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Abstract
The cyclotron resonance lineshape function in the electron-phonon systems is obtained by using the
operator-algebra method. By keeping the higher order terms of the interaction in the energy denominators,
the result could be applied to strong scattering case. We also could avoid the divergent terms in the

perturbative expansions by utilizing different approach with some other authors

1. Introduction

Semiconductors in a high magnetic field display many interesting and complex spectral patterns like the
zeeman spectra of large atoms or molecules. The belt of energies which form the conduction band of a
semiconductor split into a large number of thin strips(Landau subbands)under magnetictic fields. The
interpretation of the measured magneto—transport spetra rests on the microscopic calculations of the centroid
and the width of these split bands. In the present article we consider the usual model of a semniconductor
described by parabolic energy bands in which a system of electrons all possessing the same spherical effective

mass m are moving. The material under consideration is in a constant high magnetic field, denoted by B,
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applied in the z-direction of the cartesian coordinate system.

The resonant response of the electrons with a laser field of frequency ®, called the cyclotron resonance,
enables us to meaure directly the effective masses of electrons and holes. Before long, however, people got
interested also in cyclotron resonance line~width. The cyclotron resonance lineshape shoud be infinitely sharp
in the absence of interactions and the linebroadening, therefore, is generated by the scattering processes. The
linewidth stands for the inverse of the carrier transport relaxation time and, roughly speaking, indicates the
total sum of probabilities of various scatterings. This means that study of cyclotron resonance is quite useful
not only for studying electronic structures in solids(1,2), but also for studying carrier scattering mechanisms
(3-14).

A number of experimental studies of cyclotron resonance lineshape function (CRLSF) have been done on
various semiconductors, and the experimental results have been analized utilizing Green’s function methods
(15-17), diagram methods(18-22), or projection operator methods(23-28). Among these theories, Kubo
formalism(29) combined with the projection operator method of Kawabata(23)., Choi et al(26,28) and
Argyres et al(24,25) appear to be comparatively rigorous and formal.

Kawabata adopted Mori’s projection operator method(30-34) to evaluate the current-current correlation
function and derived the formula for the cyclotron resonance absorption lineshape on the basis of the
generalized Langevin equation of Brownian motion, starting from the Kubo formula for electrical
conductivity. His theory, however, is limited to the incoherent elastic scatterings and therefore is not

applicable for the strong interaction case.

Fujita and Lodder(18,19) studied CRLSF by applying the proper connected diagram enpansion method to
the Kubo formula. Latter, Prasad(35) extend the formula to the screened coulomb potential scattering, using

the same method.

Argyres and Sigel(25) developed a theory With the use of a projection operator technique and they claimed
that the pertubative expansions used in sometheories(18,19,23) are not valid at the peaks of the absorption
lines. (This shall be discussed more later).

In 1986, Suzuki(22) obtained the formulas of cyclotron resonance power absorption spectral lines for an
electron-phonon system in the case of weak incoherent and strong coherent scattering limits by using the

resolvent superoperator method.

In 1990, Choi et al(28) developed a theory of CRLSF for an elecfron-phonon system with the help of the

projection operator method and applied it to obtaining the cyclotron resonance linewidth for the piezoelectric
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polaron system in the case of adiabatic and non adiabatic scattering processes. Their results agree well with

the experimental results.

Recently, Kobori et al(13) has studied CRLSF in the quantum limit for impurity and carrier—~carrier
scatterings in Ge, InSb and GaAs and for phonon scatterings in Ge,Si, CdS and InSb. They obtained cyclotron

resonance linewidth in the quantum limit as a function of temperature and magnetic field.

It is to be noted, however, that all these theoretical investigations have produced a bewildering variety of

results. So the situation in quantum limit condition still remains unclear. The origin of discrepancy among
these theories may be traced back to the ways the perturbative expansion is performed. As mentioned earlier
in this section in connection with these perturbative expansion, Argyres and Sigel claimed that the correct
CRLSF expression can not be expanded in powers of 4, because some terms of order A" with n>3
diverge for frequences near the cyclotron frequency i.e., the expansion of CRLSF breaks down for w= w_,

Argyres and sigel introduced an operator 4 to isolate the divergent terms.

