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Abstract 

The undersea environment is generally still a mystery for the human race, 

although it has been with us for a long time. To explore under the sea, the 

underwater glider is the efficient equipment capable of sustainable operation 

for several months. For faster and longer duration performance, a new design 

of underwater glider (UG) shaping ray type is proposed. To have the shortest 

settling time, a new design of time-optimal trajectory (TOT) for controlling 

the states of the ray-type hybrid underwater glider (RHUG) is proposed. And 

for the stable flight control, a robust adaptive controller is designed for the 

RHUG with unknown parameters and environmental disturbances. 

The heading dynamics of the RHUG is presented with linear and 

quadratic damping. A closed form solution of the heading dynamics is 

realized for designing the time-optimal trajectory. The conventional and 

super-twisting sliding mode control will be constructed for tracking this 

trajectory. The tracking performance considering the disturbance effect will 

be discussed in simulations. For identification of unknown parameters of the 

system, the adaptive control is designed and implemented by the heading 

experiment. 



 

 

 

 

The RHUG uses the net buoyancy force for gliding under the water, so 

the depth control is essential. In this dissertation, a robust control algorithm 

with TOT will be carried out for the heaving motion using a hybrid actuation 

of the buoyancy engine and the propeller. The net buoyancy force with a 

constant rate is generated by the buoyancy engine for both descending and 

ascending motion. And the second actuator for the depth control is the 

propeller with quick response in producing thrusting force. To apply the 

robust control with TOT, the control input is designed for the buoyancy 

engine and thruster individually. And finally, the robust control with TOT 

using the buoyancy engine and thruster is simulated with consideration of 

external disturbances. 

When the RHUG is the underactuated system, a robust adaptive control is 

designed for the RHUG dynamics based on Lyapunov’s direct method using 

the backstepping and sliding mode control techniques. The performance of 

this controller is simulated for gliding motion and depth control with 

unknown parameters and bounded disturbances. 

 

KEYWORDS: time-optimal trajectory, robust adaptive control, hybrid 

underwater glider, backstepping, sliding mode control 
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Chapter 1. Introduction 

 

 

 

 

 

 

1.1. Hybrid underwater glider 

Our current ocean data is not enough for humankind to understand the main 

resource of the world. It might be true to say that people understand other 

planets better than their own ocean. Due to the lack of equipment for 

monitoring the ocean, scientists cannot access all of the ocean information. 

And it is dangerous for divers to collect the data under the sea. Nowadays, 

there are many underwater vehicles developed for collecting the information 

of the most nutritious resource, the blue ocean, for maintaining the 

development of the human race on earth. Among many kinds of underwater 

vehicles, the hybrid underwater glider is the most useful method to collect the 

ocean data efficiently. This vehicle uses its net buoyancy force for gliding 

under the water. This vertical force can be converted to the horizontal motion 

thanks to its wings or body shape. Also, some propellers can be used to help 

them quickly coordinate to other positions or avoid collisions or obstacles. 

The net buoyancy force can be produced by the buoyancy engine with very 

small energy. Therefore, the hybrid underwater glider can stay in the sea for 

many months to observe the ocean. If there are the numerous fleets of 

underwater gliders to work on our ocean, there is no doubt that our 

knowledge about the resource underneath the sea surface will increase 

dramatically.  

Over two decades of development, the underwater glider (UG) has become 

popular and reliable for oceanographic activities due to its low-cost and 
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enduring operation. However, to use it in the strong current region, it is 

obvious that the UG needs stronger actuation such as propellers. And in the 

case of depth control, the steady state error and non-zero pitch angle are 

major barriers for the UG to track the desired depth. The reason for this 

phenomenon is explained by the inaccurate trim and ballasting condition in 

[1]. Therefore, to overcome those problems, the hybrid underwater glider 

(HUG) is an alternative method for the mission of depth control with strong 

disturbances.  

The first commercial gliders were developed and named SLOCUM in [2] 

after Joshua Slocum, the first man to travel around the world alone, and 

Spray in [3] after the boat Joshua Slocum used to sail around the globe. These 

UGs can glide with 0.2-0.3m/s speed and cover the range of 6,000km and 

40,000km for Spray and SLOCUM (thermal buoyancy propulsion version) 

respectively. With outstanding performance in the sea trials, there were many 

studies of this system, and many improvements were carried out in various 

aspects of modeling, control design, navigation, and guidance. The general 

studies of components inside the UG with comprehensive results were 

reported in [4]. The underwater acoustic glider is presented in [5] with the 

acoustic sensor for the anti-submarine and mine-countermeasure warfare. The 

new power system was designed in [6] and experimentally proved that the 

heat quality was improved for the thermal UG system. The low-cost and 

light-weight UG was described named Fòlaga in [7] for the coastal 

oceanographic mission. Another application of the virtual mooring system 

using a UG was proposed in [8]. The miniature UG called ALEX was 

developed in [9] to realize the high-performance maneuverability, and its 

motion simulations in diving motion corresponded well with the data from 

the experiment tank. In [10], it presented the development of the shallow 
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water UG and the system identification, which was used to obtain the control 

system model. The low-power propeller system was integrated into the 200m 

SLOCUM electric glider in [11] to perform the horizontal flight and increase 

the overall speed of the previous glider. To improve the flight control, the 

numerical study of hydrodynamic behavior and the flight mechanics was 

carried out in [12]. In [13], details of the mechanical and electric design of a 

coastal UG were discussed for testing planning algorithms and control 

development. The report of the first successful autonomous mission of a 

177km journey was shown in [14] using Littoral Glider from Alaska Native 

Technology LLC. In [15], the Newtonian approach was used to model a 

hybrid-driven glider, and the hydrodynamics were estimated using Strip 

theory and the CFD method. In [16] and [17], the design of a hybrid 

underwater glider called ZJU-HUG was presented with a rotatable thruster 

for an underwater docking mission. In [18], the effect of different wing layout 

to hydrodynamics performance of a hybrid underwater glider was analyzed 

using the design of experiments and CFD method. An adaptive identification 

method for online identification of UG was developed in [19]. A new 

buoyancy engine design with the combination of compressed air and liquid 

fluid to increase gliding speed of UGs was presented in [20]. A small civilian 

UG with a high lift to drag ratio and hydrodynamic optimization was studied 

in [21]. In [22], the high-speed underwater glider with 2.5knots gliding speed 

was developed with a battery mass-shifter for pitching and yawing control. 

The subsea payload delivery for underwater constructions using UGs was 

presented, and the hydrodynamic effect of two types of wings was analyzed 

in [23]. In [24], a design of controllable wings for hybrid underwater glider 

was presented to improve the underwater flight performance. An open-source 

highly maneuverable and low-cost miniature UG was developed and showed 

the small turning radius in [25]. The mathematical model of UG using the 



Introduction 

 

4 

 

N4SID identification method was studied in [26] and [27]. In [28], an 

application of Takagi-Sugeno fuzzy logic modeling for UG to reduce the 

computational effort was implemented. The design of coastal UG was 

presented, and the study of the most important parameters to design the 

variable buoyancy system was carried out in [29].  

In this dissertation, a new hull design of ray-type hybrid underwater glider 

(RHUG) will be presented with the stingray shape. With this new design, the 

space for sensor payloads and batteries is increased dramatically. And, to 

increase the net buoyancy force, a new design of dual-buoyancy engine is 

presented.  

 

1.2. Time-optimal trajectory 

Every system has a certain limit of control inputs such as the maximum 

thrust in the propellers or the maximum net buoyancy force in the buoyancy 

engines. Based on these constraints, the time-optimal trajectory can be 

formulated for underwater vehicles. In [30], the singular extremals of the 

underwater vehicle system for the time-optimal problem was studied. And 

later, the design of a time-efficient trajectory with constant thrust arcs was 

developed and successfully implemented into the underwater vehicle in [31]. 

But with this algorithm, considerable computational time was seen in the 

practical implementation. In [32], a numerical method for minimum time 

heading control for UG was presented in the known and time-varying flow 

fields. The closed-form solution for time-optimal trajectory was developed in 

[33] for the depth dynamic of the underwater vehicle using propeller 

propulsion.  

In this dissertation, a novel time-optimal trajectory will be presented for the 

heading dynamic of the RHUG system. Also, the time-optimal trajectory will 
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be studied for the depth control using the buoyancy-driven propulsion in the 

RHUG system. And then, the experiment of the TOT concept for heading 

control will be carried out using thrusters. 

 

1.3. Nonlinear control design 

The underwater glider system is a highly nonlinear system with many 

uncertainties from inaccurate parameters and environmental disturbances. 

Thus, the development of an advanced controller to be robust to the 

parametric uncertainties and external disturbances is necessary. In [34], to 

derive the nonlinear control laws for the moving mass actuator, the stability 

of a steady underwater vehicle motion using potential shaping feedback was 

studied. A nonlinear robust adaptive control was developed in [35] for an 

under-actuated ship to follow the desired path in spite of external 

disturbances. In [36], a nonlinear robust adaptive control was designed for a 

6-DOF model of AUVs with only four actuators to follow the pre-defined 

path at the desired speed despite external disturbances. A Lyapunov 

candidate was proposed in [37] to prove the stability of steady gliding motion 

of hydrodynamic force such as the UG system. In [38], a robust nonlinear 

controller was proposed to asymptotically drive the AUV dynamic onto the 

desired path at a constant forward speed. In [39], a predictive controller was 

developed for attitude control of SLOCUM glider. The pitch control 

performance of a UG was validated in [40] by a towing tank and sea test. The 

simulation results of nonlinear adaptive control with the actuator saturation 

and parametric uncertainties for 6DOF AUV model was developed in [41]. 

An adaptive fuzzy controller for heading control of a UG was simulated in 

[42]. The heading control experiment of a UG for virtual mooring application 

was presented in [43]. A study of a model predictive control to compensate 

for the drift of UG due to external disturbance was developed in [44]. In [45], 
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a pitching control experiment was conducted using phase-lead compensator 

resulting in the improvement in the pitch performance. An energy optimal 

depth controller design for long-range HUG was studied and experimentally 

tested in [46]. In [47], backstepping integral sliding mode control was 

developed and showed many merits in the reduction of chattering problem, 

steady-state error, and control effort. A super-twisting sliding mode control 

was presented in [48] and provided chattering-free performance under the 

existence of disturbances. A new approach for pitch control was studied in 

[49] using model compensation based on the active disturbance rejection 

control (ADRC). And a self-searching optimal ADRC for pitch control was 

proposed in [50] with good adaptive performance and energy-efficient 

control effort. In [51], the combination of reinforcement learning and ADRC 

was proposed and provided high-precision and high-adaptive control ability 

in simulation results. An adaptive fuzzy incremental PID and an anti-windup 

compensator were presented in [52] with the verification on the Petrel-II 200 

glider in the sea trials. 

In this dissertation, a robust adaptive control using back-stepping technique 

is designed for a hybrid underwater glider in a vertical plane with the 

presence of disturbances induced by ocean currents and waves. The internal 

moving mass is considered as the first control input with the provided mass-

shifter model. And thruster force is another output of this controller for 

keeping the constant speed in the cruise mode. Saw-tooth gliding motion and 

depth control is simulated using the developed platform parameters. In this 

HUG system, there are two inputs for controlling the vertical dynamics. Thus, 

this system is the under-actuated system with two inputs in the 3-DOF model. 

Therefore, this finding is different from other controllers above, and it has 
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reliable performance. The proof of dynamics stability will be given using 

Lyapunov’s direct method. 

The following contents will be organized as below. 

Chapter 2: The 6-DOF dynamics of the hybrid underwater glider will be 

presented, and all control inputs are modeled using the developed platform 

design. 

Chapter 3: The time-optimal trajectory design for heading dynamics will be 

formulated, and the combination between TOT trajectory and two different 

nonlinear robust controllers will be presented. 

Chapter 4: The TOT trajectory is also formulated for the application of 

depth control using buoyancy engines and thrusters for the HUG system. A 

closed-form solution for the heave dynamics will be showed and validated by 

computer simulation. 

Chapter 5: An implementation of adaptive control for heading dynamics 

with TOT trajectory will be presented. 

Chapter 6: A robust adaptive control for the vertical plane of HUG will be 

organized here. All control design processes will be discussed and proved in 

this chapter. And simulation results of gliding motion and depth control will 

be presented. 

Chapter 7: The novelty of this thesis will be emphasized here. 
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Chapter 2. Dynamics of RHUG 

 

 

 

 

 

 

2.1 Dynamics of underwater vehicles 

The 6-DOF equations of motion of a fully submerged underwater vehicle, 

whose body axes coincide with the principal axes of inertia, can be written as 

Eq. (1) as presented in [53]. 
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Fig. 1 Coordinate system of Ray-type hybrid underwater glider 
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where 𝜂 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇  is the position and orientation of the vehicle in 

inertial frame 𝐸𝑥𝑦𝑧  in Fig. 1; 𝜈 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 ]𝑇  is the translation and 
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angular velocity in body-fixed frame 𝑂𝑥0𝑦0𝑧0  in Fig. 1; 𝑀 = 𝑀𝑅𝐵 +𝑀𝐴  is 

the inertia matrix; 𝑀𝑅𝐵 is the rigid body inertia matrix; 𝑀𝐴 is the added mass 

inertia matrix ; 𝐶(𝜈) = 𝐶𝑅𝐵(𝜈) + 𝐶𝐴(𝜈) is the Coriolis and centripetal matrix;  

𝐶𝑅𝐵 is the rigid body Coriolis and centripetal matrix; 𝐶𝐴 is the hydrodynamic 

Coriolis and centripetal matrix; 𝐷(𝜈) is hydrodynamic damping matrix; 𝑔(𝜂) 

is the gravitational matrix; 𝜏 is the control input; 𝜏𝑒 is the disturbance forces 

and moments from ocean currents and waves. 

For the detailed system, the motion equation of 6-DOF dynamics can be 

shown as Eq. (2) as presented in [53]. 

 

𝑚[𝑢̇ − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝑔(𝑞
2 + 𝑟2) + 𝑦𝑔(𝑝𝑞 − 𝑟̇) + 𝑧𝑔(𝑝𝑟 + 𝑞̇)] = 𝑋 

𝑚[𝑣̇ − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝑔(𝑟
2 + 𝑝2) + 𝑧𝑔(𝑞𝑟 − 𝑝̇) + 𝑥𝑔(𝑞𝑝 + 𝑟̇)] = 𝑌 

𝑚[𝑤̇ − 𝑤𝑞 + 𝑣𝑝 − 𝑧𝑔(𝑝
2 + 𝑞2) + 𝑥𝑔(𝑟𝑝 − 𝑞̇) + 𝑦𝑔(𝑟𝑞 + 𝑝̇)] = 𝑍 

𝐼𝑥𝑝̇ + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟 + 𝑚[𝑦𝑔(𝑤̇ − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝑔(𝑣̇ − 𝑤𝑝 + 𝑢𝑟)] = 𝐾 

𝐼𝑦𝑞̇ + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝 + 𝑚[𝑧𝑔(𝑢̇ − 𝑣𝑟 + 𝑤𝑞) − 𝑥𝑔(𝑤̇ − 𝑢𝑞 + 𝑣𝑝)] = 𝑀 

𝐼𝑧𝑟̇ + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 +𝑚[𝑥𝑔(𝑣̇ − 𝑤𝑝 + 𝑢𝑟) − 𝑦𝑔(𝑢̇ − 𝑣𝑟 + 𝑤𝑞)] = 𝑁 

(2) 

  

Here, 𝑢, 𝑣, 𝑤  are linear velocities of origin 𝑂  in the body-fixed frame; 

𝑝, 𝑞, 𝑟 are angular velocity in the body-fixed frame; 𝜙, 𝜃, 𝜓 are Euler angles 

in the earth-fixed frame; 𝑥𝑔, 𝑦𝑔, 𝑧𝑔  are the position of the center of gravity 

(CG in Fig. 1) in the moving frame 𝑂𝑥0𝑦0𝑧0; 𝑋, 𝑌, 𝑍 are the forces acting on 

the vehicle in the body-fixed frame; 𝐾,𝑀,𝑁 are the moments acting on the 

vehicle in the body-fixed frame. And the kinematic system can be driven by 

Euler angles through the Jacobian matrix in (3). 
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𝑥̇ = 𝑢𝑐𝜓𝑐𝜃 + 𝑣(𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑠𝜓𝑐𝜙) + 𝑤(𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑐𝜙𝑠𝜃) 

𝑦̇ = 𝑢𝑠𝜓𝑐𝜃 + 𝑣(𝑐𝜓𝑐𝜙 − 𝑠𝜙𝑠𝜃𝑠𝜓) + 𝑤(𝑠𝜃𝑠𝜓𝑐𝜙 − 𝑐𝜓𝑠𝜙) 

𝑧̇ = −𝑢𝑠𝜃 + 𝑣𝑐𝜃𝑠𝜙 + 𝑤𝑐𝜃𝑐𝜙 

𝜙̇ = 𝑝 + 𝑞𝑠𝜙𝑡𝜃 + 𝑟𝑐𝜙𝑡𝜃 

𝜃̇ = 𝑞𝑐𝜙 − 𝑟𝑠𝜙 

𝜓̇ = 𝑞
𝑠𝜙

𝑐𝜃
+ 𝑟

𝑐𝜙

𝑐𝜃
 

(3) 

 

where 𝑐𝑖 ≔ cos(𝑖); 𝑠𝑖 ≔ sin(𝑖); 𝑡𝑖 ≔ tan(𝑖). 

The external force and moment vector contains three components as 

described here, [𝑋, 𝑌, 𝑍, 𝐾,𝑀,𝑁]𝑇 = 𝜏𝐻 + 𝜏 + 𝜏𝑒. The hydrodynamics forces 

and moments,𝜏𝐻 , can be estimates as (4) using Eq. (2.114) in [53]. The 

control input 𝜏 is generated by thrusters, moving mass and buoyancy engines. 

Finally, the environmental input 𝜏𝑒  is the disturbances from ocean currents 

and waves which can be formulated by the sinusoid function. 

 

𝜏𝐻 = −𝑀𝐴𝜈̇ − 𝐶𝐴(𝜈)𝜈 − 𝐷(𝜈)𝜈 − 𝑔(𝜂) (4) 

 

For underwater vehicle application, the added mass matrix 𝑀𝐴  and 

hydrodynamic Coriolis and centripetal matrix 𝐶𝐴 can be described by using 

Eq. (2.129) and (2.130) in [53] as Eq. (5) and (6). 

 

𝑀𝐴 = −𝑑𝑖𝑎𝑔{𝑋𝑢̇, 𝑌𝑣̇, 𝑍𝑤̇, 𝐾𝑝̇, 𝑀𝑞̇ , 𝑁𝑟̇} (5) 
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 (6) 

 

The hydrodynamic damping matrix 𝐷(𝜈) is estimated by neglecting the 

high-order terms. Therefore, this matrix can be formulated by the linear and 

quadratic form as (7). 

 

𝐷(𝜈) = −𝑑𝑖𝑎𝑔{𝑋𝑢, 𝑌𝑣, 𝑍𝑤, 𝐾𝑝, 𝑀𝑞 , 𝑁𝑟} 

             −𝑑𝑖𝑎𝑔{𝑋𝑢|𝑢||𝑢|, 𝑌𝑣|𝑣||𝑣|, 𝑍𝑤|𝑤||𝑤|, 𝐾𝑝|𝑝||𝑝|,𝑀𝑞|𝑞||𝑞|, 𝑁𝑟|𝑟||𝑟|} 
(7) 

 

The restoring force and moment matrix 𝑔(𝜂)  can be illustrated by Eq. 

(2.168) in [53] as shown in (8). 
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  (8) 

2.2 Design of RHUG platform 

2.2.1 Hull design 

The hull of RHUG contains four shells and one sheet, as shown in Fig. 2. 

The sheet has a thickness of 10mm and supports the whole system. The other 

four shells have a thickness of 5mm. The hardware container is used to 

support three-cylinder hulls and batteries. And three shells of buoyancy foam 
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will be installed at the nose and the wings of the vehicle as Fig. 2. The final 

design of the hull is manufactured and weighted, as shown in Fig. 3. 

