2  Prediction performance results for SUEZMAX 

Table 4.7 - Table 4.12 and Figure 4.15 - Figure 4.20 shows the prediction results for 

SUEZMAX Earning by the Bayesian regularization algorithm.  For the representation of 

the line in the figures, the observation value is represented by a solid black line, and the 

predicted result is also represented by the solid red line in case of the best performance.  

And the remained performance results are illustrated by the dashed line. 

 

4.2.2.1  One-month ahead prediction 

In Table 4.7 of one-month ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 31.1102 in 10 neurons in the hidden layer and 34.3612 in the 

BRA.TDS-15.NN-8 network.  In the one-month ahead prediction of SUEZMAX, which 

has the greatest market fluctuation among three tanker types, the BRA.TDS-15.NN-10 

network showed more satisfactory prediction results than the BRA.TDS-15.NN-8 network.   

As the number of the hidden layer neuron increased, the gradient value and train performance 

error (MSE) converged to a smaller value.  

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.9722 in the 10 neurons hidden layer which is better performance than 8 

neurons of 0.96816.  In the case of 10 neurons in the hidden layer, the effective number of 

parameters was 127, which was only 55.9% of total training algorithm parameters of 221.  

Also in the case of 8 neurons in the hidden layer, the effective number of parameters was 

110, 62.1% of total training algorithm parameters of 177. 

As shown in Figure 4.15 of 1-month ahead prediction, the performance results of the 

network of BRA.TDS-15.NN-10 network has appeared relatively good convergence with 
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the total course of the peaks and bottoms of the observation value, and it shows a certain 

time lag.  

 

Table 4.7  Comparison of ANN performance for One-month ahead Prediction 

 

 

 

Figure 4.15  One-month ahead prediction 
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4.2.2.2  3-months ahead prediction 

In Table 4.8 of 3-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 35.5070 in 10 neurons in the hidden layer and 38.9666 in the 

BRA.TDS-15.NN-8 network.  In the 3-months ahead prediction of SUEZMAX, the 

BRA.TDS-15.NN-10 network showed more satisfactory prediction results than the 

BRA.TDS-15.NN-8 network.  As the number of the hidden layer neuron increased, the 

iteration and computing time increased, and the gradient value and train performance error 

(MSE) converged to a smaller value. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.96815 in the 10 neurons hidden layer which is better performance than 8 

neurons of 0.96387. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 121, 

which was only 54.8% of total training algorithm parameters of 221.  Also in the case of 8 

neurons in the hidden layer, the effective number of parameters was 104, 58.8% of total 

training algorithm parameters of 177. 

As shown in Figure 4.16 of 3-month ahead prediction, the performance results of the 

BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks and bottoms of the observation value, and it shows good tendency for 

the overall prediction horizons.  
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Table 4.8  Comparison of ANN performance for 3-months ahead prediction 

 

 

 

Figure 4.16  3-months ahead prediction 
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4.2.2.3  6-months ahead prediction 

In Table 4.9 of 6-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 34.3609 in 10 neurons in the hidden layer and 38.8077 in the  

BRA.TDS-15.NN-8 network.  In the 6-months ahead prediction, the BRA.TDS-15.NN-10 

network showed more satisfactory prediction results than the BRA.TDS-15.NN-8 network.  

As the number of the hidden layer neuron increased, the gradient value and train performance 

error (MSE) converged to a smaller value.  

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.96870 in the 10 neurons hidden layer which was better performance than 8 

neurons of 0.96419. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 120, 

which was only 54.3% of total training algorithm parameters of 221.  Also in the case of 8 

neurons in the hidden layer, the effective number of parameters was 106, 59.9% of total 

training algorithm parameters of 177. 

As shown in the Figure 4.15 of 6-months ahead prediction, the performance results of 

the BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks and bottoms of the observation value.  
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Table 4.9  Comparison of ANN performance for 6-months ahead prediction 

 

 

 

Figure 4.17  6-months ahead prediction 
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4.2.2.4  9-months ahead prediction 

In the Table 4.10 of 9-months ahead prediction, the performance results of the 

BRA.TDS-15.NN-10 network was 43.6329 and 65.7947 in the BRA.TDS-15.NN-8 network.  