Thus we think the proper way of looking for the explicit formula for the CRLSF rests in the calculation of
the resolvent operator ( w—L)™ , L being the Liouville operator for the system. Here we solve the resolvent
operator in a continued fraction form using projection operator to obtain the CRLSF for the phonon scattering

case and discuss the removal of the divergence.

2. Conductivity

We present in this section an expression for the conductivity tensor of dynamically independent electrons in
a uniform magnetic field. We assume that the applied microwave of amplitude E and frequency ® is
circularly polarized in the x-y plane such that
E, (t) =Ecos®t,E, (t) =Esinot E, = 0. 2.1

Then the average power absorbed by the system is given by(18)
P( w)=% E? Re o, _( w) 2.2)

where Re @._(®) is the real part of the complex conductivity tensor expressed in kubo’s current correlation

integral formula as(18)

- 8
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0 0

JE =J, +il, (2.4

Here @ is the volume of the system, B=(Kz T)', J, and J,, respectively, are the x and y components
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of the total current operator in the many body formalism, J(¢) is the time dependent total current operator in
the Heisenberg picture, @ is the grand canonical density operator normalized to unity, the symbol Tr means
the grand ensemble many body trace, and we use units in which f=1

We consider an electron-phonon system in the presence of a constant magnetic field B applied along the
z-axis which is perpendicular to E(t) and characterized by the vector potential & such that B=Vx 2. It is

convenient to use the Landau gauge for the vetor potential 2=(0,Bx,0), the Hamiltonian H of a system of

non-interacting electrons in a phonon field is given by

H=YhO+H, (2.5)
h=Ho+V (2.6)
— Bte AY
Hy="- 2.7
V=3(rpbp+ v3b}) 2.8)
q
¥y =Coexp(ig - 7) (2.9)
H,=% @ b3by (2.10)
q9

Where b} and by, respectively, are the creation and annihilation operators of a phonon with momentum g

and energy @, C; is the interaction operator and 7 is the momentum of a conduction electron with

effective mass m. Then the unperturbed electron Hamiltonian H, takes the form

H0=[P,2+(Py+mwcx)2+PzzJ/2m 2.11)

Where @, =eB/n is the cyclotron frequency. The energy eigenvalues £, and eigenfunctions of H,
are specified by the oscillator quantum numbers N(¥=0,1,2,..) and the wave vectors & =(k, .k, ) and,
respectively, given by

E.=Eyi,= N+3) «H% | (2.12)

la>=Ty ., @ (2.13)
Ty, ., @=L, L, Y explivk, +izk, )@y (x-X) (2.14)
Oy ()=(" N'roV @ Y2 Hy (ehrodexp {—x?A2r3) } (2.15)

where ro= (m w, y'V2X = -k, /mw, Hy is the N-th Hermite polynomial, and L, and L,, respectively,
are y and z directional normalization lengths. In the following we shall adopt the notation | a+1> to
denote the state | N, +1,%,>if | a>=|N,®,>. We ignore the spin of the electrons. We see from

Eq.(2.12) that the motion of the electron is quantized in the x-y plane and quasicontinuous in the z-
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direction. We, then, can rewrite o, _( @) in the single electron expression :
-Bew
c.( w)=‘—"?i%—‘2ﬂ,f(£., ) 11-f(Ea+ @) j<a|j | atl><Fo(@)>p 2.16)
Here f(E) stands for the Fermi distribution function and F« ( @) is the Pourier-Laplace transform(FLT) of

< a+l | j*@)| a> defined by

i.‘,(w)zjdt extiv<a+l | jr@)| a> ' .17
4]

which yields the lineshape function, as will be clarified later. The time dependent single electron current

operator is defined by

Jre=e | (2.18)
L=L0+L1+Lp (2.19)

where Lo L, and L, being the Liouville opérators corresbonding to the unperturbed single electron
Hamiltonian H,, the scattering potential V and the phonon hamiltonian H,. The angular bracket < >,
denotes the average over the phonon background, but hereafter we omit this average notation for
convenience. It should be noted that < @ | j* | B>=(< B|j | @>) " =j% 8. pa holds for arbitrary

states.