Buoynacy foam 
container

Roll stabilizer

Hardware 
container

Supporting sheet

 
Fig. 2 Design of the hull structure 

 

 
 

(a) Front view (b) Back view 

  

(c) Top view (d) Side view 

Fig. 3 The final version of the hull design 

 

2.2.2 Buoyancy engine and mass-shifter 

Inside the hardware container in Fig. 2, there are three cylinders and one 

battery. In Fig. 4, the middle hull contains a mass-shifter and the control 

system. In the mass-shifter mechanism, the position of the moving mass is 

controlled by the DC motor. Two hulls on the side are the buoyancy engines 

and are distinguished by the left buoyancy engine and the right buoyancy 
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engine. The piston position can be controlled by the BLDC motor, as shown 

in Fig. 4. The three hulls and battery are connected by three SubConn cables 

for waterproof purpose. 

Left 
piston-cylinder

Water

Water

Right 
piston-cylinder

Moving 
mass

BLDC 
motor

DC 
motor

Control 
system

SubConn 
Cable

Battery

 
Fig. 4 Buoyancy engine and mass-shifter design 

 

2.2.3 Battery 

One pack of batteries has 16 cells contained in the acrylic box in Fig. 5. 

There are two boards of protection circuit management (PCM) for safety 

discharging and recharging. After checking the function of the battery, the 

acrylic box will be filled with the Epoxy liquid for waterproof protection. 

8 cells PCM 4 cells PCM
Subconn 

connector

 
Fig. 5 Battery design 
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2.2.4 Sensors 

For gliding and depth control, RHUG should have at least the depth 

measurement, earth-fixed orientations, heading angle, body-fixed 

accelerations, body-fixed angular rates and earth-fixed positions in the sea 

surface. So the three sensors below will be essential for controlling RHUG. 

2.2.4.1 Pressure sensor 

The pressure range of the depth sensor is chosen from 0 bar to 10 bar (up to 

100m) and shown in Fig. 6. This pressure sensor is an analog type, so it has 

no communication noise. And the frequency of this sensor is depended on the 

frequency of the analog module of the microcontroller unit (MCU). And in 

this project, the frequency of reading the depth sensor is set at 100Hz. The 

error of this depth sensor at the reference condition is 0.5% of the span or 

0.5m. 

 
Fig. 6 Pressure transmitter ECO-1 

 

2.2.4.2 AHRS 

 
Fig. 7 XSENS MTi IMU 
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The XSENS inertial measurement unit (IMU) is the attitude and heading 

reference system. It contains three kinds of sensors such as accelerometers, 

gyroscopes, and magnetometers for three-dimensional orientations, 

accelerations, turning rates, and magnetic field. In this platform, XSENS MTi 

will be used for orientations, angular rates, and accelerations measurement, as 

shown in Fig. 7. And the main feature of this AHRS is organized in Table 1. 

 

Table 1 Attitude and heading characteristics of 

XSENS IMU 

Parameter Value 

Static accuracy (roll/pitch) <0.5 deg 

Static accuracy (heading) <1 deg 

Dynamic accuracy 2 deg RMS 

Digital interface RS-232 

Dynamic range (pitch)      ±90 deg 

Dynamic range (roll/heading)      ±180 deg 

Bias stability (turning rate) 20 deg/h 

Bias stability (acceleration) 0.02m/s
2 

 

2.2.4.3 GPS 

 
Fig. 8 ASCEN GPS receiver 

The longitude and latitude position of the vehicle will be measured with a 

GPS sensor, as shown in Fig. 8. And details of this GPS sensor can be seen in 

Table 2. With this GPS, the position of the vehicle in the form of longitude 

and latitude will be updated every second. And this low update rate is suitable 

for RHUG because most of their operating time is under the water and GPS 

position is required only on the surface for path planning. The operator will 

use its position for determination of the next desired heading. 
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Table 2 GPS description 

Parameter Description 

GPS solution MTK MT3339 

Position accuracy 3.0m 

Velocity accuracy 0.1m/s 

Acceleration accuracy 0.1m/s
2 

Digital interface UART 

Update rate 1Hz 

Altitude Maximum 18,000m 

Velocity Maximum 515m/s
 

Acceleration Maximum 4G 

 

2.2.5 Assembly 

The main components of the RHUG platform are shown in Fig. 9. This 

vehicle has two thrusters in the starboard and two thrusters in the stern of the 

platform. There are three pressure hulls inside the platform. The hulls on the 

side are buoyancy engines, called a dual-buoyancy engine located on the left 

and right side, as shown in Fig. 9. The center hull contains the mass-shifter 

and control system. And the design can carry two packs of battery with the 

size of 300x200x150mm. 

Battery

Thruster

Dual-buoyancy 
engine

Mass shifter

Control 
system

Buoyancy 
material

Buoyancy 
material

Buoyancy 
material

 
Fig. 9 System configuration 
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2.3 Dynamics of RHUG 

In this design of RHUG as described above, the sway and roll dynamics do 

not have any actuators. For now, the stability of the roll motion is dependent 

on the vertical passive stabilizer in Fig. 2, because the main goal of this 

design is for proving the operation of the gliding motion with the new hull 

design. Therefore, the sway and roll dynamics will be neglected in this 

RHUG modeling. And the whole dynamics of underwater vehicles are 

adapted for the RHUG by dividing it into two dynamics. The first dynamics 

are surge-heave-pitch motion or vertical dynamics in 𝐸𝑥𝑧. And the second 

dynamics is yaw motion, which is used for heading control, as shown in Fig. 

10. The reason for this separation is that the coupling terms between surge, 

heave and pitch motions cannot be neglected in the gliding motion of RHUG. 

And another reason is that the hydrodynamic coefficients could be found 

easily in surge-heave-pitch dynamics through the simple vertical drift test in 

CFD simulation. Therefore, the dynamics of RHUG will be presented in 

terms of vertical motion and heading motion individually. 

 

Surge
Sway
Heave

Roll
Pitch
Yaw

6-DOF

Surge
Heave
Pitch

3-DOF

Yaw
1-DOF

 
Fig. 10 Modeling concept 

 

By reducing the 6-DOF dynamics system, the vertical system, which is 

important for gliding motion, will be described in (9). 
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𝑥̇ = 𝑢𝑐𝑜𝑠𝜃 + 𝑤𝑠𝑖𝑛𝜃 

𝑧̇ = −𝑢𝑠𝑖𝑛𝜃 + 𝑤𝑐𝑜𝑠𝜃 

𝜃̇ = 𝑞 

(𝑚 − 𝑋𝑢̇)𝑢̇ = −𝑚𝑧𝑔𝑞̇ + 𝑚𝑥𝑔𝑞
2 −𝑚𝑤𝑞 + 𝑍𝑤̇𝑤𝑞 + 𝑋𝑢𝑢𝑢

2 + 𝑋𝑤𝑤𝑤
2

+ 𝑋𝑢𝑤𝑢𝑤 − (𝑊 − 𝐵)𝑠𝑖𝑛𝜃 + 𝜏𝑤𝑠𝑖𝑛𝜃 + 𝜏𝑢 + 𝜏𝑒𝑢 

(𝑚 − 𝑍𝑤̇)𝑤̇ = (𝑚𝑥𝑔 + 𝑍𝑞̇)𝑞̇ + 𝑚𝑧𝑔𝑞
2 +𝑚𝑢𝑞 − 𝑋𝑢̇𝑢𝑞 + 𝑍𝑢𝑢𝑢

2

+ 𝑍𝑢𝑤𝑢𝑤 + 𝑍𝑤𝑤𝑤
2 + 𝑍𝑤𝑤𝑤𝑤

3 + (𝑊 − 𝐵)𝑐𝑜𝑠𝜃

+ 𝜏𝑤𝑐𝑜𝑠𝜃 + 𝜏𝑒𝑤 

(𝐼𝑦𝑦 −𝑀𝑞̇)𝑞̇ = −𝑚𝑧𝑔𝑢̇ + (𝑚𝑥𝑔 −𝑀𝑤̇)𝑤̇ − 𝑚𝑧𝑔𝑞𝑤 − 𝑍𝑤̇𝑤𝑢

− 𝑍𝑞̇𝑞𝑢 + 𝑋𝑢̇𝑢𝑤 +𝑀𝑢𝑢𝑢
2 +𝑀𝑢𝑤𝑢𝑤 +𝑀𝑤𝑤𝑤

2

+𝑀𝑤𝑤𝑤𝑤
3 − (𝑧𝑔𝑊 − 𝑧𝑏𝐵)𝑠𝑖𝑛𝜃 − (𝑥𝑔 − 𝑥𝑏𝐵)𝑐𝑜𝑠𝜃

+ 𝜏𝑞 + 𝜏𝑒𝑞 

(9) 

 

Here, 𝑋𝑢̇ , 𝑍𝑤̇ , 𝑍𝑞̇ , 𝑀𝑤̇  and 𝑀𝑞̇  are the added mass coefficients; 

𝑋𝑢𝑢, 𝑋𝑢𝑤, 𝑋𝑤𝑤 are the hydrodynamic coefficients in the surge dynamics; 𝑍𝑢𝑢, 

𝑍𝑢𝑤, 𝑍𝑤𝑤 , 𝑍𝑤𝑤𝑤  are the hydrodynamic coefficients in the heaving motion; 

𝑀𝑢𝑢 , 𝑀𝑢𝑤 , 𝑀𝑤𝑤 , 𝑀𝑤𝑤𝑤  are the hydrodynamic coefficients in the pitching 

motion; 𝑊 and 𝐵 are the weight and buoyancy force in the neutral buoyancy 

condition; 𝑥𝑔 and 𝑧𝑔 are coordinates of gravity center in the body-fixed frame; 

𝑥𝑏 and 𝑧𝑏 are coordinates of buoyancy center in the body-fixed frame; 𝑚 and 

𝐼𝑦𝑦  are the vehicle mass and the y-axis moment of inertia; 𝜏𝑤  is the net 

buoyancy force from the buoyancy engine; 𝜏𝑞 is the control moment from the 

mass-shifter; 𝜏𝑢 is the thruster force; 𝜏𝑒𝑢, 𝜏𝑒𝑤 and 𝜏𝑒𝑞 are the environmental 

force and moments in the body-fixed frame. Therefore, there are only two 

control inputs which are 𝜏𝑢 for speed control and 𝜏𝑞 for pitch control. 
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The heading dynamics is essential for any underwater vehicles, especially 

underwater gliders. This dynamics will be used to design the heading 

controller. In this design, there are four thrusters for heading control. The 

heading dynamics of RHUG can be decoupled from 6-DOF dynamics by 

neglecting other states, as shown in Eq. (10). Here,  𝑁𝑟̇  is the added mass 

coefficient;  𝑁𝑟  is the linear damping coefficient; 𝑁|𝑟|𝑟  is the quadratic 

damping coefficient; 𝜏𝑟  is the moment produced by four thrusters; 𝑑 is the 

external disturbance. 

𝜓̇ = 𝑟
(𝐼𝑧𝑧 − 𝑁𝑟̇)𝑟̇ = 𝑁𝑟𝑟 + 𝑁|𝑟|𝑟|𝑟|𝑟 + 𝜏𝑟 + 𝑑

 (10) 

 

2.4 Hydrodynamic coefficients 

The planar motion mechanism (PMM) test for the hydrodynamic 

coefficients is very expensive. Therefore, to obtain the hydrodynamic 

coefficients of this new hull design, the result of the CFD method is presented. 

 

 
Fig. 11 Vertical static drift test for varying pitch angle 
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The vertical drift test of the RHUG hull at different pitch angle range from 

−15° to 15° is performed in Fig. 11 and the resistant forces in X and Z axes 

through the CFD analysis are shown in Fig. 12 and Fig. 13, respectively. 

The color spectrum of the RHUG hull surface represents the vertical force 

acting on the hull. The line contour around the hull is the fluid flow in the 

vertical drift test. From the CFD simulation, the vortex shedding occurred at 

the left and right wing ends of the hull. The analytical result of the force 

acting on the X and Z axes of the body-fixed frame is shown in Fig. 12 and 

Fig. 13, respectively. And the dimensionless hydrodynamic coefficients from 

the CFD results are shown in Table 3. 

 

 
Fig. 12 Vertical static drift calculation result for surge motion 

 

 

 
Fig. 13 Vertical static drift calculation result for heave motion 
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Table 3 Dimensionless hydrodynamics coefficients (CFD method) 

Parameter  Value Parameter   Value Parameter   Value 

𝑋𝑢̇ -0.03 𝑍𝑤̇ -0.011836 𝑀𝑤̇ -0.022352 

𝑋𝑢𝑢 -0.0063 𝑍𝑞̇ -0.004774 𝑀𝑞̇ -0.003823 

𝑋𝑢𝑤 0.1485 𝑍𝑢𝑢 -0.0052 𝑀𝑢𝑢 -0.0018 

𝑋𝑤𝑤 0.0013 𝑍𝑢𝑤 -0.3204 𝑀𝑢𝑤 0.0117 

  𝑍𝑤𝑤 0.0356 𝑀𝑤𝑤 -0.0173 

  Zwww -1.623 Mwww 0.6989 

 

 

2.5 Thruster modeling 

 

 
Fig. 14 Thruster force vs. percentage input 

 

𝑇𝑖 = {

0.68𝑢𝑡 − 4.795               7 < 𝑢𝑡 ≤ 80
0.54𝑢𝑡 + 3.836       − 80 ≤ 𝑢𝑡 < −7
0                                 − 7 ≤ 𝑢𝑡 ≤ 7

 (11) 

The thrusters in this platform are T200 thrusters. The experimental data can 

be obtained from this site https://www.bluerobotics.com/. In Fig. 14, the 

thrust force 𝜏𝑢 ranges from -40N to 50N with the input signal 𝑢𝑡 from -80% 

to 80%. This relationship can be illustrated as the set of equations in (11). 

The control force and moment can be calculated from thruster force by Eq. 

https://www.bluerobotics.com/
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(12) and (13). Here, 𝜏𝑢  is the surge control input for speed control in the 

body-fixed frame; 𝜏𝑟 is the yaw moment acting on the vehicle in the body-

fixed frame; 𝑇1 and 𝑇2 are the forces of thrusters in the starboard; 𝑇3 and 𝑇4 

are the forces of thrusters in the stern; 𝑑1 is the distance of two thrusters in 

the starboard; 𝑑2 is the distance of two thrusters in the stern. 

𝜏𝑢 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 (12) 

 

𝜏𝑟 = (𝑇1 + 𝑇2)
𝑑1
2
+ (𝑇3 + 𝑇4)

𝑑2
2

 (13) 

 

2.6 Buoyancy engine modeling 

M G

2
c

R


bu

Sealed at atmosphere pressure, 1atmSealed at atmosphere pressure, 1atm

O-ringO-ring

SeawaterSeawater

 
Fig. 15 Buoyancy engine diagram 

 

 

𝜏𝑤 = 𝑢𝑏𝜋𝑅𝑐
2𝜌𝑔 (14) 

 

𝑥𝑏 =
𝜋𝑅𝑐

2𝑢𝑏(𝑋𝑝 +
𝑢𝑏
2 )

𝜋𝑅𝑐2𝑢𝑏 + 𝑉𝑛𝑏
 (15) 

 

In this RHUG system, the buoyancy engine will let the water in or out by 

moving a piston along the cylinder, as shown in Fig. 15. During this process, 

the volume of air in this vehicle will decrease or increase depending on the 

position of the piston. If the weight and buoyancy forces are equal in the 

neutral condition, this glider can sink when its volume is reduced and float 

toward the water surface when it increases its volume. To specify the force 
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that this buoyancy engine can produce, the length of the piston travel and the 

radius of the cylinder should be defined. Then, the net buoyancy force is 

equal to the seawater weight of the compressed air volume, and it is shown in 

(14). Here, in Fig. 15, 𝑢𝑏 is the position of the piston; 𝑅𝑐 is the radius of the 

cylinder; 𝜌  is the density of seawater; 𝑔  is the gravitational acceleration. 

During the operation of the buoyancy engine, the center of buoyancy is 

shifted along the 𝑂𝑥0 axis by Eq. (15). Here, 𝑋𝑝 is the position of pistion in 

the neutral position along the 𝑂𝑥0 axis in the body-fixed frame; 𝑉𝑛𝑏  is the 

volume of the vehicle in the neutral condition of the buoyancy engine. 

 

2.7 Mass-shifter modeling 

 

M G

Moving massMoving mass

mu
 

Fig. 16 Mass shifter diagram 

 
 

𝑥𝑔 =
𝑚𝑠𝑡𝑎𝑡𝑥𝑠𝑡𝑎𝑡 +𝑚𝑚𝑢𝑚

𝑚
≈
𝑚𝑚

𝑚
𝑢𝑚 (16) 

 

𝜏𝑞 = 𝑊𝑥𝑔 ≈ 𝑊
𝑚𝑚

𝑚
𝑢𝑚 (17) 

 
𝐼𝑦𝑦 = 𝐼𝑛𝑦 +𝑚𝑚𝑢𝑚

2 𝑠𝑔𝑛(𝑢𝑚) (18) 

The movable mass in Fig. 16 can be translated along the 𝑂𝑥0 axis so the 

center of gravity in this axis 𝑥𝑔 can be defined as (16). Here, 𝑚𝑠𝑡𝑎𝑡 = 𝑚 −

𝑚𝑚  is the static mass; 𝑚𝑚  is the weight of the movable mass; 𝑢𝑚  is the 

position of the moving mass; 𝑥𝑠𝑡𝑎𝑡 is the position of the static mass and it is 
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assumed to be very small because the fact is that the origin of the body-fixed 

frame is located near to the center of gravity. Then, 𝑥𝑔 can be replaced by 

𝑚𝑚

𝑚
𝑢𝑚 in (17). The moment produced by the mass-shifter can be computed 

by the product of the net buoyancy force and the location of the center of 

gravity in the 𝑂𝑥0 axis, as shown in (17). In addition, the moment of inertia is 

also changed due to the translation of moving mass following to (18). Here, 

𝐼𝑛𝑦 is the moment of inertia about the 𝑂𝑦0 axis in the neutral condition of 

moving mass.  
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Chapter 3. Time-optimal trajectory with 

actuator saturation for heading control 

 
 

 

 

 

 

 

3.1 Time-optimal trajectory 

The performance of underwater vehicles is dependent on the hydrodynamic 

coefficients and the actuating force with energy limit. The time-optimal 

trajectory is a set of the desired position, velocity, and acceleration, and it is 

directly related with the maximum and minimum control input. If the vehicle 

tracks the TOT trajectory, the shortest arrival time of this motion control will 

be obtained within the input limit. 

3.2 Heading motion 

The decoupled yaw dynamics of the underwater glider can be written as Eq. 

(19). 

𝜓̇ = 𝑟
(𝐼𝑧𝑧 − 𝑁𝑟̇)𝑟̇ = 𝑁𝑟𝑟 + 𝑁|𝑟|𝑟|𝑟|𝑟 + 𝑢 + 𝑑

 (19) 

where 𝑟 is the yaw rate; 𝜓 is the heading angle; 𝐼𝑧𝑧 is the moment of inertia 

about 𝑂𝑧0 axis; 𝑁𝑟̇ is the added mass coefficient; 𝑁𝑟 and 𝑁|𝑟|𝑟 are the linear 

and quadratic damping coefficients respectively; 𝑢 is the torque of thrusters; 

and 𝑑 is the external disturbance induced by currents and waves. And then it 

can be rewritten in the simpler form as (20). Here, 𝑎 =
𝑁|𝑟|𝑟

𝐼𝑧𝑧−𝑁𝑟̇
; 𝑏 =

𝑁𝑟

𝐼𝑧𝑧−𝑁𝑟̇
; 

𝛼 = 𝐼𝑧𝑧 − 𝑁𝑟̇; 𝑐 =
𝑢

𝛼
; 𝑑ℎ =

𝑑

𝛼
.  
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For the time-optimal problem, the disturbance is not used for designing 

TOT trajectory and then Eq. (21) is used instead of (20). 

