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Enhancement of Dispersion Stability on the Polymer 

Nanocomposites with Clay Nanoparticles through Analysis 

of Moisture Absorption Behavior

Park, Soo Jeong

Division of Materials Engineering

Department of Marine Equipment Engineering

Graduate School of Korea Maritime and Ocean University

Abstract

To begin with, nanomaterials are widely used as reinforcing 

materials with specific functionalities, because they have a 

characteristic broad particle surface area and excellent properties in 

small amounts. However, the use of nanomaterial fabrication technology 

has many limitations, such as the arrangement and dispersion of 

nanomaterials for use in composite materials and for the use of 

general structural materials. In order to overcome these limitations, 

researches on the physical and chemical surface treatment of 

nanomaterial based reinforcing materials and the development of 

mechanical techniques have been actively carried out. However, from 

the macro perspective, fiber reinforced plastics (FRP) composites such 

as shipbuilding, aerospace, automobiles, still have many technical 

limitations to their use for commercial purposes. In addition, since 

the conventional nanotechnology has a high price and a complicated 
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molding process, it has a disadvantage in that the production 

efficiency is inferior to the use of other materials and methods. 

Particularly, mass production of nanomaterials is difficult to control 

the structure such as particular particle size and length, and it is 

not easy to ensure uniformity of physical and chemical properties when 

working with these materials in a commercial environment. 

Therefore, it is necessary to study the nanomaterial pretreatment 

method and the process of stabilization through a uniform dispersion 

with the polymer matrix, and it is required to develop nanomaterials 

for medium and large parts structural materials that exhibit uniform 

characteristics which can be used for a variety of other applications 

in other industries. 

In this context, this study aims to establish the basis of a 

suitable manufacturing process of nanocomposite materials for general 

structure by applying FRP composites to applicable top-down processes, 

that will serve to control the grain and porosity of existing 

nanomaterials to below a few hundreds of nanometers, and therefore to 

significantly improve their properties.

In this study, halloysite nanotube/epoxy (HNT/EP) matrix glass fiber 

reinforced plastic (GFRP) and basalt fiber reinforced plastic (BFRP) 

nanocomposites were prepared by separating crystalloid-HNT (C-HNT) and 

amorphous-HNT (A-HNT) according to the crystallinity of HNT and the 

state of dispersion of HNT, which was evaluated at the interface of 

laminates. The state of dispersion of the laminate nanocomposites 

fabricated in a flat plate shape was analyzed by dividing a total of 

eight (A―H) columns in the direction of the air outlet in the vacuum 

molding. 

The evaluation of the uniform dispersion was performed at 70。C, and 

the tendency and the deviation of the moisture absorption rate when 

immersed in distilled water for 336 h. Based on these studies, the 

reliability of the state of dispersion criterion of nanomaterials was 
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suitably evaluated. As a result, the material design criteria for 

uniform dispersibility were obtained through a review of the 

identified moisture absorption characteristics. The effect of HNT on 

the interfacial bonding strength between EP and fiber reinforcements 

(GF, BF) was different depending on the notation of crystallinity that 

was found. In this regard, it is shown that moisture was important for 

controlling cohesion between HNTs. In the curing system, HNT was shown 

to have promoted the curing reaction, and the curing reaction caused 

the resin to develop properties related to shrinkage. The resin 

shrinkage affected the mobility of HNT and was a major factor involved 

in the re-aggregation. In addition, A-HNT has a strong bonding force 

with EP, which is relatively uniformly dispersed in EP compared with 

C-HNT, but also has a strong influence on the bonding strength of the 

interlaminar interface of laminates or weak bonds with the resulting 

fiber reinforcements. In other words, the crystallinity of HNT is 

closely related to the dispersibility of this material. In this study, 

the effect of HNT content and structure on the dispersion stability in 

GFRP and BFRP was investigated using the structural water 

characteristics of HNT.

KEY WORDS: Clay-polymer nanocomposites 점토-고분자 나노복합재료; Halloysite 

nanotube 할로이사이트 나노튜브; Particle aggregation 입자응집; Crystallinity 결정

성; The state of dispersion 분산도.
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1.  Introduction

1.1 Trends of nanomaterial technology in advanced composites

Advanced nanocomposite materials are a core technology field of 

high-functionality new material and that is attracting attention in various 

higher value-added industries  (see Fig. 1). Nanotechnology manipulates and 

analyzes material in the nanometer size category to create new material or 

systems. A new material is fabricated by changing the composition of the 

constituent components, or by changing the structure of the material, such as 

the crystal structure, or the size of the material (유선희, 2016). 

Nanotechnology can dramatically improve the performance of existing 

composite materials, and contribute to the development of multifunctional, 

high-performance new material by incorporating and hybridizing heterogeneous 

material at the nano level by physical or chemical methods. 

Fig. 1 Applications of nanocomposites
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According to the technology trend report of the Korea Institute of Science 

and Technology (KISTI) (2002), nanomaterial is applied to functional materials 

used in molecular devices and various advanced electronic products, as well as 

the structural material of mechanical parts, through bonding with polymers. 

For this reason, the trend is toward nanotechnology in various fields, such as 

medical, environment, and energy.

The nanocomposites industry is located between the raw material industry 

and the applied product industry  (see Fig. 2). It is composed of a rear 

industry that supplies raw materials for nanomaterial and base material, a 

nanocomposite materials industry part, and a front part manufacturing 

nanocomposite materials for the industry sector (INNOPOLIS Foundation, 2017). 

Among them, nanocomposite materials are being developed as promising 

material in fields related to transportation, such as automobiles, airplanes, and 

ships. These are business fields that focus on the development of lightweight 

material that is commonly used to improve fuel efficiency. Because 

nanocomposite materials can achieve high strength without changing specific 

gravity, impact resistance, etc., it is being studied as a major material in the 

development of products such as automobile engine room parts and door 

panels. 

However, there are drawbacks, in that nanocomposite materials have high 

barriers to entry into the market due to low production, processing efficiency, 

ease of handling, and price competitiveness. Polymer nanocomposite materials 

technology is dominated by products that are classified as membrane (film) 

and coating. In addition, nanocomposite materials form a major product in 

industries related to real life, such as energy, construction, and the food 

packaging industry.
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Fig. 2 Industry trends of polymer nanocomposites market 

(INNOPOLIS Foundation, 2017)

A nanomaterial is a nanoscale material that has submicron size, and usually 

has a unit structure size of less than 100 nm. Nanomaterial, such as inorganic 

or metal particles, is separated and dispersed in a polymer material, such as a 

thermoplastic resin or a thermosetting resin, on a nano scale, to improve the 

mechanical properties of the material, or to impart specific functionality. 

Nanomaterial has a large surface area, so that it can obtain excellent physical 

properties with a small amount of addition, and it is mainly used for 

manufacturing various types of reinforcing material that are light and have 

high strength. In particular, it is possible to improve strength and stiffness, 

barrier properties against gas or liquid, abrasion resistance, heat resistance 

without deteriorating impact resistance, tensile strength, and transparency of 

the material by separating and dispersing the nano material in the polymer 
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material (Cho et al., 2006). In addition, nanocomposite materials have the 

advantages of lightweight and physical design, strong resistance to corrosion, 

the potential to provide electrical and thermal properties to material, and ease 

of manufacture of complex shapes. In order to expand the application range 

of nanomaterial in the industry, studies have been conducted on improving 

the affinity of nanomaterial by not only the protonation of polymeric material 

but also the mineralization of inorganic fillers. Research on the derivation of 

optimization parameters for the remediation process is required (KISTI, 2002).

As with the composites, nanocomposite materials also focus on creating 

synergies by macroscopically mixing heterogeneous materials, and expressing 

their useful properties. That is, two or more kinds of existing material are 

relatively homogeneously mixed with each other in a preserved state, which is 

opposite to alloy material. In order to minimize the deformation of the 

constituent materials and to project them onto the composite materials as 

much as possible, the state of dispersion, orientation, and interface of the 

nanomaterial as reinforcement are very important. In addition, it is possible to 

mix various material properties according to the manufacturing technology, 

and the material design can be made flexible, lightweight, and advanced. 

Therefore, in order to maximize the uniform dispersion of the reinforcement 

material, orientation method, and stress transmission efficiency, optimization of 

the interface design is a critical factor to be controlled for nanocomposite 

materials manufacturing. Among the various techniques, physical or chemical 

surface treatment of reinforcement, introduction of surfactants, and orientation 

by electrical or mechanical techniques are used as means for establishing 

such optimized process parameters (Choe, 2013). 

Nanomaterial as advanced composites focuses on functionality. In the case 

of functional nanomaterial, there is a great demand for the fields of 

electronic material, lightweight high-strength material for automobiles, and 
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environment-friendly material. Functional nanomaterial is divided into carbon 

nanomaterial, metal nanomaterial, oxide nanomaterial, porous nanomaterial, and 

other nanomaterial, depending on chemical composition and structure of the 

raw material. These various structural differences and applications of physical, 

chemical, and biological properties have formed a broad spectrum.

One of the greatest advantages of such advanced nanocomposite materials 

is that the surface area of nanoparticle is relatively large, while the distance 

between particles is extremely short despite the low dispersion content, due to 

the finely dispersed particles. The increase in the surface area of the 

nanocomposite materials and the decrease in the intergranular distance form a 

continuous phase, that is, the interaction between the matrix and the 

particles, or the interaction between particles and particles, remarkably 

increases. As a result, the surface energy is greatly increased. This increase 

in interfacial energy makes it difficult to obtain a stable micro dispersion 

system. Therefore, the quality and competitiveness of the product depend on 

understanding the nanotechnology and nanomaterial fabrication techniques that 

are within 100 nm, so research on manufacturing technology has been carried 

out in various ways in order to utilize it properly.

Recently, studies on clay minerals and layered compounds as nanomaterial 

have been actively carried out. These inorganic nanoparticle layered 

compounds are highly diverse in their kind and characteristics, and have a 

very unusual property, compared to general inorganic or inorganic compound 

crystals. In particular, they have the properties of an organic polymer that 

are hardly possessed as an inorganic compound, such as swelling property, 

thixotropy, various reactivities with organic compounds, and ion exchange 

ability. 

Nanocomposites using such layered silicates can be divided into exfoliated 

nanocomposites that completely disperse the silicate layer, and intercalated 
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nanocomposites that insert the polymer between the silicate layers. Methods 

for producing polymer composite materials using inorganic nanoparticles having 

a layered structure include melt intercalation, solvent intercalation, in situ 

polymerization, and compounding. Among them, compounding is a method of 

forming inorganic nanoparticles based on the original cluster in the matrix by 

a mixing technique used in conventional nanocomposite materials. In this 

method, a polymer chain is interposed between inorganic nanoparticles and 

various approaches have been attempted. Unlike solution and polymerization, 

the compounding method has the merit of the production efficiency being 

high, due to the relatively simple manufacturing process from a commercial 

aspect. However, since the final product quality is difficult to maintain at a 

certain level, and the risk of property deterioration is very high, there are 

many technical limitations in application and commercialization as material for 

medium- and large-sized machines, parts, and structural material. Also, the 

high price and complex molding process are disadvantageous to mass 

production. Therefore, in order to apply nanomaterial as an advanced 

composite material to industry, stabilization of the properties of nanomaterial 

should be prioritized. In particular, it is difficult to control the structure of 

mass-produced nanomaterial, such as particle size and length, and it is not 

easy to achieve uniformity of physical and chemical properties. Therefore, it 

is necessary to develop materials that exhibit uniform properties by stabilizing 

composite manufacturing techniques such as pretreatment methods of 

nanomaterial, and ensuring dispersion with matrix material.

In summary, nanotechnology is required to have a high degree of intensive 

technology to control the whole processes, such as analysis, control, and 

synthesis of nanostructure at the nanoscale level (유선희, 2016). In other 

words, the nanomaterial field for utilizing nanomaterial as advanced composites 

is a core technology that can dramatically change the direction of 
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technological progress in all fields of science, such as physics, chemistry, 

engineering, and medicine, and all fields of information electronics, materials, 

medicine, environment, and energy. In addition, technological change through 

nano-fusion materials is expected to have a great influence in the future in 

terms of industrial economics. Also, it is anticipated that new application 

products using innovative properties of nano-fusion material will form a 

large-scale market, and contribute to marketability. However, since the 

manufacturing technology of nanomaterial and nanocomposites is directly 

related to the quality of the structural material, it is necessary to secure a 

technology base from a macroscopic point of view, in order to improve the 

efficiency of the technology. This can be applied through advanced technology 

development study on nano-material surface modification and dispersion 

technology, nanotechnology to prevent recrystallization (agglomeration), and 

nanocomposite material process technology from a microscopic point of view.
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1.2 Objectives of study 

The goal of this research is to apply a top-down process that significantly 

improves physical properties by controlling and combining crystal grains and 

pores of existing material to a size of several hundreds of nanometers or less, 

to fiber-reinforced plastic (FRP) composites. Ultimately, it has the major 

purpose of opening up new horizons in the manufacturing process of new 

composite materials. The structural, physical, and chemical properties of 

nano-sized material highlight significant advantages in small quantities by 

creating new physical properties and functions in a variety of industries, while 

nanosize also limits the applications of nanomaterial. In particular, since the 

proper amounts of nanomaterial constituents are determined, they are 

relatively unaffected by the weight fraction between polymer and 

nanoparticles in mixing with a matrix, such as a polymer. In other words, in 

terms of excellent mechanical properties and light-weight, the efficiency of 

material property improvement is high, but the shape and size of the 

structure are restricted in manufacturing midium-and large-sized structures.

There are three approaches to apply nanoparticles to polymer-based FRP 

composites. The first is to impregnate the polymer matrix with nanoparticles, 

and mix them in the form of a uniform colloidal solution. The second is to 

uniformly bind the nanoparticles to the dry fabric (Yu, et al., 2019). The third 

is to uniformly disperse the nanoparticles on the surface of the prepreg 

formed by integrally molding the polymer matrix and the dry fabric. All of 

these have advantages and disadvantages in the molding process. A common 

factor among them is the change in state of the material due to resin curing, 

that is, the influence of resin fluidity on the nanoparticles. The combination 

of a polymer with viscosity and nanoparticles results in the generation of two 

or more molecular forces. Typically, the binding force between nanoparticles 
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and polymers is different, because the viscosity of the polymer limits the 

degree of freedom of nanoparticles. The binding force between nanoparticles 

affects the formation of clusters, by the binding force between nanoparticles 

according to the initial viscosity of the polymer. The attracting force between 

the nanoparticles is caused by the Van der Waals force, which is called 

agglomeration (aggregation). Since the aggregation phenomenon is strongly 

influenced by the viscosity of the polymer and the viscosity of the polymer 

varies with temperature, it is necessary to clarify the relationship between the 

temperature―viscosity and the viscosity―particle agglomeration (see Fig. 3). It 

is also observed in the form in which nanoparticles are incorporated into the 

polymer. In the case of the initial dry fabric and nanoparticles combined, the 

degree of freedom of the nanoparticles is limited, and the aggregation is 

relatively small. However, this is also not a negligible level, and an additional 

pretreatment step is required to increase the bonding strength between the 

dry fabric and the nanoparticles.

Fig. 3 Effect of polymer viscosity on the state of dispersion of 

nanoparticles (nanotubes)
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It is necessary to study not only the initial uniform dispersion but also the 

approach, to prevent the re-coagulation phenomenon between the 

nanoparticles in the curing step, in the relation between the nanoparticles and 

the polymer. In particular, as the shape and size of structures are becoming 

more complex and larger, it is difficult to identify the state of dispersion from 

a microscopic point of view on a molecular scale. Therefore, an alternative 

process system is needed to simplify the manufacturing process, and improve 

the production efficiency. In addition, a practical research database from 

various perspectives must be accumulated, to ensure the process stability of 

nanoparticle-polymer matrix FRP composites.