In the 9-months ahead prediction, the BRA.TDS-15.NN-10 network showed more 

satisfactory prediction results than the BRA.TDS-15.NN-8 network.  However, in the case 

of the BRA.TDS-15.NN-10 network with 10 number of neurons in the hidden layer, the 

prediction performance results was more satisfactory than the BRA.TDS-15.NN-8 network 

with the 8 number of neurons in the hidden layer, but the effective number of parameters 

was small, and the gradient value and the train performance error (MSE) showed a larger 

value. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.96040 in the 10 neurons hidden layer which was better performance than 8 

neurons of 0.94311. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 116, 

which was only 52.5% of total training algorithm parameters of 221.  Also in the case of 8 

neurons in the hidden layer, the effective number of parameters was 122, 68.9% of total 

training algorithm parameters of 177. 

As shown in the Figure 4.18 of 9-months ahead prediction, the performance results of 

the BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks and bottoms of the observation value.  
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Table 4.10  Comparison of ANN performance for 9-months ahead prediction 

 

 

 

Figure 4.18  9-months ahead prediction 
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4.2.2.5  12-months ahead prediction 

In Table 4.11 of 12-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 43.5288 and 57.5943 in the BRA.TDS-15.NN-8 network.  In the 

12-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-8 network.  As the number of the hidden layer 

neuron increased, the gradient value and train performance error (MSE) converged to a 

smaller value. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.96127 in the 10 neurons hidden layer which was better performance than 8 

neurons of 0.94603. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 119, 

which was only 53.4% of total training algorithm parameters of 221.  Also in the case of 8 

neurons in the hidden layer, the effective number of parameters was 110, 62.1% of total 

training algorithm parameters of 177. 

As shown in Figure 4.19 of 12-months ahead prediction, the performance results of the 

BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks and bottoms of the observation value.  

 

 

 

 

 



５８ 

 

Table 4.11  Comparison of ANN performance for 12-months ahead prediction 

 

 

 

Figure 4.19  12-months ahead prediction 
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4.2.2.6  15-months ahead prediction 

In Table 4.12 of 15-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 27.3112 and 32.3071 in the BRA.TDS-15.NN-8 network.  In the 

15-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-8 network.  As the number of the hidden layer 

neuron increased, the gradient value and train performance error (MSE) converged to a 

smaller value. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.97508 in the 10 neurons hidden layer which was better performance than 8 

neurons of 0.97035. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 127, 

which was only 57.5% of total training algorithm parameters of 221.  Also in the case of 8 

neurons in the hidden layer, the effective number of parameters was 111, 62.7% of total 

training algorithm parameters of 177. 

As shown in Figure 4.20 of 15-months ahead prediction, the performance results of the 

BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks and bottoms of the observation value.  
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Table 4.12  Comparison of ANN performance for 15-months ahead prediction 

 

 

 

Figure 4.20  15-months ahead prediction 
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4.2.3  Prediction performance results for AFRAMAX 

Table 4.13 - Table 4.18 and Figure 4.21 - Figure 4.26 shows the prediction results for 

AFRAMAX Earning by the Bayesian regularization algorithm.  For the representation of 

the line in the figures, the observation value is represented by a solid black line, and the 

predicted result is also represented by the solid red line in case of the best performance.  

And the remained performance results are illustrated by the dashed line. 

 

4.2.3.1  One-month ahead prediction 

In Table 4.13 of one-month ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 37.8294 and 31.0876 in the BRA.TDS-15.NN-8 network.  In the 

one-month ahead prediction of AFRAMAX, which has a moderate market fluctuation 

among three tanker types, the BRA.TDS-15.NN-8 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-10 network.  Also in the BRA.TDS-15.NN-8 

network, the gradient value and the train performance error (MSE) showed a better value 

than BRA.TDS-15.NN-10 netwok. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.94664 in the 8 neurons hidden layer which was better performance than 10 

neurons of 0.93433. 