3. Calculation of time correlation function

The time evolution of a dynamical variable j* in the Heisenberg picture is formally given by Eq.(2.18)
For our purpose we construct a biorthogonal set of vectors and the corresponding projection operators which
differs from Mori’s operator but the theories are self consistent(31). The quantity j*, which generates the
successive basis set, forms a Hilbert space. The projection of a current operator j*(t) onto the j* axis is

given by

A.Jj @ .,

Pyjt@@)= 3.1
oSO="G
Where the inner product of two variables in the fixed electron state is defined as {23,35)
A, jtan=1tr A0 |
=2<ﬁ|a’zaa+lj+(t)| B>=<a+l | j*@)| a> 3.2)
]

Where A , =a* @ .., a% (@ . ) being the creation(annihilation) operator for the electron state | a>.
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We also define the normalized time correlation function as

E)= A5 0N/ AL ) » (3.3
By taking FLT of the above equation, we have

ol ~)=FLT[(A TN/ A, )]

=@

eyl A i) | (3.4)

which can be rewritten into the following form :

o i . .
50( “)’(Aa N—LPD"’LQOJ )/(Aarl )
a4, —2 4 1 iY@ ) 3.5)

v_1g, * o0, et
where Qy=1-P, ®@-L= @—LP1Q,and the operator identity(36,37)

=B __ (3.6)

l +y = 1 1 3o +
A. o0, ’ )=Aa ~ ot L0y — + 1)
=—i(A, j*)/ @ (3.7

Since (A o, LQo j*)=0. The second part of Eq. (3.5) can be calculated by using

. A, ——
=i N o ow=L
=R 7w

J*= 8o w)j* (3.8)

Inserting Egs. (3.7) and(3.8) into Eq. (3.5). we obtain

-1
Ao ilj*) (A, ilQo(w-L0o)'Lj*)
(Aa,j+) ’ (Aa 1j+)

Eo(w)=|iw-

(3.9

In order to simplify the problem we assume that L is Hermitian. We also consider the relations
O ¥—L0o)' =Y QoL - ¥ Qo=(#-Qo L)' Oy and (PoLA., (8-QL)' QyLj*)=0. We then
n=0

obtain
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-1

. 1 . .y
s | Ay M TG,y
Eo(®)=|iw- - + -
A. i) A ")
=[i w—i wy+ &, (®)4, T C(3.10)
where
iwg= (A, iLj*)/(A. j*) (3.11)
B (o)=(f, ———2.)/ (1, 81) (3.12)
i(w-L,)

fi=il,A, (3.13)
&= 'il J* ' (3.14)
L= QoL (3.15)
4,=(, 81)/ A, J*) (3.16)

E,(w) is similar to &,(®) in form and thus the demominator (o-L,¥' in Eq.(3.12) can be

calculated further with the same procedure as Egs. (3.4)~(3.10). The result is

Ei(w=[iviw Ei(0a,] (3.17)
where
i = (fy,il18:)/ (1, 81)
Bi(w)= (fo—1—82) /(2 82) (3.19)
i(w-L,)
f2Eii2f, (3.20)
82 = il:zgl 3.21)
iz = Qll:l 3.22)
0, = (1-P,) (3.23)
P Y=({Y)- rLa)?! - & 3.24)
4,= (fi.82) (/1.8 )__l (3.25)
Y being an arbitrary operator. Thus generally we can rewrite as g o( ®) as follows :
1
Eo(o)=" 4, (3.26)
PO e T e s 4,

io—iwm, 4

>~
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Now Eqg.(2.17) can be rewritten, by using Eqgs. (3.2), (3. 3)and (3.26), as

Fo( w)=jdtexp"'" <a+l | j*@)| e>
°

— Ju
o wy+ [, (W) (3.27)
where
jh=<atl | jH | a> (3.28)
~ _ 4,
[(®)= Tosiwe, (3.29)

The iteration could by continued further in Eq.(3.29), but we stop here in approximation. From Egs. (2.
16) and (3.27) we have

~B e e | 2
e NeE,y (1-fE | j%
o (@)= E G E ) NI E o) | T (3.30)
where the @, in the | @) representation in Eg. (3.11) is given by
iw():i wc+vn+l,a+l_va,a (331)

which yields wo= o, if we assume <V..>»=0. In the above equation we used the notation

Xap =<al|X| B>.