Therefore, in this study, nanoparticle-polymer matrix FRP composites with 

excellent mechanical properties were fabricated, and the dispersibility between 

the polymer matrix and nanoparticles was observed using the inherent 

moisture absorption characteristics of the nanoparticles. In addition, the curing 

behavior and aggregation phenomenon of nanoparticles in the curing process 

of polymer were investigated. In order to investigate the mobility of 

nanoparticles according to the thickness of the laminate composite, the 

distribution of nanoparticles at the lamination interface and the bonding type 

with the constituent material was analyzed. Finally, the results of this study 

will contribute to establishing nanoparticle-reinforced laminate composite 

manufacturing process parameters. It is expected that this study will be used 

as important research material to accelerate the development of 

high-functionality nanocomposite materials by establishing a research base on 

curing behavior and dispersion of nanoparticles having similar components.
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2. Literature review

2.1 Polymer matrix nanocomposites

2.1.1 Thermoset polymer composites

The polymers used in polymer matrix composites are classified into 

thermoplastic resins and thermosetting resins. A thermoplastic resin is a plastic 

that when heated, dissolves and becomes a liquid with high fluidity, and when 

cooled, becomes solid. It can be recycled with a reversible reaction. However, 

in the case of thermosetting resins, when heat and pressure are applied, they 

are melted, and become a fluid state. Once they are cured (solidified), they 

are not melted, even when heat is applied again. Thermoset polymer 

composites mainly consist of polymers such as epoxy and unsaturated 

polyester resin.

Fig. 4 Schematic diagram of curing reaction of thermosetting polymers; A-stage 

initial state, B-sate intermediate curing state, and C-state fully cured state 
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The thermosetting resin is produced in the form of a final structure through 

a curing process. The curing of the thermosetting resin is caused by the 

crosslinking reaction between the base resin and the hardener to form a 

three-dimensional network structure (Shin, et al., 2015), which is classified into 

three stages, namely, A-stage, B-stage, and C-stage, including change of 

glassy and rubbery state  (see Fig. 4). A-stage is the initial state of the 

thermosetting resin production reaction, and is a liquid state, and the 

conversion indicating the degree of reaction of the compound is 0 %. At this 

time, the thermosetting resin is dissolved by a specific solvent, and melted by 

heating. The B-stage means the intermediate curing state of the thermosetting 

resin, which is a partially cured solid state with (20―50) % conversion. It is 

softened by heating, and swells when contacted with a particular solvent, but 

is not completely melted or dissolved. Additionally, this state is referred to as 

gelation, which means that the liquid changes to a semi-solid state due to 

such chemical changes. The C-stage is the final state of the curing reaction, 

and has a conversion of more than 90 %, where the thermosetting resin is 

insoluble, and can be regarded as fully cured. Generally, the thermosetting 

resin maintains the B-stage state at room temperature (RT), and the viscosity 

gradually decreases as heat is applied, resulting in the A-stage state. When 

heat is applied and a specific temperature is reached, the reaction with the 

Hardener changes to B- or C-stage (Shin, et al., 2015). 

The curing reaction is influenced by the pot life from the mixing of the 

resin and the curing agent to the progress of curing and gelation, and the 

curing time until solidification. The combination of specific time and 

temperature in the curing condition is called one cycle, and the degree of 

cure varies depending on the cycle of the step, which affects the 

characteristics of the resin and the durability of the material (Shin, et al., 

2015). The degree of cure is used as an indicator of the chemical change of 
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the polymer resin, and the curing reaction is accompanied by a change in the 

physical and mechanical properties of the thermosetting resin, and is 

influenced by the curing temperature (Kwon, et al., 2014; Berglund & Kenny, 

1991).

In addition, the most closely related factor to the curing process of 

thermosetting resins is viscosity. This is because the viscosity can induce 

diffusion control in the initial curing step. In the curing system of a 

thermosetting resin, the viscosity exhibits a complex temperature dependence, 

due to two phenomena. First, at constant molecular weight, the viscosity 

decreases with increasing temperature. Second, the increase in temperature 

promotes hardening, and as a result, increases the molecular weight and 

viscosity. Through this process, vitrification results are obtained in the 

post-curing stage (Vyazovkin & Sbirrazzuoli, 2000).

Shrinkage of thermosetting resin in composite structure design is one of the 

important factors to be considered  (see Fig. 5). Shrinkage occurs during 

curing, which causes residual stress in composite structure, and causes thermal 

deformation, such as spring-in, spring-out, and warpage. Shrinkage difference 

occurs due to extreme temperature difference between the inside and outside 

of composite material. For this reason, it is necessary to analyze the cure 

shrinkage behavior of the resin, in order to minimize thermal deformation of 

the structure. In general, the initial curing reaction of the resin is dominated 

by chemical reactions, and after gelation, the diffusion reaction is more 

affected (Shin, et al., 2015).
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Fig. 5 Three district regions of resin change behavior on 

thermosetting resin cure system. Vi and Vf are the specific 

volume of the system at gelation and 100% cure, respectively 

(shah, & Schuble, 2010; Schubel, et al. 2013; Kwon, 2014)     

Cure shrinkage occurs mainly in the B-stage, and begins with the formation 

of crosslinks, in which polymeric monomers in the resin have covalent bonds. 

The shrinkage of the resin does not occur at the initial stage of the curing 

reaction, but begins to increase sharply when the degree of cure reaches a 

certain level. However, when a certain level of hardening is reached, the 

shrinkage of the resin does not proceed any more. In addition, the higher the 

curing temperature of the thermosetting resin, the more shrinkage of the 

resin starts at a lower degree of cure; and since the shrinkage rate at the 

time of shrinking the resin is independent of the curing temperature, a 

precedent study on the relationship between degree of cure and volume 

shrinkage is necessary.

In particular, in order to use a reinforcing material, such as nanoparticles, 

in the production of a polymer matrix FRP, it is necessary to confirm the 

effect of the reinforcing material on the curing reaction of the polymer. In 

contrast, in order for the reinforcing material to perform its role, it is also 
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necessary to consider the risk of performance deterioration such as thermal 

deformation due to the curing reaction of the polymer.

2.1.2 Nano-modification

Nano-dispersion technology means that functional nanoparticles are stably 

dispersed in a matrix such as a polymer. Since nanoparticles can realize the 

originally intended characteristics and functions according to the uniformity 

and stability of dispersion, various dispersion techniques are being studied as a 

core element technology (Hwang, et al., 2016), to optimize dispersion 

technology and systems, and the development of techniques for dispersion 

stabilization is being actively carried out. 

One of the greatest advantages of nanomaterials is that the dispersed 

particles are fine and the overall surface area of the nanoparticles is 

relatively large, while the distance between particles is very short, despite the 

low dispersant content. In the composite material using such a nanomaterial, 

the total surface area is remarkably increased while the inter-particle distance 

is reduced, so that interactions between the polymer matrix and nanoparticles, 

or between nanoparticles, and nanoparticles, are significantly increased. As a 

result, the surface energy is greatly increased. This increase in interfacial 

energy makes it difficult to obtain a stable micro dispersion system.

Nanoparticles such as nano-clay and nano-silica are used to improve the 

mechanical, thermal, and chemical properties of polymer matrix (Fatemeh, et 

al. 2013; Kibria, et al., 2015; Attia, et al., 2013). However, in nanocomposites, 

the surface area becomes exponentially larger as the particle reinforcement is 

reduced to nanoscale. As a result, if the addition amount is increased, the 

surface of the reinforcement becomes difficult to be wetted by the polymer 

matrix (Choe, 2013). In addition, nanoparticles aggregate to form a cluster 

(See Fig. 6). This is because the nanoparticle surface has an environment 
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where hydrogen bonding, moisture adsorption, and other chemical bonding 

actions are likely to cause aggregation phenomena between particles.

Therefore, the nanomaterial is chemically and structurally modified to 

overcome the limitations of the nano-dispersion technique. Proper surface 

modification can improve the dry state of nanomaterial and the dispersibility 

of polar and nonpolar solutions, polymeric compounds, and inorganic composite 

powders, and improve the effectiveness of nanomaterial. By modifying the 

nanoparticles, it is possible to improve the bonding and intercalation with the 

polymer material, and to lower the cohesion between the nanoparticles, 

thereby enabling uniform dispersion. At this time, the surface modification 

should be performed within a range that does not adversely affect the 

physical properties of the nanomaterial to be utilized.

Fig. 6 Formation of cluster and surface bonding structure by adsorption of 

moisture on nanoparticle surface
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For example, in the case of the surface modification method of silica nano 

powder, the surface property is modified by spray heating by a method in 

which the silica nano powder having mainly hydrophilic surface properties is 

modified to be hydrophobic. In addition, various surface modification methods 

have been reported for various inorganic-metal nanomaterial, depending on 

the characteristics of the nanomaterial, such as ultrasonic nano-surface 

modification, solid element plasma ion implantation, and surface treatment of 

functional nanoparticles, a surface-initiated atom transfer radical 

polymerization (ATRP) (Lee, et al., 2015; SunMoon University, 2012; 김용석, 

2006; Li, et al., 2009).

For reference, the modified nanomaterial is strengthened to various matrix 

materials through various dispersion methods, such as medium dispersion, 

mechanical stirring dispersion, ultrasonic dispersion, electrostatic dispersion, 

dispersant dispersion and surface treatment. Typically, mechanical and 

ultrasonic dispersion are utilized as polymer-nanoparticle dispersion methods 

for structural materials of various sizes.
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2.2 Halloysite nanotubes based polymer nanocomposites

2.2.1 Halloysite nanotubes and crystallinity

The minerals of the kaolin group include kaolinite, dickite, nacrite, 

phyllosilicate, feldspars, hematite, and halloysite, which are present in 1: 1 

layers, but are stacked in different ways (Kadi, et al., 2012). Among them, 

halloysiste nanotube (HNT) is an environmentally friendly nano material 

derived from geologically weathered or hydrothermally altered rocks, corrosion 

rocks, and soils, and has a relatively higher water content than the kaolin 

group minerals (Szczepanik, et al., 2015; Horvath, et al., 2003; Dong, et al., 

2014). HNT has a hollow nanotube shape with an outer diameter of about (30 

to 190) nm, a cylindrical pore (lumen) of about (10 to 15) nm, and an inner 

diameter of about (10 to 100) nm (Shu, et al., 2015; Cavallaro, et al., 2011). 

Chemically, HNT, which is similar to kaolinite and has the structural formula 

Al2(OH)4Si2O5・nH2O, is separated into a single layer of water molecules. 

HNT (n=2) refers to the hydrated form. At this time, the grain size is about 

10Å, which means that there is one molecule of water between the 

multi-layers. HNT (n=0) is a dehydration structure, named 7Å, which is 

obtained by removing interlayer water molecules, whereas tubular morphology 

is maintained (Yuan, et al., 2009; Liu, et al., 2007; Dionisi, et al., 2016). HNT 

has a dominant form of tubular structure, with the 1: 1 type layer structure 

being divided into a silica tetrahedral sheet and an alumina octahedral sheet 

(see Fig. 7). HNTs have siloxane (Si-O-Si) groups, Silanol (Si-OH), and 

Aluminum Hydroxide (Al-OH) groups, and Thin layer of water between 

continuing layers (Yuan, et al., 2015; Szczepanik, et al., 2015; Duce, et al. 

2015; Gasparini, et al. 2013). The zetapotential behavior of HNTs is almost 

negative at pH (6―7), due to the small surface potential of SiO2, and the 

positive cations on the Al2O3 inner surface. The chemistry of the outermost 
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surface of the HNT is similar to SiO2, and the properties of the inner cylinder 

core are related to the properties of Al2O3 (Liu, et al., 2007).

Fig. 7 Chemical structure and composition of HNT

HNT has a natural nanotube structure, high surface area, and unique 

surface properties, and is highly applicable as an additive filler of polymer 

plastics. The layered silicate structure of these HNTs forms a highly polar 

hydrophilic structure due to the OH group present at the end of the sheet, 

making it difficult to intercalate into a lipophilic material, such as a polymer. 

However, since naturally occurring HNTs have a unique crystalline structure, 

such as low hydroxyl density, as compared with other inorganic fillers of nano 

size, it is relatively easy to uniformly disperse the polymer in the polymer. In 

particular, this improves the mechanical properties, such as the Young's 

modulus and yield stress, by bonding with the polymer matrix (Nakamura, et 

al., 2013; Kaynak, et al., 2009; Lee, Park & Kim.. 2017), and reduces the 

coefficient of thermal expansion, by forming a physical barrier during 

combustion, and delaying heat transfer. Also, as the particle size increases, 
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the fracture toughness increases. In other words, HNT is one of the 

nanofillers that is effective in improving mechanical properties, thermal 

stability, and flame retardancy. In addition, the intermediate water layer of 

HNT is a core structure for nano-modification, forming a structure that is 

capable of directly reacting with a solution such as an acid, and can be 

chemically and biologically loaded with various materials (Szczepanik, et al., 

2015; Shchukin, et al., 2005). Therefore, HNT is widely used to synthesize 

complex structures. For example, template metal nanoparticle-HNT synthesis 

forms nanowires and porous carbon materials (Li, et al., 2009).

Generally, HNT is referred to as Hydro-HNT with 10Å and 7Å layers 

intermixed. Hydro-HNT is transformed into metakaolin by dehydroxylation 

reaction at (450 to 700)。C, which removes 10Å grain in Hydro-HNT, and 
leaves only 7Å grain (Gasparini, et al. 2013). These Hydro-HNT (-10Å, -7Å) 

and HNT (-7Å) are collectively called endelite, and are transformed into 

amorphous structures at temperatures above 700。C. This is because the 

amorphous structure is clearly observed when the endelite is heated above 

1,000。C, and is called Meta-HNT (Park, 2016a, b, Kim, 2017; Hiller, et al., 

2016). These changes are due to dehydroxylation, which removes water from 

the hydroxyl group, which is an important thermal dissociation reaction that 

occurs in the minerals, and natural and synthetic silicate materials of the 

kaoline group. The loss of the receiver caused by this process causes local 

buckling and deformation in the crystalline layer structure of the HNT. In 

addition, thermal decomposition reactions of some homogeneous clay minerals 

occur mainly in the temperature range of (30 to 1,000)。C, where the 

reaction rate of isothermal dehydration and dehydroxylation is the same as 

that of the first reaction (Duce, et al., 2015; Kiptsov, et al., 1988; Adhikari, et 

al., 1983; Liu, et al., 2012). However, this dehydroxylation reaction is 

controversial, because it depends on many factors of HNT structure, such as 
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particle size, shape, and defect density, and many factors, such as heating 

rate, sample treatment, temperature, and humidity. (Gasparini, et al., 2013). 

Therefore, it is necessary to set the process parameters suitable for the 

crystal structure of the HNT and the characteristics of the polymer matrix, 

and to optimize the system through surface modification and polymerization.

In particular, clay minerals such as HNT are used to support enzyme 

immobilization to solubilize the enzyme, or increase the recovery rate of the 

enzyme. As a result, research on the surface chemical polymerization of HNT 

is underway. Since the behavior of materials in the bond between HNT and 

polymer matrix is ​​mainly limited to the constituents of HNT and polymer 

matrix, the efficiency of heterogeneous catalyst use is required (Rawtani & 

Agrawal, 2012; Kojima, et al., 1993; Okamoto, 2003). 

Therefore, chemical compatibility is required between the single components, 

and the interfacial interaction with the HNT filler, which acts as a part of 

the microstructure, directly affects the properties of the material. Therefore, 

when nanoparticles are used as reinforcing materials for polymers, it is 

necessary to achieve uniform dispersion and to reduce cohesive force, by 

applying various techniques, such as the sol-gel process and the ultrasonic 

vibration method (Rosso, et al., 2006 ; Xiao & Ye, 2006).