In the case of 8 neurons in the hidden layer, the effective number of parameters was 105, 

which was only 59.3% of total training algorithm parameters of 177.  Also in the case of 

10 neurons in the hidden layer, the effective number of parameters was 98.6, 44.6% of total 

training algorithm parameters of 221.  As shown in Figure 4.21 of 1-month ahead 

prediction, the performance results of the BRA.TDS-15.NN-8 network has appeared good 
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convergence with the total course of the peaks and bottoms of the observation value, and it 

shows a certain time lag.  

 

Table 4.13  Comparison of ANN performance for one-month ahead prediction 

 

 

 

Figure 4.21  one-month ahead prediction 
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4.2.3.2  3-months ahead prediction 

In Table 4.14 of one-month ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 29.9537 and 27.7912 in the BRA.TDS-15.NN-8 network.  In the 

one-month ahead prediction, the BRA.TDS-15.NN-8 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-10 network.  Also in the BRA.TDS-15.NN-8 

network, the gradient value and the train performance error (MSE) showed a better value 

than the BRA.TDS-15.NN-10 network. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.95312 in the 8 neurons hidden layer which was better performance than 10 

neurons of 0.94814. 

In the case of 8 neurons in the hidden layer, the effective number of parameters was 118, 

which was only 66.7% of total training algorithm parameters of 177.  Also in the case of 

10 neurons in the hidden layer, the effective number of parameters was 111, 50.2% of total 

training algorithm parameters of 221. 

As shown in Figure 4.22 of 3-months ahead prediction, the performance results of the 

BRA.TDS-15.NN-8 network has appeared good convergence with the total course of the 

peaks and bottoms of the observation value. 
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Table 4.14  Comparison of ANN performance for 3-months ahead prediction 

 

 

 

Figure 4.22  3-months ahead prediction 
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4.2.3.3  6-months ahead prediction 

In Table 4.15 of 6-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 29.3719 and 37.5551 in the BRA.TDS-15.NN-8 network.  In the 

6-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-8 network.  When the number of hidden layer 

neurons increased from 8 to 10, the gradient value converged to a similar value in the two 

network and train performance error (MSE) converged to a smaller value. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.94922 in the 10 neurons hidden layer which was better performance than 8 

neurons of 0.93441. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 105, 

which was only 47.5% of total training algorithm parameters of 221.  Also in the case of 8 

neurons in the hidden layer, the effective number of parameters was 94.1, 53.2% of total 

training algorithm parameters of 177. 

As shown in Figure 4.23 of 6-months ahead prediction, the performance results of the 

BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks an 
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Table 4.15  Comparison of ANN performance for 6-months ahead prediction 

 

 

 

Figure 4.23  6-months ahead prediction 
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4.2.3.4  9-months ahead prediction 

In Table 4.16 of 9-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 32.6568 and 33.5015 in the BRA.TDS-15.NN-8 network.  In the 

9-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-8 network.  However, even though the 

number of hidden layer neurons increased from 8 to 10, the gradient value and train 

performance error (MSE) converged to a similar value in the two network. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.94326 in the 10 neurons hidden layer which was better performance than 8 

neurons of 0.94177. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 

82.8, which is only 37.5% of total training algorithm parameters of 221.  Also in the case 

of 8 neurons in the hidden layer, the effective number of parameters was 82.3, 46.5% of total 

training algorithm parameters of 177. 

As shown in the Figure 4.24 of 9-months ahead prediction, the performance results of 

the BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total 

course of the peaks and bottoms of the observation value.  
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Table 4.16  Comparison of ANN performance for 9-months ahead prediction 

 

 

 

Figure 4.24  9-months ahead prediction 
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4.2.3.5  12-months ahead prediction 

In Table 4.17 of 12-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 30.9197 and 43.4286 in the BRA.TDS-15.NN-8 network.  In the 

12-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-8 network.  As the number of hidden layer 

neurons increased from 8 to 10, the gradient value and train performance error (MSE) 

converged to a smaller value. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.94668 in the 10 neurons hidden layer which was better performance than 8 

neurons of 0.93399. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 

90.8, which is only 41.1% of total training algorithm parameters of 221.  Also in the case 

of 8 neurons in the hidden layer, the effective number of parameters was 70.9, 40.1% of total 

training algorithm parameters of 177. 