 

𝑟̇ = 𝑎𝑟 + 𝑏|𝑟|𝑟 + 𝑐 + 𝑑ℎ (20) 

 

𝑟̇ = 𝑎𝑟 + 𝑏|𝑟|𝑟 + 𝑐 (21) 

 

3.3 Analytic solution of heading dynamic equation 

The concept of the time-optimal trajectory is that if the solution of the 

given dynamics is formulated as the function of time for the certain control 

input, then that solution is the output of the dynamics with that control input. 

So, if the control input is kept at the maximum and minimum value for the 

acceleration and deceleration time, then the closed-form of time-function of 

the given dynamics is the fastest trajectory or time-optimal trajectory. 

In this application, the heading dynamics is derived in this section. The 

state of this dynamics or the output of this system is 𝑟, the trajectory of this 

system is 𝑟𝑑. In the RHUG heading dynamic, 𝑢 is the resulting moment from 

thrusters, the maximum moment is 𝑢𝑚𝑎𝑥 and the minimum moment is 𝑢𝑚𝑖𝑛, 

as shown in Fig. 17. For the sake of simplicity, the control input 𝑢 will be 

addressed through the scaled control input 𝑐, the maximum scaled input is 

𝑐1 =
𝑢𝑚𝑎𝑥

𝛼
 and the minimum scaled input is 𝑐2 =

𝑢𝑚𝑖𝑛

𝛼
. 

Here, 𝜓0 is the initial value of angle; 𝜓3 is the desired value of angle; 𝑟1
∗ is 

the maximum angular velocity with the maximum input; 𝑡1
∗ is the time when 

the maximum angular velocity is achieved; 𝜓1
∗ is the angle at 𝑡1

∗; and 𝛥𝜓3
∗  is 

the angular distance from 𝑡2 to 𝑡3. With the given desired angle 𝜓3 and the 

initial angle 𝜓0 , in one heading dynamics, other parameters of the TOT 

trajectory will be solved in the following. 
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Fig. 17 Time-optimal trajectory profile 

 

The TOT trajectory will be divided into three segments as acceleration 

from 𝑡0 to 𝑡1, constant velocity from 𝑡1 to 𝑡2, and deceleration from 𝑡2 to 𝑡3, 

as shown in Fig. 17. From 𝑡0 to 𝑡1, the vehicle will be controlled using the 

maximum moment of 𝑢𝑚𝑎𝑥 and it will derive the yaw rate to the critical value 

𝑟1
∗ . Due to the growth of hydrodynamic moment, the acceleration will 

decrease to zero and the angular velocity will be constant from 𝑡1 to 𝑡2 in Fig. 

17. When the gap between the desired angle and the actual angle is equal to 

Δ𝜓3
∗ , the minimum input will be applied to bring both velocity and 

acceleration to zero. Therefore, once the parameters of heading dynamics are 

known, this trajectory can be used to maneuver the heading angle with 

minimum time consumption. 
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Fig. 18 Solution checking map 

In this dissertation, the closed-form solution is found under the condition of 

𝜓3 − 𝜓0 ≥ 𝜓1
∗ + Δ𝜓3

∗ (first condition). In other words, the constant velocity 

segment always exists. 

0x

0z

0

3

Right-hand direction

3

Left-h
and 

direction

RHUG
 

Fig. 19 Positive and negative domains in TOT for heading control 
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Table 4 Definition of TOT trajectory in heading dynamics  

Parameter Description 

First segment Acceleration period 

Second segment Constant velocity period 

Third segment Deceleration period 

𝑟d1 The first segment of angular velocity trajectory 

𝑟𝑑2 The second segment of angular velocity trajectory 

𝑟𝑑3 The third segment of angular velocity trajectory 

𝜓𝑑1 The first segment of angle trajectory 

𝜓𝑑2 The second segment of angle trajectory 

𝜓𝑑3 The third segment of angle trajectory 

𝑟̇d1 The first segment of angular acceleration trajectory 

𝑟̇d2 The second segment of angular acceleration trajectory 

𝑟̇d3 The third segment of angular acceleration trajectory  

In Fig. 18, if the first condition is satisfied, the solution of the heading 

dynamics can be divided into left-hand and right-hand directions due to the 

absolute function in the hydrodynamic term. The right-hand direction means 

that the vehicle will rotate in the clockwise direction with positive angle. And 

the left-hand direction is for the counter-clockwise direction with negative 

angle, as illustrated in Fig. 19. And variables and definitions of TOT for 

heading dynamics are shown in Table 4. 

 

3.3.1 Right-hand direction 

In this subsection, it is assumed that the value of 𝑟𝑑 is positive, so the 

trajectory solution will satisfy the dynamics as described in (22). And this 

dynamic can be solved easily using the integral form of (23). 

 

𝑟̇𝑑 = 𝑎𝑟𝑑
2 + 𝑏𝑟𝑑 + 𝑐 (22) 

 

∫
𝑑𝑟𝑑

𝑎𝑟𝑑
2 + 𝑏𝑟𝑑 + 𝑐

𝑡

𝑡0

= 𝑡 + 𝐶1 (23) 
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In this dissertation, the TOT trajectory is formulated under the first 

condition. And the process of solving the TOT profile is similar for right-

hand and left-hand directions. The closed-form solution in each direction is 

divided into two solutions due to the positive and negative determinant ∆2 

(for right-hand direction) or ∆4 (for left-hand direction), as shown in Fig. 18. 

 

3.3.1.1 Acceleration period 

∫
𝑑𝑟𝑑1

𝑎𝑟𝑑1
2 + 𝑏𝑟𝑑1 + 𝑐1

𝑡1

𝑡0

= 𝑡 + 𝐶1 (24) 

 

∆1= 𝑏
2 − 4𝑎𝑐1 > 0 (𝑎 < 0, 𝑏 < 0 𝑎𝑛𝑑 𝑐1 =

𝑢𝑚𝑎𝑥
𝛼

> 0) (25) 

From the integral equation of (24), the determinant of the denominator is 

expressed as (25). It shows that there are two roots 𝑥1  and 𝑥2  for the 

denominator of 𝑎𝑟𝑑1
2 + 𝑏𝑟𝑑1 + 𝑐1 as shown in (27), (28) and (29). Due to the 

conditions of heading dynamics in (25), the relating equation of  𝑥1 and 𝑥2 is 

shown in (30). These properties will be used to reduce the complexity of the 

next formulas. 

 

∫
𝑑𝑟𝑑1

𝑎(𝑟𝑑1 − 𝑥1)(𝑟𝑑1 − 𝑥2)

𝑡1

𝑡0

= 𝑡 + 𝐶1 (26) 

 

{
𝑥1 + 𝑥2 =

−𝑏

𝑎
< 0

𝑥1𝑥2 =
𝑐1
𝑎
< 0

 (27) 

 

𝑥1 =
−𝑏 + √∆1

2𝑎
> 0 (28) 
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𝑥2 =
−𝑏 − √∆1

2𝑎
< 0 (29) 

 

|𝑥2| > |𝑥1| (30) 

By finding the root of the denominator, the equation (31) can be derived 

from (24). And the solution of 𝑟𝑑1 can be obtained easily as (32) with the 

initial conditions of (33) and (34). 

 
1

𝑎(𝑥1 − 𝑥2)
𝑙𝑛 (

𝑥1 − 𝑥2
𝑟𝑑1 − 𝑥2

− 1) = 𝑡 + 𝐶1 (31) 

 

𝑟𝑑1 = (𝑥1 − 𝑥2)
1

𝑒𝑎(𝑥1−𝑥2)(𝑡+𝐶1) + 1
+ 𝑥2 (32) 

 

𝑟0 = 𝑟𝑑1(𝑡0) (33) 

 

𝐶1 =
1

𝑎(𝑥1 − 𝑥2)
𝑙𝑛 (

𝑥1 − 𝑥2
𝑟0 − 𝑥2

− 1) − 𝑡0 (34) 

 

When the angular velocity trajectory is found as the function of time, the 

angle and angular acceleration trajectory can be obtained using the time 

integral and derivative. The angle trajectory can be formulated as (35) with 

the boundary condition as (36), and the angular acceleration trajectory can be 

obtained as (37). 

 

𝜓𝑑1 = −
1

𝑎
𝑙𝑛(𝑒𝑎(𝑥1−𝑥2)(𝑡+𝐶1) + 1) + 𝑥2𝑡 + 𝐶2 (35) 

 

𝐶2 = 𝜓2 +
1

𝑎
𝑙𝑛(𝑒𝑎(𝑥1−𝑥2)(𝑡+𝐶1) + 1) − 𝑥2𝑡0 (36) 
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𝑟̇𝑑1 = −𝑎(𝑥1 − 𝑥2)
2

𝑒𝑎(𝑥1−𝑥2)(𝑡+𝐶1)

(𝑒𝑎(𝑥1−𝑥2)(𝑡+𝐶1) + 1)2
 (37) 

 

3.3.1.2 Constant velocity period 

This subsection is for solving the same equation of dynamics as the 

previous subsection with the condition of zero angular acceleration as 

described in (38). With this condition, the constant angular velocity 𝑟𝑑2 will 

be one of the roots, 𝑥1 or 𝑥2. But this case is for the right-hand direction, so 

the positive root 𝑥1 is considered as the solution of 𝑟𝑑2, as shown in (39), and 

this root is also the critical value 𝑟1
∗. 

 

𝑟̇𝑑2 = 0 ⇔ 𝑎𝑟𝑑2
2 + 𝑏𝑟𝑑2 + 𝑐1 = 0 (38) 

 

𝑟𝑑2 = 𝑥1 = 𝑟1
∗ > 0 (39) 

The angle trajectory can be obtained as (40) by taking the integral of (39), 

and the angular acceleration trajectory is zero from t1 to t2. The critical value 

of the angle 𝜓1
∗ is defined as (43), and the critical time 𝑡1

∗ is obtained as (42). 

These values are important for finding the value of 𝑡2 and 𝑡3. 

𝜓𝑑2 = 𝑟1
∗𝑡 + 𝐶5 (40) 

 

𝜓𝑑2 = 𝑟1
∗𝑡 + 𝐶5 = 𝜓1

∗ − 𝑟1
∗𝑡1
∗ (41) 

 

𝑡1
∗ =

1

𝑎(𝑥1 − 𝑥2)
𝑙𝑛 (

𝑥1 − 𝑥2
𝑟1
∗ − 𝑥2

− 1) − 𝐶1 (42) 

 

𝜓1
∗ = 𝜓(𝑡1

∗) (43) 
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3.3.1.3 Deceleration period 

The dynamics equation is changed to (44) with the scaled input c2. In this 

case, the sign of the determinant Δ2 is not specified yet, as shown in (45). 

∫
𝑑𝑟𝑑1

𝑎𝑟𝑑1
2 + 𝑏𝑟𝑑1 + 𝑐2

𝑡1

𝑡0

= 𝑡 + 𝐶1 (44) 

 

∆2= 𝑏
2 − 4𝑎𝑐2   (𝑎 < 0, 𝑏 < 0 𝑎𝑛𝑑 𝑐2 =

𝑢𝑚𝑖𝑛
𝛼

< 0) (45) 

 

3.3.1.3.1 If 𝛥2 ≥ 0 

In the case of positive determinant Δ2 , there are two roots s1  and s2  as 

shown in (48) and (49) with some properties from (47) to (50). 

∫
𝑑𝑟𝑑3

𝑎(𝑟𝑑3 − 𝑠1)(𝑟𝑑3 − 𝑠2)

𝑡3

𝑡2

= 𝑡 + 𝐶3 (46) 

 

{
𝑠1 + 𝑠2 =

−𝑏

𝑎
< 0

𝑠1𝑠2 =
𝑐2
𝑎
> 0

 (47) 

 

𝑠1 =
−𝑏 + √∆2

2𝑎
< 0 (48) 

 

𝑠2 =
−𝑏 − √∆2

2𝑎
< 0 (49) 

 

|𝑠2| > |𝑠1| (50) 

 

The trajectory solution can be solved in the same way as the acceleration 

segment from (51) to (56). The angular velocity trajectory is the function of 

time with the initial condition of (52).  
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𝑟𝑑3 = (𝑠2 − 𝑠1)
1

𝑒𝑎(𝑠1−𝑠2)(𝑡+𝐶3) − 1
+ 𝑠2 (51) 

 

𝐶3 =
1

𝑎(𝑠1 − 𝑠2)
𝑙𝑛 (

𝑟1
∗ − 𝑠1 − 1

𝑟1
∗ − 𝑠2

) − 𝑡2 (52) 

The angle trajectory can be obtained as (53) by taking the integral of (51). 

The boundary condition for the angle trajectory is defined as (55). It is noted 

that the desired angle should be equal to the angle trajectory at 𝑡3 as shown in 

(54). 

𝜓𝑑3 = −
1

𝑎
𝑙𝑛|1 − 𝑒𝑎(𝑠2−𝑠1)(𝑡+𝐶3)| + 𝑠2𝑡 + 𝐶4 (53) 

 

𝜓𝑑3(𝑡3) = 𝜓3 (54) 

 

𝐶4 = 𝜓3 +
1

𝑎
𝑙𝑛|1 − 𝑒𝑎(𝑠2−𝑠1)(𝑡+𝐶3)| − 𝑠2𝑡3 (55) 

The angular acceleration trajectory can be derived as (56) without any 

boundary condition. 

𝑟̇𝑑3 = −𝑎(𝑠2 − 𝑠1)
2

𝑒𝑎(𝑠2−𝑠1)(𝑡+𝐶3)

(𝑒𝑎(𝑠2−𝑠1)(𝑡+𝐶3) − 1)2
 (56) 

 

 

3.3.1.3.1 If 𝛥2 < 0 

When the determinant Δ2  is negative, the dynamic equation can be 

formulated as (57). In this case, the angular velocity trajectory is formed in 

the tangent function as (58) with the boundary condition as (59). 
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1

𝑎
∫

𝑑𝑟𝑑3

(𝑟𝑑3 +
𝑏
2𝑎)

2

+ (√
−Δ2
4𝑎2

)

2

𝑡3

𝑡2

= 𝑡 + 𝐶3 
(57) 

 

𝑟𝑑3 = −
2𝑎

√−Δ2
𝑡𝑎𝑛 (

−√−Δ2
2

(𝑡 + 𝐶3)) −
𝑏

2𝑎
 (58) 

 

𝐶3 = −
2

√−Δ2
𝑎𝑟𝑐𝑡𝑎𝑛(

−√−Δ2 (𝑟1
∗ +

𝑏
2𝑎)

2𝑎
) − 𝑡2 (59) 

And then, the angle and angular acceleration trajectory can be obtained as 

(60) and (62) respectively. The boundary condition of the angle trajectory can 

be specified in two way as (61) based on 𝑡2 or 𝑡3. 

 

𝜓𝑑3 =
4𝑎

Δ2
𝑙𝑛 |𝑐𝑜𝑠 (

−√−Δ2
2

(𝑡 + 𝐶3))| −
𝑏

2𝑎
𝑡 + 𝐶4 (60) 

 

𝐶4 = 𝜓3 −
4𝑎

Δ2
𝑙𝑛 |𝑐𝑜𝑠 (

−√−Δ2
2

(𝑡3 + 𝐶3))| +
𝑏

2𝑎
𝑡3 

= 𝜓2 −
4𝑎

Δ2
𝑙𝑛 |𝑐𝑜𝑠 (

−√−Δ2
2

(𝑡2 + 𝐶3))| +
𝑏

2𝑎
𝑡2 

(61) 

 

𝑟̇𝑑3 = 𝑎(1 + 𝑡𝑎𝑛2 (
−√−Δ2
2

(𝑡 + 𝐶3))) (62) 
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3.3.2 Left-hand direction 

In the negative domain, the dynamics can be presented as (63) and (64). 

 

𝑟̇𝑑 = −𝑎𝑟𝑑
2 + 𝑏𝑟𝑑 + 𝑐 (63) 

 

∫
𝑑𝑟𝑑

−𝑎𝑟𝑑
2 + 𝑏𝑟𝑑 + 𝑐

𝑡

𝑡0

= 𝑡 + 𝐶1 (64) 

 

3.3.2.1 Acceleration period 

The control input for this period is the minimum scaled input 𝑐2 . The 

determinant 𝛥3 is always positive due to the characteristic of 𝑎, 𝑏 and 𝑐2 as 

shown in (65). The dynamics of this period can be derived as (66) and (67) 

with the roots of the denominator as 𝑥1  and 𝑥2 . Therefore, the solution is 

similar with the former subsection in the acceleration period. Only values and 

conditions of 𝑥1 and 𝑥2 are different to the previous one, as presented from 

(68) to (71). The summation and multiplication conditions of 𝑥1 and 𝑥2 are 

formulated in (70) which helps us to define the sign of 𝑥1 and 𝑥2 in (68) and 

(69). 

 

∆3= 𝑏2 + 4𝑎𝑐2 > 0 (𝑎 < 0, 𝑏 < 0 𝑎𝑛𝑑 𝑐2 =
𝑢𝑚𝑖𝑛
𝛼

< 0) (65) 

 

∫
𝑑𝑟𝑑1

−𝑎𝑟𝑑1
2 + 𝑏𝑟𝑑1 + 𝑐2

𝑡1

𝑡0

= 𝑡 + 𝐶1 (66) 

 

∫
𝑑𝑟𝑑1

−𝑎(𝑟𝑑1 − 𝑥1)(𝑟𝑑1 − 𝑥2)

𝑡1

𝑡0

= 𝑡 + 𝐶1 (67) 

 

𝑥1 =
𝑏 − √Δ3
−2𝑎

< 0 (68) 
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𝑥2 =
𝑏 + √Δ3
−2𝑎

> 0 (69) 

 

{
𝑥1 + 𝑥2 =

𝑏

𝑎
> 0

𝑥1𝑥2 = −
𝑐2
𝑎
< 0

 (70) 

 

|𝑥2| ≥ |𝑥1| (71) 

Eq. (67) can be solved for 𝑟𝑑1 through Eq. (72) and (73). With the initial 

condition of angular velocity, the constant 𝐶1 can be calculated as (75). 

 
1

𝑎(𝑥2 − 𝑥1)
𝑙𝑛 (

𝑥1 − 𝑥2
𝑟𝑑1 − 𝑥2

− 1) = 𝑡 + 𝐶1 (72) 

 

𝑟𝑑1 = (𝑥1 − 𝑥2)
1

𝑒𝑎(𝑥2−𝑥1)(𝑡+𝐶1) + 1
+ 𝑥2 (73) 

 

𝑟0 = 𝑟𝑑1(𝑡0) (74) 

 

𝐶1 =
1

𝑎(𝑥2 − 𝑥1)
𝑙𝑛 (

𝑥1 − 𝑥2
𝑟0 − 𝑥2

− 1) − 𝑡0 (75) 

Similarly, the angle trajectory can be obtained as (76) by taking the integral 

of the angular velocity trajectory. The constant 𝐶2 in the angle trajectory can 

be solved using the initial condition, as shown in (77). And then, the 

acceleration trajectory can be obtained as (78) by taking the derivative of Eq. 

(73). 

 

𝜓𝑑1 =
1

𝑎
𝑙𝑛(𝑒𝑎(𝑥1−𝑥2)(𝑡+𝐶1) + 1) + 𝑥2𝑡 + 𝐶2 (76) 
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𝐶2 = 𝜓0 −
1

𝑎
𝑙𝑛(𝑒𝑎(𝑥1−𝑥2)(𝑡0+𝐶1) + 1) − 𝑥2𝑡0 (77) 

 

𝑟̇𝑑1 = −𝑎(𝑥1 − 𝑥2)
2

𝑒𝑎(𝑥2−𝑥1)(𝑡+𝐶1)

(𝑒𝑎(𝑥2−𝑥1)(𝑡+𝐶1) + 1)2
 (78) 

 

3.3.2.2 Constant velocity period 

In this period, the angular acceleration is zero, so the angular velocity 

trajectory can be solved using Eq. (79). In the left-hand direction, the angular 

velocity should be negative and equal to the roots of Eq. (79). Among the 

roots of 𝑥1  and 𝑥2 , only 𝑥1  is negative, as defined in (68). Therefore, the 

angular velocity trajectory will be equal to 𝑥1 and this value is also equal to 

the critical value 𝑟1
∗. 