2.2.2 Dispersion uniformity of halloysite nanotubes as fillers

In polymer nanocomposites, nano clay has a form that is peeled or 

dispersed in a polymer material, such as a thermoplastic resin or a 

thermosetting resin. Polymer chains are mainly inserted between layers of 

nano-clay, contributing to improvement of the mechanical properties or 

functionality (Tang, et al., 2010). As a direct/indirect method of inserting the 

polymer into the interlayer structure of the HNT, there are solution, 

polymerization and compounding methods (Pavlidou & Papaspyrides, 2008; 
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Idumah, et al., 2015). These are mainly considered in terms of high 

functionality, productivity, and commerciality. In general, high technology 

development is being carried out in order to maximize the utilization of 

nanoparticles, while minimizing structural and physical damage to the nano 

clay.

In the solution method, a polymer is dissolved in a solvent to prepare a 

solution and then mixed with an organic layered material. It is difficult to 

separate the polymer from the solvent of the solid component, because a high 

molecular weight polymer is inserted between the layers, and is 

non-commercial. In the polymerization method, an organic layered silicate is 

mixed with a monomer as the raw material of a polymer, and a part of the 

monomer is penetrated between the layers, and polymerized to obtain a 

nano-polymer solution. Since a monomer having a low molecular weight is 

intercalated between the nanoparticle layers, peeling occurs relatively easily, 

so that it is possible to disperse the layered silicate at nanoscale. However, it 

is difficult to apply to a large amount of nanoparticles, because the available 

monomers are limited, and the manufacturing process is complicated. On the 

other hand, in the compounding method, the organic layered material is mixed 

with the polymer resin in a molten state. Therefore, since processing 

equipment, such as an extruder and a ball mill, can be used, it is most 

efficient from a commercial viewpoint. Unlike the solution and polymerization 

methods described above, the compounding method has the advantages of 

ease of raw material supply and simplification of the process, since a large 

amount of nanoparticles can be handled. However, it is necessary to develop 

advanced technology to remove the layered material at the nanoscale, such as 

the use of a compatibilizer that enhances the affinity between the polymer 

resin and the layered material, modification of the polymer resin, and 

establishment of mixing conditions.
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In general, the chemical species that can form interlayer complexes are 

limited to monomers and small molecules, and the polymers are difficult to 

intercalate between layers due to their size, and they are compounded by 

interlayer polymerization (Ryu, et al., 1998; Barrientos-ramirez, et al., 2011; 

Gao, 2004). When a load is applied to nanocomposites fabricated through this 

process, microcracks are generated between the weakly bonded layers. The 

interlayer polymerized nano clay inhibits the growth of microcracks, resulting 

in high fracture energy. In this case, the impact strength of the composite 

with nano clay is increased more than two times, depending on the kind of 

nano clay (Tang, et al., 2010; Basara, et al., 2005; Deng, et al., 2007). Tang, 

et al. (2011) and Deng, et al. (2010) reported that when intercalated HNTs 

were used to produce uniformly dispersed HNT-Epoxy colloidal solutions, the 

fracture toughness was significantly improved, without sacrificing properties 

such as the strength, glass transition temperature, and thermal stability (Ye, 

et al., 2007, Ng, et al., 2010). This increase in fracture toughness is mainly 

due to mechanisms such as crack bridging, crack deflection, plastic 

deformation of matrix around HNT clusters, fiber breakage, fiber segregation, 

and pull-out of HNT. In other words, the increase of contact area with epoxy 

through HNT modification affects the improvement of fracture toughness.

Recently, the application of nano clay in industry has been rapidly 

increasing. Ultimately, uniform dispersion is emerging as a core technology of 

nano clay composite, and dispersion is closely related to intergranular 

aggregation. Agglomeration of nanoparticles has a direct effect on the 

physical properties of the material (Deng, et al., 2007). In particular, 

agglomeration between nanoparticles degrades the activity of nanoparticles, 

making it very difficult to produce nanoparticles, and to apply nanoparticles as 

fillers (Esbati, et al., 2018). 

The major causes of nanoparticle aggregation phenomena can be classified 
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as follows. First, since conventional materials absorb a large amount of 

mechanical energy and thermal energy in the process of nanosynthesis, the 

new nanoparticles have high surface energy. These nanoparticles try to reach 

a stabilized state by lowering their high surface energy, which causes mutual 

aggregation of nanoparticles. Second, when the particles reach a specific 

particle size, the inter-particle distance becomes extremely short, and the Van 

der Waals force between particles becomes larger than the inherent gravity 

of the particles, resulting in mutual agglomeration between particles. Thirdly, 

the hydrogen bonding, moisture adsorption and other chemical bonding action 

on the surface of the nanoparticles cause agglomeration between the 

particles. 

Therefore, these nanoparticle agglomerates form voids in the polymer or 

matrix, and act as stress concentrations, thereby lowering the strength. These 

nanoparticles are influenced by the interlayer distance (Brindley, 1979). In 

addition, studies have been carried out to improve the mechanical strength 

and high-temperature characteristics by increasing the inter-layer distance by 

inserting various organic molecular ions into swellable clay such as HNT, 

thereby ensuring dispersion stability (Ryu et al., 1998; Blumstein, 1965 ; 

Kanatzidis, et al., 1989, Deng, et al., 2008). HNT has a structurally wide 

surface area, high porosity, and adjustable surface chemistry, and imparts 

specific functionality by grafting HNT to substrates, such as thin film and 

polymers, through the deformation and surface modification of nanotubes. In 

addition, HNTs are easy to use as fillers for polymer composites, because of 

their individual nano-particles with small surface charge (Deng, et al., 2009). 

However, HNTs do not have uniformly dispersed nanotube structures, and 

tend to aggregate under the influence of Van der Waals forces, due to their 

relatively large surface energies. In other words, HNT can act as a potential 

defect (Deng, et al., 2009; Levis & Deasy, 2002). Therefore, the binding force 
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between the nanoparticles and the polymer must be further increased through 

the modification of the HNT and surface functionalization treatment. In 

addition, nanoparticle dispersion methods should be considered to minimize the 

problems that can arise from nanoparticles (Lun, et al., 2014; Hu & Yang, 

2012).

Natural HNTs also exist as aggregates of various diameters and lengths in a 

natural state, similar to conventional inorganic nano-clay (Lun, et al., 2013). It 

is highly likely that the coagulation phenomenon occurs due to surface 

denaturation, such as moisture adsorption, during the process of storage or 

manipulation after the nano-forming process. However, HNT is widely used 

for nanocatalysis, because it can obtain higher specific surface area and 

larger void area due to its uniform dispersion, and is applied as an effective 

impact modifier in highly brittle polymers. (Liu & Zhao, 2008). In addition, 

there is a need for a new methodology to solve this problem.

However, in general, primary aggregation occurs in the process of bonding 

with the polymer. Secondary aggregation (re-aggregation) occurs in the curing 

stage of the polymer, depending on the change of the state of the polymer, 

and the degrees of freedom of nanoparticles, and a large cluster is formed. 

Therefore, in order to uniformly disperse the nanoparticles, it is important to 

combine the nanoparticles with the polymer in a 1:1 ratio to form a complete 

bond. The conventional dispersion method has been studied, in order to 

prevent agglomeration of the nanoparticles themselves by mechanical 

agitation, which breaks the particle agglomeration. In contrast, mechanical 

agitation has the disadvantage that the nanoparticle lumps float, due to the 

flow of liquid. 

To overcome this, ultrasound dispersion was applied to force the 

nanoparticles to break the cohesive force into a larger energy. Ultrasonic 

dispersion is the most common method for peeling and inserting polymers into 
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nano clay. At this time, the ultrasonic strength is controlled, and the 

ultrasound exposure time for the nanoparticles is adjusted to uniformly 

disperse the coagulated nanoparticles temporarily. In addition, absorption of 

ultrasound energy by the polymer causes the temperature of the solution to 

rise and the viscosity to lower, thus allowing the uniform dispersion of 

nanoparticles. However, dispersion by mechanical blending methods, such as 

ultrasonic vibration and shear mixing, cannot completely prevent particle 

agglomeration. In recent years, various studies have been conducted to 

improve the dispersibility of nanoparticles by clay surface modifier through 

deformation, functionalization, and mixing techniques (Brantseva et al., 2018).

One of them is to modify the surface of nano-clay to improve the 

compatibility of nano-clay with polymer and to promote uniform dispersion 

(Liu, et al., 2003). Surface modification of HNT can extend the base spacing 

of HNTs by the intercalation of inorganic and organic compounds in the 

interlayer, which can form a strong bond between the HNT and the polymer 

through such surface modification (Rawtani & Agrawal, 2012; Levis & Deasy, 

2002). In addition, surface modification and ball mill homogenization have 

improved the dispersion of particles, which is due to the improved mechanical 

properties (Deng, et al., 2009). Therefore, in order to select an appropriate 

nano clay modifier, the polymerization process with the polymer and the 

chemical structure of the crosslinking agent should be considered. It is also 

necessary to pay attention to the increase of shear and peel strength by 

nano-fillers (Brantseva, et al., 2018). In particular, since HNT has a hollow 

nanotube form, surface damage occurs when exposed directly to ultrasonic 

energy. It is difficult to optimize the dispersion parameters of HNTs with 

various grain sizes, such as HNT-7Å and HNT-10Å. Therefore, a dispersant 

is used as a method to uniformly disperse HNT in a polymer suspension 

(Zhang, & Choi, 2012). Dispersants include inorganic dispersants, polymeric 
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dispersants, and anionic and cationic dispersants, and are classified according 

to the nature of the nanoparticles. According to Lun, et al. (2013), sodium 

dodecyl sulfate (SDS) is adsorbed on HNT as a dispersant, and is mainly used 

in silica-based nanoparticles similar to natural nanotubes, thereby improving 

the stability and dispersibility of the polymer suspension. However, additional 

studies are needed to maintain consistency of the HNT concentration and HNT 

particle size for polymer suspension applications.
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2.3 Environment degradation of nano-structural materials

2.3.1 Hygrothermal behavior of polymer composites

The aerospace, shipbuilding, marine, and automobile industries deal with 

typical composite materials. The light weight, specific strength, integral 

molding, and ease-of-design features that are possessed by composite 

materials are rapidly growing, not only in terms of mechanical properties, but 

also in terms of their structural, chemical, and physical properties, as well as 

their economic and industrial applications. Furthermore, the environmental 

resistance of composite materials, such as corrosion resistance, hygroscopicity, 

and fire resistance, prolongs material life, and secures structural stability 

under specific environmental conditions, as compared with conventional metals. 

While composite materials that are composed of two or more different 

materials are complementary to reinforcements and matrix materials, in 

extreme environments, the properties of a single material determine the 

properties of the composite material.

In particular, these characteristics are clearly observed in polymer 

composites. Polymers are highly vulnerable to environmental degradation by 

moisture, solvents, oil, temperature, mechanical load, and radiation (Akil, et 

al., 2014). When a polymer composite is exposed to high humidity or water 

environment for a long time, the polymer generally undergoes large influence 

from moisture. Generally, a polymer composite absorbs moisture, and this 

water molecule simultaneously affects the fibers, polymer matrix, and 

interface. In this case, the water molecule acts like a plasticizer in the 

polymer matrix, resulting in a deterioration of the mechanical properties 

(weakness of interfacial strength) finally (Akil, et al., 2014; Mazuki, et al., 

2011; Lee, et al., 2010). The water-softened polymer is plasticized to increase 
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the fracture toughness of the nanocomposite, but the surface becomes rough, 

and becomes a potential cracked part (Saharudin, et al., 2017). This 

deterioration also causes micromechanical damage to the fiber reinforcement 

and polymer matrix interface. Therefore, in order to improve the durability of 

the material, it is necessary to understand the moisture diffusion mechanism 

of the nanocomposite.

In the polymer degradation mechanism, initial moisture penetrates the 

polymer matrix, and diffuses according to Fick's law (Picard, et al., 2008; Xu, 

et al., 2006). The diffusion of moisture penetrates into the nonuniform 

interface between the silane portion of the polymer composite laminate and 

the reinforcing fiber interface, causing swelling of the material, and 

deterioration of the physical properties (see Fig. 8). A large amount of water 

generates tensile stress on the fiber, causing swelling and peeling of the 

polymer resin to cause permanent damage, such as separation of the fiber 

and resin interface and fiber breakage. In the case of fiber-reinforced 

materials, relatively little water directly influences penetration into the fiber 

or surface damage. In other words, fatal damage to the fiber surface occurs 

from the polymer matrix being degraded by water rather than being directly 

affected by water. The moisture absorbed in the polymer matrix chemically 

bonds with the polymer. However, some water molecules are not chemically 

bonded, because they diffuse into the free volume, and are removed by 

drying, without affecting the mechanical properties of the polymer. As such, 

the swelling and drying of the polymer due to moisture causes shrinkage of 

the material, and weakens the interfacial bonding strength between the 

polymer and the reinforcing fiber. According to Kim, et al. (2008), when the 

specific non-conversion point is observed in terms of the amount of water in 

the material or the exposure period of water, the swelling phenomenon and 

the interfacial fracture due to moisture are generated within the material. At 
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this time, it is impossible to recover the physical properties of the material by 

drying. Therefore, it is necessary to alleviate the conditions for this 

non-conversion point in the polymer composite.

2.3.2 Nanomaterials and environmental effect

Although water acts as a factor to inhibit the polymerization and synthesis 

of polymers and nanoparticles (Kornmann, et al., 2001; Manfredi, et al., 2008; 

Saharudin, et al., 2015), a large amount of water diffuses into polymer matrix 

by clay nanofiller (Kim, et al., 2005). High aspect ratio nanofillers can create 

a skewed path, where water molecules diffuse into the complex. In addition, 

Fig. 8 Damage mechanism of polymer matrix FRP composites by 

moisture penetration
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nanoparticles can reduce the cross-linking density of polymers (Lan et al., 

1996; Fellahi, et al., 2001; Manfredi, et al., 2008). At this time, the moisture 

absorption rate with respect to moisture tends to decrease gradually, as the 

content of the clay nanofiller increases. The clay nanopiller is added in an 

amount of about 1 wt.%, mainly because it exhibits high functionality, even in 

a small amount. Above 1 wt.%, the tendency of aggregation between 

nanoparticles increases the moisture absorption rate, resulting in a significant 

decrease in fracture strength and tensile stress, due to the physical damage 

of nanocomposites (Irshidat & Al-Saleh, 2018; Park & Kim, 2019; Park, et al., 

2019). However, when the dispersion uniformity of the nanoparticles is 

achieved, the clay nanofiller can greatly reduce the equilibrium moisture 

content and diffusion coefficient of the composite material (Mohan & Kanny, 

2011). In other words, the equilibrium moisture content and diffusion 

coefficient of the composite materials are greatly reduced by the clay 

nanofiller (Mohan & Kanny, 2011). This is because the tortuosity effect 

increases with increasing filler content. For example, in polymer epoxy-based 

nanocomposites, the maximum absorption rate has been observed through the 

addition of a layered silicate, Al2O3 nanoparticles (Alamri & Low, 2012; Zhao 

& Li, 2008; Liu, et al., 2014; Becker, et al., 2004). On the other hand, the 

fracture toughness and impact strength were increased, due to the plasticizing 

effect of moisture absorption. This is due to the fact that the penetration and 

diffusion of moisture into the polymer matrix increases the ductility of the 

polymer matrix, as well as the mobility of polymer chains, resulting in 

improved toughness of the nanocomposites (Alamri & Low, 2012; Zhao & Li, 

2008). Therefore, in a polymer nanocomposite, a liquid medium caused by 

external environmental factors, such as water, diffuses through microcracks, 

and induces stress cracking. In order to improve the stress cracking 

resistance, a detailed study of nanoparticle-reinforced polymer polymers is 

needed. In particular, it is important to study the relationship between the 
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external liquid medium and stress cracks of composites, improvement of 

interfacial bonding strength in the nanocomposites, and micro crack prevention 

(Saharudin, et al., 2015).