As shown in Figure 4.25 of 12-months ahead prediction, The performance results of the 

"BRA.TDS-15.NN-10" shows good tendency with the total course of the peaks and bottoms 

of the observation values. 
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Table 4.17  Comparison of ANN performance for 12-months ahead prediction 

 

 

 

Figure 4.25  12-months ahead prediction 
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4.2.3.6  15-months ahead prediction 

In Table 4.18 of 15-months ahead prediction, the performance results of the BRA.TDS-

15.NN-10 network was 31.2048 and 29.0555 in the BRA.TDS-15.NN-8 network.  In the 

15-months ahead prediction, the BRA.TDS-15.NN-8 network showed more satisfactory 

prediction results than the BRA.TDS-15.NN-10 network.  When the number of hidden 

layer neurons increased from 8 to 10, the gradient value and the train performance error 

(MSE) converged to a smaller value, but the performance error increased. 

The R value for correlation between the outputs and targets was in the acceptable 

boundary of 0.94947 in the 8 neurons hidden layer which was better performance than 10 

neurons of 0.94556. 

In the case of 10 neurons in the hidden layer, the effective number of parameters was 114, 

which was only 51.6% of total training algorithm parameters of 221.  Also in the case of 8 

neurons in the hidden layer, the effective number of parameters was 91.8, 51.9% of total 

training algorithm parameters of 177. 

As shown in Figure 4.26 of 15-months ahead prediction, The performance results of the 

BRA.TDS-15.NN-8 network shows good tendency with the total course of the peaks and 

bottoms of the observation values. 
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Table 4.18  Comparison of ANN performance for 15-months ahead prediction 

 

 

 

Figure 4.26  15-months ahead prediction 
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4.2.4  Comparison for different hidden layer size 

In this study, we modified the hidden layer size with the Bayesian regularization 

algorithm and compared the effect of hidden layer size on network performance by 

implementing one-month ahead prediction.  The performance results such as iterations, 

gradient, training parameters and performance errors are summarized in Table 4.19 and 

Figure 4.27 shows the prediction results according to the hidden layer size.  Increasing the 

size of the hidden layer neurons increased iteration and increased computing time.  The 

gradient value and the train performance error (MSE) converge to a smaller value.  

However, even with increasing neuron size, the R-values did not decrease and mean 

performance errors did not decrease. 

The mean performance error (MSE) were minimized when the size of the neurons was 8 

and 10, and those of the neurons were almost equal to the size of the input variables (i.e. 9).  

The effective number of parameters at this best performance was 67.8% and 66.5% of the 

total training algorithm parameters.  
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Table 4.19  Comparison for different hidden layer size 

 
 

 

Figure 4.27  Comparison for different hidden layer size 
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4.2.5  Evaluation on ANN performance results for VLCC according to correlation 

coefficient between input variables and target variable 

In this study, the effect of the correlation between input and target variables on the ANN 

prediction was investigated with changing the size of each input variables.  The ANN 

model applied for this was the Bayesian regularization algorithm with 10 neurons of the 

hidden layer, and the test sampling data size was 15%, based on 3-months ahead prediction 

for VLCC.  In addition, ANN prediction was performed for each case by amplifying the 

magnitudes of nine input variables (Time charter rates, Crude oil prices, World GDP, Global 

oil production, Active fleets, Bunker prices, Demolition prices, New building prices and 

second hand ship prices) by 1.1 and 1.3 times, respectively. 