 

𝑟̇𝑑2 = 0 ⇔ −𝑎𝑟𝑑2
2 + 𝑏𝑟𝑑2 + 𝑐2 = 0 (79) 

 

𝑟𝑑2 = 𝑥1 = 𝑟1
∗ < 0 (80) 

The angle trajectory can be obtained as Eq. (81) and its constant value 𝐶5 

can be calculated as Eq. (82) by some critical values in (80), (83) and (84).  

 

𝜓𝑑2 = 𝑟1
∗𝑡 + 𝐶5 (81) 

 

𝐶5 = 𝜓1
∗ − 𝑟1

∗𝑡1
∗ (82) 

 

𝑡1
∗ =

1

𝑎(𝑥2 − 𝑥1)
𝑙𝑛 (

𝑥1 − 𝑥2
𝑟1
∗ − 𝑥2

− 1) − 𝐶1 (83) 

 

𝜓1
∗ = 𝜓(𝑡1

∗) (84) 
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3.3.2.3 Deceleration period 

Due to the sign of the determinant ∆4, the solution of dynamics (85) will be 

divided into two solutions. If 𝛥4 is positive, the trajectory solution will follow 

subsection 3.3.2.3.1. Otherwise, the trajectory solution will be defined in 

subsection 3.3.2.3.2. 

 

∫
𝑑𝑟𝑑1

−𝑎𝑟𝑑1
2 + 𝑏𝑟𝑑1 + 𝑐1

𝑡1

𝑡0

= 𝑡 + 𝐶1 (85) 

 

∆4= 𝑏2 + 4𝑎𝑐1       (𝑎 < 0, 𝑏 < 0 𝑎𝑛𝑑 𝑐1 =
𝑢𝑚𝑎𝑥
𝛼

> 0) (86) 

 

3.3.2.3.1 Δ4 ≥ 0 

If the determinant Δ4 is positive, there are two roots of the denominator in 

(85) as s1 and s2. And the properties of the roots can be organized from (88) 

to (91). By using these roots, the dynamics can be rewritten as (87), which is 

a solvable dynamics. 

 

∫
𝑑𝑟𝑑3

−𝑎(𝑟𝑑3 − 𝑠1)(𝑟𝑑3 − 𝑠2)

𝑡3

𝑡2

= 𝑡 + 𝐶3 (87) 

 

{
𝑠1 + 𝑠2 =

𝑏

𝑎
> 0

𝑠1𝑠2 = −
𝑐1
𝑎
> 0

 (88) 

 

𝑠1 =
−𝑏 − √∆2
−2𝑎

> 0 (89) 

 

𝑠2 =
−𝑏 + √∆2
−2𝑎

> 0 (90) 
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|𝑠2| > |𝑠1| (91) 

The solution of angular velocity trajectory can be derived as Eq. (92), 

which is a function of time. The boundary condition can be solved using Eq. 

(93). 

 

𝑟𝑑3 = (𝑠2 − 𝑠1)
1

𝑒𝑎(𝑠1−𝑠2)(𝑡+𝐶3) − 1
+ 𝑠2 (92) 

 

𝐶3 =
1

𝑎(𝑠1 − 𝑠2)
𝑙𝑛 (

𝑟1
∗ − 𝑠1 − 1

𝑟1
∗ − 𝑠2

) − 𝑡2 (93) 

Once the angular velocity trajectory is defined, the angle trajectory can be 

easily obtained as (94) by taking the integral of Eq. (92). The constant value 

𝐶4 is calculated by using the condition of the time 𝑡3. Finally, the angular 

acceleration trajectory is defined as (97). 

 

𝜓𝑑3 = −
1

𝑎
𝑙𝑛|1 − 𝑒𝑎(𝑠2−𝑠1)(𝑡+𝐶3)| + 𝑠2𝑡 + 𝐶4 (94) 

 

𝜓𝑑3(𝑡3) = 𝜓3 (95) 

 

𝐶4 = 𝜓3 +
1

𝑎
𝑙𝑛|1 − 𝑒𝑎(𝑠2−𝑠1)(𝑡3+𝐶3)| − 𝑠2𝑡3 (96) 

 

𝑟̇𝑑3 = −𝑎(𝑠2 − 𝑠1)
2

𝑒𝑎(𝑠2−𝑠1)(𝑡+𝐶3)

(𝑒𝑎(𝑠2−𝑠1)(𝑡+𝐶3) − 1)2
 (97) 

 

3.3.2.3.2 Δ4 < 0 

If the determinant ∆4 is negative, the dynamics in Eq. (85) can be rewritten 

as (98). And then, the angular velocity trajectory can be obtained as (99) by 

solving Eq. (98). The constant 𝐶3  can be computed as (100) using the 

condition of the time 𝑡2. 
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1

𝑎
∫

𝑑𝑟𝑑3

(𝑟𝑑3 +
𝑏
2𝑎)

2

+ (√
−Δ2
4𝑎2

)

2

𝑡3

𝑡2

= 𝑡 + 𝐶3 
(98) 

 

𝑟𝑑3 = −
2𝑎

√−Δ2
𝑡𝑎𝑛(

−√−Δ2
2

(𝑡 + 𝐶3)) −
𝑏

2𝑎
 (99) 

 

𝐶3 = −
2

√−Δ2
𝑎𝑟𝑐𝑡𝑎𝑛(

−√−Δ2 (𝑟1
∗ +

𝑏
2𝑎)

2𝑎
) − 𝑡2 (100) 

 

The angle trajectory can be obtained as Eq. (101) by taking the integral of 

the angular velocity trajectory. The constant 𝐶4  can be represented in two 

ways, as described in (102). Finally, the angular acceleration trajectory can be 

obtained as (103) by taking the derivative of the angular velocity trajectory. 

 

𝜓𝑑3 =
4𝑎

Δ2
𝑙𝑛 |𝑐𝑜𝑠 (

−√−Δ2
2

(𝑡 + 𝐶3))| −
𝑏

2𝑎
𝑡 + 𝐶4 (101) 

 

𝐶4 = 𝜓3 −
4𝑎

Δ2
𝑙𝑛 |𝑐𝑜𝑠 (

−√−Δ2
2

(𝑡3 + 𝐶3))| +
𝑏

2𝑎
𝑡3 

= 𝜓2 −
4𝑎

Δ2
𝑙𝑛 |𝑐𝑜𝑠 (

−√−Δ2
2

(𝑡2 + 𝐶3))| +
𝑏

2𝑎
𝑡2 

(102) 

 

𝑟̇𝑑3 = 𝑎(1 + 𝑡𝑎𝑛2 (
−√−Δ2
2

(𝑡 + 𝐶3))) (103) 
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3.4 Time-optimal trajectory 

This section shows the way to get the TOT profile based on the closed-form 

solution as presented in the right-hand direction. The constraints for solving 

the TOT trajectory is declared from (104) to (107). 

 

𝑟(𝑡0) = 𝑟0 (104) 

 

𝜓(𝑡0) = 𝜓0 (105) 

 

𝑟(𝑡3) = 𝑟3 (106) 

 

𝜓(𝑡3) = 𝜓3 (107) 

There are two important variables 𝜓1
∗ and Δ𝜓3

∗  which need to be defined 

before solving for 𝑡1, 𝑡2 and 𝑡3. The condition for using the TOT trajectory is 

shown in (108). 

 𝜓3 − 𝜓0 > 𝜓1
∗ + Δ𝜓3

∗ (108) 

The critical value 𝜓1
∗ can be found using the critical time 𝑡1

∗ which is easy 

to obtain through 𝑟1
∗, as described in (109), (110) and (111). 

𝑟1
∗ = 𝑥1 (109) 

 

𝑡1
∗ =

1

𝑎(𝑥1 − 𝑥2)
𝑙𝑛 (

𝑥1 − 𝑥2
𝑟1
∗ − 𝑥2

− 1) − 𝐶1 (110) 

 

𝜓1
∗ = −

1

𝑎
𝑙𝑛(𝑒𝑎(𝑥1−𝑥2)(𝑡1

∗+𝐶1) + 1) + 𝑥2𝑡1
∗ + 𝐶2 (111) 

The second critical value 𝛥𝜓3
∗ can be derived from (112) to (115). The term 

(𝑡3 − 𝑡2) in (112) can be substituted with the subtraction between (113) and 

(114). The final formula for 𝛥𝜓3
∗  is expressed as (115). 
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∆𝜓3
∗ = 𝜓𝑑3(𝑡3) − 𝜓𝑑2(𝑡2) 

⟺ ∆𝜓3
∗ = −

1

𝑎
𝑙𝑛 |

1 − 𝑒𝑎(𝑠2−𝑠1)(𝑡3+𝐶3)

1 − 𝑒𝑎(𝑠2−𝑠1)(𝑡2+𝐶3)
| + 𝑠2(𝑡3 − 𝑡2) 

(112) 

 

𝑟𝑑3(𝑡3) = 𝑟3 

⇔
𝑠2 − 𝑠1

𝑒𝑎(𝑠1−𝑠2)(𝑡3+𝐶3) − 1
+ 𝑠2 = 𝑟3 

⇔ 𝑡3 + 𝐶3 =
1

𝑎(𝑠1 − 𝑠2)
ln |
𝑟3 − 𝑠1
𝑟3 − 𝑠2

| 

(113) 

 

𝑟𝑑3(𝑡2) = 𝑟1
∗ 

⇔
𝑠2 − 𝑠1

𝑒𝑎(𝑠1−𝑠2)(𝑡2+𝐶3) − 1
+ 𝑠2 = 𝑟1

∗ 

⇔ 𝑡2 + 𝐶3 =
1

𝑎(𝑠1 − 𝑠2)
ln |
𝑟1
∗ − 𝑠1
𝑟1
∗ − 𝑠2

| 

(114) 

∆𝜓3
∗ = −

1

𝑎
𝑙𝑛 |

1 −
𝑟3 − 𝑠2
𝑟3 − 𝑠1

1 −
𝑟1
∗ − 𝑠2
𝑟1
∗ − 𝑠1

| +
𝑠2

𝑎(𝑠1 − 𝑠2)
𝑙𝑛 |

(𝑟3 − 𝑠1)(𝑟1
∗ − 𝑠2)

(𝑟3 − 𝑠2)(𝑟1
∗ − 𝑠1)

| (115) 

Then, the profile of TOT trajectory can be easily derived from (116) to 

(118). Each segment of TOT trajectory can be separated at  𝑡1, 𝑡2 and 𝑡3. The 

first segment of TOT starts at the time 𝑡0 and ends at the time 𝑡1 using the 

closed-form solutions of 𝜓𝑑1, 𝑟𝑑1 and 𝑟̇𝑑1. The second segment of TOT from 

𝑡1 to 𝑡2 is defined as 𝜓𝑑2, 𝑟𝑑2 and 𝑟̇𝑑2. And finally, the third segment of TOT 

are 𝜓𝑑3, 𝑟𝑑3 and 𝑟̇𝑑3 from 𝑡2 to 𝑡3. 

𝑡1 = 𝑡1
∗ (116) 

 

𝑡2 = 𝑡1 +
𝜓3 − 𝜓1

∗ − Δ𝜓3
∗

𝑟1
∗  (117) 
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𝑡3 = 𝑡2 +
1

𝑎(𝑠1 − 𝑠2)
𝑙𝑛 |

(𝑟3 − 𝑠1)(𝑟1
∗ − 𝑠2)

(𝑟3 − 𝑠2)(𝑟1
∗ − 𝑠1)

| (118) 

 

3.5 Super-twisting sliding mode control 

Super-twisting 
SMC

HUG heading 
dynamics

Trajectory 
generator

disturbance
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,e er

,
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d
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Fig. 20 Heading control scheme with TOT trajectory 

 

The TOT trajectory will feed the desired angle, angular rate, and angular 

acceleration to the sliding mode controller (SMC) with a higher-order 

switching law so called as super-twisting sliding mode control (ST-SMC). 

The steps to design the SMC control is well-known and easy to established 

from (119) to (129). It is noted that both SMC and ST-SMC control laws are 

discussed here to compare the chattering problem between two controllers. 

𝑠 = (𝑟 − 𝑟𝑑) + 𝜆(𝜓 − 𝜓𝑑) (119) 

 

𝑠̇ = (𝑟̇ − 𝑟̇𝑑) + 𝜆(𝑟 − 𝑟𝑑) (120) 

 

𝑠̇ = 𝑎|𝑟|𝑟 + 𝑏𝑟 − 𝑟̇𝑑 + 𝜆(𝑟 − 𝑟𝑑) +
𝑢

𝛼
+
𝑑

𝛼
 (121) 

The sliding surface s can be defined as (119), which is the function of 

velocity and position error. And the derivative of the sliding surface can be 

derived as (120). The dynamics now can be integrated into 𝑠̇ as (121). The 

control input appeared in the derivative of the sliding surface so the control 
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law can be derived using the equivalent amount of moment, as shown in 

(122). 

𝑢 = 𝛼̂ (−𝑎̂|𝑟|𝑟 − 𝑏̂𝑟 + 𝑟̇𝑑 − 𝜆(𝑟 − 𝑟𝑑)) + 𝑢𝑠𝑤 (122) 

The switching law can be chosen as (123) for SMC or (124) for ST-SMC. 

𝑢𝑠𝑤 = −𝐾𝑠𝑔𝑛(𝑠) (123) 

 

𝑢𝑠𝑤 = −𝐾1√|𝑠|𝑠𝑔𝑛(𝑠) − ∫ 𝐾2𝑠𝑔𝑛(𝑠)𝑑𝑡
𝑡

𝑡0

 (124) 

In the sliding mode control, it is popular to choose a Lyapunov function as 

(125). And the derivative of 𝑉 can be obtained as the product of the sliding 

surface and its derivative, as shown in (126). 

𝑉 =
1

2
𝑠2 (125) 

 

𝑉̇ = 𝑠𝑠̇ (126) 

By making the derivative of 𝑉  negative definite, the conditions of the 

control gain 𝐾 for SMC, and the control gains 𝐾1 and 𝐾2 for ST-SMC can be 

defined in (127), (128) and (129).  

 

𝐾 ≥ Ω|Δ𝑎|r|𝑟 + Δ𝑏𝑟 + 𝜂| + 𝐷 (127) 

 

𝐾1 ≥
Ω

√|𝑠|
|Δ𝑎|r|𝑟 + Δ𝑏𝑟 + 𝜂| (128) 

 

𝐾2 ≥ D (129) 

 

where, |𝛼| ≤ Ω; |𝑑| ≤ 𝐷; |𝑎 − 𝑎̂| ≤ Δ𝑎; |𝑏 − 𝑏̂| ≤ Δ𝑏; 𝜂 > 0. 
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3.6 Computer simulation 

To show the effectiveness of the proposed trajectory, three simulations will 

be conducted in the next subsections. The first simulation will show the TOT 

trajectory combined with tracking control without any uncertainties. The 

second simulation will perform sliding mode control with parameter 

uncertainty and external disturbances. And the robustness and chattering 

reduction will be discussed in the third simulation. 

The heading parameters are defined as 𝜌 = 1031kg/m3 , 𝐿 = 1.67m , 

𝐼𝑧𝑧 = 4.0548kgm2 , 𝑁𝑟̇ = −0.00136(𝜌𝐿5/2)kgm2 ,  𝑁𝑟 = −0.00467(𝜌𝐿4/

2)kgm2 , 𝑁|𝑟|𝑟 = −0.00053(𝜌𝐿5/2)kgm2 , 𝑢𝑚𝑎𝑥 = 15Nm  and 𝑢𝑚𝑖𝑛 =

−12Nm. The sliding function is defined by 𝜆 = 2 and controller parameters 

are used as 𝜂 = 0.5 for the first and second simulations and 𝜂 = 3 for the 

third simulation due to the different type of controller. The parameter 

uncertainties will be defined as |𝛼| ≤ Ω = 1.2𝛼̂, |𝑑| = |4sin (5𝑡)| ≤ 𝐷 = 4; 

|𝑎 − 𝑎̂| ≤ Δ𝑎 = 0.8𝑎̂ and |𝑏 − 𝑏̂| ≤ Δ𝑏 = 0.8𝑏̂. Here, 𝑎̂ =
𝑁|𝑟|𝑟

𝐼𝑧𝑧−𝑁𝑟̇
; 𝑏̂ =

𝑁𝑟

𝐼𝑧𝑧−𝑁𝑟̇
; 

𝛼̂ = 𝐼𝑧𝑧 − 𝑁𝑟̇ . The inertial term has 20% uncertainty while other 

hydrodynamic terms have 80% uncertainty. This assumption is suitable 

because the inertia part can be measured by the pendulum table while the 

hydrodynamic term is usually estimated by the CFD method. Therefore, the 

uncertainty of the hydrodynamic terms should be greater than that of the 

inertia part. In this case, it is 20% for 𝛼 and 80% for both 𝑎 and 𝑏. 

 

3.6.1 Simulation 1 

In this simulation, there are no parameter uncertainties and disturbances in 

the heading dynamic. It means that the parameters are known perfectly and 

disturbance 𝑑 = 0 in Eq. (19) for checking the operation of the combination 
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of TOT and SMC control.  The tracking controller successfully drive the 

dynamics to track the TOT trajectory and the control input is fully used as the 

designed boundary between 15Nm and -12Nm in Fig. 21a. Position, velocity 

and acceleration track the TOT trajectory very well in Fig. 21b, c and d. This 

result proves that the combination of the SMC and TOT trajectories has a 

good tracking performance. However, in the real application, the system 

parameters are estimated inaccurately and the environmental disturbances 

always exist. Therefore, to verify the proposed trajectory and controller, the 

second and third simulation will be performed with parameter uncertainties 

and external disturbances. 

 
Fig. 21 TOT trajectory and SMC without uncertainties.  

(a) torque input, (b) angular velocity, (c) angular acceleration, and (d) angle 

curves as the function of time 

 

 

3.6.2 Simulation 2 

This simulation will use the TOT trajectory with the tracking controller of 

SMC with the parameter uncertainty and disturbance. A wave-formed 

disturbance is simulated to affect the dynamics from 10s to 12s. This setup 
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will let us analyze the effect of parameter uncertainty and disturbance easily. 

The tracking performance of this simulation is shown in Fig. 22. Due to the 

parameter uncertainty, there are chattering phenomenon in control input and 

acceleration in Fig. 22a and Fig. 22c. From 0s to 10s, only parameter 

uncertainties exist, so that the control input and acceleration chattering do not 

have any specified shape. On the other hand, from 10s to 12s, the general 

pattern in the acceleration is waveform due to the presence of the wave-

formed disturbance. And this behavior can also be seen in the sliding surface 

in Fig. 23 with the wave-formed chattering between 10s and 12s. 

 
Fig. 22 TOT trajectory and SMC with uncertainties and disturbances.  

(a) torque input, (b) velocity, (c) acceleration, and (d) angle position curves 

as the function of time 
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Fig. 23 Sliding surface in SMC as a function of velocity and position errors 

 

 

3.6.3 Simulation 3 

 
Fig. 24 TOT trajectory and ST-SMC with uncertainties and disturbances. 

(a) torque input, (b) angular velocity, (c) angular acceleration, and (d) angle 

curves 

With the same condition as the second simulation, the tracking controller of 

ST-SMC is applied to the heading dynamics. The chattering phenomenon can 

be reduced by using saturation function for sliding function 𝑠. However, this 

method will affect the tracking error due to the saturation function. In this 
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study, the high-order switching technique is used. With this ST-SMC, the 

chattering problem will be improved while the tracking error still has the 

same quality as the SMC case.  

In Fig. 24, the chattering phenomenon is reduced significantly in control 

input compared with that in Fig. 22. Moreover, the sliding quantity in Fig. 25 

is kept under 0.01, which is the same as the sliding quantity in Fig. 23. 