4. Lineshape Function

Let us consider the collision term ¥ o ( @), called CRLSF, which essentially determines the resonance
lineshape. In order to calculate the CRLSF, we should start with the calculation of the factor (f,, &) which

appears in the numerator of 4 ; and the denominator of w, Here we will make use of the following

relations :
QoLoj* =0 4.1
LoA o QoYi*)=0 4.2)
Lyj*= @ j* 4.3)

Then from Egs. (3. 13) and (3. 14) we immediately have

(fi- 81)=(VA . ,Vj* VA . ,PoVj* (VA o , j* VIHVA . , Py J* V)
A V. it ALV, PoViTHA L V,j* VALV, Po j* V) (4.4)
By taking into account Egs. (3.1) and (3.2) we have
4,=(f1,81)/Aa.J")
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=Gy ) [ Y Ve eVanpn— 3 isVoeVas
Bx a Bx a
- Z j:va+l,ﬁvﬁ,a+l+ Z j*ﬁ—] Va+l,ﬁvﬂ—-l,n] (45)
B a+l B a+l
Averaging over the phonon distribution can be carried out by considering <b} b2 >,, =n2 5;;) , and
<bp b} >p =(14m) b‘;q—) » n> being the plank distribution function. As a result we have

A|=U:)_][Zf’1+ Z Vot 2(‘/3*‘. ZV{;A] ’ (4.6)

Bx a B a4l fx a B a+l

where

D1= 3 0m) [ C82) pea (1) g =I5 (1) .o (73) s ] 4.7)
:

Gz=§<1+n;)[j7.ﬁ, 72 aurp (1) a0 =75 72D et 6 (72D o] 4.8)

V=T (1508 0.0 (1) an pn 4 (78D .0 (1) 4] 4.9)
:

D=3 [m 73 an 8 C72) gty =% (7D e € r;)ﬁ,u.] (4.10)
:

On the other hand, the numerator of i @, (Eg.(3.18)) can be expanded by taking into account Qy @o=0,
and Egs. (4.1) and (4.3). and considering only the second order in V.

the numerator of i @, =(f,.iQ,Lg,)
=i[(VA a Hy Vit y»2(VA ,,Hy j*V)-2AV , ,Vj*Hy Y (VA . , j* VH,)

AL VH Vj* H2AA, V’H‘? J'VH2A . V.Vj*Ho)HA . V,j* VHy)

~(VA ., ,PoHy Vj* }2(VA o ,PoH j* VIH2(VA o P Vj* Ho (VA o , Py j* VH,)
HA L V.PoHVj* Y24, V.PoHy j*VY-2A . V,PoVj*Ho JHA o V.Py j* VH,)
HVA ., H, VI*)AVA , H, j*V)AVA . Vj*H, (VA . , j* VH, )

~A,V.H, VI*YA, VH, j*VY{A, V.Vj*H, A . V,j*VH,)

~(VA . PoH, Vj*Y{VA o ,PoH, j*VYHVA . Py Vj* H, (VA o ,Po j* VH, )

HA , V.PoH, Vi*)A , V.PoH, j* VIHA , VP Vi* H, YA , V.Py j* VH, )
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HVA . VHy j*YHVA o, j*HoV)HA o V.VHo j* YA . V.j* Ho V)

~(VA , ,PyVHo j*}{VA o , Py j*Ho VIHA o V.Py VHo j* YA o V.Po j* Hy V)]
+Ho», [(VA « VitHVA . j*VIHA L VVi* A, V,j* V)

~(VA o ,PoVi*YH VA . Poj* VIHA , V.PoVi*HA . V,Py j* V)] 4.11)
For the sake of algebraic convenience, we divide these terms into four parts in the following way :

Part(I=(1st+9th }(3rd +11th {(17th +25th }+(19th+27th }+(33rd +37th }1(41st+45th)