The correlation coefficients between Earning as prediction target variable and input 

variables, and the results of ANN prediction performance are shown in the following Table 

4.20.  The Correlation coefficient between tanker Earning and Time charter rates shows the 

strongest correlation with r = 0.8190, and followed by Second hand ship prices with r = 

0.5825, New building prices with r = 0.3369.  Also, in Demolition prices of r = -0.0341, 

the correlation coefficients between two variables of Earning and Demolition prices is 

reversed and the correlation strength is also weak.  

In the case of the largest Correlation coefficient (r = 0.8190) of Time charter rates, the 

mean performance error (MSE) is 10.0411 at 1.1 times amplification and 10.8922 at 1.3 

times amplification, which are slightly increased from 8.9288 of the section 4.2.1.2 above, 

but there is no significant difference against the magnitude of the variation of the variables 

size.  In the case of Second ship hand prices (r = 0.5825), the mean performance error (MSE) 

is 10.1039 at 1.1 times amplification, 22.3375 (MSE) at 1.3 times amplification.  The mean 

performance error (MSE) at 1.3 times amplification is showing significantly greater than 
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8.9288 of the section 4.2.1.2 above.  This trend can be seen in New building prices and 

Global oil production.  Further, the mean performance error (MSE) was significantly 

increased in both 1.1 and 1.3 times amplification in the case of the other input variables with 

low correlation strength. 

In ANN forecasting, the ANN prediction performance error (MSE) when there is a large 

correlation between the input and target variable does not change much according to the 

change of the input variable size, and also in the case of the input variable with a small 

correlation coefficient, the prediction performance error (MSE) changes according to the 

change of the input variable size.  In other words, it is found that the strength of the 

correlation between the input variables and the target variable in the ANN affects the 

accuracy of the ANN prediction performance. 

 

Table 4.20  Comparison on ANN performance for VLCC according to correlation 

coefficient between input variables and target variable (Earning) 
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4.2.6  Comparison of prediction performance error according to ship type 

 

Table 4.21 - Table 4.23 show the prediction results for the three training models by the 

Bayesian normalization algorithm for dirty tanker Earning of VLCC, SUEZMAX and 

AFRAMA.  And Figures 4.28 – Figure 4.30 show graphs of performance error variations. 

As shown in Figure 4.2, the variation magnitude of the Earning on the ship type is the 

largest SUEZMAX, followed by AFRAMAX and VLCC.  And also in Table 4.21 – Table 

4.23, the mean performance error (MSE) for each type of tanker is the largest of SUEZMAX 

regardless of the neuron size and the test data sampling size, and the AFRAMAX and VLCC 

are the least. 

In the case of VLCC with relatively small market fluctuations, the short term ahead 

prediction of 1, 3, 6, and 9-months shows satisfactory overall performance with the 8 neurons 

architecture in the hidden layer.  And with the training algorithm with larger size of 10 

neurons, better results are obtained in the 12, 15-months ahead predictions. 

Also, in the prediction of the SUEZMAX where the market fluctuation is the most severe, 

the training algorithm with 10 neurons of hidden layer performs better than the 8 neuron 

algorithm for all forecast periods.  

In the prediction of AFRAMAX with a large shipping market variance, the training 

algorithm with 8 neurons of hidden layer, which is smaller than the number of input variables, 

has better performance in 1-month and 3-months ahead prediction than the training 

algorithm of 10 neurons.  And in the 6, 9, 12, 15-months ahead prediction, the larger 

network having 10 neurons has better performance than the smaller network of 8 neurons.  
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In the test data sampling size of 15%, the average value of the mean performance error 

of the 8 neurons in the hidden layer for VLCC is the smallest with 8.30, and SUEZMAX is 

49.16, which is 5.9 times larger than that of VLCC. And 33.74 for AFRAMAX, which is 

4.07 times larger than VLCC. In the case of neuron size 10 also, VLCC has the smallest error 

value of 7.57, and SUEZMAX is 33.81, which is 4.47 times larger than VLCC, and 

AFRAMAX is 31.99, which is 4.23 times larger than VLCC. 

