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Abstract

Shipping companies are looking to minimize losses or maximize profits by accurately
predicting the direction and the magnitude of the fluctuations in a constantly changing
maritime situation. Therefore, in order to predict the maritime market more precisely,
economic model between various variables such as demand, supply and freight rate etc. of
shipping service has been established and forecasted. However, the determinants of the
maritime markets are very diverse and volatile, and the decision mechanism is complex.
The accurate prediction of the direction and the magnitude of the variation remains as a

difficult challenge.

So, the purpose of this study is to propose an optimal Artificial Neural Network (ANN)
model for dirty tanker markets forecasting through VLCC, SUEZMAX and AFRAMAX
tanker market prediction using ANN. The data used in this ANN forecasting are 204
monthly time series data from 2000 to 2016. The ANN training algorithm was applied in
two methods, Levenberg-Marquardt algorithm and Bayesian regularization algorithm, to
forecast the tanker markets with the multi-step advanced time of one month, 3 months, 6
months, 9 months, 12 months and 15 months. And the performance accuracy of each

algorithm was compared with.

In addition, the hidden layer size and the test data size of the Neural Network structure
were changed and the predicted results were compared and evaluated to find an optimal
ANN model for tanker market prediction. Furthermore, it was investigated the effect of
the correlation between input and target variables on the ANN prediction when the size of
each input variables change, and ANN forecasts were performed for three types of VLCC,

SUEZMAX, AFRAMAX of dirty tankers which have different market fluctuations, and

Xii
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evaluated the accuracy and propriety of the results.

As a result of the study, the predictions results for VLCC, SUEZMAX and AFRAMAX
tanker by Bayesian regularization algorithm are more satisfactory than those predicted by
the Levenberg-Marquardt algorithm. In the one month, 3 months, 6 months and 9 months
ahead predictions, the ANN structure with less number of hidden layer neurons than the
number of input variables is more satisfactory than the structure with a larger number of
hidden layer neurons. In the 12 months and 15 months ahead predictions, satisfactory
results are obtained in the ANN structure with a larger number of hidden layers than the

input variables, rather than the structure with fewer neurons than the input variables.

In the correlation between the target variable and the input variable, when the magnitude
of the input variable has a strong correlation intensity with the target variable is changed,
there is no significant change in the prediction performance error. However, when the size
of the input variable with weak correlation strength is changed, the prediction performance
error varies greatly. Predictions for the dirty tanker markets using ANN will help to

minimize the risk of financial and operational problems.

Also, the forecasting information can be used as a very practical and effective means for
establishing financial strategy and risk assessment. However, in order to use the prediction
results as reliable information, it is most important to select the optimal artificial neural

network model for the object to be predicted.

Keywords : Artificial neural networks, Tanker market prediction, VLCC, SUEZMAX,
AFRAMAX

Xiii
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Chapter 1 Introduction

1.1 Background

Without the heat and electricity from fuel combustion, economic activity would be
limited and restrained. Modern society uses more and more energy for industry, services,
homes and transport. Qils are an important source of energy for almost every human
product used in human life and serve as a raw material for various products, which is a
driving force of global economic growth. This is particularly true for oil, which has

become the largest traded commaodity in world wide.

The oil supply continues to grow in absolute terms, while total oil energy supply has been
decreasing from 46.2% in 1973 to around 31.7% in 2016 with the growing importance of
the environmental debate [1].  Furthermore, it is expected by some stakeholder that oil and
natural gas will likely be about 60 percent of global supplies in 2040, while nuclear energy
and renewables will grow about 50 percent and a 25 percent share of the world's energy mix
[2]. The world crude oil production in 2016 was 4448 million-ton [1]. The total amount
of crude oil transported by sea was 1949 million-ton [3], which accounted for 43.8% of the
total crude oil production. The crude tanker demand for world seaborne trade was 178.5
million dwt for VLCC (200,000 dwt plus) and 56.8 million dwt for SUEZMAX (125-
199,999 dwt), and AFRAMAX (85-124,999 dwt) was 55.5 million dwt [3].

However, the oil tanker markets, which accounts for a large portion of the world maritime
transport, is highly influenced by the interaction of supply and demand for tanker
transportation services, and is highly volatile. Furthermore, there is a lot of real-time data

available in the markets due to the rapid fluctuation of the markets. In addition to the
1
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traditional stakeholders, there are huge surges in many speculative powers. Increasing risk

due to changes in market price fluctuations makes decisions more complicated and difficult.

Therefore, the predictions of these market changes are very important for stakeholders of
the tanker market demand and supply side and other stakeholders.  Also, fast and accurate
market predictions that can help financial and operational decision-making for the dirty

tanker markets are highly needed.

1.2 Research purposes and scope

This paper focuses on the predictions of ANN for the Earnings for VLCC, SUEZMAX,
and AFRAMAX which are in responsible for a major role in the marine transportation of
crude oil. The dirty tanker Earning can be derived from the time charter rates or the time
charter equivalent of spot rates when the vessel is operating in the spot market. Earnings

are more representative of what a tanker operating produces [4].

Meanwhile, the tanker contract freights in freight markets are calculated based on an
international freight index called Worldscale (WS) [5][6]. The Worldscale index is
essentially a measure of the breakeven rate of a standard tanker on a round trip between a
loading port and a discharging port as a standard tanker route specific under certain
assumptions, port charges, fuel prices and other factors [7]. Oil tanker spot (or voyage)
freight rates that have been expressed, negotiated and agreed upon are reflected in the
Worldscale index [8]. Therefore, when choosing the ANN prediction target for the oil
tanker markets, the tanker Earning (USD/day) as the forecasting target, which is directly
determined according to the markets condition, was selected instead of the oil tanker

international freight index.
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And the effect of correlation coefficient between dirty tanker Earnings and multiple input
variables of the ANN model were assessed. An optimal ANN prediction model has been
developed and proposed by using the Levenberg-Marquardt algorithm and Bayesian
regularization algorithm for ANN training for each ship type of VLCC, SUEZMAX and
AFRAMAX. For dirty tanker markets so far, ANN predictions have been proved to be better
by a number of researchers, through comparing ANN predictions with traditional statistical

predictions.

As a results of this study, the optimal ANN architecture can be used for dirty tanker
markets forecasting with alternative training algorithms. Furthermore the results of this
study can help to improve the prediction accuracy of the market changes, so that it can
provide information for more accurate judgment to many stakeholders.  Also it can be used
as an information for establishing financial and operational strategies by predicting income
forecasts and risks as well as determining the optimal timing for ship charter in / out,

determination of fleet size, charter period and charter rate.

This study also makes sense for the first on the ANN forecasting for the SUEZMAX and
AFRAMAX tanker market as well as VLCC market. And it can be deemed as a
considerable contribution that this study prove that ANN forecast can be widely applied as

a contributory information regardless of the ship type of maritime market.

1.3 Predictions on shipping markets

Demand and supply of international shipping services are influenced not only by various
external factors such as economic growth, trade policies, changes in political conditions such

as diplomatic relations, and changes in the natural environment, but also by factors such as
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production price factors and technology development, shipbuilding, steel, petroleum
industry and port condition. The demand and supply change for the shipping service will
be balanced through the freight rates determined in the shipping market. The freight rates
in the markets will affect the newbuilding market, the charter market and the second hand
ship market. Thereby forming a cyclic loop that affects an influence to the supply and

demand of the global shipping market.

Therefore, in order to predict maritime market, many diverse economists have studied
how to interact and construct linkages in the maritime market under the interaction of supply
and demand variables. The factors influencing the demand for maritime transport are
global economy, international maritime transport volume, profit margins, political events

and transport costs.

On the supply side is world fleet and its productivity, shipbuilding, shipbreaking and
freights [9]. As a result of economic studies on the tanker market, Zannetos [10] and D.
Gren et al [11] presented a framework for understanding the relationship between spot rates
and the long-term charter rates in the oil tanker market. Hawdon [12] derived an equations
for the tanker freight rates under the hypothesis that the demand for oil freight services is a
simple function of total world trade in oil, and Beenstock and Vergottis [13] established a
theoretical model for the correlation between the freight markets and the ship market and

applied it to the world tanker market.

For the prediction and analysis of various factors that constitute the shipping market, one
of the typical methods used when forecasting maritime market conditions is a time series
analysis that predicts future changes by identifying empirical laws required for forecasting

using only the information contained in the observed historical data.
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The time series analysis technique began to be widely used in the mid-1970s by G.E.P.
Box and G.M. Since Jenkins proposed the Box-Jenkins model [14] which incorporates
existing time series prediction theory. In addition, a variety of forecasting and analysis
techniques have been developed and applied, such as ARIMA models, ARCH, GARCH, and

VAR models for forecasting the shipping market.

In this study, Kavussanos [15] applied the GARCH model to investigate the volatility of
freight rates in the spot and time charter markets of dry-bulk vessels. Kavussanos [16] has
evaluated the relative risks involved in operating tanker vessels in world spot and time
charter markets through the use of Co-integration Error Correlation ARCH models.
Kagkarakis et al [17] used the VAR model to estimate the price in the ship-demolition

markets.

The tanker freight market is characterized by the interaction between many determinants
of supply and demand for tanker transportation services [9][10][18]. To forecast the
dynamics and fluctuations of the freight rates in the tanker freight markets, many researches
have been developed using univariate or multivariate time series analysis techniques

[16][19]-[21], and ANN models [22]-[24].

Acrtificial Neural Networks (ANN) have powerful pattern classification and pattern
recognition capabilities, and are being used for a wide variety of tasks in many different
fields of business, industry and science. One major application area of ANN is forecasting
[25]. ANN are inspired by biological systems, particularly by research into the human
brain, and be able to learn from and generalize from experience. ANN is a massively
parallel distributed processor that has a natural propensity for storing experimental
knowledge and making it available for use. ANN are also parameterized computational
nonlinear algorithms for numerical data, signal and image processing.

5
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These algorithms are either implemented on a general-purpose computer or are built into

a dedicated hardware [26].

In order to verify the accuracy of this ANN, the researchers conducted a study comparing
the prediction results by ANN with the prediction results by traditional time series
techniques [24][27]. As aresult of these studies, ANN can be more effective in forecasting
by time series method in monthly and quarterly forecasting than annual time series
forecasting, and ANN is more effective than statistical method in predicting three or more

period horizon on the total forecasting horizon [28].

The first ANN predictions for tanker freight rates were made by Li & Parsons [22]. In
their study, three variables were used in predicting the dirty tanker spot freight rates (WS)
using the tanker demand data and tanker supply data for 190 monthly time series data points
from Jan. 1980 to Oct. 1995. And the ANN structure was consisted of one or three
variables as inputs, one output and one hidden layer. The best number of neurons in the
hidden layer was varied from case to case to obtain the best performance error tolerances for

all the cases.

In subsequent studies, in order to more accurately predict freight rate fluctuations in
tanker markets, forecasts using ANN were made by applying more large number of

independent variables affecting the freight markets.

