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Abstract

This paper presents a numerical analysis of lateral responses of a long slender marine struc-
ture under combined parametric and forcing excitations. In the development of the 3-D numeri-
cal program, a finite element method is implemented in the time domain using the Newmark
constant acceleration method. Some example studies are performed for various water depths,
environmental conditions and vessel motions. The relative amplitudes of combined excitations
to a conventional forcing excitation are examined. The response amplitude of a combined
excitation is much greater than that of a forcing excitation in the even number of instability
regions of the Mathieu stability chart. The results demonstrate that a combined excitation needs
to be considered for the accurate dynamic analysis of long slender marine structures subjected
to a surface vessel motion. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Long slender marine structures such as risers, TLP tethers as shown in Fig. 1 are
mostly subjected to two directional sources of dynamic excitations; the first source
of dynamic excitation is induced by horizontal forces from platform surge motions
and direct wave forces whereas the second source is due to changes in axial tension
by heaving motion of a platform. The first and second sources are respectively called
as a forcing excitation (or external excitation) and a parametric excitation. When
two sources of dynamic excitations are considered simultaneously, that is more
realistic, the dynamic behavior of long slender structure becomes a combined forcing
and parametric excitation problem.

The forcing excitation problem (a forced vibration problem) has been extensively
studied. Patel and Witz (1991) introduces several kinds of forcing excitation prob-
lems of TBP tethers and risers. Most research on dynamics of slender marine struc-
tures fall in this category (Kirk et al., 1979; Dareing and Huang, 1979; Kim and
Triantafyllou, 1984; Kokarakis and Bernitsas, 1987).

A parametric excitation problem is also partly investigated by Hsu (1975), Strick-
land and Mason (1981), Moe et al. (1987), Ohkusu (1990) and Patel and Park (1991).
More recently, a combined excitation problem has been studied. Haquang and Mook
(1987) reported the non-linear structure vibrations under combined parametric and
external excitations. Thampi and Niedzwecki (1992) examined the response of a
non-linear marine riser to combined excitations by using Markov methods. Patel and
Park (1995) researched dynamic responses of TLP tethers under combined exci-
tations by a semi-analytical method. Ryu and Isaacson (1998) investigated 2-D
dynamic response of slender maritime structure under regular waves and vessel
motions that induces a combined excitation.

This paper presents a 3-D dynamic analysis of a long slender marine structure
under combined heave and surge motions at the top end to clarify in detail the effects
of combined excitations. The analysis is performed in the time domain by using a
finite element method. Some example studies are performed for various cases.
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Fig. 1. Some examples of slender marine structures under dynamic excitations.
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2. Governing equation

The governing equations of lateral motions of a slender marine structure are writ-
ten as (see Fig. 2 for notations);
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where EI is flexural rigidity; A, and A, are outer and inner cross-sectional areas; P,
and P; are outer and inner pressures; ¥, %, and ¥, are respectively specific weights
of the member, outer fluid and inner fluid; f,, and f,. are hydrodynamic forces in x
and y directions; 7(z) is axial force; § is the amplitudes of time-varying axial force;
m 1s mass per unit length of the member; H is a torsional component of an external
moment; @ is an excitation frequency.

Egs. (1) and (2) can be reduced to ordinary non-linear differential equations by
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Fig. 2. Model structure configuration and notation.
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using separation of variables. In the following, some mathematical rearrangements
are made only for Eq. (1) for convenience and a torsional effect is neglected. An
approximate solution to Eq. (1) can be written in the form,

AR . naz
¥@t) = —yosin oty + 2, f()sin = y(@0) 3)

n =1

where L is the model length, f,(r) is an unknown function of time and y, is the
amplitude of a surge motion.

Substituting Eq. (3) to Eq. (1), introducing non-dimensional parameters and using
the Galerkin’s method reduces to the following equation (Patel and Park, 1995).
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where f,, is the amplitude of mth order lateral motions, d,, is the outer diameter and

w,, is the natural frequency of the mth order of the structure. In the derivation above,
I

the use of the orthogonal property, J sin(mmz/L)sin(nnz/L) = 0 for m* # n, 1s made

9]
and T(z) is assumed to be T,

Eq. (4) is the case for a combined excitation. When only forcing excitation is
considered, i.e. when time varying axial force is neglected, Eq. (4) becomes a forced
vibration equation.
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The solution of Eq. (6) can be easily obtained. A similar approach was made by
Kirk et al. (1979).