In addition, the HNT used in this study has also been reported to be added 

to the polymer composite to reduce the water absorption rate, and to improve 

the mechanical properties of the nanocomposite after moisture absorption 

(Saharudin, et al., 2016; Georga, et al., 1998; Saharudin, et al., 2017). Since 

HNT is hydrophilic, the addition of HNT to the polymer increases the water 

resistance of the surface, due to the different wettability of the surface (Liu, 

et al., 2014; Kim, et al., 2018). However, as mentioned above, when HNT is 

dehydrated at high temperature, it forms a relatively stable structure 

compared with nanotubes; but since it is not effective in intercalating the 

polymer in the HNT, additional surface modification is required (Deng, et al., 

2009).
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3. Experimental works

3.1 Halloysite nanotubes-FRP composites

The main material used in this study is polymer matrix fiber reinforced 

plastic (FRP) composites with HNTs (see Table 1). In this case, glass fabric 

and basalt fabric were used as fiber reinforcements, and they have a 

unidirectional woven arrangement as an inorganic material. Glass fiber (GF) 

and basalt fiber (BF) form a similar chemical composition. GF and BF are 

relatively low in mechanical properties compared to CF, but GF in general use 

in industry as an economical fiber. BF is an environmental-friendly material 

made of basalt ores, has mechanical properties similar to GF, has excellent 

heat resistance properties, as well as mechanical and chemical properties, and 

is being studied and applied in various industries.

A biphenol-A type epoxy resin (EP) was used as the matrix, and it was a 

low viscosity liquid type and had a post-curing condition at 80 ℃ for 4 h. 

Bisphenol-A (BPA)-type epoxy resin has mainly excellent chemical resistance, 

solvent resistance, high mechanical strength, and dimensional stability (see Fig. 

9), and is used in various industrial fields such as adhesives, coatings, and 

matrix materials for composites (Kim, et al., 2015). 

Fig. 9 Structure of thermosetting epoxy molecule
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Materials

Components Model Type

Reinforcement

Glass fabric

(EJ30)

Unidirectional 

fiber (UD)

Specification

þ Supplier: Hankuk Carbon Co., LTD, South 

Korea

þ Areal weight: 450 g/m2  

þ Thickness: 0.177 mm

þ Chemical composition (E-glass):

SiO2, Al2O3, CaO, MgO, Na2O, K2O, B2O3  

Basalt fabric

(HB-300)

Unidirectional 

fiber (UD)

Specification

þ Supplier: GM Composite Co., South Korea

þ Areal weight: 300±24 g/m2  

þ Thickness: 0.115±0.013 mm

þ Chemical composition: 

SiO2, TiO2, Al2O3, Fe2O3+FeO, CaO, MgO, 

MnO, Na2O+K2O, SO3 

Table 1 Composition and main specification of nanocomposites



- 35 -

Components Model Type

Matrix
Epoxy resin

(KFR-120V)

Liquid

Specification

þ Supplier: Kukdo Chemical Co., Ltd, South 

Korea

þ Hardener: KFH-141 

(Mixing ratio of epoxy resin/ 

hardener=100:30±2 wt.%)

þ Density of Mixture: 1.0~1.2 g/mL

þ Viscosity of Mixture: 150~300 cps

þ Glass transition temperature (Tg): (70—80) ℃

þ Post curing: 80 ℃ for 4 h

Components Model Type

Nano-fillers
Halloysite 

nanoclay

Powder

Specification

þ Supplier: Sigma-Aldrich, South Korea

þ Synonym: Kaolin clay

þ Density: 2.53 g/cm3 

þ Molecular weight: 294.19 g/mol

þ CAS No. 1332-58-7
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In particular, epoxy composite materials using bead, talc, CNT, silica, 

fiberglass, carbon fiber, and aramid fiber show excellent light weight, 

adhesion, mechanical properties, and durability, and are widely used in 

aerospace, automobile, civil engineering structural materials, shipbuilding, and 

marine industries. HNT was used as a nanofiller, and impregnated with GF 

and BF in EP mixed form. HNTs are classified into crystalline and amorphous 

types depending on the crystal structure. 

In this study, hydro-HNT (Al2Si2O5(OH)4·2H2O), crystalline HNT 

(Al2SiO5(OH)4), and amorphous Meta-HNT (Al2SiO5(OH)4) were used, and they 

were named Neat HNT, C-HNT, and A-HNT, respectively. They form a 

uniform crystal structure according to the heat treatment. In the case of 

C-HNT, when Neat HNT was annealed at 700 ℃ for 4 h, it had only the 7Å 
crystal structure of the Neat HNT precursor, which is a mixture of (7 and 

10)Å (quartz or silicon oxide). In addition, when exposed to temperatures 

above 1,000 ℃ for extended periods of time, C-HNT turns into an amorphous 

form, A-HNT (Kim, et al., 2008; Park, 2016a; Park, 2016b). These forms differ 

in crystallinity, depending on the presence or absence of the H2O layer in the 

structure of the HNT; their inherent physical properties also differ. In other 

words, since HNT is affected by heat, it is necessary to study the crystal 

structure and properties according to the temperature range to understand the 

basic crystal structure, except that the crystal structure is manipulated 

artificially, such as chemical surface treatment. Therefore, the material 

properties and manufacturing process to improve the physical properties of 

polymer matrix FRP composites based on the basic structure of HNT were 

examined. 

In particular, in the case of nanoparticles, the physical properties vary 

depending on the viscosity and molecular size of the polymer to be mixed, 

the addition amount of nanoparticles, and the dispersion technique. Therefore, 
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the addition amounts of HNT were classified into (0.5, 1, 3, and 5) wt.%, 

depending on the crystal structure of HNT. Table 2 shows the specifications 

of the samples used in this study. They are classified according to EP type, 

amount of HNT, and crystal structure of HNT.

Code
Epoxy resin 

(g)
Resin type

Clay content 

(phr)
Clay type

Neat GFRP 100 Liquid 0 NA

Neat BFRP 100 Liquid 0 NA

C-0.5HNT/GFRP 100 Liquid 0.5 Crystalloid

C-0.5HNT/BFRP 100 Liquid 0.5 Crystalloid

C-1HNT/GFRP 100 Liquid 1 Crystalloid

C-1HNT/BFRP 100 Liquid 1 Crystalloid

C-3HNT/GFRP 100 Liquid 3 Crystalloid

C-3HNT/BFRP 100 Liquid 3 Crystalloid

C-5HNT/GFRP 100 Liquid 5 Crystalloid

C-5HNT/BFRP 100 Liquid 5 Crystalloid

A-0.5HNT/GFRP 100 Liquid 0.5 Amorphous

A-0.5HNT/BFRP 100 Liquid 0.5 Amorphous

A-1HNT/GFRP 100 Liquid 1 Amorphous

A-1HNT/BFRP 100 Liquid 1 Amorphous

A-3HNT/GFRP 100 Liquid 3 Amorphous

A-3HNT/BFRP 100 Liquid 3 Amorphous

A-5HNT/GFRP 100 Liquid 5 Amorphous

A-5HNT/BFRP 100 Liquid 5 Amorphous

Table 2 Sample’s code and their specifications
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3.2 Experimental procedure

3.2.1 Surface modification by thermal treatment

Heat treatment was performed for the surface modification of HNT. 

Through the heat treatment at high temperature, the water layer remaining 

inside the HNT structure according to the chemical composition was removed. 

The annealing process was carried out at (700 and 1,000)。C in the electric 

furnace, and maintained under the isothermal condition for 4 h. The electric 

furnace was PyroTech's PT-16EF030 instrument and has a maximum 

temperature range of 1,500。C (see Fig. 10 (a)). Neat HNT was placed in an 

alumina crucible, and annealed in an electric furnace container (see Fig. 10 

(b)). For uniform heat treatment, the temperature difference between the 

inside and the outside of the alumina crucible was checked in advance, and 

then the isothermal holding time and the amount of heat-treated sample were 

set.

(a) Electric furnace (b) Heat treated HNTs

Fig. 10 Preparation of nanoparticle heat treatment
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In particular, after the heat treatment, the HNT was sealed in a vacuum, in 

order to prevent prolonged exposure to moisture in the atmosphere. This was 

to prevent the hydrolyzed HNT from recombining with moisture. Since the 

processed HNT is mixed with the polymer, the effect of moisture should be 

minimized.

3.2.2 Nano-FRP manufacturing process

HNT-reinforced FRP nanocomposites were fabricated through a 

semi-autoclave process. The semi-autoclave is vacuum-bag molding after 

laminating wet prepreg made by a Hand lay-up method. FRP samples 

prepared by this method have many advantages, such as a high resin 

impregnation rate, uniform fiber-resin volume ratio, and uniform surface. 

Table 3 shows that the process is divided into 6 stages:

Step 1. Ultrasonication. HNT was uniformly dispersed in EP using an 

ultrasonic processor. The ultrasonic processor is a K-CORPORATION Sonicator 

with a capacity of 500 watt and 20 kHz. In the ultrasonic dispersion process, 

the operating time and the activation time of the ultrasonic wave are (1,680 

and 1,200) s respectively, the amplitude is 50 % of the maximum input power, 

and the duration of one energy pulse is set to 5 s. Based on the above 

conditions, (0.5, 1, 3, and 5) wt.% of HNT were dispersed with EP.

Steps 2―6. Manufacture of HNT/GFRP and HNT/BFRP nanocomposites. Flat 

plate molds were prepared for HNT-reinforced GFRP and BFRP, and 

SAFELEASE #30 from AIRTECH was used for mold release. The wet-prepregs 

were laminated one-by-one, to form laminate composites. Then, the residual 

resin was removed by vacuum-bag molding, and the surface was flattened. 

After being fully vacuumed, high-temperature curing was carried out at 80。C 

for 4 h.
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Step 1 Ultrasonication Step 2 Mold release treatment

Step 3 Wet-prepreg production Step 4 Vacuum-bag molding

Step 5 High temperature cure

(at 80℃ for 4 h)

Step 6 Vacuum-dry oven

(temperature-time)

Table 3 Semi-autoclave process for HNT/EP nanocomposites
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3.3 Evaluation and analysis 

3.3.1 Structural property

In this study, it was necessary to clarify the crystal structure of HNT in the 

analysis of interfacial bonding and dispersibility between EP and HNT. In 

order to establish the crystallinity of HNTs annealed at (700 and 1,000)。C, 

the structure of HNT was observed from a microscopic point of view using 

Transmission Electron Microscopy (TEM), and the relationship between the 

surface and coherency of HNT was investigated.

The effect of HNT on the molecular structure of EP was analyzed by 

Fourier-transform infrared spectroscopy (FTIR) test (see Fig. 11). The FTIR 

equipment was an iS50 FT-IR from Thermo Scientific Solutions LLC. The 

important physicochemical characteristics of EP were confirmed (Seo, et al., 

2015).

Fig. 11 FTIR analysis equipments

FTIR is a method of quantitatively and qualitatively analyzing a substance 

by irradiating the molecule of the compound by Infrared. When a molecule is 

irradiated with infrared rays, it absorbs and emits a wavelength of (2.5-25) 

=(4,000-400) cm-1 of intrinsic vibration energy region depending on the 
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bonding structure between atoms in the molecule, and this change is 

measured. This is based on two theories, the first being that the molecules in 

the compound have a unique wavelength of the vibrational energy domain, 

depending on the type of functional group, such as —OH, C=O, COOH, N—H, 

C=C, which is directly involved in the reaction. The second is that the amount 

of absorbed wavelength is proportional to the concentration.

3.3.2 Thermal property

Differential Scanning Calorimetry (DSC) test was performed to analyze the 

thermal properties and structure of the EP/HNT colloidal solution. The DSC 

equipment was a DSC N-650 from SINCO Co., Ltd. (see Fig. 12). 

The heating rate was divided into (10 and 20)。C/min, and the enthalpy 

change, and the maximum exotherm temperature according to the heating 

rate were observed. The degree of cure, rate of cure, and heat flow of 

HNT/EP colloidal solution according to crystallinity and addition amount of 

HNT were compared and analyzed. At this time, EP was mixed with a curing 

agent at 100:30 vol/vol, and it was possible to measure the curing 

temperature and the melting point. The samples used were HNT/EP colloidal 

solution, which was in a liquid state before curing. About (5—7) mg was 

added to the aluminum hermetic pan and sealed with aluminum lid. This is 

because the polymer is cured according to the temperature rise at the time 

of the DSC, and the proper amount of the sample is checked in advance, in 

order to prevent the polymer from overflowing out of the container, due to 

volume expansion.

The DSC device measures the heat flux (dQ/dt) as a function of the sample 

temperature, while heating the sample and reference materials according to 

the set temperature conditions (Chen, et al., 2018). A qualitative analysis of 

the sample is possible from the position, shape, and number of peaks in the 
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DSC curve. Since the width of the peak is related to the change of enthalpy 

when the sample is denatured, it enables quantitatively calculation of the 

parameters of the substance causing the reaction, or the heat of the sample 

in the sample.

(a) Differential scanning calorimetry 

(DSC) device

(b) Aluminum lid, hermetic pan, 

tools

Fig. 12 DSC analysis equipments

Equation (1) shows the basic theory of measuring the degree of cure, and 

the rate of cure is calculated by differentiating the degree of cure with 

respect to time.

   
  

×                                       (1)

In particular, the curing reaction of epoxy is an exothermic reaction, in 

which an epoxy end functional group reacts with a curing agent (hardener) to 

form a crosslinked structure to release energy. Therefore, assuming that the 

calorific value generated during the reaction is proportional to the 

consumption of the functional group, the conversion can be expressed as in 

Eq. (2), and the total calorific value measured at the temperature elevation 

condition is used (Kwon, et al., 2018). 

 ∆
∆ 

                                                                   (2)
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where,  is the conversion, ∆  is the cumulative calorific value from (0 

to t), and ∆ is the total calorific value when the conversion is 1.

3.3.3 Environmental degradation property

In this study, the state of dispersion of HNT was predicted according to the 

number of fiber layers of laminate composites by using the excellent water 

resistance of HNT as a measure to determine the dispersibility of HNT. The 

absorption test equipment was a VB-55G from Lab. Companion (see Fig. 13 

(a)). The experimental conditions of moisture absorption properties were 

determined by immersing HNT/GFRP and HNT/BFRP in 70。C (=158。F) 

distilled water for up to 336 h (14 days), according to the Standard Test 

Method for Moisture Absorption Properties and Equilibrium Conditioning of 

Polymer Matrix Composite materials (American Society for Testing and 

Materials, ASTM D5229). Fig. 13 (a) (right side) shows that the laminate 

composites were divided into (A—H) columns, the average value of the 

moisture absorption rate was calculated by processing four samples 

corresponding to each column, and the change of the moisture absorption rate 

was observed. The average moisture content was measured by Eq. (3):

 


×                                                      (3)

where  is the average moisture content,  is the current specimen mass 

(g), and  is the oven-dry specimen mass (g). The number of fiber layers 

was (1, 2, 4, 6, and 12) plies, respectively, and the effect of HNT on 

interfacial bonding with polymer and fiber was investigated.  

Ultimately, this study was carried out in order to obtain the optimal 

dispersion process technology of HNT in laminate composites, by confirming 

the secondary aggregation phenomenon in the curing process due to the 

structural, physical and chemical characteristics of HNT. In addition, Fig. 13 
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(b) shows the distillation unit used to conduct long-term moisture absorption 

tests and to replenish water evaporated at high temperatures. Fig. 13 (c) 

shows the precision balance, which can be measured up to the third decimal 

place.