Lyridis et al [23] investigated the VLCC spot freight rates (WS) by using ANN with
monthly time series data from Oct. 1979 to Dec. 2002 as independent variables; demand for
oil transportation, active fleet, crude oil production, crude oil price, surplus as a percentage
of active fleet. Their study attempted to uncover the benefits of using ANN in forecasting

VLCC spot freight rates.

Collection @ kmou



In order to obtain the best prediction result in ANN prediction, ANN forecasting was
performed by changing the number of input variables for each prediction interval, and the

number of optimal input parameters was observed by comparing the prediction results.

Santos et al [24] performed ANN forecasts for VLCC period charter rates (USD/Day)
instead of spot freight rates (WS), which were previously predicted by researchers. And in
applying ANN forecasting model, two different ANN model of multi-layer perceptron and

radial basis functions were applied and the results were compared.

Eslami et al [29] developed a hybrid tanker spot freight rates (WS) prediction model
based on an artificial neural networks and an adaptive genetic algorithm which searches a
near-optimal combination of network parameters to improve the accuracy of ANN. And

the prediction results are compared with those of previous researchers.

1.4 Structure of the paper

The paper is organized as follows.

In Chapter 2, it encompasses an essential and theoretical knowledge of ANN structure
to design its architecture. The backpropagation algorithm introduced in this chapter is a
major breakthrough in neural network research. And The Levenberg-Marquardt algorithm
and Bayesian regularization algorithm that provide significant speedup and make the
algorithm more practical are introduced to obtain reasonable results before ANN prediction

execution.

Chapter 3 concentrate on practical aspects of the methodology used in this study
including data collection, data normalization, and ANN architecture etc. for ANN prediction.

In collecting data, the ship type is distinguished to VLCC, SUEZMAX, and AFRAMAX in
7
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accordance with the ship size, and the monthly data from January 2000 to December 2016
for each vessel type are obtained from resources of the reliable institutes. The Non-linear
AutoRegressive model with eXogenous inputs (NARX network) is introduced as an ANN

model which is applied in this study.

In Chapter 4, it is described the actual application process using the methodology
mentioned in Chapter 4. And the schematic of ANN network for the tanker market
prediction for applying Levenberg-Marquardt algorithm and Bayesian regularization
algorithm is presented, and the details of the prediction calculation method and the
verification method of the results to prove are presented. Also the predictive results are

evaluated according to the training algorithms of the ANN architectures.

Finally, in Chapter 5, the thesis is wrapped up with conclusions including suggestions

for tanker markets prediction by ANN.
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Chapter 2 Artificial Neural Networks

2.1 Anoverview of Artificial Neural Networks (ANN)

The discipline of neural networks models human brains. The average human brain
consists of nearly 10! neurons of various types, with each neuron connecting to up to tens
of thousands of synapses. As such, neural network models are also called connectionist
models. Information processing is mainly in the cerebral cortex, the out layer of the brain.
Cognitive functions, including language, abstract reasoning, and learning and memory,

represent the most complex brain operation to define in the terms of neural mechanisms. [30]

Artificial Neural Networks (ANN) are composed of a number of highly interconnected
simple processing elements called neurons or nodes. Each node receives an input signal
which is the total “information” from other nodes or external stimuli, process it locally
through an activation or transfer function and produces a transformed output signal to other
nodes or external outputs. ~ Although each individual neurons implements its function rather
slowly and imperfectly, collectively a network can perform a surprising humber of tasks
quite efficiently.  This information processing characteristics make ANN a powerful
computational device and are able to learn from examples and then to generalize to examples
never before seen [25]. A basic elements of an artificial neural network is depicted in

Figure 2.1 [31].

ANN can be treated as a general statistical tool for almost all disciplines of science and
engineering. The applications can be in function approximation, classification, clustering
and vector quantization, associative memory, optimization, feature extraction and

information compression [30].
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Figure 2.1 Multiple-input neuron

The individual inputs Py, P2, -+, Pr are each weighted by corresponding elements Wi,
Wi, -+, Wir Of the weight matrix W.. . The neuron has a bias b, which is summed with the

weighted inputs to form the net input n:
N=WpuPi+ WP+ - +WirPr+b 1)
The neuron output a of a transfer function can be written as
a=f(WP+b) (2)

Many different ANN models have been proposed since 1980s. One of the most
influential models among them is the Multi-Layer Perceptron (MLP). The MLP networks
are used in variety of problems especially in forecasting because of their inherent capability

of arbitrary input-output mapping.

In feedforward MLP networks, the neurons are organized in the form of layers. The
neurons in a layer get input from the previous layer or first layer, and feed their output to the
next layer. The last layer or the highest layer of neurons is called the output layer and the

one or more intermediate layers between the inputs and output layers are called the hidden
10
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layers. Atrtificial neuron mainly consists of weights, bias and activation function.

In Figure 2.2 [31], third layer is called output layer and the other layers of the first and
second layer are called hidden layers. There are R inputs, S, S? and S® neuron in the each
layers. And different layers can have different numbers of neurons. Each layer has its
own weight matrix W(for the first layer is written as W"), its own bias vector b, a net input

vector n and an output vector a.

Inputs First Layer

Figure 2.2 Multiple layers of neurons

11
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2.2 Design of ANN model

2.2.1 Supervised learning

Learning (training) is a fundamental capability of neural networks. Learning rules are
algorithm for finding suitable weights W and/or other network parameters. Learning of a
neural network can be viewed as a nonlinear optimization problem for finding a set of
network parameters. Learning methods are conventionally divided into supervised,
unsupervised, and reinforcement learning [30].  Supervised learning adjusts network
parameters by a direct comparison between the actual network output and the desired output.

Supervised learning is a closed-loop feedback system, where the error is the feedback signal.

The error measure, which shows the difference between the network output and the
output from the training samples, is used to guide the learning process. The error measure
is usually defined by the mean squared error (MSE). To decrease error toward zero, a
gradient descent procedure is usually applied. The gradient decent method always
converges to a local minimum in a neighborhood of the initial solution of network
parameters. The least mean squared algorithm (LMS) and backpropagation algorithms are

two most popular gradient descent based algorithms [30].

The most commonly used learning algorithm for a supervised neural network is a
backpropagation algorithm which is proposed for the MLP model in 1986 by Rumelhart et
al [32]. The goal of the backpropagation, as with most training algorithms, is to iteratively

adjust the weights in the network to produce the desired output by minimizing output error.

The backpropagation is a gradient descent approach in that it uses the minimization of
first order derivatives to find an optimal solution. It works with a training set of input
vectors and target output vectors.

12
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The training algorithm iteratively tries to force the generated output vectors to the desired
output vector by adjusting the weights in the network through the use of a generalized delta

rule [33].

2.2.2 Mean squared error (MSE)

A quantitative measure of neural network performance is called the performance index,
which is small when the network perform well and large when the network performs poorly.
Many ANN researchers have investigated to develop algorithm to optimize a performance
index. In other word, “optimize” means to find the value of the minimized performance

index.

When the standard performance index (F(x)) is represented by Taylor series expansion

and x is the scalar parameter at iteration «, the general minimization algorithm is:
Axp = (Xg41 — Xk) = Py 3)

Where the vector Py represents a search direction at iteration «, and axis the learning rate.

This equation is written in matrix form.

Three different categories of optimization algorithm to minimize the performance index
through training of neural networks are the steepest descent, Newton’s method and conjugate

gradient.

In the training algorithms of ANN, the Least Mean Squared (LMS) algorithm is an
example of supervised training, in which the learning rule is provided with a set of examples

of proper network behavior.

{P1,t1}, (P2 t2}, {P3,t3}, ... AP tg} (4)

13
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Where Pqis an input to the network, and tq is the corresponding target output.

The LMS algorithm and the backpropagation algorithm for multilayer networks adjusts
the weights and biases of the network in order to minimize the mean square error, where the

error is the difference between the target output and the network output.

F(x) = E[e?] = E[(t — )*)] ®)

Where F(x) is the performance index of the neural network, E[ ] is denoted as an
expected value and the expectation is taken over all sets of input/target pairs [36]. And the

mean square error is expressed:
1
MSE = 52321(tq — a,)? (6)

In the multilayer networks having multiple outputs, the performance index F(x) is

expressed:

F) = Y2, (tg — ag)" (tq - a®) (7)

Where a4 is the network output for input pg. and tq is the target output corresponding to

the input pq.

2.2.3 Least-mean squared (LMS) algorithm

The LMS algorithm achieves a robust separation between the patterns of different classes
by minimizing the MSE rather than the number of misclassified patterns through the
gradient-descent method [30]. The following two equations make up the LMS algorithm
to minimize the MSE through adjusting the weights and biases of the ADALINE, and these

equations which are referred to as the delta rule or the Widrow-Hoff learning algorithm can

14
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be written in matrix notation [31].
Wk +1) = W(k) + 2ae(k)PT (k) (8)
b(k + 1) = b(k) + 2ae(k) 9)

Where W (x) is the weight at iteration x, e(x) and b(x+1) are the error at iteration x

and the biases at iteration x + 1, a is the learning rate, and P(x) is the input at iteration k.

2.2.4 Backpropagation learning algorithm

Backpropagation learning is the most popular learning for performing supervised
learning tasks [32]. The backpropagation algorithm is a generalization of the delta rule
called the LMS algorithm. Thus it is also called the generalized delta rule. The
backpropagation algorithm propagates to backward the error between the desired target and
the network output through the network. After providing an input, the output of the

network is then compared with a given target and the error of each output unit calculated.

This error is propagated backward, and a closed loop control system is established. The
weights can be adjusted by a gradient-descent based algorithm [30]. The backpropagation
can be used to train multilayer networks.  As with the LMS learning law, the performance

index of the backpropagation is mean squared error.

The difference between the LMS algorithm and backpropagation is only in the way in
which the derivatives are calculated. In order to calculate the derivatives, it is needed to

use the chain rule of calculus [31].

As shown in Figure 2.2, for multilayer networks the output of one layer becomes the

input to the following layer.

15
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This operation are described as follows :
amtl = fmAlymilgm 4 pm+ly  for m=0,1,2,...,M —1 (10)
Where M is the number of layers in the network.

For the multilayer network the error is an indirect function of the weights in the hidden
layer, therefore the chain rule of calculus to calculate the derivatives are applied to. The
approximate steepest descent algorithm using the chain rule of calculus can be written in

matrix notation.
W™k +1) = W(k) — aS™(a™ )T (11)
b"™(k+1)= b™(k) — aS™ (12)

Where S™ is the sensitivity at layer m.

2.2.5 Levenberg-Marquardt algorithm

The basic backpropagation algorithm is too slow for most practical application. This
has encouraged considerable research on methods to accelerate the convergence of the
algorithm.  As a consequence, several variations of backpropagation to provide significant
speedup and make the algorithm more practical have been developed using heuristic

techniques [37] and numerical optimization techniques [38].