On the other hand, when only the parametric excitation of heaving effect is con-
sidered, Eq. (4) takes the following form that is one of the Mathieu equations.
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+ (@¢—BcosT)F,, + ¢, f IRIRsinmnZdZ = 0 (7)
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When fluid damping is neglected, the third term in Eq. (7) becomes zero and Egq.
(7) becomes a standard Mathieu equation. According to the values of « and f3, the
solutions of the standard Mathieu equation becomes either stable or unstable (see
Fig. 3). If the non-linear fluid damping term is included and linearized, the tips of
the unstable zones move upward and become narrower than the case of non-damping.
If a quadratic non-linear damping is considered, even the unstable solutions are lim-
ited and the maximum values exist in the middle of each instability regions. The
P/« is referred as the strength of parametric excitation.

In the previous work (Patel and Park, 1995), the response characteristics of forcing,
parametric and combined excitations are semi-analytically obtained (see Fig. 4).

3. Finite element method

An analytical approximate method has some limitations in solving the dynamic
characteristics of real complex slender marine structures under combined excitations.
Thus a numerical method of FEM is employed here to cope with such problems.

A two-noded beam element using linear displacement functions for axial and tor-
sional effects and cubic functions for bending is used. A 3-D continuum mechanics
approach is applied to derive the 12 degrees of freedom (three translations and three
rotations per a node).

Based on Eq. (1) and Eq. (2), the equation of motion of a many degrees of freedom
system can be derived and written in the following matrix form (Craig, 1981):
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Fig. 3. Mathieu stability chart (shaded areas are unstable).
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Fig. 4. Comparison between maximum response curves of combined (- —), forcing (—) and parametric
(..... ) excitations (Patel and Park, 1995).

MD+CD+KD=F (8)

where D is the matrix of a nodal displacement, and M, C and K are the matrices of
structural mass, structural damping and the stiffness respectively. The superscript
dot indicates a derivative with respective time ¢. In the formulation of a beam element
mass matrix, lumped mass or consistent mass approach can be used. Lumped mass
formulation is chosen in this analysis and all rotational degrees of freedom can be
substructured out. The structural damping matrix may be explicitly defined as fol-
lows;

C=aM+ ,S. 9)
For Rayleigh damping, the coefficients in Eq. (9) can be obtained from the follow-

ing equation.
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where &, and &, are respectively damping ratio of first and second natural modes.
A damping ratio of 5% in the first two modes has been chosen in this work.

The total stiffness matrix K for an element is derived as the sum of the standard
elastic stiffness matrix K;; and a geometric stiffness K, that are respectively a func-
tion of deflected element geometry and the axial force on the element. Thus,

K =K, + K. (11)



A finite element method for dynamic analysis of long slender marine structures under combined parametric and forcing excitations

The stiffness matrix K should be redefined as the function of coordinate and time
S0 as to represent structural properties such as time varying tension given in the fol-
lowing;

7‘(olal(z,t) = T(Z)_SCOSCOI (12)

where T,,.(z,f) is the total time-varying axial force, 7(z) is static tension, S is the
amplitudes of time-varying axial force and @ is the angular frequency of the time-
varying axial force (parametric excitation frequency).

In a forcing excitation problem (a forced vibration problem), K is independent of
time and needs to be inverted once only. However, in the case of parametric or
combined excitation problems, K needs to be calculated in every time step and
requires more computation time than forcing excitation problem.

The external force vector F due to a wave force on the element is obtained from
Morison’s equation.