Therefore, the ST-SMC has improved the performance of tracking control in 

terms of reducing the chattering problem while keeping the same tracking 

error. 

 

 

 

 
Fig. 25 Sliding surface in ST-SMC as a function of velocity and position 

errors 
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Chapter 4. Time-optimal trajectory for heaving 

motion control using buoyancy engine and 

propeller individually 

 

4.1. Heave dynamics and TOT 

The depth control is a challenging task for RHUG due to the slow speed of 

the buoyancy engine. In this chapter, a TOT trajectory for the heaving control 

of RHUG will be proposed based on the speed of the buoyancy engine and 

the saturation of the buoyancy engine and thrusters. The heave dynamics can 

be described with two first order differential systems as (130). Here, 𝑎 =

𝑚 − 𝑍𝑤̇; 𝑏 = −𝑍|𝑤|𝑤; 𝑓 is the control force acting on the vehicle in heave 

motion. 

𝑎𝑤̇ + 𝑏|𝑤|𝑤 = 𝑓 

                    𝑧̇ = 𝑤 
(130) 
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Fig. 26 TOT trajectory for depth dynamic of HUG 
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The heaving motion control strategy for this RHUG system can be 

illustrated as Fig. 26a. The dashed blue line is the buoyancy force by the 

buoyancy engine where the up-slope means the compressing rate of air in the 

cylinder and down-slope means the expending rate. And the solid orange line 

represents the designed force for the thrusters. Some terms are defined in 

Table 5 for the TOT trajectory. 

Table 5 Definition of TOT trajectory in heave dynamics  

Parameter Description 

𝑓𝑚𝑎𝑥 Maximum force 

𝑓𝑚𝑖𝑛 Minimum force 

𝑧0 Initial depth 

𝑧5 Desired depth 

𝑤𝑑1 The first segment in velocity trajectory 

𝑤𝑑2 The second segment in velocity trajectory 

𝑤𝑑3 The third segment in velocity trajectory 

𝑤𝑑4 The fourth segment in velocity trajectory 

𝑤𝑑5 The fifth segment in velocity trajectory 

𝑧𝑑1 The first segment in position trajectory 

𝑧𝑑2 The second segment in position trajectory  

𝑧𝑑3 The third segment in position trajectory 

𝑧𝑑4 The fourth segment in position trajectory 

𝑧𝑑5 The fifth segment in position trajectory 

𝑤̇d1 The first segment in acceleration trajectory 

𝑤̇d2 The second segment in acceleration trajectory 

𝑤̇d3 The third segment in acceleration trajectory 

𝑤̇d4 The fourth segment in acceleration trajectory 

𝑤̇d5 The fifth segment in acceleration trajectory 

The control force 𝑢𝑏  is the net buoyancy force exerted by the buoyancy 

engine. And 𝑢𝑡 is the thruster force generated by four propellers. In the UG 

system, the buoyancy engine is used for descending with small energy 

consumption. And the thruster force is only used when the vehicle glides near 

to the target depth, and for keeping the RHUG at the desired depth. By 

switching between two forces, the RHUG can be controlled to reach exactly 
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to the desired depth. The thruster force should be used after the vehicle 

achieves the neutral buoyancy. 

In the RHUG system, the rate of the buoyancy force can be expressed as 

𝑐𝑚𝑎𝑥 for the increasing speed and 𝑐𝑚𝑖𝑛 for the decreasing speed. Therefore, 

the buoyancy force that induces the RHUG system during the depth control is 

formulated as 𝑐𝑚𝑎𝑥(𝑡 − 𝑡0) and 𝑐𝑚𝑖𝑛(𝑡 − 𝛼) . Here, 𝑡0  and 𝛼  are the initial 

time for descending motion and neutral condition respectively. Then, there 

are five periods of time needed to be defined clearly, as shown in Fig. 26. The 

first segment is from 𝑡0 to 𝑡1, the dynamics of this period can be referred to 

(131). And it is noted that 𝑡1 = 𝑡0 +
𝑓𝑚𝑎𝑥

𝑐𝑚𝑎𝑥
 . The dynamics equation of the 

second and third segments can be formulated as (132) from 𝑡1 to 𝑡2 and from 

𝑡2 to 𝑡3 respectively. The dynamics of the fourth and fifth segments can be 

established as (133) and (134) respectively. By solving all dynamics below, 

one can define the TOT trajectory of the RHUG system for the pure depth 

plant. However, this concept is only used for the deep operation because the 

RHUG should reach the maximum heave velocity as described in Fig. 26d. In 

other words, this case can be expressed by the condition of 𝑧5 ≥ (𝑧2 − 𝑧0) +

(𝑧4 − 𝑧3). This assumption is suitable for RHUG because the desired depth is 

normally set at several hundreds of meters. 

 

𝑎𝑤̇𝑑 + 𝑏𝑤𝑑
2 = 𝑐𝑚𝑎𝑥(𝑡 − 𝑡0) (131) 

 

𝑎𝑤̇𝑑 + 𝑏𝑤𝑑
2 = 𝑓𝑚𝑎𝑥 (132) 

 

𝑎𝑤̇𝑑 + 𝑏𝑤𝑑
2 = 𝑐𝑚𝑖𝑛(𝑡 − 𝛼) (133) 
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𝑎𝑤̇𝑑 + 𝑏𝑤𝑑
2 = 𝑓𝑚𝑖𝑛 (134) 

 

 

4.2. Analytical solution of heave dynamics with buoyancy and thruster 

force individually  

4.2.1 First segment with positive rate 

 

𝑎𝑤̇𝑑1 + 𝑏𝑤𝑑1
2 = 𝑐𝑚𝑎𝑥(𝑡 − 𝑡0) (135) 

 

In this first segment, the heave dynamics is shown in (135). If the variable 

𝑤𝑑1  is defined as 
a

b

ẏ

y
, then Eq. (135) can be rewritten as (136). The final 

equation in (136) is the Airy function, and it can be solved using the 

alternative function 𝑦 as described in (137). 

𝑎2

𝑏
(
𝑦̈

𝑦
−
𝑦̇2

𝑦2
) +

𝑎2𝑦̇2

𝑏𝑦2
= 𝑐𝑚𝑎𝑥(𝑡 − 𝑡0) 

⇔
𝑎2

𝑏

𝑦̈

𝑦
= 𝑐𝑚𝑎𝑥(𝑡 − 𝑡0) 

(136) 

 

𝑦(𝑡) = 𝑎0𝑦0(𝑡) + 𝑎1𝑦1(𝑡) (137) 

The components of function 𝑦(𝑡) can be defined as (138), (139) and (140). 

 

𝑦0(𝑡) = 1 +
𝜎1(𝑡 − 𝑡0)

3

6
+
𝜎1
2(𝑡 − 𝑡0)

6

180
+
𝜎1
3(𝑡 − 𝑡0)

9

12960
 (138) 

 

𝑦1(𝑡) = (𝑡 − 𝑡0) +
𝜎1(𝑡 − 𝑡0)

4

12
+
𝜎1
2(𝑡 − 𝑡0)

7

504
+
𝜎1
3(𝑡 − 𝑡0)

10

45360
 (139) 

 

𝜎1 =
𝑏𝑐𝑚𝑎𝑥
𝑎2

 (140) 
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Once the function 𝑦(𝑡) is defined, its first and second derivative can be 

shown as (141) and (142) respectively. 

𝑦̇(𝑡) = 𝑎0𝑦̇0(𝑡) + 𝑎1𝑦̇1(𝑡) (141) 

 

𝑦̈(𝑡) = 𝑎0𝑦̈0(𝑡) + 𝑎1𝑦̈1(𝑡) (142) 

Then, the velocity trajectory can be formulated by the alternative function 𝑦 

as (143). And the acceleration trajectory can be obtained by taking the 

derivative of the velocity trajectory, as shown in (144). Finally, the position 

trajectory can be shown in (145) with the constant 𝐶0 defined as (146). 

𝑤𝑑1 =
𝑎

𝑏

𝑦̇

𝑦
 (143) 

 

𝑤̇𝑑1 =
𝑎

𝑏
(
𝑦̈

𝑦
−
𝑦̇2

𝑦2
) (144) 

 

𝑧𝑑1 =
𝑎

𝑏
𝑙𝑛|𝑦| + 𝐶0 (145) 

 

𝐶0 = 𝑧0 −
𝑎

𝑏
𝑙𝑛|𝑎0𝑝1 + 𝑎1𝑝2| (146) 

where, 𝑝1 = 𝑦0(𝑡0) ; 𝑝2 = 𝑦1(𝑡0) ;  𝑝3 = 𝑦̇0(𝑡0) ; 𝑝4 = 𝑦̇1(𝑡0) ; 𝑎0 = 1 ; 

𝑎1 = −
𝑝3

𝑝4
𝑎0. 

 

4.2.2 Second segment with maximum input 

 

𝑎𝑤̇𝑑2 + 𝑏𝑤𝑑2
2 = 𝑓𝑚𝑎𝑥 (147) 

The dynamics of the second segment is with the maximum input, as 

formulated in (147). The dynamics is solved for a closed-form solution in 

[33]. The results in that paper can be rewritten as (148), (149) and (150). 
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𝑤𝑑2 =
2√𝑓𝑚𝑎𝑥/𝑏

1 + 𝑒
2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡+𝐶1)
−√

𝑓𝑚𝑎𝑥
𝑏

 (148) 

 

𝑤̇𝑑2 =
4𝑓𝑚𝑎𝑥
𝑎

𝑒−
2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡+𝐶1)

(1 + 𝑒−
2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡+𝐶1))
2 

(149) 

 

𝑧𝑑2 =
𝑎

𝑏
𝑙𝑛 (1 + 𝑒

2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡+𝐶1)) − √
𝑓𝑚𝑎𝑥
𝑏

𝑡 + 𝐶2 (150) 

The formulas of the constants 𝐶1 and 𝐶2 are different from the work in [33] 

due to the different input geometries. For this dissertation, the author will 

calculate 𝐶1 and 𝐶2 at the time 𝑡1, as shown in (151) and (152). 

𝐶1 =
−𝑎

2√𝑏𝑓𝑚𝑎𝑥
𝑙𝑛 (

2√𝑓𝑚𝑎𝑥/𝑏

𝑤1 +√𝑓𝑚𝑎𝑥/𝑏
− 1) − 𝑡1 (151) 

 

𝐶2 = 𝑧1 −
𝑎

𝑏
𝑙𝑛 (1 + 𝑒

2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡1+𝐶1)) + √
𝑓𝑚𝑎𝑥
𝑏

𝑡1 (152) 

 

4.2.3 Third segment with constant velocity 

 

𝑎𝑤̇𝑑3 + 𝑏𝑤𝑑3
2 = 𝑓𝑚𝑎𝑥 (153) 

The desired depth for the underwater glider is typically several hundred 

meters. So, the constant velocity in the heave motion will be achieved for 

deep sea UGs. In other words, the third segment always exists. This segment 

has the dynamics specified in (153). The constant velocity in this segment is 

equal to 𝑤2
∗, or 𝑤3 = 𝑤2

∗. And the position trajectory can be calculated by 

(154) with the boundary constant 𝐶3 as (155). 
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𝑧𝑑3 = 𝑤3𝑡 + 𝐶3 (154) 

 

𝐶3 = 𝑧2 − 𝑤2𝑡2 (155) 

 

 

4.2.4 Fourth segment with negative rate 

 

𝑎𝑤̇𝑑4 + 𝑏𝑤𝑑4
2 = 𝑐𝑚𝑖𝑛(𝑡 − 𝛼) (156) 

When the RHUG goes near to the desired depth, this segment will deal with 

when the net buoyancy force starts to decrease to zero. The delay of the 

buoyancy engine is specified in (157). The solution of this segment dynamics 

is the same as subsection 4.4.2.2. But the notation will be changed to 

distinguish it from the previous segments. Here, the alternative function 𝑘(𝑡) 

will be used to compute the trajectory. 

𝛼 = 𝑡3 −
𝑓𝑚𝑎𝑥
𝑐𝑚𝑖𝑛

 (157) 

The velocity trajectory can be solved as (158). Using the derivative of the 

velocity trajectory, the acceleration trajectory of this segment can be obtained 

as (159). And the position trajectory is found as (160) with the boundary 

condition as (161). 

𝑤𝑑4 =
𝑎

𝑏

𝑘̇

𝑘
 (158) 

 

𝑤̇𝑑4 =
𝑎

𝑏
(
𝑘̈

𝑘
−
𝑘̇2

𝑘2
) (159) 

 

𝑧𝑑4 =
𝑎

𝑏
𝑙𝑛|𝑘| + 𝐶4 (160) 
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𝐶4 = 𝑧0 −
𝑎

𝑏
𝑙𝑛|𝑎0𝑝1 + 𝑎1𝑝2| (161) 

 

where,  

𝑘(𝑡) = 𝑛0𝑘0(𝑡) + 𝑛1𝑘1(𝑡); 𝑦0(𝑡) = 1 +
𝜎4(𝑡−𝛼)

3

6
+
𝜎4
2(𝑡−𝛼)6

180
+
𝜎4
3(𝑡−𝛼)9

12960
;  

𝑦1(𝑡) = (𝑡 − 𝛼) +
𝜎1(𝑡−𝛼)

4

12
+
𝜎1
2(𝑡−𝛼)7

504
+
𝜎1
3(𝑡−𝛼)10

45360
; 𝜎4 =

𝑏𝑐𝑚𝑖𝑛

𝑎2
; 

 𝑘̇(𝑡) = 𝑛0𝑘̇0(𝑡) + 𝑛1𝑘̇1(𝑡); 𝑘̈(𝑡) = 𝑎0𝑘̈0(𝑡) + 𝑎1𝑘̈1(𝑡). 
 

 

4.2.5 Fifth segment with minimum input 

 

𝑎𝑤̇𝑑5 + 𝑏𝑤𝑑5
2 = 𝑓𝑚𝑖𝑛 (162) 

In the final segment, the thruster force will be used to make the vehicle 

achieve the desired depth in the shortest time. The dynamics of this segment 

can be written as (162). And this dynamics solution is a part of the work 

introduced in [33], and it will be rewritten as (163), (164) and (165) for the 

velocity, acceleration and position trajectory respectively. 

 

𝑤𝑑5 = √
−𝑓𝑚𝑖𝑛
𝑏

𝑡𝑎𝑛 (−
√−𝑏𝑓𝑚𝑖𝑛

𝑎
(𝑡 + 𝐶5)) (163) 

 

𝑤̇𝑑5 =
𝑓𝑚𝑖𝑛
𝑎

1

𝑐𝑜𝑠2 (−
√−𝑏𝑓𝑚𝑖𝑛

𝑎
(𝑡 + 𝐶5))

 
(164) 

 

𝑧𝑑5 =
𝑎

𝑏
𝑙𝑛 |𝑐𝑜𝑠 (−

√−𝑏𝑓𝑚𝑖𝑛
𝑎

(𝑡 + 𝐶5))| + 𝐶6 (165) 

However, the constant 𝐶5 and 𝐶6 will be computed at time 𝑡4 as formulated 

in (166) and (167). 
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𝐶5 =
−𝑎

√−𝑏𝑓𝑚𝑖𝑛
𝑎𝑟𝑐𝑡𝑎𝑛

(

 
𝑤4

√−𝑓𝑚𝑖𝑛
𝑏 )

 − 𝑡4 (166) 

 

𝐶6 = 𝑧4 −
𝑎

𝑏
𝑙𝑛 |𝑐𝑜𝑠 (−

√−𝑏𝑓𝑚𝑖𝑛
𝑎

(𝑡4 + 𝐶5))| (167) 

 

4.3. Time-optimal trajectory for depth motion 

It is assumed that the buoyancy engine has the maximum force 𝑓𝑚𝑎𝑥 and 

the thruster has the minimum force 𝑓𝑚𝑖𝑛 . And the net buoyancy force 

generated by the buoyancy engine has the maximum rate 𝑐𝑚𝑎𝑥  and the 

minimum rate 𝑐𝑚𝑖𝑛. 

The solution of TOT trajectory for buoyancy engines and thrusters in the 

individual dynamics can be derived by solving the heave dynamics for 𝑡1, 𝑡2, 

𝑡3, 𝑡4, 𝑡5. In this system, 𝑡1 = 𝑡0 +
𝑓𝑚𝑎𝑥

𝑐𝑚𝑎𝑥
 and 𝑡4 − 𝑡3 =

𝑓𝑚𝑖𝑛

𝑐𝑚𝑖𝑛
 due to the delay 

of the buoyancy force. The given information is defined as 𝑡0 = 0, 𝑤0 = 0, 

𝑤̇0 = 0, 𝑧0, 𝑤5, 𝑤̇5, 𝑧5. 

 

4.3.1 Find 𝒛𝟏, 𝒘𝟏 and 𝒘̇𝟏 

Some parameters should be defined as 𝑝1 = 𝑦0(𝑡0) ; 𝑝2 = 𝑦1(𝑡0) ; 𝑝3 =

𝑦̇0(𝑡0); 𝑝4 = 𝑦̇1(𝑡0); 𝑝5 = 𝑦̈0(𝑡0); 𝑝6 = 𝑦̈1(𝑡0); 𝑞1 = 𝑦0(𝑡1); 𝑞2 = 𝑦1(𝑡1); 

𝑞3 = 𝑦̇0(𝑡1) ; 𝑞4 = 𝑦̇1(𝑡1) ; 𝑞5 = 𝑦̈0(𝑡1) ; 𝑞6 = 𝑦̈1(𝑡1) ; 𝑙1 = 𝑘0(𝑡3 − 𝑡4) ; 

𝑙2 = 𝑘1(𝑡3 − 𝑡4) ; 𝑙3 = 𝑘̇0(𝑡3 − 𝑡4) ; 𝑙4 = 𝑘̇1(𝑡3 − 𝑡4) ; 𝑙5 = 𝑘̈0(𝑡3 − 𝑡4) ; 

𝑙6 = 𝑘̈1(𝑡3 − 𝑡4) ;  ℎ1 = 𝑘0(0) ; ℎ2 = 𝑘1(0) ; ℎ3 = 𝑘̇0(0) ; ℎ4 = 𝑘̇1(0) ; 

ℎ5 = 𝑘̈0(0); ℎ6 = 𝑘̈1(0); 𝑡3 − 𝑡4 =
𝑓𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
. 
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{

𝑤𝑑1(𝑡0) = 𝑤0
𝑤̇𝑑1(𝑡0) = 𝑤̇0
𝑧𝑑1(𝑡0) = 𝑧0

 

⇔ {

𝑦̇0(𝑡0) = 0

𝑦̈0(𝑡0) = 0
𝑎

𝑏
𝑙𝑛|𝑦(𝑡0)| + 𝐶0 = 𝑧0

 

⇔ {

𝑎0𝑝3 + 𝑎1𝑝4 = 0
𝑎0𝑝5 + 𝑎1𝑝6 = 0

𝐶0 = 𝑧0 −
𝑎

𝑏
ln |𝑎0𝑝1 + 𝑎1𝑝2|

 

⇔

{
 
 

 
 𝑎1 = −

𝑝3
𝑝4
𝑎0

𝑎0𝑝5 + 𝑎1𝑝6 = 0

𝐶0 = 𝑧0 −
𝑎

𝑏
ln |𝑎0𝑝1 + 𝑎1𝑝2|

 

(168) 

From the above, a set of constraints can be defined as (168) for the initial 

conditions of 𝑤0, 𝑤̇0 and 𝑧0. From this set, the constant 𝐶0 can be found and 

the relationship of 𝑎0 and 𝑎1 can be established. 

By initializing the arbitrary parameter, 𝑎0 = 0, Eq. (120) can be solved as 

below. 