(a) Constant-temperature water bath and samples for water absorption test

(b) Distilled water output (c) Precision balance

Fig. 13 Equipments for moisture absorption tests

3.3.4 Mechanical property

The evaluation was carried out according to the Standard Test Method for 

Open-Hole Tensile Strength of Polymer Matrix Composite Laminates (ASTM 

D5766) for mechanical properties test and analysis (see Fig. 14 (d). The tensile 

strength of each of the C-HNT/GFRP, C-HNT/BFRP, A-HNT/GFRP, and 

A-HNT/BFRP specimens prepared by varying the amount of HNT was 
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measured by immersing them in water at (0 (dry sample), 60, 180, and 336) h. 

The effect of HNT crystallinity on the mechanical tensile strength of GFRP 

and BFRP nanocomposite laminates was investigated by measuring the change 

in moisture absorption rate. Fig. 13 shows the test equipment, which was a 

KDMT-136 UNIVERSAL TESTING MACHINE (see Fig. 14 (a)) and holes were 

machined into the flat typed nanocomposite laminates (see Fig. 14 (b), (c)).

(a) Universal testing machine (b) Milling machine

(c) Cutting machine (d) Tensile specimens

Fig. 14 Preparation for mechanical properties test

3.3.5 Microscopic observation

Scanning electron microscopy (SEM) analysis was performed to 

microscopically analyze the degradation phenomena through surface 
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observation of the HNT/EP nanocomposites exposed directly to moisture. The 

SEM used is a device of TESCAN Corporation (see Fig. 15 (a)). Composites 

are nonconductive samples. This causes a charge-up phenomenon, in which 

electrons accumulate in the sample, or on the surface of the sample. 

Therefore, to prevent this, Ion sputtering method was applied to provide a 

gold (Au) or platinum (Pt) coating at 15 mA for 120 s, and the surface was 

observed.  The Scatter coater was a device of Quorum Technologies Ltd. (see 

Fig. 15 (b)). The prepared samples were analyzed for the moisture penetration 

mechanism of GF, BF, EP, and HNT in each case, by comparing the surface 

singularities with time, before and after water immersion.

(a) (b)

Fig. 15 Microscopic observation equipments; (a) Scanning electron microscopy 

and (b) Sputter coater
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4. Results and discussion

4.1 Morphology effect

In order to distinguish the crystallinity of HNT, C-HNT and A-HNT were 

prepared by heat treatment of existing Hydro-HNT at (700 and 1,000)。C, 

respectively. Generally, HNTs are classified into Hydro-HNT, Dehydrated HNT 

(Crystalline) and Meta-HNT (Amorphous). As mentioned in the introduction, 

Hydro-HNT does not have a constant structure at room temperature (RT), and 

is sensitive to relative humidity and temperature. Therefore, in this study, 

C-HNT and A-HNT were distinguished through the heat treatment process so 

that HNT had a uniform structure and constant physical property. The 

structural changes of the heat-treated HNT were analyzed through TEM and 

FTIR, to ensure the reliability of the heat treatment process. 

First, Fig. 16 shows the results of the TEM observation of C-HNT and 

A-HNT. HNTs generally formed agglomerates in powder state, regardless of 

crystallinity (Kim, et al., 2017). In the case of A-HNT (see Fig. 16 (b)), there 

was almost no residual hollow tubular morphology. Also, the shape of the 

surface was uneven, and HNT shrinking was observed. In addition, the 

balance of HNT particle bonding force was broken, and the particles showed 

a tendency to clump together with each other. This is due to the oxidative 

dehydrogenation after the formation of amorphous SiO2 and γ-Al2O3, which 

fundamentally changes the clay form of HNT (Samir, et al., 2012; Kim, Choi & 

Park, 2019). According to Park, (2016a, b), the dehydroxylation reaction occurs 

while the physically bound water layer is removed, and structural failure 

occurs in the inner part of the HNT. As a result, HNT suffers structural 

rearrangement. In other words, HNTs annealed at temperatures above 1,000。

C result in chemical changes, which are due to structural change.
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(a) C-HNT

(b) A-HNT

Fig. 16 Observation of crystallinity of HNT by Transmission Electron 

Microscopy (TEM) 
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(a)

(b)

Fig. 17 FTIR spectra of (a) HNT structures according to heat treatment and 

(b) HNT/EP colloidal solution structure



- 51 -

FTIR analysis was carried out to investigate the effect of heat treatment on 

the structural bonding type of HNT. Fig. 17 shows the structural change of 

HNT by annealing and bonding type of EP and HNT colloidal solution that 

were observed. In Fig. 17 (a), (3,700—3,600) cm-1 peaks were disappeared in 

C-HNT and A-HNT based on the Neat HNT, and a new band at (2,600-2,300) 

cm-1 was generated. It was also found that the band was expanded at 

(1,100-1,000) cm-1. In the Neat HNT, (3,691.84 and 3,621.11) cm-1 are 

stretching vibrations of the hydroxyl groups, which means that the HNT was 

dehydroxylated by heat treatment. In particular, 3,691.84 cm-1 is assigned to 

the inner hydroxyl stretching group, and 3,621.11 cm-1 represents the inner 

hydroxyl stretching vibration band (Samir, et al., 2012; Beata, et al., 2015). In 

other words, the initial Neat HNT before heat treatment forms two Al2OH 

stretching bands, one in which two Al atoms are bonded to one OH. The 

peaks of 1,651.29 cm-1 in Neat HNT and 1,634.96 cm-1 in C-HNT mean that it 

is strongly bonded with the vibrations of adsorbed water, but the bonding 

strength of C-HNT becomes considerably weakened. 

In general, it had a structure such as Si—O—Si, Al—OH, OH vibrations at 

(1,000-400) cm-1, and OH translational vibration was generated in OH units of 

HNT near 793.41 cm-1 of the Neat HNT, and 792.07 cm-1 of C-HNT. The 

2,323.88 cm-1 bands of C-HNT exhibit a quartz structure, while the A-HNTs 

exhibit a calcite structure of 2,639.36 cm-1 and a quartz structure of 2323.88 

cm-1, resulting in an amorphous structure. Also, 1,066.16 cm-1 extended from 

1,049.96 cm-1 of C-HNT showed amorphization of the structure (Samir, et al., 

2012; Beata, et al., 2015; Sohlberg, et al., 1999).

However, according to Sohlberg, et al. (1999) and Samir, et al. (2012), three 

or more bands should be observed in the (3,900-3,600) cm-1 region of A-HNT, 

which corresponds to a hydrogen bond between the hydroxyl groups used in 

γ-alumina; but this was not observed in the test analysis results. This 
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suggests that the heat treatment for a long time does not form an activating 

group of A-HNT in a specific region. As a result, it is believed that the 

crystallinity of C-HNT and A-HNT will contribute to the analysis of the effect 

of functional groups on the formation of functional groups such as EP.

Fig. 17 (b) shows the bonding type when various HNTs were added to the 

typical Bisphenol-A type Neat EP. First, the O—H peak was observed at 

3,502.44 cm-1, which was weak, but was of broad area. C—H stretching 

structure was found at 2,925.98 cm-1 wavelength region, and C—C bond of 

benzene ring was confirmed at the (1,606.71 and 1581.43) cm-1 regions. The C

—H of the benzene ring observed at (1,231.38, and 913.61) cm-1 means the 

oxirane ring at the epoxy resin end, and the 828.22 cm-1 peak showed the =C

—H structure (Seo, et al. 2015). In other words, Neat EP showed the 

physical/chemical properties of a typical EP (Seo, et al., 2015). When Neat 

HNT was dispersed in EP, the bands of (3,692.61 and 3,620.66) cm-1 indicated 

the stretching vibrations of the hydroxyl groups, and the peak of 3,546.77 

cm-1 was interlayer water due to the stretching vibration band of HNT. In the 

case of C-HNT, the stretching vibrations of hydroxyle groups disappeared, and 

(3,690,87 and 3,620.47) cm-1 peaks were found in A-HNT/EP, which seems to 

be the hydrogen bond observed by A-HNT. That is, it is considered that a 

weak hydroxyl group is activated by the O—H functional group of the Neat 

EP (Seo, et al., 2015; Beata, et al., 2015).

In summary, the results of the FTIR test showed that EP and HNT have 

chemically similar components and bonding forms, and thus they mainly affect 

the strength of bonding force, due to changes in bonding types, such as 

single bonds and double bonds between atoms. EP and HNT partially form 

chemical bonds, but EP and HNT can form bonds in independent form. In 

other words, the FTIR results suggest that HNT can be structurally modified 

for uniform dispersion in polymers such as EP to improve bonding strength.
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4.2 Thermal analysis

Table 4 shows the curing characteristics of HNT/EP nanocomposites that 

were analyzed by DSC. Dynamic DSC analysis was performed to analyze the 

effect of crystallinity, and ultimately, the addition amount of HNT on the EP 

curing system. The correlation of heat flow-time with the change of heating 

rate for each sample type was compared based on Temperature-Tp. The 

faster the heating rate of Neat EP, the higher the peak temperature, which 

is common to all C-HNT and A-HNT fillers. However, no significant trends 

were observed other than these. Except for C-5HNT/EP, Tp of Neat EP was 

high when the heating rate was 10。C/min, but Tp was high by C-HNT and 

A-HNT at heating rate of 20。C/min.

Overall, the starting point of the endothermic/exothermic reaction was 

measured to be at least 38% higher than the heating rate 10。C/min at a 

heating rate of 20。C/min. As a result of analyzing the heat of reaction 

according to the heating rate, the heat of reaction was increased as the 

heating rate increased. However, A-1HNT/EP and A-3HNT/EP showed the 

opposite tendency, and the difference of heat of reaction between 

A-0.5HNT/EP and A-5HNT/EP was insignificant. 

It is considered that this is influenced by the particle dispersity of HNT. If 

the HNT is not uniformly dispersed in EP, it will delay the curing reaction; 

and the longer the exposure time to the activation curing temperature, the 

greater the heat of reaction. Therefore, A-HNT has a higher Van der Waals 

force than C-HNT, which causes clustering in the EP, which slows the curing 

reaction.
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Types

Heating 

rate 

(℃/min)

∆Hreaction

(J/g)

Tonset

(℃)

Tp

(℃)

Tendset

(℃)
Types

Heating 

rate 

(℃/min)

∆Hreaction

(J/g)

Tonset

(℃)

Tp

(℃)

Tendset

(℃)

Neat EP

(Liquid)

10 69.95 52.48 122.27 181.17

20 233.35 81.54 132.71 209.81

C-0.5HNT/EP

(Liquid)

10 69.85 39.38 121.68 195.98 A-0.5HNT/EP

(Liquid)

10 121.98 36.94 115.92 188.82

20 168.30 92.99 138.37 190.22 20 125.26 96.49 137.53 185.05

C-1HNT/EP

(Liquid)

10 69.85 39.38 121.68 195.98 A-1HNT/EP

(Liquid)

10 497.78 55.01 112.93 203.57

20 142.03 92.90 136.85 192.77 20 122.15 95.80 139.24 186.45

C-3HNT/EP

(Liquid)

10 510.56 37.62 118.71 205.46 A-3HNT/EP

(Liquid)

10 249.84 79.99 114.55 162

20 798.41 85.25 138.86 204.47 20 155.59 93.19 137.42 184.74

C-5HNT/EP

(Liquid)

10 54.63 49.80 122.65 181.21 A-5HNT/EP

(Liquid)

10 82.90 37.22 121.30 192.15

20 162.06 86.60 138.07 198.5 20 84.29 82.38 134.20 178.83

Table 4 Curing characteristics for HNT/EP nanocomposites system
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Fig. 18 shows the results of Neat EP's degree of cure and rate of cure 

with heating rate. The degree of cure was calculated by integrating the 

calorific value over time. In the degree of cure and rate of cure, α and the 

rate of cure tended to increase with increasing temperature. In the degree of 

cure, the curing reaction was slowed again, after reaching the maximum rate 

of cure. It was confirmed that this is an autocatalytic reaction of a typical 

amine-based curing agent of S-shaped curve (jeong, et al. 2018). Also, as the 

heating rate increased to 20。C/min, the degree of cure at the same time 

was lower, and the degree of cure was higher at a higher temperature than 

the heating rate of 10。C/min. The higher the heating rate, the higher the 

rate of cure. That is, in the case of Neat EP, the higher the heating rate, 

the higher the degree of cure at a higher temperature, and the rate of cure 

is promoted.

Fig. 19 shows a comparison of the degree of cure and rate of cure 

between C-0.5HNT/EP and A-0.5HNT/EP. In general, the same S-curve shape 

as Neat EP was maintained, but the total curing reaction time was relatively 

short in C-0.5HNT/EP. In particular at the heating rate of 20。C/min, the rate 

of cure was accelerated, regardless of the crystallinity of HNT. C-0.5HNT/EP 

and A-0.5HNT/EP have similar shapes, but as the heating rate decreases, the 

maximum temperature of the degree of cure increases, and the rate of cure 

is drastically reduced by half in a level similar to that of the Neat EP. This is 

considered to require a sufficient time for curing. In other words, C-0.5HNT 

was dispersed in the EP, lowering the relative curing temperature, and 

instantaneously accelerating the curing reaction. However, it was found that 

A-0.5HNT had little influence on the chemical bond in EP, so that it could 

participate in the curing reaction in only a small amount. This is because HNT 

is difficult to disperse uniformly, due to the unevenness and unstable state in 

EP.
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Fig. 18 Dynamic DSC analysis of Neat EP; (a) degree of cure and (b) rate of 

cure 
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Fig. 19 Dynamic DSC analysis of 0.5HNT/EP according to crystallinity of 

HNT; (a) degree of cure and (b) rate of cure 
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Fig. 20 Dynamic DSC analysis of 1HNT/EP according to crystallinity of HNT; 

(a) degree of cure and (b) rate of cure
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Fig. 20 shows the calculation of the degree of cure and rate of cure of 

C-1HNT/EP and A-1HNT/EP. The addition of 1 wt.% HNT showed a tendency 

to be independent of the crystallinity of HNT, and almost the same value was 

observed for the change of heating rate. In particular, the curing reaction 

was terminated at the same temperature regardless of the heating rate. At a 

heating rate of 20。C/min, HNT lowered the maximum temperature of the 

degree of cure and promoted the rate of cure. However, at a heating rate of 

10。C/min, the fully cured temperature was higher than that of Neat EP, and 

the rate of cure decreased. Therefore based on the observed results, it is 

considered that sufficient time and temperature are required for curing.

Fig. 21 shows the degree of cure and rate of cure of C-3HNT/EP and 

A-3HNT/EP. Unlike the previous results, the A-3HNT had low fully cured 

temperature, shortened total curing reaction time, and accelerated rate of 

cure. However, the rate of cure was still lower than that of (0.5 and 1) wt.% 

of small HNTs. This suggests that HNT may partially contribute to accelerate 

curing, but it may also act as a factor to inhibit curing from a point where it 

exceeds a certain amount.