Fuwe = poVU + poV(Cy—1Y(U—D) + BIU-DI(U—D) (13)

where V is the vector of elemental volumes, [ is the matrix of hydrodynamic drag
coefficient, Cy; is added inertia coefficient and U, U are the wave particle velocity
and acceleration in the horizontal direction. The hydrodynamic drag sub-matrix for
a fully submerged element is

[0.25p0CDLedO 0 }

(14)
0 0.25p,CpL.d,,

where Cp, is a drag coefficient and L. is the element length.
Substituting Eq. (13) into Eq. (8), replacing [M + p,(Cy—1)V] by M, and
PoCmV by My, and rearranging gives

M:D + CD + K = MU + BIU-D\(U—-D) (15)

where M- is total structural plus hydrodynamic added mass matrix and M,, is hydro-
dynamic mass matrix.

The basic method of analysis here involves integrating Eq. (15) through discrete
steps in time and accounting the nonlinear drag loading. The Newmark time inte-
gration scheme that is known as unconditionally stable, is adopted here. A Fortran
program is coded in order to calculate Eq. (15). The program algorithm is based on
a riser program (Patel et al., 1984) and expanded from 2-D to 3-D in space.

4. Results and discussion

Some case studies are carried out to analyze the response characteristics of forcing,
parametric and combined excitations by using the program. Input data for case study
are given in Table 1 that is similar to a TLP tether. Seven different model lengths
are chosen but other parameters such as pretension, structure diameter etc. are taken
to be identical to each other for the convenience of comparison. It is tended to
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Table 1
Input data of a tether model for case studies

Young’s modulus (N/m?) 2.1x10"
Drag coefficient, Cy, 0.7
Added mass coefficient, Cy, 1.0
Outer diameter (m) 0.812
Thickness (m) 0.0276
Top tension (N) 13x10°
Material density (kg/m?) 7850
Vessel surge amplitude (m) 30

examine the relative importance of each excitation according to o values, i.e. insta-
bility regions. By using the definitions of & and ®,, in Eq. (5) and Fig. 3, the relation
between model length, instability region number, fundamental period and « value
can be obtained as shown in Table 2. The amplitude of the surge motion, y, is
assumed to be 3.0m. The strength of parametric excitation, 8/« is set to be 1.0.

Although slender marine structures are mostly, in reality, subjected to combined
parametric and forcing excitations, the two excitations have been separately con-
sidered in most research works. Therefore, comparisons between forcing, parametric
and combined excitations are made here to investigate the significance of the com-
bined excitation.

Fig. 5 shows the results of response magnitudes at mid-point of the tether model
for forcing, parametric and combined excitations. The results are obtained for four
different model lengths, that is, different « values or different instability regions.

Fig. 5(a) is the case of 1365.5m tether length with dynamic condition correspond-
ing to the middle of the first instability region of Mathieu instability chart in Fig. 3.
The response amplitudes of the combined excitation are nearly identical to that of
forcing excitation. It can be seen that in this first instability region, there is no reco-
gnizable interaction between forcing and parametric excitation. Meanwhile, the
response periods of the forcing and parametric excitations are respectively identical
and double to the excitation period. This is an expected characteristic of forcing and
parametric excitations.

Table 2
Relations of ¢ value, instability region number, fundamental natural period and model length

Tether length (m) Fundamental natural o Instability region
period (s)

1365.5 30 0.25 Mid first

760.5 15 1.0 Near second

675.0 13.2 1.3 Mid second

525.0 10.0 2.25 Near third

475.0 8.9 2.8 Mid third

400.0 7.5 4.0 Near fourth

360.0 6.7 5.0 Mid fourth
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Fig. 5. Comparison of response displacements between combined, forcing and parametric excitations in

the middle of each instability region. (a) Mid first instability region (0=0.25). (b) Mid second instability
region (o=1.3). (¢) Mid third instability region (0=2.8). (d) Mid fourth instability region (0=5.0).

Fig. 5(b) presents results for the case of 675m model with a dynamic condition
falling in the middle of the second instability region. Fig. 5(b) shows that the relative
response amplitudes of the three excitations in this region are different from those
in the above first instability region. In the second instability region, the response
amplitudes of the combined excitation are much larger than those of the forcing
excitation. This means that the interaction between forcing and parametric excitations
is significant in the second instability region. The response periods of the three exci-
tations are all the same as to the excitation period.