=i Z J*ﬂ[(2 w+E -Eﬂ )14 B, e V-+l. B+ +V 8, e Hp V¢+l, B+l "Vﬁ, - V¢+l, B+l Hp ] - (4.12)

Bx e

Part(1 Y=<(2nd +10th }+(4th +12nd }+(18th +26th }+(20th +28th }+(34th +38th }+(42nd +46th )

== Y i@ Eg W Ve s Vo By Ve g~V Ve H, | (4.13)
Bx a
Part (H Y=(5th+13rd Y (Tth+15th}+(23rd +3 15t }H(29th +2 151 }H(35th +39th }{(43rd +47th )

=—i 2 J:[(2 o+E B ~-E . )V «tl, B Vﬁ. «+1 +V a+l, B Hp Vﬁ, a4l -v atl, B VF, «+l Hp ] (4 14)
By a4l ’

Part (N Y=(6th+14th }4+(181h +16th }(22nd +30th }+(24th +32rd }+(36th +40th }+{(44th +48th )

=i ¥ (@ OEyE W e Vo e Wan s By VoraVensVor B, | @419
B3 a+l

Since the denominator of i @, ,(f,.g,) is identical with the numerator of 4, we can adjust the terms of

o, as follows :

”F(Z WE Y V,E+Y %E+ 3 %LJ/;’:A, 4.16)
Bx a Bx a4l

B> a B e+l

where
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E\=2 @+E ,, ~E + @2 4.17)
E;=2 9+Eg-E, + @ ‘ | (4.18)
E;=2 @4E ., —~Ep - o> 4.19)
E,=2 @iEj~E, - @ ' (4.20)

Therefore, by substituting 4, and i ®, in Egs.(4.6) and (4.16) into Eq.(3.29)(CRLSF, I . (®)we

obtain

(20 100 s =228 wnn )

iF o (0)=Y ) Y, L
q

Bx a .+Ea+|"Ep+~;+§2

(%) aut, 8 f(r,—,*)p,.ﬂ——’—].’;;‘(r:)p-._. |
+ a

pen wiEp—E .+ 92+8,
it
(ﬂ)ﬁ,c {( ﬁ)a,ﬂ_j+(7;)l+l,ﬁ+l l
+¥ > 2
2,,;" Z’. WtE o —E g — w2+ &,

(¥ an s l(r;)p,m—iji;‘(r;)p-.,. |

+ — 4.21)
pz‘h, o+E 5 —-E , —- ~;+E4
where
§1=|:( Z V,E,- z f’z El)"( ﬁsEa-zf’s El)
Bx a+l B a4l BAx a Ax a AN e Bx a

+[ V,E- Y V, E.]-Bl}/j*.dl (4.22)
Bx a+l Bx a4l Bx a
Ezz[( Y V,E-Y ¥, Y E2)+[; V,E,- Y ¥, ;E,)

Bx a4l B> a+) Bx a+l * a B> a % @

+( Y V,Eq- Y v, 2E2)~82]/j*;4, 4.23)

B> a4l Bx a+l Bx a

&,= vVE,-S VvV, SE V,E,— v, Y E
(B g5 R e 25 25
+(,2 WE- Y V, ZEg)—OE,:I/j*.A, (4.2
e a+l

B a4l Bx a
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§4=[(2 WE-F VT E)+( Y HE-3 %, Y E)
Bx a Bx a B a+l Bx a+l B a+l Bx a+l

+[2 V;Es—=Y V, Y E )64]/1'24, (4.25)

Ax a Ax a B3 a+l

and-
81= Z (1+n;’)(7;’)up
q A% a(ax p, % v)
{Jt( 7;*)/11-1. v+l _J;( ﬁ)pu} ’ (2 0+E¢+| _Eﬂ+ w;) (426)
=Z (l+”;) ( 7?)/44-1, v
q B> a+)i( a# #, B v)

{jt—l ( ﬂ)u-l,p—j‘;( ﬁ)v,pﬂ} - 2 w+Eﬁ_Ec + w;) (4.27)

03=Z S on(r).,

Bx e( ax p, fx v)