Fig. 22 shows the degree of cure and rate of cure between C-5HNT/EP and 

A-5HNT/EP. In 5 wt.% HNT, C-5HNT/EP showed the most similar tendency to 

Neat EP as the heating rate increased or decreased. At this time, the fully 

cured temperature was lowered. In the case of A-5HNT/EP, the fully cured 

temperature was relatively low at the heating rate of 20。C/min, and the rate 

of cure was greatly accelerated, compared with C-5HNT/EP.
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Fig. 21 Dynamic DSC analysis of 3HNT/EP according to crystallinity of HNT; 

(a) degree of cure and (b) rate of cure
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Fig. 22 Dynamic DSC analysis of 5HNT/EP according to crystallinity of HNT; 

(a) degree of cure and (b) rate of cure
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In summary, regardless of the crystallinity of the HNT structure, HNTs were 

involved in reducing the fully cured temperature or improving the rate of 

cure within a range similar to that of EP curing. Previous studies have 

reported that the incorporation of nanosilica-based particles into the EP has 

the effect of promoting the curing behavior, due to increased interfacial 

interaction between the nanoparticles and the matrix (Zhang, et al., 2002). In 

this context, a similar conclusion was drawn in the DSC analysis conducted in 

this study. In all cases, the rate of cure decreased rapidly, as the heating rate 

decreased. This is because sufficient time is required for curing. Also, the 

faster the heating rate, the higher the cure temperature and the fully cured 

temperature. In the case of 1 wt.% HNT, the degree of cure and rate of cure 

were almost similar, regardless of the heating rate. At the relative heating 

rate of 10。C/min, the curing reaction time was long, and required high 

temperature. C-HNT maintained almost similar curing reaction conditions from 

more than 1 wt.%. A-HNT showed a stable curing reaction at a heating rate 

of 3 wt.%, and efficient curing conditions were obtained at the fully cured 

temperature, rate of cure, and total curing reaction time. However, it is 

considered that it is necessary to set finer dispersion conditions than C-HNT, 

because it is sensitive to dispersion with EP, depending on the amount of 

HNT added.
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4.3 Moisture absorption behavior

In this study, moisture absorption tests were carried out to investigate the 

effect of the crystallinity of HNT on the state of dispersion of HNT/GFRP and 

HNT/BFRP. The composite laminates were divided into eight columns from (A

―H) and their moisture absorption behaviors were analyzed (for each region) 

to evaluate the dispersion stability of HNT. 

Fig. 23 shows the moisture absorption rate of each region exposed to 

distilled water at 70。C for a maximum of 336 h and the number of fiber 

layers in them. Neat GFRP showed a rapid increase in the moisture uptake 

within 24 h and a gentle curve at around 48 h. At this time, the moisture 

absorption rate was about 1-2%. The edge A and H columns of neat GFRP-1 

and neat GFRP-4 showed a large difference in hygroscopicity. Neat BFRP 

(Fig. 24) also showed similar tendency because of the edge loss of EP during 

vacuum forming.

Fig. 25 shows the moisture absorption rate of C-0.5HNT/GFRP as a function 

of the laminated fibers. Compared to neat GFRP, C-0.5HNT/GFRP showed a 

relatively low moisture absorption rate, suggesting that C-HNT prevented the 

degradation of EP. In the case of C-0.5HNT/GFRP-2 and C-0.5HNT/GFRP-4, 

the moisture absorption rate was relatively high in the C and D columns. The 

moisture absorption rate was high in the E, G, and H columns. We believe 

that HNT moved to the center part during the vacuum forming step in the 

direction of air discharge to form aggregated clusters, which contributed to 

the increase in the water absorption rate. These aggregated clusters also 

reduced the permeability of water into the fibers, resulting in the 

non-uniform dispersion of HNTs. Fig. 26 shows the hygroscopic results of 

C-0.5HNT/BFRP. It showed a trend similar to that shown by C-0.5HNT/GFRP. 

The moisture absorption rate was slightly higher but not significantly different.
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Fig. 23 Absorption rate of Neat GFRP immersed in distilled water at 70 ℃ 

up to 336 h (14 days) according to laminated fiber plies
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Fig. 24 Absorption rate of Neat BFRP immersed in distilled water at 70 ℃ 

up to 336 h (14 days) according to laminated fiber plies
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Fig. 25 Absorption rate of C-0.5HNT/GFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 26 Absorption rate of C-0.5HNT/BFRP immersed in distilled water at

 70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 27 Absorption rate of C-1HNT/GFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 28 Absorption rate of C-1HNT/BFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies 
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Fig. 29 Absorption rate of C-3HNT/GFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies 
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Fig. 30 Absorption rate of C-3HNT/BFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies 
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Fig. 31 Absorption rate of C-5HNT/GFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies 
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Fig. 32 Absorption rate of C-5HNT/BFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies 
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As shown in Figs. 27 and 28, C-1HNT/GFRP and C-1HNT/BFRP showed 

similar tendency depending on the laminates layer. However, when 2 layers 

and 12 plies were used, the difference in the moisture absorption rate was 

large in each area. In addition, the moisture absorption rate changed rapidly 

from the D and E columns onwards. With an increase in the number of 

laminate layers, C-1HNT/BFRP retained its initial bond between HNT and EP 

and showed uniform dispersion and bonding behavior.

Figs. 29 and 30 show the changes in the moisture absorption rates of 

C-3HNT/GFRP and C-3HNT/BFRP, respectively. It can be observed from the 

figures that the number of laminate layers or regions did not affect the 

moisture absorption rates of C-3HNT/GFRP and C-3HNT/BFRP. However, with 

an increase in the amount of HNT up to 3 wt.%, these samples showed 

unstable moisture absorption over the entire area. In the case of 

C-3HNT/BFRP, the absorption rate increased rapidly within the initial 24 h 

and then, increased sharply up to 144 h. In addition, the combination of EP 

and HNT was incomplete and HNT was activated in the water environment. In 

addition, EP also showed degradation in water. 

Figs. 31 and 32 show the moisture absorption rates of C-5HNT/GFRP and 

C-5HNT/BFRP, respectively. When the number of laminate layers was 12, 

C-5HNT/GFRP and C-5HNT/BFRP showed similar moisture absorption rates and 

behaviors. These moisture absorption rates and behaviors were similar to 

those of neat GFRP and neat BFRP. In addition, the state of dispersion was  

uniform over the entire region. Overall, intergranular aggregation due to 

de-bonding with EP was observed in C-5HNT/BFRP. This is because the 

moisture absorption rate was measured in the region corresponding to column 

H located opposite to the columns A, B, and C. This can partly be attributed 

to the deterioration of EP.
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Fig. 33 Absorption rate of A-0.5HNT/GFRP immersed in distilled water at 70 

℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 34 Absorption rate of A-0.5HNT/BFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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As shown in Figs. 33 and 34, at higher laminate thicknesses, the 

hygroscopicity of both A-0.5HNT/GFRP and A-0.5HNT/BFRP was lower than 

that of neat GFRP and neat BFRP. This can be attributed to the high mobility 

of A-HNT on the binding surfaces of the fiber and EP in one ply laminate, 

which activated the re-aggregation precess. In addition, the deterioration of 

EP was observed in the in F, G, and H columns, and the A, B, and C 

columns showed different moisture absorption rates because of HNT. This 

confirmed the formation of a stable bond between A-HNT and EP/BFRP. 

Figs. 35 and 36 show the hygroscopic graphs of A-1HNT/GFRP-1 and 

A-1HNT/BFRP-1, respectively. EP/HNT delamination occurred partially in the 

specimens exposed to high temperatures (70。C). The moisture absorption rate 

decreased with an increase in the laminate layer thickness. In particular, the 

variations in the moisture absorption rates in the F, G, and H columns of 

A-1HNT/BFRP-1 were large. The moisture absorption rate of A-1HNT/BFRP 

was larger than that of A-1HNT/GFRP.

In Figs. 37 and 38 show that the moisture absorption rate of A-3HNT/GFRP 

showed little variation with the thickness of the laminates. However, the 

moisture absorption rate varied with time. The moisture absorption rates of 

the A and B columns in the case of A-3HNT/GFRP were higher than those in 

the case of A-3HNT/BFRP. This is because in BFRP, the binding force of 

A-HNT was stronger than that in GFRP and re-aggregation hardly occurred. 

The moisture absorption rates of A-3HNT/GFRP-12 and A-3HNT/BFRP-12 

were similar.
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Fig. 35 Absorption rate of A-1HNT/GFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 36 Absorption rate of A-1HNT/BFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 37 Absorption rate of A-3HNT/GFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 38 Absorption rate of A-3HNT/BFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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As shown in Figs. 39 and 40, the moisture absorption rates of 

A-5HNT/GFRP and A-5HNT/BFRP showed similar variations. However, the 

moisture absorption rate of A-5HNT/BFRP depended on the amount of 

particles and showed large variations over the entire time range. 

A-5HNT/GFRP-4 and A-5HNT/BFRP-6 showed the most stable moisture 

absorption rates. In the case of 12 plies, the moisture absorption rate was the 

lowest in the A and B columns. On the other hand, moisture absorption rate 

was the highest in the D and E columns. This caused resin shrinkage in the 

direction of air discharge during the vacuum molding, resulting in the 

re-aggregation of HNT particles. A-5HNT/BFRP showed large variations in 

moisture absorption with time. This can be attributed to the resin dropout due 

to the interfacial peeling between the fiber and the resin.
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Fig. 39 Absorption rate of A-5HNT/GFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Fig. 40 Absorption rate of A-5HNT/BFRP immersed in distilled water at 

70 ℃ up to 336 h (14 days) according to laminated fiber plies
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Figs. 41 and 48 show the SEM images of the surfaces of HNT/EP matrix 

GFRP and BFRP nanocomposites immersed in distilled water at 70。C for up 

to 336 h. The interface between fiber and EP, fiber damage behavior due to 

the delamination of the HNT/EP colloidal solution deteriorated by moisture and 

cluster effect due to the HNT aggregation phenomenon were analyzed.

Fig. 41 shows the moisture degradation of neat GFRP before and after 336 

h of water immersion. Partial bonding with EP was observed prior to the 

water immersion. Since EP was delaminated by moisture, it was mostly 

removed and a relatively clean surface was observed. In addition, the EP 

delamination did not cause any significant damage on the fiber surface. It was 

confirmed that the fiber cut at the middle of the filament broke in a 

progressive form over a long period of time instead of undergoing 

instantaneous fracture. We believe that water caused volume expansion in EP, 

water transferred from the fiber surface, and the fiber fracture occurred as 

the water content in the fiber reached the saturation point.

As shown in Fig. 42, in the case of neat BFRP, the interface between EP 

and BF was bonded very smoothly before the moisture immersion, and there 

was almost no breakage of EP. This is because BF and EP were uniformly 

bonded. After the prolonged water immersion EP delamination and fiber 

fracture occurred simultaneously. In addition, many traces of fibers fell off 

the fiber surface. This is considered to be a direct effect of EP degradation 

on the fiber due to moisture and delamination.
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(a)

(b)

Fig. 41 Moisture degradation of Neat GFRP by SEM; (a) before and (b) after 

distilled water immersion
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(a)

(b)

Fig. 42 Moisture degradation of Neat BFRP by SEM; (a) before and (b) after 

distilled water immersion
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Fig. 43 shows the surface of the C-HNT—dispersed GFRP. As shown in Fig. 

43-(a), neat GFRP was densely bonded to the fibers and the size of the 

delaminated EP was relatively large. After immersion for 336 h, the softened 

EP bonded to the fiber interface and the bond marks on the fiber surface 

were swollen and distinct. The swelling of EP, which appeared to be 

entangled by C-HNT, was caused by moisture absorption. The residual resin, 

which was not directly involved in the bonding, was removed in the form of 

the initial EP. HNT combined with water to reduce the effect of moisture on 

EP.

Fig. 44 shows the water resistance of BFRP by C-HNT. Unlike 

C-HNT/GFRP, C-HNT/BFRP exhibited relatively smooth fiber surfaces before 

and after the water immersion with partial damage to the HNT clusters. 

However, no initial fiber surface damage was observed. However, after the 

water immersion, fiber damage became predominant, and the size of the 

delaminated EP was relatively small.

Fig. 45 shows the results of the A-HNT/GFRP surface examinations. Unlike 

the case of C-HNT/GFRP, in this case, the amount of EP attached to the 

fiber surface prior to the immersion was low, and a smooth surface was 

observed. C-HNT/BFRP bonded to a large area of the fiber surface. After the  

water immersion, the EP of the scratched pieces was stained on the fiber 

surface, and the delamination of EP and the fibers produced a large amount 

of interface residue. However, there were almost no traces because of the 

bonding on the fiber surface, and the damage due to delamination on the 

surface was higher than that in the interior of the fiber.
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(a)

(b)

Fig. 43 Effect of HNT on the moisture degradation of C-HNT/GFRP by SEM; 

(a) before and (b) after distilled water immersion
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(a)

(b)

Fig. 44 Effect of HNT on the moisture degradation of C-HNT/BFRP by SEM; 

(a) before and (b) after distilled water immersion
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(a)

(b)

Fig. 45 Effect of HNT on the moisture degradation of A-HNT/GFRP by SEM; 

(a) before and (b) after distilled water immersion
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As shown in Fig. 46, before the water immersion, A-HNT/BFRP exhibited an 

EP-bound form across the surface of the fiber. However, C-HNT/BFRP 

showed a scattering pattern of HNT clusters on the fiber surface, while 

A-HNT/BFRP showed long scratched edges at the fiber/EP interface. After the 

water immersion, grain tearing was observed along the fiber length, and the 

fiber cut surface showed a sharp shape. A small piece of EP (EP 

agglomerated with A-HNT) was observed around the fiber.

Fig. 47 shows the samples exposed to distilled water at 70。C for over 700 

h. As shown in Fig. 47-(a), in the case of C-HNT/GFRP (700), the water 

trapped inside the C-HNT/EP interface gradually expanded its shape. In other 

words, C-HNT was wrapped around EP and absorbed water directly preventing 

the moisture-degradation of EP. In this process, supersaturated water diffused 

into the fibers to repeat the moisture adsorption and desorption process, so 

that the initial HNT/EP bond remained on the fiber surface. On the other 

hand, in the case of C-HNT/BFRP (700), moisture adsorption caused the 

swelling of the C-HNT/EP surrounding the fiber surface over the entire 

surface and softening of EP. In addition, the adsorption moisture caused 

delamination in the fiber.

Fig. 48 shows the surfaces of A-HNT/GFRP (700) and A-HNT/BFRP (700). 

A-HNT showed less C-HNT agglomeration and showed stable bonding with EP 

on the fiber surface because of uniform particle dispersion. The number of 

broken EPs was small and did not cause severe damage inside the fibers. 

However, it showed a greater impact on EP bonding than the fiber and 

contributed to minimizing the moisture damage of the fibers. In A-HNT/BFRP 

(Fig. 48-(b)) EP delamination and deterioration was more evident than the 

delamination between the fibers and EP.
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(a)

(b)

Fig. 46 Effect of HNT on the moisture degradation of A-HNT/BFRP by SEM; 

(a) before and (b) after distilled water immersion
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(a)

(b)

Fig. 47 Effect of HNT on the moisture degradation by SEM; (a) C-HNT/GFRP 

and (b) C-HNT/BFRP after distilled water immersion over 700 h 
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(a)

(b)

Fig. 48 Effect of HNT on the moisture degradation by SEM; (a) A-HNT/GFRP 

and (b) A-HNT/BFRP after distilled water immersion over 700 h



- 96 -

4.4 Mechanical property

4.4.1 Tensile strength

The effect of the absorption rate of HNT/GFRP and HNT/BFRP immersed in 

distilled water for a long time on mechanical tensile strength was investigated 

by tensile test. The relationship between the tensile strength and the 

absorption rate was investigated according to the crystallinity and addition 

amount of HNT. Fig. 49 compares the tensile (TS) and intermittent moisture 

absorption (AR) changes between Neat GFRP and Neat BFRP, and the trends 

of these graphs are similar.  The initial tensile strength of Neat BFRP was 

higher than that of Neat GFRP. The strength of Neat GFRP decreased 

significantly during 48 h after immersion in distilled water. Neat BFRP showed 

significant tensile strength decrease after 48 h. Neat GFRP and Neat BFRP 

used the same EP as the matrix, but Neat BFRP was significantly higher at 

the absorption rate than Neat GFRP, and there was less damage to tensile 

strength due to moisture, relative to Neat GFRP. However, the intensity 

inhibition rate based on the initial tensile strength was measured similarly. 