Fig. 5(c) illustrates the result for the case of 475m length of tether model with a
dominant dynamic condition corresponding to the middle of the third instability
region. The response amplitude of the combined excitation is nearly the same as that
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of the forcing excitation. The response period of forcing and combined excitations
are the same as the excitation period, 15s. But the response periods of parametric
excitation is small compared to the excitation period.

Fig. 5(d) shows the result for the case of 360m tether model with dynamic con-
dition corresponding to the middle of the fourth instability region. The pattern of
response amplitude is similar to that of the second instability region in Fig. 5(b),
i.e. the response amplitudes of the combined excitation are much larger than those
of the forcing or parametric excitation.

In addition to the above case studies, the other three cases of 760.5m (a=1.0),
525m (0=2.25) and 400m (0=0) are examined. These dynamic conditions correspond
to those somewhat away from the middle of each instability region. The results are
given in Fig. 6 and show that relative importance of combined excitation to forcing
excitation in such conditions is not large as that in the middle of each instability
regions.

Figs. 5 and 6 give similar results to the semi-analytical result in Fig. 4. In the
above numerical calculations given in Figs. 5 and 6, it is assumed that excitations
come from only surge and heave motions of a surface platform and excitation periods
are set to be the first natural period of each tether model in order to compare with
semi-analytical results (Patel and Park, 1995). In such a case, the maximum response
amplitude occurs at the mid-point of the tether model.

In addition to that, another case study is carried out by considering wave and
current effects and using slightly different input data. The input data for the numerical
calculations is given in Table 3. The current and wave wards are set to be the negative
y-axis and the pretension is greatly reduced that is similar to a riser tension case.
The response configurations of the example structure are obtained at the maximum
and minimum surge position from z-axis. The results are shown in Fig. 7 and com-
pared between the combined excitation and the forcing excitation. The lateral dis-
placement of the combined excitation is slightly larger than that of the forcing exci-
tation and the difference between two excitations is larger in the mid upper part of
the model than the lower part.

These results represent that the response magnitude of the combined excitation is
different from that of forcing excitation and thus the combined excitation that is
more realistic than forcing excitation needs to be considered for the accurate dynamic
analysis of slender marine structures subjected to a surface vessel motion.

5. Conclusions

In this paper, a 3-D numerical analysis using FEM is carried out for the dynamic
response of a long slender marine structure under combined forcing and parametric
excitations. The relative response amplitudes of combined excitation to conventional
forcing excitation were examined by carrying out some case studies for TLP tether
and riser type structures with both ends being simply supported. The response pattern
of combined excitations is quite different from that of a forcing excitation (a forced
vibration problem). The response amplitudes of combined excitation are much greater
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Fig. 6. Comparison of response displacements for different excitations in the near of each instability
region. (a) Near second instability region (a=1.0). (b) Near third instability region (a=2.25). (¢) Near
fourth instability region (0=4.0).

than those of forcing excitation in even numbers of the instability regions of the
Mathieu stability chart and are nearly same in other instability regions. The results
of this study demonstrate that combined excitation needs to be considered for the
exact analysis of long slender marine structures subjected to surface platform
motions.
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Table 3
Input data for a case study with current and wave effects

Young’s modulus (N/m?) 2.1x10!"
Drag coefficient, Cp, 0.7
Added mass coefficient, Cy, 1.0
Outer diameter (m) 0.812
Thickness (m) 0.0276
Model length (m) 900
Top tension (N) 5.5x10°
Material density (kg/m?) 7850
Vessel surge amplitude (m) 3.0
Vessel surge phase angle (°) 15
Wave period (s) 10
Wave height (m) 20
Current velocity (m/s) Surface: 1.0
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1000 —
DISMIN DISMAX
- "/‘ /'
800 — o
o’f- ‘
E - o
g 600 — //,,{”/f- /
o7} ;F
& 400 “
8 <
g v
200 — /”/ < [ - -&»--- Combined ]
PR —@—  Forcing
P
0 45— l ‘ T T I ' |
o 10 20 30 40

Displacement (m)

Fig. 7. Comparison of lateral displacements between combined and forcing excitations with wave and
current effects.
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