The Levenberg-Marquardt algorithm, which is one of numerical optimization techniques,
was designed for minimizing functions that are sums of squares of other nonlinear functions

in neural network training where the performance index is the mean squared error.
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When the performance index is F(x), the Levenberg-Marquardt algorithm for

optimizing the performance index F(x) is represented as [39]:

Xes1 = X — [JT )] () + ]~ )V (xk) (13)

Here, as the changing value of g, the performance index F(x) of the network can be
adjusted with the optimization algorithms in small learning rate. Where J(x;) and V(xy)

are the matrix elements to compute the gradient.

2.2.6 Generalization and Bayesian regularization algorithm

In operation a multilayer network, if the number of neuron is too large, the network will
over-fit the training data.  This means that the error on the training data will be very small,
but the network will fail to perform as well when presented with new data. A network that
generalizes well will perform as well on new data as it does on the training data. The
complexity of neural network is determined by the number of free parameters that weights
and biases, which is determined by the number of neurons.  If network is too complex for

a given data set, then it is likely to over-fit and to have a poor generalization [31].

There are two approaches to improve the generalization capability of neural network:
restricting the number of weights or restricting the magnitude of the weights called the

regularization. The simplest method for improving generalization is early stopping [40].

In a multilayer network, after removing the test data set from the input data set, the
available data is divided into two parts: a training data set and validation data set. The
training data set is used to determine the weight update at each iteration. The validation

data set is an indicator of what is happening to the network function in between the training
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points, and the error of the validation data set is monitored during the training process.
When the error on the validation data set goes up for several iteration, the training stopped,
and the weights that produced the minimum error on the validation data set are used as the
final trained network weights.  The test data set is used to calculate its error.  The error of
the test data set, which is a measure of the generalization capability of the network, will give

an indication of how the network will perform in the future.

This method to stop the training is called cross-validation [41]. And another method
for generalization is called regularization [42]. This regularization can be written as the

sum of squares of the network weights, as follows:
F(x) = BEp + By = BYaoi(ty— )" (tg — @) + a¥it, X7 (14)

Where F(x) is called the regularized performance index, and the ratio o/f control the
effective complexity of the network solution. There are several technics for setting the
regularization parameter. -Bayesian Regularization among these methods is an automatic

selection of the regularization parameter [43].

N-y

MP _ Y MP _
a and f 25, VP

2Ew(xMP)

(15)

Where y = n — 2aMP tr(HMP)~1 is called the effective number of parameters, and n
is the total number of parameters in the network. The y is a measure of how many
parameters (weights and biases) in the neural network are effectively used in reducing the

error function.
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Chapter 3 Methodology

3.1 Data and pre-processing
3.1.1 Data collection

For all data used in forecasting of oil tanker markets in this study, global oil production,
world GDP, active fleets, new building prices, second-hand ship prices, demolition prices,
time-charter rates, bunker prices, and crude oil prices were selected as independent variables,

whereas dirty tanker earnings was selected as the dependent variable.

To collect the data sets for tanker markets prediction, firstly the ship type is distinguished
to VLCC, SUEZMAX, and AFRAMAX tanker.  The monthly data sets from January 2000
to December 2016 for each tankers were obtained from Clarkson research services, the
International Energy Agency (IEA), the Organization of the Petroleum Countries (OPEC)

[44] and related organizations.

The two larger size tankers of VLCC and SUEZMAX are exclusively involved in crude
oil transportation. AFRAMAX vessels are also involved in transportation of crude oil,
however, they contribute to product transportation time to time. In this paper, the data set

related to AFRAMAX is also restricted to the vessel transporting crude oil exclusively.

The purpose of this study is to provide an optimal ANN training architecture. To do
this, it was tried to derive the optimal ANN training architecture by comparing the results
obtained from the Levenberg-Marquardt algorithm and Bayesian regularization algorithm
by each ship type, and by changing the computing parameters of the ANN training algorithm

for the actual prediction application and evaluating the results.
19
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Therefore, when collecting data sets for each ship type, data samples such as unit and

size were applied with the identical conditions [45].

European brent spot oil prices is applied for crude oil prices, and the average prices for
the new building prices, second hand ship prices and demolition prices are applied to. And
the time charter rates and the targeting earnings for each ship type adapt its average values.
Also, bunker prices are 180 CST rotterdam prices. World GDP time series data from
UNCTAD [46] were converted from quarterly values to monthly using interpolation method.
The aggregated data is made up of nine independent variables and one dependent variable,

and each variable has 204 monthly observations from January 2000 to December 2016.

3.1.2 Data normalization

One of the most common tool to obtain better results of neural network is to utilize data
normalization. Data normalization can also speed up training time by starting the training

process for feature within the same scale.

Data normalization is especially useful for modeling applications where the inputs are
generally on widely different scale. Data normalization is performed before the training
process begins. Nonlinear activation functions are normalized to a value (0, 1) for logistic
function or (-1, 1) for hyperbolic tangent function. When nonlinear transfer functions are
used at the output nodes, the desired output values must be transformed to the range of the
actual outputs of the network [25]. In this study, prediction is performed with a multilayer

networks using sigmoid transfer functions in the first layer of hidden layer.

This sigmoid transfer functions are open used in the hidden layer. In the first layer, the

net input is a products of the input times the weight plus the bias. If the input is very large,
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the weight must be small in order to prevent the transfer function from becoming saturated.
In contrary, if the input values are very small, large weights are needed to produce a large
net input. Thus, it is standard practice to normalize the inputs before applying them to the
network. When the input values are normalized, the magnitudes of the weights have a
consistent meaning in using regularization. The normalization step is applied to the input
values and target values in the data sets [31][33]. The normalization can be done by the

following equation:

2(P— Pmin)
p, = 2 fmns _1q (16)

Pmax— Pmin

Where p,,in is the vector containing the minimum values of each element of the input
vectors in the data set, p,,q, contains the maximum values, and p,, (from —1to1) is

the resulting normalized input vector.

3.2 ldentification of ANN architecture

After collecting the data for forecasting of tanker markets, the type of ANN architecture
is to be determined to solve the problem of tanker market prediction, and the specific details
of how many neurons and layers it will be used in the network are to be decided. In ANN
dynamic networks, the output depends not only on the current input to the network, but also
current or previous inputs, outputs or states of the network. Tanker markets prediction is
part of a time series analysis that predicts the future value of a time series. Therefore in
this paper, the dynamic networks had been selected as an appropriate ANN model to forecast
dirty tanker markets. The Non-linear Auto Regressive model with eXogenous inputs

(NARX networks) [30][31], a widely used network for applying predictions, is a recurrent
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dynamic network with feedback connections that encompass multiple layers of the network,

as shown in Figure 3.1 [31].

Until now, prediction using ANN for the VLCC tanker market has been done by the
Levenberg-Marquardt training algorithm [22]-[24][29], but no Bayesian regularization
algorithm was used to predict the VLCC tanker market. Therefore this paper focuses on
the prediction of ANN with the Levenberg-Marquardt algorithm and Bayesian regularization

algorithm to evaluate the prediction accuracy of these two training algorithms.

After determining the network structure, the number of hidden layers in these two
learning algorithms is decided to one to allow easy comparison of performance results and
functions, and the ANN model implementing the backpropagation algorithm do not have too

many layers, since the time for training of the network grows exponentially.

The number of neurons in-the hidden layer are determined by the complexities of the
function that is being approximated or the decision boundaries that are being implemented.
Therefore, to determine the number of neurons in the hidden layer to find the best prediction
performance for the VLCC tanker market, it is adjusted the number of neurons in the hidden
layer of the ANN structure using the Levenberg-Marquardt algorithm to find the best
performance without any overfitting. ~ Also, in the prediction using Bayesian regularization
algorithm, the ANN performs prediction using 8 and 10 neurons of the hidden layer based

and evaluates the performance results of these two cases.

The inputs of the ANN model have 9 nodes for input signals. The hidden layer is made
up the neurons with the tan-sigmoid transfer function selected as their activation function,
and the output layer has the linear transfer function. The number of neurons in the output

layer is the same size with the target.
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For multi-step ahead prediction, the output is fed back to the input of the feedforward
neural network as part of the standard network. The predicted value is fed back as input to
network for next prediction and all other inputs are shifted to back ward one unit of time.

It is called the closed loop which is useful for multi-step prediction.

For one step ahead predictions, the true output, which is available during the training of
the network, is used instead of feeding back the estimated output. This means that the
network is trained by #-step (£ > 1) apart differenced data as input for network. It is called
the open loop and is useful for training.  The typical workflow is to fully create the network
in open loop, and only when it has been trained (which includes validation and testing steps),

it is transformed to closed loop for multi-step ahead prediction [22].

The prediction for tanker markets earning with the advanced time of one-step (month)
ahead, 3-step, 6-step, 9-step, 12-step and 15-step are performed by MATLAB with the neural

network toolbox.

|
Input  TimeDelay  Weight/Bias Sigmoid function | Linear Function

Co e

Feed back

| [ ot

Figure 3.1 NARX network (Closed loop) for the tanker market prediction
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3.3 Training and post training validation

For training the network, the Levenberg-Marquardt algorithm and the Bayesian
regularization training algorithm are applied for VLCC tanker, and the Bayesian
regularization training algorithm are only applied for SUEZMAX and AFRAMAX tanker.
These algorithms are implemented batch learning scheme for weight updating. In batch
learning scheme, the training samples are fed into the network and the change in all weights
is computed from each sample. Then at the end it is updated the weights according to the

sum of all updates.

For multilayer network, the weights and biases are generally set to small random values.
In the case where the input are normalized to fall between -1 and 1, it is uniformly

distributed between -0.5 and 0.5.

As an important tool for neural network validation, the regression coefficient between
the network output and the target, known as the R value, should be close to 1 to ensure

reliable ANN performance results.

And where applying the dynamic networks for prediction, such as the focused time-delay
neural network, there are two important concepts when analyzing the trained prediction
network. One is that the prediction errors should not be correlated in time. And another

one is that the prediction errors should not be correlated with the input sequence.

In order to test the correlation of the prediction in time, the autocorrelation function is

used:

R(0) = 5= Sl e(De(t + 1) (17)
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If the prediction errors are uncorrelated (white noise), it can be expected that R,(t) is
close to zero, except when t = 0. To determine if R,(t) is close to zero, it can be defined

by approximate 95% confidence interval [14] using the range:

2R, (0
—%< R,(t) <

2R.(0)

N (18)

To test the correlation between the prediction errors and the input sequence, the cross-

correlation function is used:
— 1 yo-t
Rpe(7) = o Y- PDe(t + 1) (19)

If there is no correlation between the prediction errors and the input sequence, it can be
expected that R, (t) is close to zero forall t. To determine if R, (t) is close to zero, it

can be defined by approximate 95% confidence interval [14] using the range:

_ 2y/Re(0) JRp(0) 2,/R.(0) \/R,(0)
— < Ry.(v) < TE R (20)
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Chapter 4 Implementation of Methodology

4.1 Implementation

4.1.1 Data processing

In order to predict the dirty tanker Earning as Target variable for VLCC, SUEZMAX and
AFRAMAX, ANN prediction was performed using 9 Input variables- Global oil production,
World GDP, Active fleets, New building prices, Second hand ship prices, Demolition

prices, Time charter rates, Bunker prices and Crude oil prices as in the section 3.1.1 above.