The moisture absorptivity tended to increase slowly at 180 h of water 

immersion, but the tensile strength tended to be maintained. This means that 

there is little physical/chemical damage due to penetrated moisture, suggesting 

that mutual moisture diffusion and migration take place via reversible routes. 

In other words, during this time, the moisture is easily released through the 

drying process, which means that it has have little effect on the bond 

between the fiber reinforcement and the matrix.
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(a)

(b)

Fig. 49 Effect of water absorption rate on tensile strength in (a) Neat GFRP 

and (b) Neat BFRP
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(a) 

(b)

Fig. 50 Tensile stress-tensile strain curves with water immersion time in (a) 

Neat GFRP and (b) Neat BFRP
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Fig. 50 shows the tensile stress-strain curves. Both Neat GFRP and Neat 

BFRP showed smaller stiffness and tensile modulus E as the moisture 

immersion time increased. As a result of the softening of the resin, Neat 

BFRP was observed to be relatively unaltered, which is related to the 

interfacial bonding strength at the laminates interface.

Fig. 51 compares the relationship between the tensile strength and the 

absorption rate with HNT crystallinity when 0.5 wt.% HNT is added, while Fig. 

52 shows the tensile strength-tensile strain curves at that time. In general, 

the hygroscopic rates of 0.5HNT/GFRP and 0.5HNT/BFRP increased sharply in 

the range of (60—180) h of immersion, regardless of the crystallinity of HNT. 

It was found that 0.5HNT/BFRP showed a gentle curve, and reached a certain 

saturation level. However, 0.5HNT/GFRP retained a modest but increasing 

shape similar to Neat GFRP and Neat BFRP, which was sufficient to predict 

continuous absorption. In addition, adding C-HNT and A-HNT enhanced the 

initial tensile strength of 0.5 HNT/GFRP, and the tensile strength reduction 

rate of A-HNT was lower than that of C-HNT. This is because the interfacial 

bonding strength and the state of dispersion of A-HNT are relatively good. In 

addition, tensile strength was lowered by the initial small amount of water, 

but the effect on moisture mechanical properties was significantly reduced up 

to 336 h.

In the tensile stress-tensile strain curves of Fig. 52, C-0.5HNT/GFRP and 

A-0.5HNT/GFRP showed the same shape regardless of the crystallinity of 

HNT. However, in the case of C-0.5HNT/BFRP and A-0.5HNT/BFRP, the 

longer the immersion time, the smaller the slope. This suggests that HNT is 

not sufficiently bound in BFRP laminates, and is softened by the activation of 

water compared to Neat BFRP.
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(a)

(b)

Fig. 51 Effect of water absorption rate on tensile strength in (a) 

0.5HNT/GFRP and (b) 0.5HNT/BFRP according to crystallinity of HNT
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(a) 

(b)

Fig. 52 Tensile stress-tensile strain curves with water immersion time in (a) 

0.5HNT/GFRP and (b) 0.5HNT/BFRP according to crystallinity of HNT
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On the other hand, in 0.5HNT/BFRP, the initial tensile strengths were 

different. The initial tensile strength was improved in A-HNT, but decreased 

in C-HNT. This suggests that 0.5 wt.% C-HNT did not form a smooth bond in 

laminates, and it was found that it acted as an inhibitor to decrease the 

strength. Also, unlike Neat BFRP, the tensile strength decreased sharply from 

moisture immersion, compared to the moisture absorption rate. In other words, 

0.5 wt.% C-HNT and A-HNT showed a relatively high reinforcing effect in 

GFRP laminates.

Fig. 53 shows the relationship between tensile strength and water absorption 

rate in 1HNT/GFRP and 1HNT/BFRP, depending on the crystalline state of 

HNT. Unlike 0.5 wt.% HNT, 1 wt.% HNT showed a large difference in 

moisture absorption rate depending on the crystal structure. The initial tensile 

strength was the same or decreased, compared to Neat GFRP and Neat BFRP. 

In general, the initial tensile strength tends to decrease with exposure to 

moisture. In A-1HNT/GFRP, the tensile strength increased when exposed to 

water for 60 h, and then decreased again afterwards. This is because unlike 

the mutual bonding force with EP, the filling state is changed from the 

powder state to the liquid state, while the EP is not diffused into the A-HNT 

cluster, which is considered to increase the resistance against the external 

load.

Particle clusters are mainly broken by external loads, because they behave 

like pores in composite laminates. However, filling the empty space with a 

relatively dense liquid absorbs the external load, and temporarily creates a 

reinforcing effect. The tensile stress—tensile strain graph of Fig. 54 shows 

that the C-1HNT/GFRP immersed in water for 60 h has a higher tensile 

modulus E than the initial value, which means higher stiffness. In addition, the 

overall water resistance was measured to be low. 
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(a)

(b)

Fig. 53 Effect of water absorption rate on tensile strength in (a) 1HNT/GFRP 

and (b) 1HNT/BFRP according to crystallinity of HNT
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(a)

(b)

Fig. 54 Tensile stress-tensile strain curves with water immersion time in (a) 

1HNT/GFRP and (b) 1HNT/BFRP according to crystallinity of HNT
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In particular, the water resistance of C-HNT was relatively lower than that 

of A-HNT, and these HNTs seem to maintain a stable bonding state in BFRP 

laminates. In other words, in GFRP laminates, it is necessary to analyze the 

mechanism of bonding between HNT and GF, as well as the crystallinity of 

HNT. HNTs in BFRP laminates have a specific tendency to be integrated, but 

GF, EP, and HNT are independent in GFRP laminates. Therefore, it is 

necessary to analyze not only the state of dispersion between HNT and EP, 

but also the combined form at the surface of GF and BF.

Fig. 55 shows the results of HNT/GFRP and HNT/BFRP for 3 wt.% HNT. 

First, no reinforcing effect was observed due to the addition of HNT. As the 

amount of HNT was increased, the moisture absorption rate gradually 

increased. In the case of 3HNT/BFRP, regardless of the crystallinity of HNT, 

the same values ​​were obtained for the moisture absorption rate, and it is 

considered that the stability of A-3HNT/BFRP with respect to moisture is 

relatively high by the modification of the hygroscopicity graph with immersion 

time. However, 3HNT/GFRP was significantly influenced by the crystallinity of 

HNT. In particular, the A-3HNT exhibited a significantly higher moisture 

absorption rate, resulting in softening of the material, but a relatively higher 

strength than C-HNT. As the amount of A-HNT added increases, the 

frequency of clusters increases, due to particle agglomeration. However, this 

does not directly damage the fiber reinforcement or matrix, but rather seals 

moisture inside the particles, and substantially increases the moisture stability 

of the material, compared to the moisture absorption rate. As shown in Fig. 

56 shows that the addition of HNT increased the ductility by softening the 

material, but increased the yield, and contributed to improving the material's 

resistance to fracture.
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(a)

(b)

Fig. 55 Effect of water absorption rate on tensile strength in (a) 3HNT/GFRP 

and (b) 3HNT/BFRP according to crystallinity of HNT



- 107 -

(a)

(b)

Fig. 56 Tensile stress-tensile strain curves with water immersion time in (a) 

3HNT/GFRP and (b) 3HNT/BFRP according to crystallinity of HNT
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Fig. 57 shows the results for 5 wt.% HNT. The tensile strength was lowered 

compared to the initial Neat GFRP and Neat BFRP, and a high moisture 

absorption rate was also measured with respect to the immersion time.  

However, C-HNT and A-HNT are similar to each other, suggesting similar 

absorption behavior in composite laminates. In particular, a large amount of 

HNT is considered to be a direct factor in lowering the tensile strength. As 

the HNT clusters are mass produced, the thickness of the surface layer 

surrounding the non-impregnated portion at the center of the cluster thickens, 

making it difficult for the water penetrate. In addition, the effect on the 

specific load varies, depending on the size and shape of the HNT cluster. Fig. 

58 shows that there was almost no difference in the tensile modulus E from 

the initial mechanical properties before moisture absorption.

Therefore, in GFRP laminates, the crystallinity and content of HNT were 

affected by the mechanical properties and water resistance. In BFRP 

laminates, there was a difference in the size and shape of the clusters 

depending on the content of HNT. C-HNT and A-HNT commonly softened the 

material to increase ductility and delayed the arrival time to yield, reducing 

deformation by external load, and increasing resistance to damage. In 

particular, compared to C-HNT, A-HNT was relatively easy to migrate into 

and out of clusters due to moisture penetration and diffusion, and C-HNT was 

greatly influenced by the state of dispersion in EP. C-HNT is very likely to 

act as a factor to inhibit the properties of materials, such as stress 

concentration, rather than expressing the inherent functions. On the other 

hand, A-HNT is believed to contribute to the enhancement of stiffness by 

increasing the tensile modulus E, and preventing the water from directly 

damaging the material, by blocking moisture in the cluster after forming 

clusters of clusters. 
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(a)

(b)

Fig. 57 Effect of water absorption rate on tensile strength in (a) 5HNT/GFRP 

and (b) 5HNT/BFRP according to crystallinity of HNT
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(a)

(b)

Fig. 58 Tensile stress-tensile strain curves with water immersion time in (a) 

5HNT/GFRP and (b) 5HNT/BFRP according to crystallinity of HNT
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Previous studies have shown that silica nanoparticles contribute to the 

improvement of stiffness and toughness of EP; the tensile modulus E can be 

increased by up to 20 %, and yields greater than that of pure EP can be 

achieved (Rosso, et al., 2006). In addition, in dense microstructures, 

nanoparticles can also form voids, which can promote hydration due to the 

reactivity of the nanoparticles.
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4.4.2 Fracture behavior analysis

In this section, the tensile failure shapes of open-hole specimens were 

observed from a macroscopic point of view, after tensile testing of the 

HNT/GFRP and HNT/BFRP immersed in distilled water for (0, 60, 180, 336) h.  

In composite laminates, delamination is generally one of the important failure 

mechanisms in composites, because of the low interlaminar strength. In 

isotropic laminates, interlaminar delamination is mainly removed by 

delamination from free edges. However, delamination is significantly affected 

by the notch tensile strength, which is the fracture damage due to the stress 

concentration at the notch (Wisnom & Hallett, 2009; Kedward, et al., 1989; 

Wisnom, et al., 1996). Therefore, in this study, the HNT dispersed inside of 

the interlaminar laminates was observed as a stress concentration region 

around the HNT, due to the HNT acting as a notch for the external stress, 

and the state of dispersion of the HNT was analyzed. The open-hole tensile 

specimen was used, and the failure shape of HNT/GFRP and HNT/BFRP 

according to the crystallinity of HNT was observed based on 6 mm hole.

Table 5 shows the Neat GFRP and Neat BFRP fracture patterns. Generally, 

cracks occurred along the fibers arranged in the tensile direction, and these 

cracks were initiated based on the central hole. They were not completely 

separated, and it was confirmed that the hole was extended in the loading 

direction. Relatively Neat GFRP was more cracked than Neat BFRP, and fiber 

loosening at the interface was observed to be reduced. On the other hand, in 

Neat BFRP, delamination occurred partially along the fiber filament interface.

Table 6 compares C-0.5HNT/GFRP with C-0.5HNT/BFRP, similar to Neat 

GFRP and Neat BFRP. The longer the immersion time, the more cracks that 

were generated and propagated.
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Samples
Water immersion time (h)

0 60

Neat FRP

(GF-BF)
180 336 (14 days)

Table 5 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; Neat GFRP and Neat BFRP
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Samples
Water immersion time (h)

0 60

C-0.5HNT/FRP

(GF-BF)
180 336 (14 days)

Table 6 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; C-0.5HNT/GFRP and C-0.5HNT/BFRP
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Table 7 shows the tensile failure shape of C-1HNT/GFRP and 

C-1HNT/BFRP. In the case of C-1HNT/GFRP, partial delamination of GF and 

EP was observed. As the immersion time increased, the slip phenomenon was 

small with respect to the hole, and separation into the loading direction 

occurred. In the case of C-1HNT/BFRP, the delamination of BF and EP was 

promoted inside the hole based on the hole, and the center of the hole was 

swollen, and the edge was relatively not delaminated.

Table 8 compares C-3HNT/GFRP with C-3HNT/BFRP. As the amount of 

HNT was increased, both the delamination between the filament filaments and 

the layer delamination became severe. Also, on the surface, multiple cracks 

and pull-out phenomena were observed around the cracks, and the weakest 

holes and edges were damaged at the same time. This suggests a local 

vulnerability to moisture at locations where HNTs are involved.

Table 9 compares C-5HNT/GFRP and C-5HNT/BFRP. C-5HNT/GFRP 

relatively lowered in rigidity before immersion in water, and reached a 

complete separation failure, due to slip in tensile direction due to external 

load. It was judged that the material was softened by moisture and increased 

ductility after the moisture absorption, and cracks at the edge were observed. 

In the case of C-5HNT/BFRP, fracture was found due to local cracking, and 

delamination of the fiber was observed at the edge.

Table 10 compares A-0.5HNT/GFRP with A-0.5HNT/BFRP. Overall, 

interlaminar delamination due to fiber lifting was formed around the hole and 

edge. The longer the immersion time, the shorter the time to fracture, which 

could be deduced through the shape of the hole.
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Samples
Water immersion time (h)

0 60

C-1HNT/FRP

(GF-BF)
180 336 (14 days)

Table 7 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; C-1HNT/GFRP and C-1HNT/BFRP
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Samples
Water immersion time (h)

0 60

C-3HNT/FRP

(GF-BF)
180 336 (14 days)

Table 8 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; C-3HNT/GFRP and C-3HNT/BFRP
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Samples
Water immersion time (h)

0 60

C-5HNT/FRP

(GF-BF)
180 336 (14 days)

Table 9 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; C-5HNT/GFRP and C-5HNT/BFRP
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Samples
Water immersion time (h)

0 60

A-0.5HNT/FRP

(GF-BF)
180 336 (14 days)

Table 10 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; A-0.5HNT/GFRP and A-0.5HNT/BFRP
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Samples
Water immersion time (h)

0 60

A-1HNT/FRP

(GF-BF)
180 336 (14 days)

Table 11 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; A-1HNT/GFRP and A-1HNT/BFRP
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Table 11 compares the fracture patterns of A-1HNT/GFRP and 

A-1HNT/BFRP. In the case of A-1HNT/GFRP, the water immersion time and 

layered delamination phenomena were in inverse proportion. Layered 

delamination mainly occurred due to fiber floatation. In the case of 

A-1HNT/BFRP, the cracks generated around the hole part progressed 

diagonally, rather than in the tensile direction, which is considered to have a 

large effect due to the slip between the fiber filaments.

Table 12 compares the fracture patterns of A-3HNT/GFRP and 

A-3HNT/BFRP. Compared with less than 3 wt.% HNT in A-3HNT/GFRP and 

C-3HNT/GFRP, the interlaminar bond at the laminates interface was stable, 

and was destroyed by the generation and propagation of surface cracks in the 

tensile direction. A-3HNT/BFRP also showed no interlaminar delamination and 

fiber floatation when compared to C-3HNT/BFRP, and no abnormalities were 

found in the fracture pattern with water immersion time.

Table 13 compares the fracture patterns of A-5HNT/GFRP and 

A-5HNT/BFRP according to water immersion time. Overall, when compared to 

A-3HNT/GFRP, delamination of A-3HNT/BFRP occurred at the hole, surface, 

and edge, fiber pull-out was observed before water immersion, and cracks 

promoted by hole slip were more prominent than those of A-3HNT/BFRP.