𝑎1 = −
𝑝3
𝑝4
𝑎0 (169) 

 

𝐶0 = 𝑧0 −
𝑎

𝑏
ln |𝑎0𝑝1 + 𝑎1𝑝2| (170) 

 

𝑧1 =
𝑎

𝑏
ln|𝑎0𝑞1 + 𝑎1𝑞2| + 𝐶0 (171) 
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𝑤1 =
𝑎

𝑏
(
𝑎0𝑞3 + 𝑎1𝑞4
𝑎0𝑞1 + 𝑎1𝑞2

) (172) 

   

𝑤̇1 =
𝑎

𝑏
(
𝑎0𝑞5 + 𝑎1𝑞6
𝑎0𝑞1 + 𝑎1𝑞2

−
(𝑎0𝑞3 + 𝑎1𝑞4)

2

(𝑎0𝑞1 + 𝑎1𝑞2)2
) (173) 

Once the first boundary is solved, then other unknowns can be easily 

calculated in the following steps from 4.3.2 to 4.3.3. 

4.3.2 Find 𝒕𝟐, 𝒛𝟐, 𝒘𝟐 and 𝒘̇𝟐 

The boundary constants 𝐶1 and 𝐶2 can be calculated based on 𝑤1 as above 

and the given time 𝑡1. 

𝐶1 =
−𝑎

2√𝑏𝑓𝑚𝑎𝑥
𝑙𝑛 (

2√𝑓𝑚𝑎𝑥/𝑏

𝑤1 +√𝑓𝑚𝑎𝑥/𝑏
− 1) − 𝑡1 (174) 

 

𝐶2 = 𝑧1 −
𝑎

𝑏
𝑙𝑛 (1 + 𝑒

2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡1+𝐶1)) + √
𝑓𝑚𝑎𝑥
𝑏

𝑡1 (175) 

Due to the non-zero argument in the logarithmic function, 𝑤2𝑐 is defined as 

(176). And 𝑡2 is computed in (177) using 𝑤2𝑐 instead of 𝑤2. The small error 

in this conversion is acceptable. 

𝑤2𝑐 = 𝜀√
𝑓𝑚𝑎𝑥

𝑏
    (𝜀 ≈ 1) (176) 

 

𝑡2 = 𝑡2𝑐 =
−𝑎

2√𝑏𝑓𝑚𝑎𝑥
𝑙𝑛 (

2√𝑓𝑚𝑎𝑥/𝑏

𝑤2𝑐 +√𝑓𝑚𝑎𝑥/𝑏
− 1) − 𝐶1 (177) 

Once the time 𝑡2 is defined, all trajectories at the time 𝑡2 can be organized 

as (178), (179) and (180). 
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𝑧2 =
𝑎

𝑏
𝑙𝑛 (1 + 𝑒

2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡2𝑐+𝐶1)) − √
𝑓𝑚𝑎𝑥
𝑏

𝑡2𝑐 + 𝐶2 (178) 

 

𝑤2 =
2√𝑓𝑚𝑎𝑥/𝑏

1 + 𝑒
2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡2𝑐+𝐶1)
−√

𝑓𝑚𝑎𝑥
𝑏

 (179) 

 

𝑤̇2 =
4𝑓𝑚𝑎𝑥
𝑎

𝑒−
2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡2𝑐+𝐶1)

(1 + 𝑒−
2
𝑎√

𝑏𝑓𝑚𝑎𝑥(𝑡2𝑐+𝐶1))
2 

(180) 

 

4.3.3 Find 𝒘𝟑, 𝒛𝟒 and 𝒘𝟒 

It is noted that the trajectories of TOT cannot be solved in order from the 

first segment to the fifth segment. So, the trajectories in the fourth segment 

will be defined before the third and fifth segments. The constant 𝐶3 is defined 

as (181) with the information of the second segment. And then, the constant 

velocity in the third segment can be computed as (182). 

 

𝐶3 = 𝑧2 − 𝑤2𝑡2 (181) 

 

𝑤3 = √
𝑓𝑚𝑎𝑥
𝑏

 (182) 

The velocity at the time t4 can be found as (183). 

𝑤4 =
−
𝑎
𝑏
𝑙3 + 𝑙1𝑤3

𝑙4 −
𝑏
𝑎 𝑙2𝑤3

 (183) 

The position trajectory at the time  t4  is estimated by choosing the 

approximation of 𝜒 (𝜒 ≈ 0, 𝜒 > 0). The arbitrary constant 𝑛0  and 𝑛1  of the 

Airy solution in the function 𝑘(𝑡) can be estimated as (185) and (186). 
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𝛽 =
𝑏

𝑎
𝑤4 (184) 

 

𝑛0 =
√𝜒

√𝑙1𝑙5 + 𝛽𝑙2𝑙5 + 𝛽𝑙1𝑙6 + 𝛽2𝑙2𝑙6 − 𝑙3
2 − 𝛽2𝑙4

2 − 2𝛽𝑙3𝑙4
       

(𝜒 ≈ 0, 𝜒 > 0) 

(185) 

 

𝑛1 = 𝛽𝑛0 (186) 

Next, the distance from 𝑡3 to 𝑡4 can be computed as (187). 

 

 

𝛥𝑧43 =
𝑎

𝑏
𝑙𝑛 |

𝑛0ℎ1 + 𝑛1ℎ2
𝑛0𝑙1 + 𝑛1𝑙2

| (187) 

And the distance from 𝑡4 to 𝑡5 can be calculated as (188). 

 

𝛥𝑧54 =
𝑎

𝑏
𝑙𝑛√1 −

𝑤4
2

𝑓𝑚𝑖𝑛/𝑏
 (188) 

Finally, the position trajectory at the time 𝑡4 can be defined as (189) based 

on the distance 𝛥𝑧54. 

𝑧4 = 𝑧5 − 𝛥𝑧54 (189) 

 

4.3.4 Find 𝒛𝟑, 𝒕𝟑 and 𝒕𝟒 

Once 𝑧4 is known, the constant 𝐶4 and the position at the time 𝑡3 can be 

computed as (190) and (191). 

𝐶4 = 𝑧4 − 𝑙𝑛|𝑛0ℎ1 + 𝑛1ℎ2| (190) 

 

𝑧3 =
𝑎

𝑏
𝑙𝑛|𝑛0𝑙1 + 𝑛1𝑙2| + 𝐶4 (191) 
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And the time 𝑡3 can be found as (192) based on 𝑧3 and 𝐶3. 

𝑡3 =
𝑧3 − 𝐶3
𝑤3

 (192) 

Then, the time 𝑡4 is equal to the summation of the time 𝑡3 and the delay of 

the buoyancy engine, as shown in (193). 

𝑡4 = 𝑡3 +
𝑓𝑚𝑎𝑥
𝑐𝑚𝑎𝑥

 (193) 

 

4.3.5 Find 𝜶 and 𝒕𝟓 

The constant delay 𝛼 in the fourth segment can be defined as (194) using 

the time 𝑡3. And finally, the time 𝑡5 can be computed based on the boundary 

constant 𝐶5, as shown in (195) and (197). 

𝛼 = 𝑡3 −
𝑓𝑚𝑎𝑥
𝑐𝑚𝑖𝑛

 (194) 

 

𝐶5 =
−𝑎

√−𝑏𝑓𝑚𝑖𝑛3

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑤4

√−𝑓𝑚𝑖𝑛/𝑏
) − 𝑡4 

(195) 

 

𝐶6 = 𝑧5 (196) 

 

𝑡5 = −𝐶5 (197) 

The time 𝑡2, 𝑡3, 𝑡4 and 𝑡5 of TOT trajectory are shown in (177), (192), (193) 

and (197). Therefore, if the reference for depth control is designed as the 

TOT trajectory, the control input will be the same as the input design in Fig. 

26. 

 

4.4. Sliding mode control for heave dynamics 

The heave dynamics is recalled as  
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𝑎𝑤̇ + 𝑏|𝑤|𝑤 = 𝑢 + 𝑑 

             𝑧̇ = 𝑤 
(198) 

where 𝑢  is the control input, 𝑑  is the bounded disturbance. In the control 

design, the hydrodynamic coefficients of the heave dynamics are assumed to 

be known. Therefore, the controller just deals with the bounded disturbance 𝑑. 

A sliding mode control will be designed for the heave dynamics using 

saturation function as below. 

 The sliding surface 𝑠 is constructed as (199), a function of depth error and 

heave velocity error. Here, 𝜆  is the positive weight between position and 

velocity error. 

𝑠 = (𝑤 − 𝑤𝑑) + 𝜆(𝑧 − 𝑧𝑑) (199) 

The control law for 𝑢 can be described as 

𝑢 = 𝑏̂𝑤|𝑤| + 𝑎̂𝑤̇𝑑 − 𝜆𝑎̂(𝑤 − 𝑤𝑑) − 𝐾𝑠𝑎𝑡 (
𝑠

𝜙
) (200) 

where 𝑎̂ and 𝑏̂ are the parameter estimation for 𝑎 and 𝑏, 𝜙 is the boundary 

layer for sliding surface and 𝐾 can be design as 

𝐾 = Δ𝑏𝑤
2 + Δ𝑎|𝑤̇𝑑 − 𝜆(𝑤 − 𝑤𝑑)| + 𝐷 + 𝜂𝑎𝑚𝑎𝑥 (201) 

where Δ𝑎 is the magnitude of uncertainty of parameter 𝑎, Δ𝑏 is the magnitude 

of uncertainty of parameter 𝑏, 𝐷 is the bound of the external disturbance 𝑑, 𝜂 

is a small positive scalar, and 𝑎𝑚𝑎𝑥 is the possible maximum of 𝑎. 

With the above SMC, the tracking control of TOT can be robust to the 

external bounded disturbance. In the next simulation, the TOT and SMC will 

be combined to verify the tracking performance. 
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4.5. Computer simulation 

The main purpose of this simulation is to verify the TOT trajectory and its 

control input. Therefore, it is assumed that the parameters of pure depth plant 

are perfectly known. Here, 𝑎 = 50.5kg ; 𝑏 = 10kg ; 𝑓𝑚𝑎𝑥 = 3.43N  (net 

buoyancy force); 𝑓𝑚𝑖𝑛 = −10N (including the resulting force composed by 

thruster force and pitch angle). One more important parameter of buoyancy 

engine is the rate of buoyancy force 𝑐𝑚𝑎𝑥 = −𝑐𝑚𝑖𝑛 =
𝑓𝑚𝑎𝑥

20
N/s , then the 

period for reaching the maximum force from zero is 20s. For further 

observation, the disturbance can be added into dynamics as 𝑑 = 0.2sin (
2𝑡

𝜋
). 

This disturbance can be used to verify that the control input for the TOT 

trajectory can oscillate around the predefined input with the same amount of 

disturbance magnitude. The sliding mode control using saturation function is 

used in this depth control simulation. The detailed design of this controller is 

similar to the previous chapter. 

 

4.5.1. Simulation 1 

The desired depth is set from the water surface to 40m, so 𝑧0 = 0  and 

𝑧5 = 40m. To find the profile of the TOT trajectory, Eq. (177), (192), (193) 

and (197) are used to find 𝑡2, 𝑡3, 𝑡4 and 𝑡5 respectively. In this simulation, 

t2 = 63.5238, t3 = 66.1899, t4 = 86.1899 and t5 = 87.7597.  
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Fig. 27 Tracking performance of TOT trajectory without disturbance 

In Fig. 27, the actual value of the position, velocity and acceleration track 

the TOT trajectory very well. The heave velocity reaches the maximum value 

of 0.587m/s at 𝑡2  in Fig. 27b. The heave acceleration rose from 0 to 

0.031m/s
2
 and then dropped to 0m/s at 𝑡2. From 𝑡2 to 𝑡4, the net buoyancy 

force will decrease to zero to make the vehicle become neutrally buoyant, and 

the thruster will be used from 𝑡4 to 𝑡5. The buoyancy force decreases from 

3.43N to 0N in 20s, this change reduces the heave velocity to 0.32m/s and the 

heave acceleration to -0.22m/s
2
. The duty of the thruster is to bring the 

velocity and acceleration to zero at 𝑡5in Fig. 27b and c. Finally, the control 

input of the thruster will be kept at zero after a very short time operation in 

Fig. 29b. At this time, the depth of the vehicle is controlled at 40m with the 

minimum time of 87.8s using 3.43N buoyancy force and -10N thrust. The 

designer can use this simulation for checking their capacity design of the 

buoyancy engine and thruster force whether the settling time is satisfied the 

requirements. 
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Fig. 28 Tracking error without disturbance in position, velocity and 

acceleration 

 

 
Fig. 29 Control input for TOT trajectory in the depth control without 

disturbance 

 

The sharp change in acceleration and velocity causes the tracking error 

increase from 𝑡4 to 𝑡5. The tracking errors rose to 5 × 10−4m in the position 

error, 2 × 10−3 m/s in the velocity error and −6 × 10−3 m/s
2
 in the 
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acceleration error. And then, all errors remain at zero at the end of the TOT 

trajectory in Fig. 28. 

The actual control input is the same as the pre-design input in Fig. 29. If the 

parameters of heave dynamics are the same as the actual system, then the 

control input using TOT trajectory will be kept under the limit of the 

buoyancy engines and thrusters. While fully using the maximum force of the 

buoyancy engines and thrusters, the shortest arrival time of depth control can 

be achieved. 

 

4.5.2. Simulation 2 

 
Fig. 30 Tracking performance of TOT trajectory with disturbance 

The disturbance 𝑑 = 0.2sin (
2𝑡

𝜋
)  with waveform is added into the heave 

dynamics. The tracking performance of the TOT trajectory is still good in Fig. 

30. However, the tracking error is degraded due to the saturation function in 

sliding mode control for chattering elimination. The position error is kept 

under 0.002m, the velocity error is controlled under 0.002m/s and the 

acceleration error is under 0.006m/s2. 
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Fig. 31 Tracking error with disturbance in position, velocity and acceleration 

The most important result is shown in Fig. 32. Due to the disturbance, the 

control input oscillated around the pre-defined input for TOT trajectory. And 

the deviation of the actual input is equal to the magnitude of the disturbance. 

In this simulation, the buoyancy force oscillated from 3.22N to 3.64N while 

the desired input is 3.43N in Fig. 32a. The average value of actual buoyancy 

force can be estimated as 3.43N, which is the same as pre-defined input, and 

the buoyancy force has a deviation of 0.2N, which is equal to the magnitude 

of disturbance 𝑑 = 0.2sin (
2𝑡

𝜋
). The same phenomenon can be observed in Fig. 

32b for the thrust force after completing the TOT trajectory.  
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Fig. 32 Control inputs for TOT trajectory with disturbance effect 

 

A robust depth control algorithm with the proposed TOT was studied and 

simulated with a good tracking performance under the external bounded 

disturbances. The robust action from sliding mode control using saturation 

function can keep the tracking error very small in the presence of 

disturbances. The control effort can track the designated input very well 

under the disturbance. And the magnitude of the deviation in the control 

effort is equal to the bound of the disturbance.  
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Chapter 5. Experimental study of direct 

adaptive control along TOT for heading motion 

 

 
5.1. Motivation 

In the real world, the parameter and its uncertainty bound cannot be 

estimated exactly as in the previous assumption. Therefore, another powerful 

controller should be investigated for further improvement in TOT tracking 

control. In this chapter, the robust adaptive control will be presented under 

the assumption that there are unknown parameters and bounded external 

disturbances. 

The weakness of sliding mode control was that the real parameters of the 

system should be in the pre-defined bounds. If the real parameters are not in 

these bounds, the stability of the dynamics with sliding mode control cannot 

be preserved. Especially, for the underwater vehicle model, the 

hydrodynamics coefficients cannot be estimated correctly, and then the pre-

defined bounds should be increased with trials and errors. Therefore, control 

gains of the sign or saturation function should be increased following the 

increase of the parameter bounds. This point makes sliding mode control 

unsuitable for control application of an underwater vehicle.  

On the other hand, the adaptive control is stable for all dynamics with the 

structured model. For this reason, the experimental study of TOT trajectory 

using robust adaptive control will be carried out for heading control of the 

developed RHUG in this chapter. 
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5.2. Composition of RHUG 

 

 
Fig. 33 Side view of the developed RHUG 

 

Right-motor

 
Fig. 34 Hardware diagram of RHUG 

The RHUG in Fig. 33 will be used for the TOT trajectory experiment. The 

control processors are ARM Core407 boards, as shown in Fig. 34. The power 

systems are developed with two batteries of 14V/20A and 26.6V/10A for 

thrusters and motors respectively. The power board will distribute 5V to 
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MCUs, GPS, AHRS, and RF module. The motors from the mass-shifter, left 

buoyancy, and right buoyancy blocks will use the voltage of 26.6V from the 

batteries. The depth sensor also uses 26.6V directly from the batteries. The 

thrusters are fed by 14V power directly from the batteries. Therefore, only 

one DC-DC board required for this structure is from 26.6V to 5V.  

 

 
Fig. 35 Hardware design of the developed RHUG 

In Fig. 35, three blocks are shown inside the covers of the vehicle. Two 

side blocks are the left and right buoyancy engines, which will compress and 

enlarge the volume of the air inside the cylinders. The middle block contains 

the control system and the moving mass in the mass-shifter mechanism. In 

the control system, its components are GPS, AHRS, RF module, motion 
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control board, navigation board, RF antenna, GPS antenna, motor driver, and 

thruster ESCs (electronic speed controller). The mechanical components of 

the mass-shifter and buoyancy engine are shown in Fig. 36 and Fig. 37 

respectively. 

 

Moving massDC motor CoupllerHardware plateO-ring O-ring

GuiderLead screw
 

Fig. 36 Mass-shifter design 

 

BLDC motorBall screwPiston O-ring

 

Fig. 37 Buoyancy engine design 

 

The control diagram of RHUG is shown in Fig. 38 with three sub-

controllers which are heading control, pitching control and glide up/down. 

The controller for the heading is adaptive control, as shown in Fig. 39, for the 

unknown parameters of heading dynamics. The glide up/down controller is 

used for the purpose of descending and ascending with two buoyancy engines. 

And the pitching control is used for regulating the pitch angle using a moving 

mass inside the mass-shifter block. 
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Fig. 38 The control diagram of RHUG 

 

 
Fig. 39 Adaptive heading control 

 

The adaptive control will calculate the required torque and feed to the 

propeller allocation system. Due to the fast response of thrusters, the static 

thruster model is used for torque allocation. Using the static model in (11), 

the input signal of the thruster with the required torque can be computed 

easily with three linear functions. The AHRS sensor will be used to measure 

the heading angle 𝜓 and the yaw rate 𝑟. The heading adaptive control and 

adaptation in Fig. 39 will be explained in the next subsection. 
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5.3. Robust adaptive control for heading dynamics 

The heading dynamics of RHUG can be written as 

𝜓̇ = 𝑟
(𝐼𝑧𝑧 − 𝑁𝑟̇)𝑟̇ = 𝑁𝑟𝑟 + 𝑁|𝑟|𝑟|𝑟|𝑟 + 𝜏𝑟 + 𝑑

 (202) 

where 𝜏𝑟 is the control input, 𝑑 is the disturbance with zero-mean waveform. 