Of the 204 monthly data from January 2000 to December 2016, the data used for ANN
training were 180 monthly data from January 2000 to December 2014. The rest period
from January 2015 to December 2016 was used as a multistep ahead forecasting, and the

actual average Earing data of this period was used as target data for ANN supervised learning.

Total 180 data points of each variables ranged from January 2000 to December 2014 was
randomly sampled and divided into three data sets during computation: training, validation
and test data set. It is important that each of these data be representative of the full data set.
In general, the validation and test data set cover the same region of the input space as the
training data set. In the study by Jun li et al [22] and Lyridis et al [23] applying the
Levenberg-Marquardt algorithm to VLCC, the test sequence was constructed as a continuous
segment of the original data set with specifying the test data sampling range of the last 2 and

3 years monthly data of the full data set which applied.

Also, when applying the Levenberg-Marquardt algorithm to VLCC in this study, the

training set made up about 70% of the full data set with about 15% for each validation and
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test set, during its iterative computing. And when applying the Bayesian regularization
training technique to VLCC, SUEZMAX and AFRAMAX, the ANN prediction was
performed in two cases: the data set for testing is 15% and the case is 20%, and the results
of the two cases were compared. The reason for dividing the test data set into two types,
15% and 20%, is to broaden the test data and to compare the results by varying the width of
the training data. The validation set is not necessary to be assigned to the Bayesian

regularization algorithm.

4.1.2  ANN model for tanker markets prediction

The schematic diagram of ANN network for the tanker market prediction is shown below

Figure 4.1.

When the Levenberg—Marquardt algorithm was applied to VLCC, the number of neurons
in the hidden layer was adjusted to improve the accuracy of the prediction performance. In
addition, when the Bayesian regularization algorithm was applied, the number of neurons in
the hidden layer was fixed to eight and 10 to compare the performance results of these two

cases with those from the Levenberg—Marquardt algorithm.

And the number of neurons in the output layer with the linear function as its activation
function is the same as the size of the target. The schematic diagram of ANN network for

the tanker market prediction is presented in the bellow Figure 4.1.
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| Crude Oil Prices

| Crude Oil Production

| Global GDP

Time Charter Rate

| Active Fleet
| New Building Prices
| 20 Hand Prices

| Demolition Prices

| Bunker Prices

| OUTPUTLAYER |

Figure 4.1 Schematic diagram of ANN network for the tanker market prediction

4.1.3 Computation

Experiments have been carried out to identify the optimal ANN architecture for the
forecasting of the Earning of tanker markets with an advanced time of one-step (i.e. one
month) ahead, 3-step ahead, 6-step ahead, 9-step ahead, 12-step ahead and 15-step ahead.
The value of the tagged delay line as a time delay was 2 months without any changing during

implementation.

Each implementation for the prediction was repeated several times to identify the optimal
parameters and conditions of the network. When the results were dissatisfied with the
network's performance on the target data, it was trained again or retrained after reinitializing
the weights and bias. Each time a neural network is trained, can result in a different

solution due to different initial weight and bias values and different data points into training,
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validation, and test sets.  As a result, different neural networks trained on the same problem

can give a different output for the same input.

When training with the Levenberg-Marquardt algorithm, the number of neurons can be
adjusted to prevent overfitting or extrapolation. If the performance on the training set is
good, but the validation and test performance is significantly worse, then can be reduced the
number of neurons to improve the results. If training performance is poor, then it can be

increased the number of neurons.

The computational results from the Levenberg-Marquardt algorithm were considered as

reasonable, when the algorithm was fitted with the following considerations:
- The final mean performance index (MSE) was small

- The test set error (test performance index (MSE)) and validation set error

(validation performance index (MSE)) had a similar characteristics
- Expert judgement considering various parameters and performance indices

When training with the Bayesian Regularization training technique, there are a total 221
parameters in the 9(input)-10(number of neurons of the hidden layer)-1(output) network,
and a total 177 parameters in the 9-8-1 network. The effective number of parameters was
about min. 56 and max. 171 during training the 9-10-1 network for VLCC. The training of
the 9-10-1 network effectively used it less than 77.3% of the total number of the weights and
biases. In 9-8-1 network, the effective number of parameters was about min. 51.9 and max.

133 and used it less than 75.1%.

The computational results of the Bayesian Regularization training algorithm were

considered as reasonable, when the algorithm was fitted with the following considerations:

- The final mean performance index (MSE) was small
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- The training error (training performance index (MSE)) was small
- Expert judgement considering various parameters and performance indices

The computer specification used for the calculation was Intel® Core ™ i5-5200U CPU @

2.20GHz

4.1.4 Validation

The regression plots display the network outputs with respect to targets for training,
validation and test sets.  For a perfect fit, the data will fall along a 45 degree line, where the
network outputs are equal to the targets. Regression is considered appropriate when the R
value is at least 0.93. The R value is an indication of the relationship between the outputs
and targets. If R=1, this indicates that there is a linear relationship between the outputs and

targets. If Ris close to 0, then there no linear relationship between the outputs and targets.

The autocorrelation function of the prediction error and the cross-correlation function to
measure the correlation between the input and the prediction error were used for the ANN

prediction model validation with the help of the graphics.

4.2 Prediction performance results

In this study, the multi-step ahead predictions were performed for VLCC, SUEZMAX
and AFRAMAX tanker market from January 2015 to December 2016.  Of the 204 monthly
data from January 2000 to December 2016, the data used for ANN training were 180
monthly data from January 2000 to December 2014. The rest period from January 2015 to

December 2016 was used as a multistep ahead predictions.
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This actual average Earing data over the two years was used as supervised learning target

data to compute the ANN predictive performance.

Figure 4.2 shows the average Earning trend for VLCC, SUEZMAX and AFRAMAX

tanker markets by time series data from January 2000 to December 2016 [3].

The Earning value of SUEZMAX is the largest among the three ship type, and the width
of the change is also large. Also, the variation of this Earning is the largest SUEZMAX.
For VLCC, the size of the change is relatively small compared to other tanker types, and for
AFRAMAX, the middle fluctuation value between SUEZMAX and VLCC is displayed.
However, it can be seen that the average earning of each type of tanker changes to bigger or

smaller depending on the market condition of the tanker types.
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Figure 4.2 Dirty tanker average Earning in time series trend
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4.2.1 Prediction performance results for VLCC

Table 4.1 - Table 4.6 and Figure 4.3 - Figure 4.14 show the prediction results for VLCC
Earning by the Levenberg-Marquardt algorithm and the Bayesian regularization algorithm.
For the representation of the line in the figures, the observation value is represented by a
solid black line, and the predicted result is also represented by the solid red line in case of
the best performance. And the remained performance results are illustrated by the dashed

line.

4.2.1.1 One-month ahead prediction

Table 4.1 shows the performance details of one-month ahead prediction using the

Levenberg-Marquardt algorithm and Bayesian regularization algorithm.

In the Bayesian regularization algorithm, as the size of the hidden layer neuron increased,
the iteration increased, the computing time increased, and the gradient value and train
performance error (MSE) converged to a smaller value. Also, the effective number of
parameters in 8 neurons or 10 neurons was about 60% - 70% of the total number of
parameters. Increasing the test sampling data size from 15% to 20% did not show any
significant change in performance results. In addition, the overall mean performance index
was not improved. The train, validation and test performance errors by the Levenberg-

Marquardt algorithm are comparable in size, indicating no overfitting or extrapolation.

In the LMA.TDS-15.NN-9 network, the performance error of the network is 12.22. In
the BRA.TDS-15.NN-8 network, the results is 6.7013, and 6.7026 in the BRA.TDS-15.NN-
10 network, 8.79 in the BRA.TDS-20.NN-10 network. The mean performance error of the
BRA.TDS-15.NN-8 network and the BRA.TDS-15.NN-10 network are almost the same
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values, but the train performance error of the BRA.TDS-15.NN-10 network is 0.266, which

is much lower than the BRA.TDS-15.NN-8 network of 1.3874 as shown in Table 4.1.

However, when comparing the ANN performance results of these two networks, in the
case of that the mean performance error (MSE) of the two networks is very similar value but
the train performance error (MSE) of one network is more converged to smaller value than
the other, the researcher is an option to take a final choice of which the case of smaller
training error is adapted as a final prediction results. As shown in Figure 4.3, the
BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total

course of the peaks and bottoms of the observation value, and it shows a certain time lag.

Table 4.1 Comparison of ANN performance for one-month ahead prediction

VLCC ANN Architecture
[One-month ahead - | BRA TDS-15. [ BRA.TDS-15. | BRA. TDS-20. | LMA TDS-15.
prediction] NN-8 NN-10 NN-10 NN-9
Epoch 279 443 324 12
Computing Time (sec) 5 9 6 -
M - - - 0.1
Gradient 0.82 0.32 0.69 8.68
Effective number of 120/177 147/221 130221 -
Parameter (used/total)
Regression 0.98218 0.98175 0.97644 0.96639
Mean Performance Eiror 6.7013 6.7026 8.7922 12.2177
Train Performance Eiror 1.3874 0.2660 0.7113 9.2426
Validation performance ) _ ) 170812
Eiror
Test Perfoimance Eiror 37.1680 43.6063 41.5199 21.4366

LMA
BRA
TDS-
NN-

Collection @ kmou

: Levenberg-Marquardt Algorithm
: Bayesian regularization algorithm
- Test data set for full input data set (%)

: Number of neurons of hidden layer
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Figure 4.3 One-month ahead prediction

The correlation coefficient between the outputs and targets shows bellow Figure 4.4 as
R value 0f 0.98175. If R =1, this indicates that there is an exact linear relationship between
outputs and targets.  If R is close to zero, then there is no linear relationship between outputs
and targets. The R value of 0.98175 shows that all the data does not fall exactly on the

regression line, but the variation is pretty much small.
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Output ~= 0.97*Target + 0.64

10 20 30 40 50 60 70
Target

Figure 4.4 Regression between outputs and targets

For the prediction error to be uncorrelated, the autocorrelation function should be an
impulse at T = 0, with all other values equal to 0. However in fact the valuesat Tt # 0 is
never be exactly equal to zero because of white noise.  The dashed red lines in Figure 4.5
indicate the confidence bounds. The estimated autocorrelation function for the prediction

errors falls outside these confidence bounds at a number of points.

This indicates that it may need to increase the length of the tapped delay line, which was
setto 2. However, in this study, we applied the external adjustment variables as constant
as possible to compare the results of the training algorithm according to ANN architecture.
And the correlation between the prediction errors and the input sequence in Figure 4.6 shows

that it does not fall outside the confidence bounds at any points.
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Figure 4.5 Autocorrelation of errors after 1-month prediction training
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Figure 4.6 Correlation between input and errors
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Figure 4.7 illustrates the training mean squared error versus iteration number which
shows that the reduction in the training performance index per iteration remain almost
constant for a number of iterations before stopping. The minimum training error occurred

at iteration 442 and indicated by the circle. It can be verified as a stable convergence.