{j‘:( 7;);”1, v+l—j71( 7;’);:::} - Q@2 N+E¢+1—Eﬂ" (0‘7) (428)

=Z ";(7;*)/“1.1! :
q

B a1 ass u B vy

{j:—l ( n’)u—l,ﬂ _J';a( 7;)14,;1“} -2 U+Eﬁ_Ea - G);) (429)

The ( B v, ax p) in the summation means that the terms N,K.)=@,F,) and/or

N pFg)=(©N,%,) should be excluded. Equation(4.21) is similar to the result of suzuki(22) in the sense
that the higher order effects of the interactions are included in the energy denominators. But we can avoid
the postulation of the nature done by suzuki in the expansion of the collision termlsee Eq.(3.12) of (Ref.
22)). This kind of appropriate approximation was also used in Fujita-Lodder’s (18.19) paper obtained by the
diagram approach (Eq. (5.16)in (Ref.18)).

5. Discussion and conclusion
Until now we have obtained the correlation function in the form of continued fraction, straight forwardly

by expanding the resolvent operator ( @-L)™  algebraically using the projection operator. And we applied

this method in deriving the CRLSF for the electron—phonon systems.
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Followings are the comparison with other theories. Kawabata calculated the integral equation of current-
current correlation function with tracing the method of looking for Generalized Langevin equation of Mori. In

the evaluation of the memory function, he replaced the Liouville operator L by L, [Egs.(A.23) and (A.39)
in (Ref.23)]} and this led to the dynamics in the Born approximation which washed out the coherent scattering

effects. This may not be correct in strongly correlated systems such as liquids, where a more accurate

expansion of the collision operator is required.

Argyres and sigel(25) expanded the CRLSF I' o (@) as follows (Eq.(2.31) in (Ref.25)) :

i
+
a

o)== - ([L1+L,GOP’L,+L,GOP'L,G0P’L,+...] j+J 5.1

where Gy=( w=Ly)" and P’=1-P. They obtained the CRLSF by approximation of cut off up to the
second order term in Eg.(5.1). We see that this corresponds directly to Kawabata’s approximation of
eilP’, L

i, . . .
=e in memory function calculation. -

If we do expand the term ( @—Qy L) in Eq.(3.10) as series type, the result will be reduced to Argyres
and Sigel’s expression. Further, they claimed that in the expansion of F . () in powers of A, there are

terms of order A" with n=>3 which break down for frequencies near the resonant cyclotron frequency

(w=w, ) i.e., higher order terms always involve Gy( w)j*=j*/ 0 @,( § w= w— w_) Thus they isolated

the divergent terms r « (@) in by introducing operator 4. Fujita and Lodder(18) also discussed this
collision process by using the diagram method. They eliminated the divergence near @=« in the connected
diagram expansion by introducing the collision factor g, responsible for the line broadening. In other words,
they restricted themselves only to the proper connected diagram expansion{Egs. (3.14) and (3.17) in (Ref.
18)3.

In the present work we could avoid the resonance divergent terms including ( @-Ly )" in the purturbative
expansion, which can be observed with a close look at the structure of Eq.(3.26). This was performed by
representing iteratively the resolvent operator ( @—L)"' in the continued fraction form applying the
projection operators P, and Qo on the Liouville operator L instead of separating Ly and L, as shown
in Eq.(3.5). That is, in accordance with how the exponential terms of the memory function are expanded in
series or continued fraction type, the divergence terms Go( @)j*=j*/ d w above the third order term
appear or disappear.

On the other hand, Eq.(4.21) can be compared with the result of suzuki(22). If we consider the

exclusions factor in Y, and @ =1, our result reduces to Suzuki’s (Eq. (4.8) in (Ref.22)].
7

In this paper, we obtained the CRLSF for electron—phonon systems with a more precise calculation, which
is applicable to the strong scattering case and could avoid the divergent terms without introducing the operator

4 or selecting only the proper connected diagram in perturbative expansions. By utilizing quite different
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approach we could improve the calculation of the collision terms, which was done in most of paper (Eq.(3.

12) in (Ref.22)) (Egs.(5.11) and (5.12) in (Ref.18)].
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