In summary, the bonding strength of A-HNT to the interlayer interface of 

laminates was stronger than that of C-HNT, and there was less delamination 

between fiber filaments and fiber filaments. Although the tendency depending 

on the amount of HNT could not be specified, it is considered that the effect 

of the crystallinity of HNT on the fracture pattern is significant. In the 

open-hole tensile test, it is considered that the macroscopic analysis of crack 

initiation and fracture termination between crack initiation part and 

interlaminar fracture is effective in determining the strength inhibition factors, 

except for the central part of the stress hole.
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Samples
Water immersion time (h)

0 60

A-3HNT/FRP

(GF-BF)
180 336 (14 days)

Table 12 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; A-3HNT/GFRP and A-3HNT/BFRP
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Samples
Water immersion time (h)

0 60

A-5HNT/FRP

(GF-BF)
180 336 (14 days)

Table 13 Open-hole tensile failure shape of HNT/FRP nanocomposites with immersion time in hygroscopic environment 

at 70℃; A-5HNT/GFRP and A-5HNT/BFRP
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4.5 Dispersibility

In HNT/EP matrix FRP nanocomposites, the dispersibility of HNT as a 

nanofiller is an important factor in the physical properties of the material, 

and was influenced not only by the shape of the product but also by the 

external molding conditions such as temperature and humidity. Thus, it is 

necessary to establish the optimum dispersion conditions by analyzing the 

dispersion behavior of HNT. However, the dispersion inhibition factors of 

nanoparticles are different from those of microparticles. This can be 

attributed to their different processing factors. Therefore, in this study, the 

effects of the polymer curing factors on the HNT dispersibility and shape of 

the nanocomposite were investigated. In order to investigate the effect of the 

HNT/EP colloidal solution on the permeability coefficient of the nanocomposite 

(when impregnated with GF and BF), the particle parameters such as the HNT 

binding force, cohesion, and free mobility were varied depending on the 

number of fabric layers forming the laminates and the changes in the 

absorption rate.

Fig. 59 shows the absorption rates and their standard deviations of neat 

GFRP and neat BFRP (in the A—H columns of the plate) as a function of the 

number fiber layers. The uniform states of HNT dispersion in each region of 

the plate were compared. In the case of neat GFRP, the variations in the 

moisture absorption rate and standard deviation of each region showed similar 

trends. In the case of neat BFRP, the absorption rate decreased with an 

increase in the thickness of the laminates. However, relatively high standard 

deviations were measured in the 1 and 4 layers as in neat GFRP, depending 

on the region. In the case of neat BFRP, the absorption rate decreased with 

an increase in the thickness of the laminates. However, relatively high 

standard deviations were measured in the 1 and 4 layers as in neat GFRP, 
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depending on the region. This is because the viscosity of EP decreases with 

an increase in the temperature of the curing system. Moreover, the degree of 

freedom of movement of EP in the edge regions of A, B, G, and H increased. 

This resulted in EP loss, which caused a difference in the volume fraction of 

the fibers and EP per unit area and the area deteriorated by the water 

environment. Unlike the case when 1 layer was used, when 4 layers were 

used, the effect of the trapped pores at the laminate interface was relatively 

large during the vacuum forming process.

Fig. 60 shows the dispersibility of C-0.5HNT/GFRP and C-0.5HNT/BFRP. The 

state of dispersion of the plate area in C-0.5HNT/GFRP and C-0.5HNT/BFRP 

was more stable than that in neat GFRP and neat BFRP. However, the 

moisture absorption rates of C-0.5HNT/GFRP and C-0.5HNT/BFRP increased 

with an increase in the number of fiber layers. In general, the absorption 

rates of C-0.5HNT/GFRP and C-0.5/BFRP in all the regions were proportional 

to their standard deviations.

As shown in Fig. 61, A-0.5HNT/GFRP and A-0.5HNT/BFRP showed the 

lowest deviation when 12 plies were used. However, the moisture absorption 

rate of A-0.5HNT/BFRP was higher than that of A-0.5HNT/GFRP because of 

the degradation of EP. In addition, the rapid increase in the moisture 

absorption rate when two plies were used, was not significantly affected by 

the HNTs acting on the mutual binding force of EP and GF even though the 

initial one ply area deviation was small, as in A-0.5HNT/GFRP-2. On the other 

hand, in A-0.5HNT/BFRP, the regional deviation was relatively high and the 

moisture absorption rate was the lowest when four plies were used. This is 

partly because of the decrease in the mobility of HNTs due to resin 

shrinkage.
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(a)

(b)

Fig. 59 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) Neat GFRP 

and (b) Neat BFRP
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(a)

(b)

Fig. 60 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

C-0.5HNT/GFRP and (b) C-0.5HNT/BFRP
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(a)

(b)

Fig. 61 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

A-0.5HNT/GFRP and (b) A-0.5HNT/BFRP
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Fig. 62 shows the moisture absorption rates of C-1HNT/GFRP-2 and 

C-1HNT/BFRP-2. A large difference was observed in moisture absorption rates 

of the two samples when two plies were used. This indicates that the highly 

cohesive force between the HNT particles in C-1HNT/GFRP-2 and 

C-1HNT/BFRP-2 reached a very weak state in water. With an increase in the 

number of laminate layers, the area-specific deviations decreased. However, 

the regional deviations increased again in C-1HNT/GFRP-12. This is because 

of the unstable binding or mixed state between C-HNT and GFRP, and no 

consistent trend was observed.

Fig. 63 shows the moisture absorption rate of A-1HNT/GFRP and 

A-1HNT/BFRP. The area-specific deviations decreased with an increase in the 

number of fiber layers in both the samples and the moisture absorption rate 

became constant. The constant moisture absorption rate indicates that HNT 

was stably dispersed in EP and there was little re-aggregation by the curing 

system. A-1HNT/ FRP showed a stable binding pattern as compared to 

C-1HNT/BFRP.

As shown in Fig. 64, C-3HNT/GFRP-1 showed a very large variation in 

area, indicating that the aggregation of HNT occurred on the fiber surface 

not at the interface. C-3HNT/BFRP-1 showed a large area-dependent 

variation. This can be attributed to the partial agglomeration in 

C-3HNT/BFRP-1 when four and five plies were used. However, C-3HNT/GFRP 

suppressed the formation of HNT clusters and resin degradation at the 

interface. With an increase in the number of layers, it decreased because of 

moisture per region; however, the moisture absorption rate did not show any 

tendency. This can be attributed to the deterioration of EP, which was not 

affected by HNT.
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(a)

(b)

Fig. 62 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

C-1HNT/GFRP and (b) C-1HNT/BFRP
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(a)

(b)

Fig. 63 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

A-1HNT/GFRP and (b) A-1HNT/BFRP
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(a)

(b)

Fig. 64 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

C-3HNT/GFRP and (b) C-3HNT/BFRP
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Fig. 65 shows the moisture absorption rates and area deviations of GFRP 

and BFRP. Both GFRP and BFRP showed absorption rates and area deviations 

similar to those of A-3HNT. With a decrease in the number of layers, 

moisture-induced deterioration became prominent and the effect of HNT on 

the bond strength between the fiber and EP became significant. In the case 

of A-3HNT/BFRP, the regional deviations remained the same irrespective of 

the number of fiber layers. However, different moisture absorption rates were 

observed. The aggregated HNT and EP showed similar dispersibility throughout 

the region because they exhibited similar moisture degradation. 

As shown in Fig. 66, in the case of C-5HNT/GFRP, the deviation in the 

moisture absorption rate of each region tended to decrease with an increase 

in the number of fiber layers. A similar tendency was observed, except for a 

relatively high average moisture absorption rate, when four plies were used. 

On the other hand, in C-5HNT/BFRP, the moisture absorption rate deviation 

increased with an increase in the number of fiber layers. In the case of 

C-5HNT/BFRP-12, this deviation was small because C-5HNT showed the least 

effect of resin shrinkage because of the curing reaction. Most of the HNT 

particles showed a thick surface, and their moisture activation was difficult.

Fig. 67 shows that very large variations were observed in the area-specific 

moisture absorption rate of the samples when 12 plies were used, resulting in 

an increase in the moisture absorption rate. This is because A-HNTs showed 

lower mutual cohesion than C-HNTs and could be easily degraded by 

moisture. In addition, because of the partial delamination, a large amount of 

HNT was considerably vulnerable to uniform dispersibility.
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(a)

(b)

Fig. 65 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

A-3HNT/GFRP and (b) A-3HNT/BFRP
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(a)

(b)

Fig. 66 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

C-5HNT/GFRP and (b) C-5HNT/BFRP
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(a)

(b)

Fig. 67 Analysis of the state of HNT dispersion in composite laminates 

through moisture rate and variation with laminated fiber plies; (a) 

A-5HNT/GFRP and (b) A-5HNT/BFRP
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5. Proposal for Various Applications

5.1 High functional structural materials

Recent technological innovations have increased the technological demand of 

preoccupying high technology. In the materials and parts industries, research 

and development is being carried out in various fields for the development of 

complex functional materials and new functional fusion-type new materials 

based on the technical requirements. 

Composite materials, such as high-performance structural materials have a 

great advantage in terms of diversity, functionality and specificity in the 

advancement of material source technology. Amongst them, nanocomposites 

are classified as the most promising industries because they can be 

synthesized between different materials and be applied to specific applications.

However, even though nanocomposites have very good chemical, physical 

and structural properties, they have many structural and technological 

limitations. Particularly, in the production of parts and structures as medium 

and large-sized structural materials, production efficiency and cost 

competitiveness are low. Therefore, it is difficult to practically utilize them in 

the manufacture of structural materials. The difference from the conventional 

bulk scale materials of nanomaterials is that they are able to overcome the 

limitations of existing technology by manufacturing unique materials or to 

present convergence technology based on new properties that were not 

possible in the past. In other words, it is possible to develop a variety of 

fusion technologies based on the unique characteristics of the nanomaterials. 

However, it is limited in scale compared to the conventional bulk scale 

materials. To overcome this, it is necessary to increase productivity and price 

competitiveness of nanomaterials.
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(a)

(b)

Fig. 68 SEM observation of carbonized surface by flame; (a) A-HNT/GFRP 

and (b) A-HNT/GFRP (after UL 94 5V test)
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,

(a)

(b)

Fig. 69 SEM observation of carbonized surface by flame; (a) A-HNT/BFRP 

and (b) A-HNT/BFRP (after UL 94 5V test)
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Therefore, we propose the HNT-polymer nanocomposites as 

high-performance structural materials. Nanomaterials and nanocomposite 

materials focus on specific functionality because of the high-risk materials 

with complicated manufacturing processes, which have very low physical 

properties and cost ratios as general structural materials. However, HNT is not 

only a natural reservoir of natural nanomaterials but also has a relatively 

easy dispersion in the production of polymer nanomaterials. According to the 

results of this study, it is easy to manufacture laminated composites with 

uniform states of dispersion by adding only the HNT dispersion process to the 

existing FRP composites manufacturing process. In addition, HNT has water 

resistance, heat resistance, environment friendliness, and can be used as a 

special functional material.

For example, in the case of flammability characteristics, the UL 94 5V test 

results showed that the C-HNT/GFRP, C-HNT/BFRP, A-HNT/GFRP and 

A-HNT/BFRP satisfied 5VA levels. As a result of observing the carbonized 

surfaces of A-HNT/GFRP and AHNT/BFRP by SEM (see Fig. 68—69). After 

extinguishing the flame that remained on the sample surface, no surface 

cracks and penetration marks were observed on the surface of the sample. In 

this regard, they analyzed that the A-HNT formed a physical barrier on the 

surface of the carbide produced by heat, delaying heat transfer and 

enhancing the interfacial bonding force between the fibers and EP (Kim, et 

al. 2019).

Therefore, the results of the state-of-the-dispersion evaluation based on the 

water resistance of the HNT, aggregation and re-aggregation behavior of the 

HNT at the interlayer interface of laminates suggest that the possibility of 

using HNT as a high functional structural material. Additionally, HNT materials 

have the potential to overcome the utility of bulk-scale structural materials. 

This research will reiterate its potential.
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6. Conclusions

In this study, HNT/EP matrix GFRP and BFRP nanocomposites were 

manufactured by using C-HNT (Crystalloid) and A-HNT (Amorphous) according 

to the crystallinity of HNT, additionally the state of dispersion of HNT was 

evaluated at the interlayer interface of the utilized laminates. The state of 

dispersion of each laminate nanocomposites was analyzed by dividing the nine 

(A-H) columns in the direction of the air outlet in vacuum molding, the 

evaluation of homogeneous dispersion was carried out based on the tendency 

and the deviation of the absorption rate when immersed in 70。C distilled 

water for 336 hours. The reliability of the state of dispersion criterion of 

nanomaterials was also evaluated at that time. The conclusions are as follows.

(1) C-HNT and A-HNT generally formed agglomerates in the powdered state 

regardless of crystallinity. In the case of A-HNT thermally treated at 1000。C, 

the dehydrogenation reaction occurred with the removal of the physically 

bonded water layer, and the particle contraction and rearrangement of the 

structure occurred due to the inner structure fracture of HNT.

(2) It is noted that the EP and HNT have chemically similar components and 

bond forms, and were influenced by the noted bond strength depending on 

the bond type of bond atoms present. Since it was shown that the EP and 

HNT can form bonds not only in chemical bonding but also in independent 

form, it is possible to improve mutual bonding force through a chemical 

modification (surface modification) of EP and HNT.

(3) When the heating rate of the curing system is high, the cure proceeds 

at a high temperature and the temperature at which the cure reaches the 

fully formed cure is increased. However, when the heating rate is low, the 

rate of cure tends to decrease rapidly because cure is required. In this case, 
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C-HNT and A-HNT showed a stable curing reaction at more than 1 and 3 

wt.%, respectively, and regardless of crystallinity, HNT was more effective 

than the noted Neat EP in promoting the curing reaction.

(4) In the case of the reviewed moisture absorption rate of each region, it 

was influenced by the formation of HNT particle agglomerates due to the 

occurrence of resin shrinkage in the curing reaction based on the direction of 

air discharge in vacuum forming. The cohesion of the HNT particles on the 

surface of the fiber, which resists resin shrinkage, influenced the dispersion 

stability, which was therefore attributed to A-HNT which was noted as being 

relatively high.

(5) As the immersion time increased, HNT/GFRP and HNT/BFRP caused a 

local damage to the fiber as EP and fiber were delaminated from a 

microscopic point of view. At that time, moisture deterioration and softening 

of the EP resulted in a noted different roughness of the fiber fracture 

pattern. The C-HNT was involved in the moisture absorption in EP, 

fiber-bonded form, and A-HNT affected direct deterioration with EP, although 

it was not interfaced between the EP and fiber.

(6) GFRP laminates were greatly influenced by the crystallinity and the 

content of HNT in mechanical properties and water resistance. In the studied 

BFRP laminates, there were differences in the size and shape of the clusters 

depending on the content of HNT. Next, it was noted that the C-HNT and 

A-HNT commonly softened the material to increase ductility and delayed 

arrival time to yield, which contributed to reducing deformation by the 

external load and increasing resistance to any damage.

(7) A-HNT has a higher bonding strength to the interlaminar interface of 

laminates than C-HNT, and has less delamination as noted between the fiber 

filaments, and is greatly influenced by the crystallinity of HNT in the 
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mechanical fracture pattern due to external load.

(8) A-HNT showed relatively uniform dispersibility due to its binding to 

GFRP and BFRP as compared to C-HNT. The variation of the moisture 

absorption rate of each region was influenced by the binding force of 

HNT/EP on the fiber surface and fiber interface. The clusters of C-HNT 

showed a higher cohesive force than of the A-HNT. In this clustering layer 

(surface layer), the thickness of the bond with EP was too thick to penetrate 

the water, resulting in less deterioration by moisture.
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