Best Training Performance is 0.26596 at epoch 442

Train
Test
Best

2
E
=
o T
g
o
@
c
-]
o
= [
10°
10" = L L L - B RIRL IR JR A1 L L Il -
o 50 100 150 200 250 300 350 400
443 Epochs

Figure 4.7 Training mean squared error vs. iteration number

The Figure 4.8 shows the adjusted network parameters to optimize the performance of
the network at the final stage of 442 iterations. It can be confident that a stable convergence

is illustrated.

. Gradient = 0.32887, at epoch 443
10 T T T T

10* F 3

103 .

102 | J

gradient

10" 4

10° ¢ .

107"

Figure 4.8 Conjugate gradient of parameters
37

Collection @ kmou



The Figure 4.9 shows the variation of the effective number of parameters and
convergence to 146.8694 at the 442 iterations.  The training algorithms have a total of 221
parameters in this 9 (input) -10 (number of neurons of the hidden layer) -1 (output) network,

so this network was using about 66.5% of the weights and biases.

This training algorithm is insured that the number of parameters needed for the training

performance were used effectively.

Num Parameters = 146.8964, at epoch 443
250 I T T T T T T

200 | .

x150'

@ 100 }

50 .

Figure 4.9 Effective number of parameters

4.2.1.2 3-months ahead prediction

Table 4.2 shows the performance details of 3-months ahead prediction using the

Levenberg-Marquardt algorithm and Bayesian regularization algorithm.

In the Bayesian regularization algorithm, as the size of the hidden layer neuron increased,
the iteration increased, the computing time increased, and the gradient value and train
performance error (MSE) converged to a smaller value. However, even though the size of
the hidden layer neuron increased in the short term ahead prediction, the mean performance

error of 8 neurons as 8.6425 show better results than 8.9288 of 10 neurons in the same
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forecasting horizon.  Also, the effective number of parameters in 8 neurons or 10 neurons

was about 55% -65% of the total number of parameters.

When increasing the test sampling data size from 15% to 20% in the Bayesian
regularization algorithm did not show any significant change in performance results. In
addition, the overall mean performance index was not improved. The results of the
correlation coefficient between the outputs and targets show that the test sampling data size

20% is worse than 15%.

The train, validation and test performance errors by the Levenberg-Marquardt algorithm

show a significant error in size even though no indication overfitting or extrapolation.

In Figure 4.10 of 3-month ahead prediction, the network of BRA.TDS-15.NN-8 has
appeared relatively good convergence with the total course of the peaks and bottoms of the
observation value. Forecasts of market uptrends around June 2015 tend to be unstable but

show better behavior during market recession.
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Table 4.2 Comparison of ANN performance for 3-months ahead prediction

VLCC ANN Architecture
[3-months ahead BRA.TDS-15. | BRA.TDS-15. | BRA.TDS-20. | LMA.TDS-15.
prediction] NN.8 NN_10 NN._10 NN.9
Epoch 370 707 507 12
Computing Time (sec) 6 13 11 -
1 - - - 0.1
Gradient 1 1.23 0.69 11.30
Effective number of
4/ 21/22 30/22 -
Parameter (used/total) 1147177 121 ! 130 !
Regression 0.97649 0.97605 0.95460 0.93509
Mean Performance Eivor 8.60425 8.9288 11.8703 23 8859
Train Performance Eiror 2.2021 1.9989 0.0737 10.3963
"alidati T ’
all 10n pelriormance _ _ _ 56.8623
Emor
Test Performance Eiror 46.6056 48.6599 46.7973 54.7607
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Figure 4.10 3-months ahead prediction
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4.2.1.3 6-months ahead prediction

As shown in Table 4.3, as the hidden layer neurons are increased from 8 neurons to 10
neurons, the iteration was increased and the gradient value and the train performance error
(MSE) converged to a smaller value. And also in the short term ahead prediction of six
months, the mean performance error of 8 neurons as 7.8063 show better results than 8.9288

of 10 neurons and other training algorithm in the same forecasting horizon.

Also, the effective number of parameters in 8 neurons or 10 neurons was about 55% -
65% of the total number of parameters. As a singular point, in the case of the BRA.TDS-
15.NN-10 3-months-ahead prediction and the BRA.TDS-15.NN-10 6-months-ahead
prediction, all results were the same except for multistep ahead performance error (MSE).

This seems to be due to the fact that the random sampling points were almost identical.

When increasing the test sampling data size from 15% to 20% in the Bayesian
regularization algorithm did not show any significant change in performance results. In
addition, the results of the correlation coefficient between the outputs and targets show that
the test sampling data size 20% is worse than 15%. The train, validation and test
performance errors by the Levenberg-Marquardt algorithm show a significant error in size

even though no indication overfitting or extrapolation.

In Figure 4.11 of 6-months ahead prediction, the network of BRA.TDS-15.NN-8 has
appeared relatively good convergence with the total course of the peaks and bottoms of the
observation value. However, In the case of sudden up and down changes of market,

unstable prediction is shown.
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Table 4.3 Comparison of ANN performance for 6-months ahead prediction

VLCC ANN Architecture
[6-months ahead BRA.TDS-15. | BRA.TDS-15. | BRA.TDS-20. | LMA TDS-15.
prediction] NN-8 NN-10 NN-10 NN-8
Epoch 347 707 662 17
Computing Time (sec) 6 15 13 -
K - - - 0.001
Gradient 0.99 1.23 0.27 37.80
Effective number of
! 21/22 43/22 -
Parameter (used/total) Ho77 1217221 1437221
Regression 0.97983 0.97605 0.95778 0.92713
Mean Performance Eivor 7.8063 8.9288 15.4979 27.5454
Train Performance Eiror 2.0636 1.9989 0.1451 15.7874
Talidati M {
alidation performance _ _ ) 56.4943
Emor
Test Perfoimance Emror 40.7316 486599 77.6767 54.2511
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Figure 4.11 6-months ahead prediction
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4.2.1.4 9-months ahead prediction

As shown in Table 4.4, as the hidden layer neurons were increased from 8 neurons to 10
neurons, the iteration was increased, and the gradient value and the train performance error
(MSE) converged to a smaller value. And also the size of the hidden layer neurons
increased in the short term ahead prediction, the mean performance error of 8 neurons as
6.7013 showed better results than 7.6663 of 10 neurons and other training algorithm in the

same forecasting horizon.

Also, the effective number of parameters in 8 neurons or 10 neurons was about 59% -
68% of the total number of parameters. When increasing the test sampling data size from
15% to 20% in BRA did not show any significant change in performance results. In
addition, the results of the correlation coefficient between the outputs and targets show that
the test sampling data size 20% is worse than 15%. The train, validation and test
performance errors by the Levenberg-Marquardt algorithm show a significant error in size

even though no indication overfitting or extrapolation.

In Figure 4.12 of 9-months ahead prediction, the network of BRA.TDS-15.NN-8 has
appeared relatively good convergence with the total course of the peaks and bottoms of the
observation value. However, In the case of sudden up and down changes of market,

unstable prediction is shown also with the 6-months ahead prediction.
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Table 4.4 Comparison of ANN performance for 9-months ahead prediction

VLCC ANN Architecture
[9-months ahead BRA.TDS-15. | BRA.TDS-15. | BRA.TDS-20. | LMA.TDS-15
prediction] NN-8 NN-10 NN.10 NN.8
Epoch 279 247 332 15
Computing Time (sec) 4 5 6 -
V1 - - - 0.01
Gradient 0.82 0.60 0.59 99.60
Effective number of
20/ 36/272 3I0/22 -
Parameter (used/total) 1201177 136/221 1307221
Regression 0.9828 0.97937 0.97663 0.94738
Mean Performance Error 6.7013 7.6663 8.5568 19.2948
Train Performance Eimror 1.3874 0.6623 0.5784 7.5927
alidati T g
alidation performance _ _ ) 443444
Error
Test Performance Eiror 37.1680 47.8225 40.8693 49.6353
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4.2.1.5 12-months ahead forecast

As shown in Table 4.5, as the hidden layer neurons were increased from 8 neurons to 10
neurons, the iteration was increased, and the gradient value and the train performance error
(MSE) converged to a smaller value. The mean performance error of 10 neurons in 12-
months as 4.9389 showed better results than 9.3915 of 8 neurons and other training algorithm
in the same forecasting horizon. ~ As shown here, in the long term ahead forecasting such
as 12-months ahead prediction, the training algorithm which has a larger size of the hidden

layer neuron exhibits better forecasting performance than the smaller.

Also the effective number of parameters in 8 neurons or 10 neurons was about 33% - 70%
of the total number of parameters, and BRA.TDS-20.NN-20 network showed that the
number of parameters used was drastically reduced to 33%. When increasing the test
sampling data size from 15% to 20% did not show any significant change in performance
results. Inaddition, the results of the correlation coefficient between the outputs and targets
show that the test sampling data size 20% is worse than 15%. The train, validation and test
performance errors by the Levenberg-Marquardt algorithm show a significant error in size

even though no indication overfitting or extrapolation.

In the Figure 4.13 of 12-months ahead prediction, the network of BRA.TDS-15.NN-10
has appeared relatively good convergence with the total course of the peaks and bottoms of
the observation value. However, In the case of sudden up and down changes of market,

unstable prediction is shown also with the 3, 6, 9-months ahead prediction.
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Table 4.5 Comparison of ANN performance for 12-months ahead prediction

VLCC ANN Architecture
[12-months ahead ['BRA.TDS-15. [ BRA.TDS-15. | BRATDS-20. | LMA.TDS-15.
prediction] NN-8 NN-10 NN-10 NN.9
Epoch 310 639 622 15
Computing Time (sec) 5 13 13 -
1) - - - 0.1
Gradient 0.55 0.39 291 4.95
Effective number of
24/ A6/22 3 3/272 _
Parameter (used/total) 124177 146221 73.3/221
Regression 097443 0.98681 0.9599 0.95092
Mean Performance Eiror 9.3915 49389 14.5221 17.8695
Train Performance Eivor 0.8942 0.3323 8.3127 6.6971
Validation performance ) ) 19 4219
Firor
Test Performance Error 58.1091 31.3500 39.6702 491998
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4.2.1.6 15-months ahead prediction

As shown in Table 4.6, as the hidden layer neurons were increased from 8 neurons to 10
neurons, the iteration was increased, and the gradient value and the train performance error
(MSE) converged to a smaller value. The mean performance error of 10 neurons in 15-
months as 8.243 showed better results than 10.5656 of 8 neurons and other training algorithm
in the same forecasting horizon.  As shown here, there is a similar performance results with
the 12-month ahead prediction such as long-term ahead forecasting, the training algorithm

which has a larger size of the neuron exhibits better forecasting performance than the smaller.