The heading error and yaw rate error can be defined as  

𝑒1 = 𝜓 − 𝜓𝑑 (203) 

 

𝑒2 = 𝑟 − 𝑟𝑑 (204) 

The sliding surface s can be designed as  

𝑠 = 𝑒2 + 𝜆𝑒1 (205) 

where 𝜆 is the weight between two errors, 𝑒1 and 𝑒2. The Lyapunov function 

is choosen as 

𝑉2 =
1

2
𝑎𝑠2 +

1

2
𝑎̃2
𝑇𝑃2

−1𝑎̃2 (206) 

where 𝑎 = 𝐼𝑧𝑧 − 𝑁𝑟̇ > 0 ; 𝑎̃2 = 𝑎̂2 − 𝑎2  is the estimation error of system 

parameter, and 𝑃2 is a positive diagonal matrix. Then, the derivative of 𝑉2 can 

be expanded as 

𝑉̇2 = 𝑎𝑠(𝑒̇2 + 𝜆𝑒̇1) + 𝑎̂2
𝑇𝑃2

−1𝑎̃2 (207) 

The error dynamics in the derivative of Lyapunov function can be replaced 

by the heading dynamics and it can be rewritten as 

𝑉̇2 = 𝑠(−𝑏𝑟 − 𝑐𝑟|𝑟| + 𝑎(𝜓̈𝑑 + 𝜆𝑒2) + 𝑑 + 𝜏𝑟) + 𝑎̂2
𝑇𝑃2

−1𝑎̃2 (208) 

where 𝑏 = 𝑁𝑟, 𝑐 = 𝑁𝑟|𝑟|. The dynamics in 𝑉̇2 can be linearly parameterized 

as  

𝑌2𝑎2 = −𝑏𝑟 − 𝑐𝑟|𝑟| + 𝑎(𝜓̈𝑑 + 𝜆𝑒2) (209) 
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where 𝑌2 = [𝑟     𝑟|𝑟|    𝜓̈𝑑 + 𝜆𝑒2] and 𝑎2 = [−𝑏  − 𝑐     𝑎]
𝑇 . The derivative 

of the Lyapunov function can be rewritten as  

 𝑉̇2 = 𝑠(𝑌2𝑎2 + 𝑑 + 𝜏𝑟) + 𝑎̂2
𝑇𝑃2

−1𝑎̃2 (210) 

Therefore, the control input 𝜏𝑟 canbe designed as 

𝜏𝑟 = −𝑌2𝑎̂2 − 𝑑̂ − 𝑘3𝑠 − 𝑘4𝑠𝑎𝑡 (
𝑠

𝜙
) (211) 

where 𝑑̂  is the mean of the external disturbance and it is zero, 𝑘3  is the 

positive gain for sliding surface, 𝑘4 is the gain for the saturation function and 

should be design later. By substituting 𝜏𝑟 into 𝑉̇2, the derivative of Lyapunov 

function can be obtained as 

 𝑉̇2 = −𝑘3𝑠
2 + 𝑠𝑌2𝑎̃2 + (𝑑 − 𝑑̂) − 𝑘4𝑠𝑎𝑡 (

𝑠

𝜙
) + 𝑎̂2

𝑇𝑃2
−1𝑎̃2 (212) 

From here, the adaptation law can be formulated as 

𝑎̇̂2 = −𝑃2
𝑇𝑌2

𝑇𝑠 (213) 

With this adaptation law, the relating equation of  𝑉̇2 can be obtained as 

𝑉̇2 ≤ −𝑘3𝑠
2 + |𝑑 − 𝑑̂| − 𝑘4𝑠𝑎𝑡 (

𝑠

𝜙
) (214) 

To make the right-hand side negative definite, the control gain 𝑘4 should be 

designed as 

 𝑘4 ≥ |𝑑 − 𝑑̂| + 𝜂 (215) 

where 𝜂 is a small positive scalar. Using the condition in (215), one can prove 

that the derivative of Lyapunov function 𝑉2  is negative definite (N.D), as 

shown in (216).  

𝑉̇2 ≤ −𝑘3𝑠
2 (216) 
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5.4. Computer simulation 

In Fig. 40, the performance of TOT tracking control is quite good with 

reasonable tracking error. The dashed blue line is the actual heading angle, 

and the solid red line is the TOT trajectory. And the zero convergence is 

achieved for both position and velocity graphs.  The overshoot in position 

tracking control using adaptive control can be adjusted by tuning the control 

gain 𝑘1. The smaller the control gain 𝑘1 is, the smaller the position overshoot 

will be.  

 

 
Fig. 40 Performance of TOT trajectory with adaptive control 
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Fig. 41 Control input for TOT trajectory 

 
 

 
(a) Position error 

 
(b) Velocity error 

Fig. 42 Tracking error of adaptive control 

With the TOT concept in chapter 2, the control input will use maximum 

force and then minimum force. This concept is similar to Fig. 41, but the 

control input of adaptive control is much smoother than the sliding mode 

control, and it can operate without the knowledge of parameter bounds. But 

sliding mode control will need the bounds of all parameters, and chattering 

problem should be managed well.  

Moreover, the bigger the parameter bounds are, the larger the control input 

of SMC will be. Therefore, the saturation of the actuator in SMC should be 

calculated well so that it does not exceed the actual input limit. And it is still 

undergoing research of many control designers nowadays. This adaptive 

control showed that the control input is in the range of pre-defined bounds 

between -10Nm to 10Nm while tracking the TOT trajectory. 
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Fig. 43 Parameter adaptation 

The tracking error has the good zero convergence as shown in Fig. 42 for 

both position and velocity errors. The tracking error in Fig. 42 is much bigger 

than that of Fig. 23, but it is accepted with 1 deg and 0.5 deg/s for position 

and velocity tracking error respectively. After the TOT trajectory, the 

tracking errors are converged to zero. 

Finally, the zero convergence can be verified again by the parameter 

adaptation in Fig. 43. Three estimated parameters are constant as time tends 

to infinity. It is noted that the first and second parameters are used in the 

nonlinear hydrodynamic term, and the third parameter is the inertia term. 

This adaptive heading control will be applied to the real platform of RHUG 

with the same control law and adaptation. And the TOT trajectory is also 

tested in this platform with the heading parameters of REMUS. Here, 

𝑁𝑟̇ = −4.88𝑘𝑔𝑚
2/𝑟𝑎𝑑 ; 𝑁𝑟 = 0 ; 𝑁𝑟𝑟 = −94𝑘𝑔𝑚

2/𝑟𝑎𝑑2 ; 𝐼𝑧𝑧 = 50𝑘𝑔𝑚2 ; 

−10𝑁𝑚 ≤ 𝜏𝑟 ≤ 10𝑁𝑚 . The next subsection will show the heading 

experiment and the tuning process of adaptive control gains. 

 



TOT experiment 

 

82 

 

5.5 Experiment 

5.5.1 First experiment with 𝒌𝟏 = 𝟐. 𝟓, 𝒌𝟐 = 𝟑𝟎 

 
Fig. 44 TOT tracking performance in the first experiment 

The vehicle was tested in a swimming pool, and the goal of the experiment 

was to find the best control gains for TOT tracking controller. The vehicle 

will be released at around −80°,  and the TOT was fed to the adaptive 

controller with the desired heading angle of −40° and −44°. After six times 

of testing, the result is shown in Fig. 44 and Fig. 45. 

The control gains for the first experiment will be defined as k1 = 2.5, k2 =

30. The tracking performance of TOT with these gains is shown in Fig. 44. 

With this value of 𝑘1, the controller has a good tracking performance with the 

TOT. But after finishing the TOT trajectory, the oscillating phenomenon 

appeared with a big overshoot in position performance. This phenomenon can 

be also observed in the control input 𝜏𝑟 in Fig. 45. This problem is caused by 

the big gain of 𝑘1 , so in the next experiment the control gain 𝑘1  was 

decreased but keeping the value of 𝑘2. 
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Fig. 45 Control inputs and parameter adaptation in the first experiment 

The estimated parameters of the adaptation law can be seen in Fig. 45. 

Despite the oscillating response in position tracking, the estimation still can 

achieve constant values after tracking the TOT trajectory. 

 

5.5.2 Second experiment with 𝒌𝟏 = 𝟐, 𝒌𝟐 = 𝟑𝟎 

It was similar to the previous test, the desired heading angle is set at −44°. 

The heading control is tested four times in the swimming pool. The result of 

this second test is shown in Fig. 46 and Fig. 47. 

The control gain 𝑘1 was decreased to 2 instead of 2.5 in the first experiment. 

And the improvement can be seen in Fig. 46 with a small overshoot and 

damped oscillating tracking. However, the actual curve is quite slower than 

the TOT trajectory. Then another change of control gains should be decided. 

And to make the tracking performance better, the control gain 𝑘2 should be 

increased dramatically. 
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Fig. 46 TOT tracking performance in the second experiment 

In Fig. 47, the control input and adaptation of the second experiment is 

presented. After reducing 𝑘1 , the better steady state performance can be 

observed in the control input. At first, the control input will be increase to the 

maximum value, 10Nm. When the actual heading gets near to the final 

desired angle, the control input significantly decreases near to the minimum 

value of -10Nm. And when the TOT trajectory reaches the desired angle, the  

control input oscillates around the zero point. 
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Fig. 47 Control inputs and parameter adaptation in the second experiment 

The estimated parameters are shown in Fig. 47. The parameter changed to 

the constant value four times representing four tests of heading control. This 

figure showed that with these control gains, the system has a good zero 

convergence. 

 

5.5.3 Third experiment with 𝒌𝟏 = 𝟐, 𝒌𝟐 = 𝟓𝟎 

 
Fig. 48 TOT tracking performance in the third experiment 

In the third test, the condition was set as the same as the second test except 

that 𝑘2 is set at 50. The desired heading angle is −44° and the initial angle is 

around −80°. The heading control was also conducted four times. The result 

of the third test is shown in Fig. 48 and Fig. 49. 

In Fig. 48, the tracking performance is better than the second experiment, 

but the overshoot of the third test is bigger than that of the second test. 

However, this overshoot is damped quickly, and it has better tracking 

compared to the second test. Moreover, the control input in this experiment is 
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better than that of the first experiment. Therefore, the final gain is chosen as 

the same as the second experiment. 

 
Fig. 49 Control inputs and parameter adaptation in the third experiment 

To confirm the good performance of the final control gains, one more test 

was conducted with the desired heading angle of −44°,  and the result is 

shown in Fig. 50 and Fig. 51. The blue line is the TOT trajectory, and the red 

line is the actual heading angle. The overshoot of this experiment is about  8°, 

and it is quickly damped to zero. Both position and velocity have reasonable 

tracking errors.  

The control input is the first curve in Fig. 51. It rises to a maximum value 

and then decreases to the minimum value before settling around zero. The 

control input is not perfectly rectangular as the TOT concept due to the 

parameters used to design the TOT trajectory may not be the true values of 

the tested platform. However, the control input using the adaptive control is 

much smoother than that of the SMC control. Before going to zero, the 

control input has a significant rise due to the overshoot in the position 

tracking.  
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Fig. 50 TOT trajectory performance with final gains 

 

 
Fig. 51 Control input and parameter estimation with final gains 

Three estimations are presented in Fig. 51. And the estimated parameters 

also have a good convergence to the constant value. Here, 𝑎̂1 represents the 

parameter 𝑁𝑟, 𝑎̂2 is the estimation of the parameter 𝑁|𝑟|𝑟, and 𝑎̂3 means the 

inertial term (𝐼𝑧𝑧 − 𝑁𝑟̇). They did not converge to the true value because of 

the richness of the reference. In adaptive control theory, if the reference for 
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the adaptive control has adequate richness, the estimated parameter will 

converge to the true parameter. And to solve this problem, there are many 

undergoing studies about the learning-based adaptive control for finding the 

true parameters. 

In this work, the TOT trajectory for the heading dynamics is successfully 

tested using the adaptive control technique. Smoother control input is realized 

in this experiment compared to chapter three. And the implementation of 

TOT trajectory using this adaptive control did not require knowledge about 

the bounds of parameters while the SMC control needs that information in 

advance to design the control law. Therefore, with the TOT trajectory, the 

adaptive control is better than the SMC control in the practical aspect. 
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Chapter 6. Robust adaptive control design for 

vertical motion 

 

 

 

 

 

 

 

6.1. Dynamics of vertical plane 

The vertical dynamics can be rewritten as (217). The definition of variables 

and parameters can be seen in subsection 2.3. 

𝑥̇ = 𝑢𝑐𝑜𝑠𝜃 + 𝑤𝑠𝑖𝑛𝜃 

𝑧̇ = −𝑢𝑠𝑖𝑛𝜃 + 𝑤𝑐𝑜𝑠𝜃 

𝜃̇ = 𝑞 

(𝑚 − 𝑋𝑢̇)𝑢̇ = −𝑚𝑧𝑔𝑞̇ + 𝑚𝑥𝑔𝑞
2 −𝑚𝑤𝑞 + 𝑍𝑤̇𝑤𝑞 + 𝑋𝑢𝑢𝑢

2

+ 𝑋𝑤𝑤𝑤
2 + 𝑋𝑢𝑤𝑢𝑤 − (𝑊 − 𝐵)𝑠𝑖𝑛𝜃 + 𝜏𝑤𝑠𝑖𝑛𝜃

+ 𝜏𝑢 + 𝜏𝑒𝑢 

(𝑚 − 𝑍𝑤̇)𝑤̇ = (𝑚𝑥𝑔 + 𝑍𝑞̇)𝑞̇ + 𝑚𝑧𝑔𝑞
2 +𝑚𝑢𝑞 − 𝑋𝑢̇𝑢𝑞 + 𝑍𝑢𝑢𝑢

2

+ 𝑍𝑢𝑤𝑢𝑤 + 𝑍𝑤𝑤𝑤
2 + 𝑍𝑤𝑤𝑤𝑤

3 + (𝑊 − 𝐵)𝑐𝑜𝑠𝜃

+ 𝜏𝑤𝑐𝑜𝑠𝜃 + 𝜏𝑒𝑤 

(𝐼𝑦𝑦 −𝑀𝑞̇)𝑞̇ = −𝑚𝑧𝑔𝑢̇ + (𝑚𝑥𝑔 −𝑀𝑤̇)𝑤̇ − 𝑚𝑧𝑔𝑞𝑤 − 𝑍𝑤̇𝑤𝑢

− 𝑍𝑞̇𝑞𝑢 + 𝑋𝑢̇𝑢𝑤 +𝑀𝑢𝑢𝑢
2 +𝑀𝑢𝑤𝑢𝑤 +𝑀𝑤𝑤𝑤

2

+𝑀𝑤𝑤𝑤𝑤
3 − (𝑧𝑔𝑊 − 𝑧𝑏𝐵)𝑠𝑖𝑛𝜃

− (𝑥𝑔 − 𝑥𝑏𝐵)𝑐𝑜𝑠𝜃 + 𝜏𝑞 + 𝜏𝑒𝑞 

(217) 

The vertical motion is extremely important for the RHUG system because 

the gliding motion is the key technology of this system. These dynamics 

including surge, heave, and pitching motions can be rewritten as (217). For 
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the glider system, the parameters of the dynamics cannot be estimated exactly, 

and some parameters cannot be measured directly, such as the center of 

buoyancy and gravity, and moment of inertia. Moreover, those parameters 

can be changed during the operation of the buoyancy engines and moving 

mass in Eq. (15), (16) and (18). Therefore, the adaptation law should be 

designed to overcome the parameter change in this system. RHUG system is 

strongly influenced by environmental disturbances such as waves and 

currents. Hence, a robust control technique should be applied to this 

controller.  

There have been many studies on adaptive control for underwater vehicles 

over the last two decades. However, only a few authors could perform 

adaptive control with good experimental results. The bound-estimation 

adaptive control was developed in [54], and the experiment result of depth 

control was presented with reasonable tracking error. The position and 

heading adaptive PD control were applied to an ROV system in [55], and the 

superior performance was presented in adaptive PD control over the 

conventional PD control under the uncertainties of cable forces and 

mechanical connection between the ROV and underwater structure. In these 

two papers, the authors designed the adaptive control just for fully actuated 

underwater robot, and this controller cannot be applied to underactuated 

systems. 

In this chapter, the robust adaptive control will be designed for 

underactuated vertical dynamics with unknown parameters of hydrodynamic 

and bounded disturbances. There are three kinds of actuators which are 

buoyancy engine, moving mass and thrusters. However, the buoyancy engine 

is used as a two-mode actuator with backward and forward motions for 

gliding down and up respectively. So that the dynamics has three degrees of 
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freedom and only two control inputs, which are 𝜏𝑢 and 𝜏𝑞. An underactuated 

system like RHUG cannot use the adaptive control for controlling pitch angle 

and speed without decoupling these dynamics. Therefore, the RHUG 

dynamics can be only controlled using backstepping technique for pitch and 

speed control. The robust adaptive controls for pitch angle and speed control 

will be presented separately in the following sections. 

 

6.2. Adaptive sliding-mode control for pitch motion 

The third and fifth equation in (217) can be rewritten as (218) in the pitch 

control system with two subsystems 1 and 2. Subsystem 1 is the kinematic of 

pitch motion, which is the pitch velocity and can be measured by the gyro 

sensor. The second subsystem is the acceleration of pitch angle and can be 

simplified as a function 𝑓2 and inertia term 𝑚33. It is noted that there are 4 

state variables which are 𝑢, 𝑤, 𝑞 and 𝜃 involved in this function. 

 33 2

System 1:                              

System 2:           , , q eq

q

m q f



    



  
 

(218) 

where, 𝑚33 = 𝐼𝑦𝑦 −𝑀𝑞̇ ; 𝑓2 = −𝑚𝑧𝑔𝑢̇ + (𝑚𝑥𝑔 −𝑀𝑤̇)𝑤̇ − 𝑚𝑧𝑔𝑞𝑤 −

𝑍𝑤̇𝑤𝑢 − 𝑍𝑞̇𝑞𝑢 + 𝑋𝑢̇𝑢𝑤 +𝑀𝑢𝑢𝑢
2 +𝑀𝑢𝑤𝑢𝑤 +𝑀𝑤𝑤𝑤

2 +𝑀𝑤𝑤𝑤𝑤
3 −

(𝑧𝑔𝑊 − 𝑧𝑏𝐵)𝑠𝑖𝑛𝜃 − (𝑥𝑔𝑊 − 𝑥𝑏𝐵)𝑐𝑜𝑠𝜃. 

The error of this system can be defined as 

1

2

d

d

e

e q q

 




 

 
 

(219) 

The error dynamics 𝑒̇1 can be derived as (220) with the presence of the 

virtual control 𝑞𝑑. To stabilize this error dynamic, the control law for virtual 

control 𝑞𝑑  can be designed as 𝑞𝑑 = 𝜃̇𝑑 − 𝑘1𝑒1  with positive control gain 

(𝑘1 > 0).  
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1 2d d d de q e q           (220) 

Then, this error dynamics can be derived as 𝑒̇1 = −𝑘1𝑒1 + 𝑒2. Therefore, 

the derivative of the virtual control can be easily shown as (221) in the 

function of two errors and the desired value of pitch angular acceleration. 

2
1 1 1 2d dq k e k e    (221) 

For direct Lyapunov stability, the Lyapunov candidate is chosen as (223) 

with three components. The first two terms are error magnitude and the third 

term is the magnitude of adaptation error. By deriving the derivative of the 

Lyapunov function, the control law for 𝜏𝑞 can be established as (225) using 

the adaptation law, error stabilizer, disturbance estimation and sliding mode 

control. In the practical, the disturbance can be modeled as the zero mean 

function such as a sinusoidal function or random function. 

33 33 33 2 332 qdd
m qm e m q m q f      

(222) 

 

2 2 1
2 1 33 2 2 2 2

1 1 1
2 2 2

V e m e a P a    
(223) 

 
2 1

2 1 1 1 2 2 2 2 2 2
ˆ( ) T

q eqV k e e e e Y a a P a          (224) 

 

2
2 2 2 2 1 2

2

늿 ( )q eq
e

Y a k e e k sat 


      
(225) 

Here,  

𝑌2𝑎2 = −𝑓2 +𝑚33𝑞̇𝑑; 𝑎̃2 = 𝑎̂2 − 𝑎2;  

𝑌2 = [𝑢̇ 𝑤̇ 𝑞𝑤 𝑞𝑢 𝑤𝑢 𝑢
2 𝑤2 𝑤3 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑞̇𝑑];  

𝑎2 = [(−𝑚𝑧𝑔) (𝑚𝑥𝑔 −𝑀𝑤̇) (−𝑚𝑧𝑔) (−𝑍𝑤̇ − 𝑋𝑢̇ +𝑀𝑢𝑤) (−𝑍𝑞̇) (𝑀𝑢𝑢)   
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(𝑀𝑤𝑤) (𝑀𝑤𝑤𝑤) (−𝑧𝑔𝑊 + 𝑧𝑏𝐵) (−𝑥𝑔𝑊+ 𝑥𝑏𝐵)  (−𝑚33)]
𝑇 and 𝑃2 =

𝐼11×11. 