 In the test data sampling size of 20%, VLCC has the smallest value of 12.70, 

SUEZMAX is 60.53, which is 4.77 times larger than VLCC, and AFRAMAX is 42.32, 

which is 3.33 times larger than VLCC.  When the, the training algorithm with 10 neurons 

in the hidden layer of the 15% test data sampling model shows generally better results than 

the training algorithm with 8 neurons. 

From these results, it can be seen that in the bigger variance of the time series data , the 

prediction error increases more, but the actual forecasting experiment applying the ANN 

forecasting models is not problematic at any cases.  When the test data sampling size was 

increased from 15% to 20% of the total observation points, that is when the training data 

sampling size decreased from 85% to 80%, the number of iterations increased in all the 

forecasting horizons and the mean performance errors (MSE) also increased. 
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Table 4.21  Comparison of ANN performance error for VLCC 

 

 

 

Figure 4.28  Comparison of performance error (MSE) for VLCC 
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Table 4.22  Comparison of ANN performance error for SUEZMAX 

 

 

 

Figure 4.29  Comparison of performance error (MSE) for SUEZMAX 
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Table 4.23  Comparison of ANN performance error for AFRAMAX 

 

 

 

Figure 4.30  Comparison of performance error (MSE) for AFRAMAX 
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Chapter 5  Conclusions 

 

In this paper, several alternatives to ANN training algorithms have been approached to 

solve multi-step ahead prediction problems using 204 monthly time series data from 2000 

to 2016 for dirty tankers of VLCC, SUEZMAX and AFRAMAX.  The training algorithms 

of the neural networks used were the Levenberg-Marquardt algorithm and the Bayesian 

regularization algorithm, and the accuracy of the prediction performance was evaluated by 

applying the alternatives of the neural networks with changing parameters.  The findings 

of this study shown that when applying the adjustable parameters such as neuron size of 

hidden layer and test data sampling size, the Bayesian regularization algorithm has better 

performance specifications than the Levenberg-Marquardt algorithm in all prediction 

horizons of supervised prediction with an advanced time of one-month, 3-months, 6-months, 

9-months, 12-months and 15-months.  The more detailed findings are as follows. 

1.  In the Bayesian regularization algorithm, when the size of the hidden layer neuron 

increases, iteration and the computing time generally increase, and the gradient value and 

train performance error (MSE) converge to a smaller value.  However, in case of the 

considerably increasing or decreasing neuron size, the R-values does not improve and also 

prediction performance error does not decrease.  The mean performance error (MSE) are 

minimized when the size of the neurons is similar to the number of the input variables.  

2.  In the short term ahead prediction within about 1 year, ANN training architecture 

with a smaller neuron size of hidden layer than the input variables has a best performance. 

In the long term ahead prediction about over 1 year, ANN training architecture with a larger 

neuron size of hidden layer than the input variables has a best performance. 
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3.  Prediction of time series data with large fluctuation shows best forecasting 

specification in a training algorithm where the size of neurons in the hidden layer is larger 

than the input variables without relation to the forecasting horizons.  Prediction of time 

series data with large fluctuation, the prediction error of training models increases more, but 

the actual forecasting experiment applying the ANN forecasting models is not problematic 

in terms of accuracy and tendency of prediction performance. 

4.  When there is a large correlation between the input and target variable, the ANN 

prediction performance error (MSE) does not change much with the change of the input 

variables size, and in the case of the input variable with a small correlation coefficient, the 

prediction performance error (MSE) changes according to the change of the input variable 

size.  The strength of the correlation between the input variables and the target variable 

affects the accuracy of the ANN prediction performance. 

5.  When increasing the size of the test data set in the Bayesian regularization algorithm, 

the R value between outputs and targets and the mean performance errors show the worse 

than the smaller test data set.  The reason seems to be that the training data set has been 

reduced.  

 

This study concludes that in forecasting the dirty tanker markets, ANN can be used as 

substantial tool to more accurately predict market changes for various type of vessels, 

regardless of the magnitude of fluctuations.  However, in order to improve predictive 

performance, it is important to design an optimal ANN architecture for the targets to be 

predicted. 
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