Also, the effective number of parameters in 8 neurons or 10 neurons was about 23% -
67% of the total number of parameters and BRA.TDS-20.NN-20 network showed that the
number of parameters used was drastically reduced to 23%. When increasing the test
sampling data size from 15% to 20% did not show any significant change in performance
results. In addition, the results of the correlation coefficient between the outputs and targets

show that the test sampling data size 20% is worse than 15%.

The train, validation and test performance errors by the Levenberg-Marquardt algorithm

show a significant error in size even though no indication overfitting or extrapolation.

In the Figure 4.14 of 15-months ahead prediction, BRA.TDS-15.NN-10 network has
appeared relatively good convergence with the total course of the recession tendency of the

observation value.
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Table 4.6 Comparison of ANN performance for 15-months ahead prediction

VLCC ANN Architecture
[15-months ahead [BRA.TDS 15.] BRA.TDS 15. | BRA.TDS 20. | LMA_.TDS 15.
prediction] NN-8 NN-10 NN-10 NN-6
Epoch 229 341 1000 15
Computing Time (sec) 4 7 24 -
1 - - - 0.01
Gradient 0.83 0.29 3.32 30.30
Effective number of
/ 49/22 53/22 -
Parameter (used/total) 1677 149 ! ° !
Regression 0.97111 0.97762 0.95311 0.94432
Mean Performance Eiror 10.5656 8.2430 16 9515 20.1285
Train Performance Emror 1.5528 0.2142 12.2908 11.0865
Talidati ki { :
alidation performance _ _ _ 421246
Eiror
Test Performance Eror 62.2390 54.2748 35.8274 40.9310
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4.2.2 Prediction performance results for SUEZMAX

Table 4.7 - Table 4.12 and Figure 4.15 - Figure 4.20 shows the prediction results for
SUEZMAX Earning by the Bayesian regularization algorithm. For the representation of
the line in the figures, the observation value is represented by a solid black line, and the
predicted result is also represented by the solid red line in case of the best performance.

And the remained performance results are illustrated by the dashed line.

4.2.2.1 One-month ahead prediction

In Table 4.7 of one-month ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 31.1102 in 10 neurons in the hidden layer and 34.3612 in the
BRA.TDS-15.NN-8 network. - In the one-month ahead prediction of SUEZMAX, which
has the greatest market fluctuation among three tanker types, the BRA.TDS-15.NN-10
network showed more satisfactory prediction results than the BRA.TDS-15.NN-8 network.
As the number of the hidden layer neuron increased, the gradient value and train performance

error (MSE) converged to a smaller value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.9722 in the 10 neurons hidden layer which is better performance than 8
neurons of 0.96816. In the case of 10 neurons in the hidden layer, the effective number of
parameters was 127, which was only 55.9% of total training algorithm parameters of 221.
Also in the case of 8 neurons in the hidden layer, the effective number of parameters was

110, 62.1% of total training algorithm parameters of 177.

As shown in Figure 4.15 of 1-month ahead prediction, the performance results of the

network of BRA.TDS-15.NN-10 network has appeared relatively good convergence with
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the total course of the peaks and bottoms of the observation value, and it shows a certain

time lag.

Table 4.7 Comparison of ANN performance for One-month ahead Prediction

ANN Architecture

SUEZMAX
[One-month Ahead Prediction]
Epoch/computing time (sec)
Gradient 7.97 4.97
Effectivi ber of P ter
ective number o arameter 110/177 127221
(used/total)
Regression 0.96816 0.97220
Mean Performance Eiror 34.3612 31.1102
Train Performance Error 17.4391 7.4387
Test Perfoimance Emror 131.3814 166.8265
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Figure 4.15 One-month ahead prediction
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4.2.2.2 3-months ahead prediction

In Table 4.8 of 3-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 35.5070 in 10 neurons in the hidden layer and 38.9666 in the
BRA.TDS-15.NN-8 network. In the 3-months ahead prediction of SUEZMAX, the
BRA.TDS-15.NN-10 network showed more satisfactory prediction results than the
BRA.TDS-15.NN-8 network. As the number of the hidden layer neuron increased, the
iteration and computing time increased, and the gradient value and train performance error

(MSE) converged to a smaller value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.96815 in the 10 neurons hidden layer which is better performance than 8

neurons of 0.96387.

In the case of 10 neurons inthe hidden layer, the effective number of parameters was 121,
which was only 54.8% of total training algorithm parameters of 221.  Also in the case of 8
neurons in the hidden layer, the effective number of parameters was 104, 58.8% of total

training algorithm parameters of 177.

As shown in Figure 4.16 of 3-month ahead prediction, the performance results of the
BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total
course of the peaks and bottoms of the observation value, and it shows good tendency for

the overall prediction horizons.
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Table 4.8 Comparison of ANN performance for 3-months ahead prediction

SUEZMAX ANN Architecture
[(3-months Abead Perdiction] BRA.TDS 15. BRA.TDS 15.
NN-8 NN-10
Epoch/computing time (sec) 500/9 572/11
Gradient 8.78 6.49
Effectiv ber of P ter
ective number of Parameter 104/177 121221
(used/total)
Regression 0.96387 0.96815
Mean Performance Eiror 38.9666 355070
Train Performance Error 20.7935 10.9874
Test Performance Emror 143.1587 176.0862
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Figure 4.16 3-months ahead prediction
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4.2.2.3 6-months ahead prediction

In Table 4.9 of 6-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 34.3609 in 10 neurons in the hidden layer and 38.8077 in the
BRA.TDS-15.NN-8 network. In the 6-months ahead prediction, the BRA.TDS-15.NN-10
network showed more satisfactory prediction results than the BRA.TDS-15.NN-8 network.
As the number of the hidden layer neuron increased, the gradient value and train performance

error (MSE) converged to a smaller value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.96870 in the 10 neurons hidden layer which was better performance than 8

neurons of 0.96419.

In the case of 10 neurons in the hidden layer, the effective number of parameters was 120,
which was only 54.3% of total training algorithm parameters of 221. Also in the case of 8
neurons in the hidden layer, the effective number of parameters was 106, 59.9% of total

training algorithm parameters of 177.

As shown in the Figure 4.15 of 6-months ahead prediction, the performance results of
the BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total

course of the peaks and bottoms of the observation value.
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Table 4.9 Comparison of ANN performance for 6-months ahead prediction

SUEZMAX ANN Architecture
[6-months Ahead Pendiction] BRA.TDS.15. BRA.TDS.15.
NN-8 NN-10
Epoch/computing time (sec) 567/10 493/10
Gradient 8.02 6.63
Effectivi ber of P: ter
ective number of Parameter L06/177 120/221
(used/total)
Regression 0.96419 0.96870
Mean Performance Eiror 38.8077 34.3609
Train Perfoimance Eiror 18.1697 10.7994
Test Perfoimance Emor 157.1321 169.4464
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4.2.2.4 9-months ahead prediction

In the Table 4.10 of 9-months ahead prediction, the performance results of the
BRA.TDS-15.NN-10 network was 43.6329 and 65.7947 in the BRA.TDS-15.NN-8 network.
In the 9-months ahead prediction, the BRA.TDS-15.NN-10 network showed more
satisfactory prediction results than the BRA. TDS-15.NN-8 network. However, in the case
of the BRA.TDS-15.NN-10 network with 10 number of neurons in the hidden layer, the
prediction performance results was more satisfactory than the BRA.TDS-15.NN-8 network
with the 8 number of neurons in the hidden layer, but the effective number of parameters
was small, and the gradient value and the train performance error (MSE) showed a larger

value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.96040 in the 10 neurons hidden layer which was better performance than 8

neurons of 0.94311.

In the case of 10 neurons in the hidden layer, the effective number of parameters was 116,
which was only 52.5% of total training algorithm parameters of 221.  Also in the case of 8
neurons in the hidden layer, the effective number of parameters was 122, 68.9% of total

training algorithm parameters of 177.

As shown in the Figure 4.18 of 9-months ahead prediction, the performance results of
the BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total

course of the peaks and bottoms of the observation value.
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Table 4.10 Comparison of ANN performance for 9-months ahead prediction

SUEZMAX ANN Architecture
[9-months Ahead Perdiction] BRA.TDS-15. BRA.TDS-15.
NN-8 NN-10
Epoch/computing time (sec) 585/10 537/10
Gradient 3.93 6.95
Effective number of Parameter 122177 116/221
(used/total)
Regression 0.94311 0.96040
Mean Performance Eiror 65.7947 43.6329
Train Performance Emor 7.2434 12.6922
Test Performance Firor 401.4888 221.0258
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4.2.25 12-months ahead prediction

In Table 4.11 of 12-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 43.5288 and 57.5943 in the BRA.TDS-15.NN-8 network. In the
12-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory
prediction results than the BRA. TDS-15.NN-8 network. As the number of the hidden layer
neuron increased, the gradient value and train performance error (MSE) converged to a

smaller value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.96127 in the 10 neurons hidden layer which was better performance than 8

neurons of 0.94603.

In the case of 10 neurons in the hidden layer, the effective number of parameters was 119,
which was only 53.4% of total training algorithm parameters of 221. Also in the case of 8
neurons in the hidden layer, the effective number of parameters was 110, 62.1% of total

training algorithm parameters of 177.

As shown in Figure 4.19 of 12-months ahead prediction, the performance results of the
BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total

course of the peaks and bottoms of the observation value.
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Table 4.11 Comparison of ANN performance for 12-months ahead prediction

ANN Architecture

SUEZMAX
NN-8 NN-10
Epoch/computing time (sec) 606/10 440/9
Gradient 6.64 5.82
Effective humber of Parameter 110 19
(used/total)
Regression 0.94603 0.96127
Mean Performance Error 57.5943 435288
Train Performance Error 14,4853 10.0323
Test Performance Error 304.7520 2349019

2

=4
T

=
T

12-months Ahead Prediction

-
(=]
T

red dash line : BRA. TDS-15. NN-10
blue dash line : BRA. TDS-15.NN-8

black full line : SUEZMAX Eaming (target value)

Dirty tanker average Earning (USD x 1000/day)
=
T

u I

Jan. 2015 Jun. 2015

|
Jan. 2016

Jun. 2016

Figure 4.19 12-months ahead prediction

Collection @ kmou

58

Dec. 2016




4.2.2.6 15-months ahead prediction

In Table 4.12 of 15-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 27.3112 and 32.3071 in the BRA.TDS-15.NN-8 network. In the
15-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory
prediction results than the BRA. TDS-15.NN-8 network. As the number of the hidden layer
neuron increased, the gradient value and train performance error (MSE) converged to a

smaller value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.97508 in the 10 neurons hidden layer which was better performance than 8

neurons of 0.97035.

In the case of 10 neurons in the hidden layer, the effective number of parameters was 127,
which was only 57.5% of total training algorithm parameters of 221. Also in the case of 8
neurons in the hidden layer, the effective number of parameters was 111, 62.7% of total

training algorithm parameters of 177.