The sliding surface is chosen as 𝑠 = 𝑒2 and it is presented in the control law 

under the saturation function as described in Fig. 52. 

1

-1





s
sat



 
 
 

s

 
Fig. 52 Saturation function 

By choosing the adaption law as 𝑎̇̂ = −𝑃2𝑌2
𝑇𝑒2, it will compensate the term 

𝑒2𝑌2𝑎̃2 in the derivative function of 𝑉2 as (226). The stability can be proved 

as followings under the condition of 𝑘2∆ ≥ |𝜏𝑒𝑞 − 𝜏̂𝑒𝑞| as shown in (227). 

2 2 12
2 1 1 2 2 2 2 2 2 2 2 2 2 2

2

늿( ) ( )eq eq
e

V k e k e k e sat e e Y a a P a 





        
(226) 

2 2
1 1 2 2 2 2

2 2
1 1 2 2

2 2 2
2 1 1 2 2 2 2 2

2

2
| |

      (N.D)

ˆ( ) ( )

ˆ

eu eu

eu eue k e k e

e k e

e
V k e k e k e sat e

ek

k

 


 



  



    

 



 (227) 

 

6.3. Adaptive sliding-mode control for surge motion 

 

 311
System 3: , , sinw um u f          

(228) 



Robust adaptive control 

 

94 

 

The surge dynamics can be formulated as (228). Here, 𝑚11 = 𝑚 − 𝑋𝑢̇ ; 

𝑓3 = −𝑚𝑧𝑔𝑞̇ + 𝑚𝑥𝑔𝑞
2 − (𝑚 − 𝑍𝑤̇)𝑤𝑞 + 𝑋𝑢𝑢𝑢

2 + 𝑋𝑤𝑤𝑤
2 + 𝑋𝑢𝑤𝑢𝑤 −

(𝑊 − 𝐵)𝑠𝑖𝑛𝜃. The speed control does not include the kinematic equation 

because the control objective is to make 𝑢 → 𝑢𝑑 as 𝑡 → ∞. The function also 

includes four state variables which are 𝑢, 𝑤, 𝑞 and 𝜃. The variables 𝑢 and 𝑤 

can be measured by DVL sensor, and AHRS sensor can provide the pitch 

angle 𝜃 and pitch angular rate 𝑞. The error definition for speed control is 𝑒3 

as (229), and the error dynamics can be derived as (230), and then the 

Lyapunov function for designing control law can be formulated as (231).  

3 d
e u u   

(229) 

 

 11 3 11 3 11
sinw ud d

m e m u u f m u         
(230) 

 

2 1
3 11 3 3 3 3

1 1
2 2

TV m e a P a   
(231) 

To derive the control law from Lyapunov function, the derivative of 𝑉3 

should be derived with the presence of the system dynamic, as shown in 

(232). By the regressive vector 𝑌3 , 𝑉̇3  can be rewritten as (233). Here, 

𝑌3𝑎3 = −(𝑓3 + 𝜏𝑤𝑠𝑖𝑛𝜃 − 𝑚11𝑢̇𝑑) ; 𝑌3 = [𝑞̇ 𝑞2 𝑤𝑞 𝑢2 𝑤2 𝑢𝑤 𝑠𝑖𝑛𝜃 𝑢̇𝑑] ;  𝑎3 =

[(−𝑚𝑧𝑔)   (𝑚𝑥𝑔)   (−𝑚 + 𝑍𝑤̇)   (𝑋𝑢𝑢)  (𝑋𝑤𝑤) (𝑋𝑢𝑤) (−𝐵 +𝑊) (−𝑚11)]
𝑇  

and 𝑃3 = 𝐼8×8.  

1
w3 3 3 11 3 3 3

( sin )u eud
V e f m u a P a           (232) 

 
1

3 3 3 3 3 3 3
( )u euV e Y a a P a       (233) 

To make 𝑉̇3 less than or equal zero, control input 𝜏𝑢 should be designed as 

(234). The first term is the adaptation result to estimate the unknown 

nonlinear part, and the second term is added to create the negative term with 
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speed error. The third term is the estimated magnitude of external disturbance 

(normally chosen as zero), and the final term is robust action with saturation 

function for chattering-free sliding mode control. 

3

3
3 3 3 3 3
늿u eu

e
Y a k e k sat


 

 
 
  
 


     

(234) 

 

2 13
3 3 3 3 3 3 3 3 3 3 3

3

늿( ) ( ) T
eu eu

e
V k e k sat e e e Y a a P a 





       

(235) 

By using the above control law, 𝑉̇3 can be rewritten as (235) and it can be 

easily shown to be stable by (236) using direct Lyapunov theory. 

2 3
3 3 3 3 3 3

3

2
3 3 3 3 3

2
3 3

ˆ( ) ( )

ˆ

      (N.D)

eu eu

eu eu

e
V k e k sat e e

k e k e e

k e

 


 





   

   



 (236) 

 

6.4. LOS and PI depth-keeping guidance 

The inertial navigation system (INS) can be used to feed the position of the 

vehicle while the vehicle operates underwater. Therefore, if the INS system is 

available, the LOS guidance for depth control can be used with two 

constraints as (237) and (238) for solving the LOS point (𝑥𝑙𝑜𝑠, 𝑧𝑙𝑜𝑠) in Fig. 53.  
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Fig. 53 LOS depth-keeping guidance 

And then, the desired pitch angle can be calculated as (239) in the range 

from −90° to 90°. In practice, the range can be restricted from −45° to 45° 

for safety purposes. 
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(240) 
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Fig. 54 Scheme for depth keeping control 

In the case of lacking the position sensor, the vehicle can use PI-guidance 

for depth control and only depth information is required in (240) where, 𝑘𝑝 is 

the proportional gain and 𝑘𝑖  is the integral gain. To verify the proposed 

control scheme, the simulation of depth control will be explained in the next 

subsection. 
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6.5. Computer simulation 

6.5.1 Simulation 1 

The gliding motion of RHUG will be simulated using the pitch controller as 

designed above. RHUG will dive to 200m and switch its motion to ascending 

toward the surface. The desired pitch angle is assigned at −30° and 30° for 

descending and ascending motion. The hydrodynamic coefficients are 

obtained from Table 3, and the model parameters are collected in Table 6. 

Here, 𝑅𝑐  is the cylinder radius; 𝐿  is the RHUG length, which is used to 

calculate the dimensional hydrodynamic coefficients;  𝐿𝑏 is the length of the 

cylinder. From this parameter, the maximum of the net buoyancy force can be 

estimated as 20.25N. So that, the saturation of 𝜏𝑤 will be in the range from -

20.25N to 20.25N. For the environmental disturbance, |𝜏𝑒| = [2 − 1 2]𝑇 and 

𝜏𝑒 = |𝜏𝑒|𝑠𝑖𝑛 (
𝑡

2𝜋
). 

After modeling the RHUG in 3D design, the center of gravity is estimated 

by SOLIDWORKS in Fig. 55. The pink coordinate is the inertia tensor. The 

origin is the center of gravity, and there are three inertia tensor, which are 𝐼𝑥𝑥, 

𝐼𝑦𝑦 and 𝐼𝑧𝑧. In order to get this result, each component should be weighted 

and their gravity center is estimated in advance, and then that information 

will be input in SOLIDWORKS. It is noted that 𝑂𝑥0 in 3D design is 𝑂𝑦0 in 

the simulation, 𝑂𝑦0  in 3D design is 𝑂𝑥0  in the simulation, and 𝑂𝑧0  in 3D 

design is in opposite direction with 𝑂𝑧0 in the simulation.  
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Fig. 55 Center of gravity in 3D design by SOLIDWORKS 

 

 
Fig. 56 Moment of inertia in 3D design by SOLIDWORKS 
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Therefore, moment of inertia 𝐼𝑦𝑦  is equal to  𝐼𝑥𝑥  in Fig. 56. In Fig. 55, 

vector 𝐼𝑥𝑥  point to the sway direction, so 𝐼𝑥𝑥  in 3D design is 𝐼𝑦𝑦  in the 

simulation. In Fig. 56, the coordinate of center of gravity is 𝑥𝑔 = 0.16𝑚 and 

𝑧𝑔 = −0.01𝑚. Other parameters of RHUG model can be seen in Table 6. 

Table 6 Model parameters 

Parameter     Value Parameter Value 

𝑅𝑐 0.065 m 𝑥𝑔 0.16m 

𝐿 2.4 m 𝑧𝑔 -0.01m 

𝑚 107 kg 𝑥𝑏 0m 

𝐼𝑦𝑦 2.67 kgm
2
 𝑧𝑏 0m 

𝑚𝑚 3.62 kg 𝐿𝑏 0.13m 

The gliding motion is simulated using the Runge-Kutta 4
th

 method, and the 

trajectory of one cycle of glide is shown in Fig. 57. The coordinate of RHUG 

is simulated by the blue line, and the orientation of RHUG is represented by 

the yellow triangle in Fig. 57. The desired depth for switching to the 

ascending mode is set at 200m depth. 

 
Fig. 57 One cycle of gliding 

In the gliding motion, only pitch control is required. The desired pitch is 

assigned as −30°  for descending and 30°  for ascending. Due to the slow 

motion of pistons in the buoyancy engine, at the desired depth of 200m, the 
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desired angle is set at 0°, and when the buoyant condition is positive, it will 

change to 30° for resurfacing motion. The performance of pitch control is 

shown in Fig. 58c. The solid blue line is the actual pitch angle, and the red 

dashed line is the desired pitch angle. It can be seen that at the first time, the 

desired angle is −30° for gliding down, and when RHUG glides to 200m, the 

desired angle is changed to 0° . And then, if the net buoyancy force is 

negative or (𝑊 − 𝐵) < 0, the desired angle will be set at 30° for gliding up 

to the sea surface. The pitch control has a good performance despite the 

presence of the bounded disturbance as described above. 

 

 
(a) Longitudinal coordinate 

 
(b) Depth 

 
(c) Pitch control 

Fig. 58 Pitch control performance 
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Fig. 59 Virtual control input 

In the backstepping technique, it is important to verify the tracking 

performance of the virtual input 𝑞𝑑. In Fig. 59, the blue dot line represents the 

designed virtual control input, and the solid red curve is the actual pitch rate. 

This figure showed that the tracking performance of virtual control has a 

good tracking in the presence of the external disturbance.   

 

 
(a) Surge velocity 

 
(b) Heave velocity 

 
(c) Pitch angular rate 

Fig. 60 Body-fixed velocities 
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(a) Net buoyancy force 

 
(b) Heave velocity 

Fig. 61 Control input 

The body-frame velocities of RHUG are presented in Fig. 60. The surge 

velocities increase near to 1m/s in the descending motion and fall to 0.2m/s at 

the desired depth and then rise again near to 1m/s in the ascending motion. 

During the descending time, the heave velocity is positive and has an 

equilibrium point of around 0.015m/s. It has a negative value in the ascending 

motion with an equilibrium value of around -0.04m/s. In Fig. 60c, the pitch 

angular velocity is similar to the red curve in Fig. 59. But in this figure, the 

unit of pitch rate is degree per second. 

The control inputs of the buoyancy engine and moving mass are shown in 

Fig. 61. The net buoyancy force slowly increases to 20.25N in the descending 

motion and decreases to -20.25N in the resurfacing motion, as shown in Fig. 

61a. The pitch error has the waveform curve and it is under 0.4deg, as shown 

in Fig. 62. 
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Fig. 62 Pitch control error 

 

 
Fig. 63 Parameter adaptation 

With the adaptation in Fig. 63, it is shown that the estimated parameters in 

the 6
th

, 9
th

 and 10
th

 position of the estimated vector 𝑎̂2 have the significant 

waveform pattern compared to other estimated parameters. The 6
th

 estimated 

parameter is for 𝑀𝑢𝑢, the 9
th

 estimated parameter is for (−𝑧𝑔𝑊+ 𝑧𝑏𝐵), and 

the 10
th

 estimated parameter is for (−𝑥𝑔𝑊 + 𝑥𝑏𝐵). 
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6.5.2 Simulation 2 

 

30d   30d 
d PI 

Glider mode Glider modeAUV mode

1.5 /d m su 

 
Fig. 64 Depth control performance with uncertainty and disturbance 

The depth control of RHUG can be formed in three tasks. The first task is 

descending motion using the buoyancy engine and moving mass without the 

thruster force. In this task, the desired pitch angle is set at −30° in Fig. 65. 

When it glides down to the desired depth, the speed control and PI guidance 

are the second task. In this simulation, the surge speed is regulated at 1.5m/s, 

and the desired pitch angle is decided by the PI guidance. It is noted that the 

net buoyancy force should be neutral to reduce the required force for speed 

and pitch control in the desired depth. The last task is resurfacing after 

traveling a certain distance (300m in this simulation in Fig. 64). This task is 

similar to the first operation, but the desired pitch angle is fixed at 30° to 

glide up. The position of the vehicle is assumed to be unavailable so PI 

guidance is the suitable choice for this scenario.   
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(a) Longitudinal coordinate 

 
(b) Depth 

30d  
30d d PI 

 
(c) Pitching performance in depth control 

 

Fig. 65 Tracking performance of pitch control 

The hydrodynamic coefficients are shown in Table 3 using the CFD 

method, and it is used for this simulation. The parameters of the model are 

illustrated in Table 6. For the environmental disturbance, |𝜏𝑒| = [2 − 1 2]
𝑇 

and𝜏𝑒 = |𝜏𝑒|𝑠𝑖𝑛 (
𝑡

2𝜋
). And the desired depth for this simulation is still 200m. 

Deactivated

Activated

Deactivated
1.5 /d m su 

 
(a) Speed control performance 

 
(b) Heave velocity 

 
(c) Pitch velocity 

 

Fig. 66 Speed control performance 
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The simulation uses the Runge-Kutta 4
th

 order method for simulating the 

vertical dynamics of RHUG. From 0s to 450s, the RHUG glides down with 

𝜃𝑑 = −30° as shown in Fig. 65c. When it reaches 200m depth, this vehicle 

will accomplish longitudinal distance of 330m in 𝐸𝑥 axis, as shown in Fig. 

65a. In the second task, it will complete the 300m distance at the constant 

speed of 1.5m/s. The PI guidance will be used to calculate the desired pitch 

angle following Eq. (240). From 450s to 650s, it moves from 330m to 630m 

in the 𝐸𝑥 axis at the desired depth of 200m. The timer is used to know the 

distance of the vehicle at 200m, and after a period of 200s, it will get into the 

third task of ascending. The PI guidance and speed control will be 

deactivated and the desired pitch angle is set at 30°  in Fig. 65c. After 

reaching the water surface, the vehicle achieves a distance of 943m distance 

in the longitudinal coordinate. 

 
(a) Pitch angle error 

 
(b) Virtual control error 

 
(c) Speed control error in the desired depth 

 

Fig. 67 The tracking errors from 3 sub-controllers 
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In Fig. 65c, the pitch angle is the blue line, and the desired angle is the red 

dash line. It can be seen that the actual angle follows the desired angle very 

well despite the effect of disturbance with less than 0.5° error in Fig. 67a. 

And in Fig. 66a, the performance of speed control is shown. The blue line is 

the actual surge speed, and the red line is the desired speed, which is 1.5m/s 

in the period of the second task. It is shown that the error of speed control is 

improved and converges to zero at the end of the task. The speed error is less 

than 0.02m/s and can be seen in Fig. 67c. The behavior of heave and pitch 

angular velocities are shown in Fig. 66b and Fig. 66c.  

 

 
Fig. 68 Cross-tracking error in depth control 

In Fig. 68, the depth error with PI guidance is plotted. The guidance gains 

are adjusted as 𝑘𝑝 = 10 and 𝑘𝑖 = 0.1. With the PI guidance, the depth value 

is only needed for keeping the vehicle at the desired depth. This guidance is 

very practical, and it also has a good performance with less than 0.1m error in 

this simulation. Fig. 68 illustrates the zero convergence of the PI guidance 

from 1m to 0.06m in the cross-tracking error. 
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(a) Net buoyancy force 

 
(b) Moment induced by moving mass 

 
(c) Thruster force during the depth control 

 

Fig. 69 Control inputs from robust adaptive control 

 

In Fig. 69, the control inputs are very smooth, and with these control laws, 

the required forces are calculated without the knowledge of hydrodynamic 

coefficients and vehicle parameters. In Fig. 69a, the net buoyancy force is 

controlled in three different levels for three tasks. Increasing to 20.25N is for 

descending, falling to 0N is for the cruising task and decreasing to -20.25N is 

for the ascending motion. The required moment of mass-shifter for pitching 

control is shown in Fig. 69b. The saturation of this mass-shifter is designed 

with the range between −20Nm and 20Nm. The control force of the thruster 

for 1.5m/s speed regulator is under 30N saturation, as shown in Fig. 69c. 

There are eleven parameters needed to be estimated for pitch control, and 

eight parameters required for speed control in Fig. 70 and Fig. 71 respectively.  
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Fig. 70 Pitch parameter adaptation 

Here,  

𝑎2 = [(−𝑚𝑧𝑔) (𝑚𝑥𝑔 −𝑀𝑤̇) (−𝑚𝑧𝑔) (−𝑍𝑤̇ − 𝑋𝑢̇ +𝑀𝑢𝑤) (−𝑍𝑞̇) (𝑀𝑢𝑢)  

 (𝑀𝑤𝑤) (𝑀𝑤𝑤𝑤) (−𝑧𝑔𝑊 + 𝑧𝑏𝐵) (−𝑥𝑔𝑊+ 𝑥𝑏𝐵)  (−𝑚33)]
𝑇; 

𝑎3 = [(−𝑚𝑧𝑔)   (𝑚𝑥𝑔)   (−𝑚 + 𝑍𝑤̇)  (𝑋𝑢𝑢)  (𝑋𝑤𝑤) (𝑋𝑢𝑤) (−𝐵 +𝑊)  

 (−𝑚11)]
𝑇. 

 
Fig. 71 Speed parameter adaptation 
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The estimated parameters for 𝑀𝑢𝑢, (−𝑧𝑔𝑊 + 𝑧𝑏𝐵) and (−𝑥𝑔𝑊 + 𝑥𝑏𝐵) in 

vector 𝑎2 are sensitive to the environmental disturbance while  the estimation 

of 𝑋𝑢𝑢 in vector 𝑎3 is adapted with the sinusoidal behavior. 
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Chapter 7. Conclusion 

    A new hull design of the hybrid underwater glider with ray shape was 

proposed for faster gliding speed and longer duration. The model of RHUG 

was separated into heading dynamics and vertical dynamics. The hardware of 

RHUG was designed and constructed for the TOT experiments and the sea 

trials. And the analytical solutions of two dynamics were formulated in the 

explicit function of time. 

To design the time-optimal trajectory, a closed-form solution of the heading 

dynamics with linear and quadratic damping was formulated. A robust 

control algorithm with TOT for heading dynamics was simulated with a good 

tracking performance considering parameter uncertainties and bounded 

disturbances. For tracking the TOT trajectory, the ST-SMC not only had a 

small tracking error but also reduced the chattering phenomenon in the 

control input. 

Also, an analytical solution of TOT for heave dynamics using a hybrid 

actuation of buoyancy and thruster forces was proposed individually. A 

robust depth control with the proposed TOT was simulated with a good 

tracking performance in the presence of bounded disturbances. 

To implement the TOT and identify the unknown parameters of the 

developed RHUG, the experiment for tracking the TOT using direct adaptive 

control was conducted, and it showed a stable tracking performance and a 

constant convergence of unknown parameters. Moreover, a zero convergence 

of tracking error using adaptive control was confirmed in the experiment. 

The gliding motion and depth control of the RHUG was simulated using the 

hydrodynamics coefficients from CFD analysis. In the gliding motion, a 

proposed robust adaptive control for pitch control had a reliable performance 
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with consideration of unknown parameters and bounded disturbances. And in 

the simulation of depth control, the robust adaptive control combined with PI 

guidance had a good performance of tracking the desired depth against 

unknown parameters and external bounded disturbances. 
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