As shown in Figure 4.20 of 15-months ahead prediction, the performance results of the
BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total

course of the peaks and bottoms of the observation value.
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Table 4.12 Comparison of ANN performance for 15-months ahead prediction

SUEZMAX ANN Architecture
[15-months Ahead Perdiction] BRA.1IDS:15. BRA.IDS-13.
NN-8§ NN-10
Epoch/computing time (sec) 273/5 361/7
Gradient 6.53 5.83
Effective number of Parameter .
/ 27/22
(used/total) 111/177 127/221
Regression 0.97035 0.97508
Mean Performance Emor 32.3070 27.3112
Train Performance Emor 14.1581 8.7129
Test Performance Firor | 136.3610 133.9412
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4.2.3 Prediction performance results for AFRAMAX

Table 4.13 - Table 4.18 and Figure 4.21 - Figure 4.26 shows the prediction results for
AFRAMAX Earning by the Bayesian regularization algorithm. For the representation of
the line in the figures, the observation value is represented by a solid black line, and the
predicted result is also represented by the solid red line in case of the best performance.

And the remained performance results are illustrated by the dashed line.

4.2.3.1 One-month ahead prediction

In Table 4.13 of one-month ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 37.8294 and 31.0876 in the BRA.TDS-15.NN-8 network. In the
one-month ahead prediction of AFRAMAX, which has a moderate market fluctuation
among three tanker types, the BRA.TDS-15.NN-8 network showed more satisfactory
prediction results than the BRA.TDS-15.NN-10 network. Also in the BRA.TDS-15.NN-8
network, the gradient value and the train performance error (MSE) showed a better value

than BRA.TDS-15.NN-10 netwok.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.94664 in the 8 neurons hidden layer which was better performance than 10

neurons of 0.93433.

In the case of 8 neurons in the hidden layer, the effective number of parameters was 105,
which was only 59.3% of total training algorithm parameters of 177. Also in the case of
10 neurons in the hidden layer, the effective number of parameters was 98.6, 44.6% of total
training algorithm parameters of 221. As shown in Figure 4.21 of 1-month ahead

prediction, the performance results of the BRA. TDS-15.NN-8 network has appeared good
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convergence with the total course of the peaks and bottoms of the observation value, and it

shows a certain time lag.

Table 4.13 Comparison of ANN performance for one-month ahead prediction

AFRAMAX

Epoch/computing time (sec)

Gradient
Effective number of Parameter 105/177 08.6/221
(used/total)
Regression 0.94664 0.93433
Mean Performance Error 31.08706 37.8294
Train Performance Error 7.8594 14.1181
Test Performance Error 1642627 173.7742
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4.2.3.2 3-months ahead prediction

In Table 4.14 of one-month ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 29.9537 and 27.7912 in the BRA.TDS-15.NN-8 network. In the
one-month ahead prediction, the BRA.TDS-15.NN-8 network showed more satisfactory
prediction results than the BRA.TDS-15.NN-10 network. Also in the BRA.TDS-15.NN-8
network, the gradient value and the train performance error (MSE) showed a better value

than the BRA.TDS-15.NN-10 network.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.95312 in the 8 neurons hidden layer which was better performance than 10

neurons of 0.94814.

In the case of 8 neurons in the hidden layer, the effective number of parameters was 118,
which was only 66.7% of total training algorithm parameters of 177. Also in the case of
10 neurons in the hidden layer, the effective number of parameters was 111, 50.2% of total

training algorithm parameters of 221.

As shown in Figure 4.22 of 3-months ahead prediction, the performance results of the
BRA.TDS-15.NN-8 network has appeared good convergence with the total course of the

peaks and bottoms of the observation value.

63

Collection @ kmou



Table 4.14 Comparison of ANN performance for 3-months ahead prediction

AFRAMAX AN}\I Architecture _
NN-8 NN-10
Epoch/computing time (sec) 563/9 908/18
Gradient 2.74 3.86
Effective number of Parameter 118/177 111221
(used/total)
Regression 0.95312 0.94814
Mean Performance Error 27.7912 299537
Train Performance Error 5.7924 7.7699
Test Performance Error 1539224 157.1411
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4.2.3.3 6-months ahead prediction

In Table 4.15 of 6-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 29.3719 and 37.5551 in the BRA.TDS-15.NN-8 network. In the
6-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory
prediction results than the BRA. TDS-15.NN-8 network. When the number of hidden layer
neurons increased from 8 to 10, the gradient value converged to a similar value in the two

network and train performance error (MSE) converged to a smaller value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.94922 in the 10 neurons hidden layer which was better performance than 8

neurons of 0.93441.

In the case of 10 neurons in the hidden layer, the effective number of parameters was 105,
which was only 47.5% of total training algorithm parameters of 221. Also in the case of 8
neurons in the hidden layer, the effective number of parameters was 94.1, 53.2% of total

training algorithm parameters of 177.

As shown in Figure 4.23 of 6-months ahead prediction, the performance results of the
BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total

course of the peaks an
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Table 4.15 Comparison of ANN performance for 6-months ahead prediction

AFRAMAX ANN Architecture
(6-months Ahead Perdiction] BRA.TDS-15. BRA.TDS-15.
Epoch/computing time (sec) 449/7 484/9

Gradient 4.0l 483
Effective number of Parameter

94.1/177 105/221

(used/total)
Regression 0.93441 0.94922
Mean Performance Emror 37.5550 29.3719
Train Performance Ermror 15.5525 11.2500
Test Performance Emror 180.9028 133.2707
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4.2.3.4 9-months ahead prediction

In Table 4.16 of 9-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 32.6568 and 33.5015 in the BRA.TDS-15.NN-8 network. In the
9-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory
prediction results than the BRA.TDS-15.NN-8 network. However, even though the
number of hidden layer neurons increased from 8 to 10, the gradient value and train

performance error (MSE) converged to a similar value in the two network.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.94326 in the 10 neurons hidden layer which was better performance than 8

neurons of 0.94177.

In the case of 10 neurons in the hidden layer, the effective number of parameters was
82.8, which is only 37.5% of total training algorithm parameters of 221. Also in the case
of 8 neurons in the hidden layer, the effective number of parameters was 82.3, 46.5% of total

training algorithm parameters of 177.

As shown in the Figure 4.24 of 9-months ahead prediction, the performance results of
the BRA.TDS-15.NN-10 network has appeared relatively good convergence with the total

course of the peaks and bottoms of the observation value.
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Table 4.16 Comparison of ANN performance for 9-months ahead prediction

AFRAMAX ANN Architecture

(9-months Ahead Perdiction] BRATDS-15. BRATDS-15.

NN-8 NN-10

Epoch/computing time (sec) 533/9 1000/27

Gradient 042 6.64
Effective number of Parameter iy

(used/total) 82.3/177 82.8/221

Regression 0.94177 0.94326

Mean Performance Emror 33.5015 32.6568

Train Performance Eiror 20.7368 21.4463

Test Performance Error 1066858 96.9302
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4.2.3.5 12-months ahead prediction

In Table 4.17 of 12-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 30.9197 and 43.4286 in the BRA.TDS-15.NN-8 network. In the
12-months ahead prediction, the BRA.TDS-15.NN-10 network showed more satisfactory
prediction results than the BRA.TDS-15.NN-8 network. As the number of hidden layer
neurons increased from 8 to 10, the gradient value and train performance error (MSE)

converged to a smaller value.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.94668 in the 10 neurons hidden layer which was better performance than 8

neurons of 0.93399.

In the case of 10 neurons in the hidden layer, the effective number of parameters was
90.8, which is only 41.1% of total training algorithm parameters of 221. Also in the case
of 8 neurons in the hidden layer, the effective number of parameters was 70.9, 40.1% of total

training algorithm parameters of 177.

As shown in Figure 4.25 of 12-months ahead prediction, The performance results of the
"BRA.TDS-15.NN-10" shows good tendency with the total course of the peaks and bottoms

of the observation values.
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Table 4.17 Comparison of ANN performance for 12-months ahead prediction

AFRAMAX ANN Architecture
[12-months Ahead Perdiction] BRA.TDS-IS. BRA.TDS-I5.
NN-8 NN-10
Epoch/computing time (sec) 725/15 1000/21
Gradient 7.44 6.14
Effectiv b fP t .
ective fumber of Tarametet 70.9/177 90.8/221
(used/total)
Regression 0.93399 0.94668
Mean Performance Error 43.4286 309197
Train Performance Error 293808 17.7166
Test Performance Error 123.9697 106.6175
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4.2.3.6 15-months ahead prediction

In Table 4.18 of 15-months ahead prediction, the performance results of the BRA.TDS-
15.NN-10 network was 31.2048 and 29.0555 in the BRA.TDS-15.NN-8 network. In the
15-months ahead prediction, the BRA.TDS-15.NN-8 network showed more satisfactory
prediction results than the BRA.TDS-15.NN-10 network. When the number of hidden
layer neurons increased from 8 to 10, the gradient value and the train performance error

(MSE) converged to a smaller value, but the performance error increased.

The R value for correlation between the outputs and targets was in the acceptable
boundary of 0.94947 in the 8 neurons hidden layer which was better performance than 10

neurons of 0.94556.

In the case of 10 neurons in the hidden layer, the effective number of parameters was 114,
which was only 51.6% of total training algorithm parameters of 221. Also in the case of 8
neurons in the hidden layer, the effective number of parameters was 91.8, 51.9% of total

training algorithm parameters of 177.

As shown in Figure 4.26 of 15-months ahead prediction, The performance results of the
BRA.TDS-15.NN-8 network shows good tendency with the total course of the peaks and

bottoms of the observation values.
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Table 4.18 Comparison of ANN performance for 15-months ahead prediction

AFRAMAX ANN Architecture
[15-months Ahead Perdiction] BRA.TDS-15. BRA.TDS-15.
NN-8 NN-10
Epoch/computing time (sec) 445/8 875/18
Gradient 6.05 407
Effective number of Parameter
(used/total) 91.8/177 114/221
Regression 0.94947 0.94556
Mean Performance Error 29.0555 31.2048
Train Performance Error 17.9484 5.3082
Test Performance Error 92.7367 162.4785
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4.2.4 Comparison for different hidden layer size

In this study, we modified the hidden layer size with the Bayesian regularization
algorithm and compared the effect of hidden layer size on network performance by
implementing one-month ahead prediction. The performance results such as iterations,
gradient, training parameters and performance errors are summarized in Table 4.19 and
Figure 4.27 shows the prediction results according to the hidden layer size. Increasing the
size of the hidden layer neurons increased iteration and increased computing time. The
gradient value and the train performance error (MSE) converge to a smaller value.
However, even with increasing neuron size, the R-values did not decrease and mean

performance errors did not decrease.

The mean performance error (MSE) were minimized when the size of the neurons was 8
and 10, and those of the neurons were almost equal to the size of the input variables (i.e. 9).
The effective number of parameters at this best performance was 67.8% and 66.5% of the

total training algorithm parameters.
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Table 4.19 Comparison for different hidden layer size

[One-month ahead Hidden Layer Size
prediction] 3 Neuron | 8 Neuron | 10 Neuron | 15 Neuron
Epoch 98 279 443 1000
Computing Time (sec) l R 9 32
Gradient 2.62 0.82 0.329 0.178
I:Zat::;::; ?ﬂzftiif) 43.4/67 | 120177 | 1470221 162/33
Regression 0.94886 0.98218 0.98175 0.97669
Mean Performance Error | 18.4899 6.7013 6.7026 8.9125
Train Performance Error 13.6415 1.3874 0.2660 0.0515
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4.2,5 Evaluation on ANN performance results for VLCC according to correlation

coefficient between input variables and target variable

In this study, the effect of the correlation between input and target variables on the ANN
prediction was investigated with changing the size of each input variables. The ANN
model applied for this was the Bayesian regularization algorithm with 10 neurons of the
hidden layer, and the test sampling data size was 15%, based on 3-months ahead prediction
for VLCC. In addition, ANN prediction was performed for each case by amplifying the
magnitudes of nine input variables (Time charter rates, Crude oil prices, World GDP, Global
oil production, Active fleets, Bunker prices, Demolition prices, New building prices and

second hand ship prices) by 1.1 and 1.3 times, respectively.

The correlation coefficients between Earning as prediction target variable and input
variables, and the results of ANN prediction performance are shown in the following Table
4.20. The Correlation coefficient between tanker Earning and Time charter rates shows the
strongest correlation with r = 0.8190, and followed by Second hand ship prices with r =
0.5825, New building prices with r = 0.3369.  Also, in Demolition prices of r = -0.0341,
the correlation coefficients between two variables of Earning and Demolition prices is

reversed and the correlation strength is also weak.

In the case of the largest Correlation coefficient (r = 0.8190) of Time charter rates, the
mean performance error (MSE) is 10.0411 at 1.1 times amplification and 10.8922 at 1.3
times amplification, which are slightly increased from 8.9288 of the section 4.2.1.2 above,
but there is no significant difference against the magnitude of the variation of the variables
size. Inthe case of Second ship hand prices (r = 0.5825), the mean performance error (MSE)
is 10.1039 at 1.1 times amplification, 22.3375 (MSE) at 1.3 times amplification. The mean
performance error (MSE) at 1.3 times amplification is showing significantly greater than
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8.9288 of the section 4.2.1.2 above. This trend can be seen in New building prices and
Global oil production. Further, the mean performance error (MSE) was significantly
increased in both 1.1 and 1.3 times amplification in the case of the other input variables with

low correlation strength.

In ANN forecasting, the ANN prediction performance error (MSE) when there is a large
correlation between the input and target variable does not change much according to the
change of the input variable size, and also in the case of the input variable with a small
correlation coefficient, the prediction performance error (MSE) changes according to the
change of the input variable size. In other words, it is found that the strength of the
correlation between the input variables and the target variable in the ANN affects the

accuracy of the ANN prediction performance.

Table 420 Comparison on ANN performance for VLCC according to correlation

coefficient between input variables and target variable (Earning)

Prediction performance error (MSE)

Correlation coefficient

with target variable () L1 times amplicaton 1.3 times amplicaton

Time charter rate 0.8190 10.0411 10.8922
Crude oil prices -0.2592 12.9335 19.5328
Global oil production -0.1966 8.7641 172714
Active fleets 04178 13.0031 19.3408
Bunker prices -0.3616 25.50006 18.8246
Demolition prices -0.0341 7.3997 5.9599
New building prices 0.3369 8.3411 12.8539
Second hand prices 0.5825 10.1309 22.3375
World GDP -0.1946 17.2714 14.1946
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4.2.6 Comparison of prediction performance error according to ship type

Table 4.21 - Table 4.23 show the prediction results for the three training models by the
Bayesian normalization algorithm for dirty tanker Earning of VLCC, SUEZMAX and
AFRAMA. And Figures 4.28 — Figure 4.30 show graphs of performance error variations.

As shown in Figure 4.2, the variation magnitude of the Earning on the ship type is the
largest SUEZMAX, followed by AFRAMAX and VLCC. And also in Table 4.21 — Table
4.23, the mean performance error (MSE) for each type of tanker is the largest of SUEZMAX
regardless of the neuron size and the test data sampling size, and the AFRAMAX and VLCC

are the least.

In the case of VLCC with relatively small market fluctuations, the short term ahead
prediction of 1, 3, 6, and 9-months shows satisfactory overall performance with the 8 neurons
architecture in the hidden layer. And with the training algorithm with larger size of 10

neurons, better results are obtained in the 12, 15-months ahead predictions.

Also, in the prediction of the SUEZMAX where the market fluctuation is the most severe,
the training algorithm with 10 neurons of hidden layer performs better than the 8 neuron

algorithm for all forecast periods.

In the prediction of AFRAMAX with a large shipping market variance, the training
algorithm with 8 neurons of hidden layer, which is smaller than the number of input variables,
has better performance in 1-month and 3-months ahead prediction than the training
algorithm of 10 neurons. And in the 6, 9, 12, 15-months ahead prediction, the larger

network having 10 neurons has better performance than the smaller network of 8 neurons.
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In the test data sampling size of 15%, the average value of the mean performance error
of the 8 neurons in the hidden layer for VLCC is the smallest with 8.30, and SUEZMAX is
49.16, which is 5.9 times larger than that of VLCC. And 33.74 for AFRAMAX, which is
4.07 times larger than VLCC. In the case of neuron size 10 also, VLCC has the smallest error
value of 7.57, and SUEZMAX is 33.81, which is 4.47 times larger than VLCC, and
AFRAMAX is 31.99, which is 4.23 times larger than VLCC.

In the test data sampling size of 20%, VLCC has the smallest value of 12.70,
SUEZMAX is 60.53, which is 4.77 times larger than VLCC, and AFRAMAX is 42.32,
which is 3.33 times larger than VLCC. When the, the training algorithm with 10 neurons
in the hidden layer of the 15% test data sampling model shows generally better results than

the training algorithm with 8 neurons.

From these results, it can be seen that in the bigger variance of the time series data , the
prediction error increases more, but the actual forecasting experiment applying the ANN
forecasting models is not problematic at any cases. ~ When the test data sampling size was
increased from 15% to 20% of the total observation points, that is when the training data
sampling size decreased from 85% to 80%, the number of iterations increased in all the

forecasting horizons and the mean performance errors (MSE) also increased.
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Table 4.21

Comparison of ANN performance error for VLCC

Advanced period NN-8 NN-10 NN-10
one-month 6.70 6.70 3.79
3-months 8.64 8.92 11.87
6-months 781 8.93 15.50
9-months 6.70 767 8.56
12-months 9.39 4.94 1452
15-months 10.57 8.24 16.95
Average 8.30 71.57 12.70
Comparison of ANN performance error (MSE) for VLCC
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Figure 4.28 Comparison of performance error (MSE) for VLCC
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Table 4.22 Comparison of ANN performance error for SUEZMAX

BRA
Advanced period NN-8 NN-10 NN-10
one-month 34.36 311 7722
3-months 3897 3551 5140
6-months 38.81 3436 49.25
9-months 72.40 3L11 4121
12-months 78.10 4343 5722
15-months 3231 2731 86.86
Average 49.16 33381 60.53

Performance error (MSE)

Prediction advanced period (months)

=——BERA. TDS-15. NN-8 =—=BRA. TDS-15. NN-10 ==BRA. TDS-20. NN-10

Figure 4.29 Comparison of performance error (MSE) for SUEZMAX
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Table 4.23 Comparison of ANN performance error for AFRAMAX

BRA

IDS-15 1DS-20
Advanced period NN-8 NN-10 NN-10
one-month 31.09 37.83 50.49
3-months 27.79 29.95 35.57
6-months 37.56 29.37 3557
9-months 33.50 32.66 46.22
12-months 43.43 30.92 50.49
15-months 29.06 31.20 35.57
Average 3374 31.99 42.32

Comparisonr of ANN performance error (MSE) for AFRAMAX
60

50.49 50.49
50

40

30

Performance error (MSE)

1 3 6 9 12 15
Prediction advanced period (months)
=e=BRA TDS-15NN-§  =e=BRATDS-15NN-10 =—e=BRA.TDS-20.NN-10

Figure 4.30 Comparison of performance error (MSE) for AFRAMAX
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Chapter 5 Conclusions

In this paper, several alternatives to ANN training algorithms have been approached to
solve multi-step ahead prediction problems using 204 monthly time series data from 2000
to 2016 for dirty tankers of VLCC, SUEZMAX and AFRAMAX. The training algorithms
of the neural networks used were the Levenberg-Marquardt algorithm and the Bayesian
regularization algorithm, and the accuracy of the prediction performance was evaluated by
applying the alternatives of the neural networks with changing parameters. The findings
of this study shown that when applying the adjustable parameters such as neuron size of
hidden layer and test data sampling size, the Bayesian regularization algorithm has better
performance specifications than the Levenberg-Marquardt algorithm in all prediction
horizons of supervised prediction with an advanced time of one-month, 3-months, 6-months,

9-months, 12-months and 15-months. The more detailed findings are as follows.

1. In the Bayesian regularization algorithm, when the size of the hidden layer neuron
increases, iteration and the computing time generally increase, and the gradient value and
train performance error (MSE) converge to a smaller value. However, in case of the
considerably increasing or decreasing neuron size, the R-values does not improve and also
prediction performance error does not decrease. The mean performance error (MSE) are

minimized when the size of the neurons is similar to the number of the input variables.

2. In the short term ahead prediction within about 1 year, ANN training architecture
with a smaller neuron size of hidden layer than the input variables has a best performance.
In the long term ahead prediction about over 1 year, ANN training architecture with a larger

neuron size of hidden layer than the input variables has a best performance.
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3. Prediction of time series data with large fluctuation shows best forecasting
specification in a training algorithm where the size of neurons in the hidden layer is larger
than the input variables without relation to the forecasting horizons. Prediction of time
series data with large fluctuation, the prediction error of training models increases more, but
the actual forecasting experiment applying the ANN forecasting models is not problematic

in terms of accuracy and tendency of prediction performance.

4. When there is a large correlation between the input and target variable, the ANN
prediction performance error (MSE) does not change much with the change of the input
variables size, and in the case of the input variable with a small correlation coefficient, the
prediction performance error (MSE) changes according to the change of the input variable
size. The strength of the correlation between the input variables and the target variable

affects the accuracy of the ANN prediction performance.

5. When increasing the size of the test data set in the Bayesian regularization algorithm,
the R value between outputs and targets and the mean performance errors show the worse
than the smaller test data set. The reason seems to be that the training data set has been

reduced.

This study concludes that in forecasting the dirty tanker markets, ANN can be used as
substantial tool to more accurately predict market changes for various type of vessels,
regardless of the magnitude of fluctuations. However, in order to improve predictive
performance, it is important to design an optimal ANN architecture for the targets to be

predicted.
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