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ABSTRACT

The tethers of tension leg platforms have conventionally been designed to have
sufficiently high pre-tension so as not to go slack in extreme conditions of low
tide levels and high waves. The high tether pre-tension necessary for this is
found to be a significant restriction to the payload increase over conventional
design that is needed for an operational platform. This paper reports on the
first stage of an investigation into the dynamics of tethers with reduced pre-
tension to facilitate payload increase over conventional design ofa TLP.

When tether pre-tension is reduced, the wave-induced time-varying axial
force becomes important in its dynamics. This time-varying axial force causes
the tether to undergo parametric oscillations described by the Mathieu
equation. Fortunately, in the case of a tether. even if it is in an unstable
condition, the quadratic fluid damping force limits the amplitude of the
lateral motion. However, the limited amplitudes vary according to the
combination of the Mathieu parameters. Therefore. it is necessary to obtain
the Mathieu stability chart up to the large parameters which can arise for
tethers at low tension.

The governing partial differential equation is derived for lateral motion of a
tether and reduced to the nonlinear Mathieu equation. The Mathieu stability
chart is obtained over a wide range of parameters. In addition. the steady-state
solutions of oscillation in the first instability region are obtained analytically.
In order 10 obtain the solutions in higher-order instability regions. a
numerical method is employed. The results show that even if tether is in a
slack condition, the displacement amplitude of parametric oscillation is not
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large for some dimensions. Therefore, it is possible to reduce the high pre-
tension of tethers in terms at least of excitation of parametric tether
oscillations.

Key words: TLP tether, low tension, time-varying axial force, parametric
oscillations, Mathieu stability chart, peturbation technique, numerical
method. ‘

INTRODUCTION

As the shortage of oil and gas resources in shallow water becomes
apparent, exploration and production of hydrocarbons is moving into
deeper waters. The tension leg platform (TLP) is one of the most
promising solutions for oil and gas production in deeper waters. The
most significant design feature of a TLP is its tethers which are vertically
connected to the sea bed and kept in high pre-tension by excess
buoyancy in the platform. The design criterion for the pre-tension is
based on the requirement that the tethers must not go slack in a hundred
year extreme sea state coupled with low tide levels and high platform
payload.

The principle of using pre-tension in vertical tethers provides a
substantial advantage to a TLP in imparting a direct station-keeping
property as well as very high natural periods in surge, sway and yaw and
very low natural periods in heave, roll and pitch - both are designed to be
well away from the normal periods of wave action. However, the
consequent design penalty of high pre-tension is also a significant
restriction to the payload increase over conventional design of a TLP.
Therefore, the possibility of increasing payload over conventional design
needs to be investigated further by examining the feasibility of reducing
pre-tension in both existing and forthcoming TLP designs.

The pre-tension requirement of a TLP can be explored from two view-
points. The first is re-consideration of environmental design consider-
ations, which are believed to be currently too conservative.' For example,
in the case of the Hutton TLP, the design environmental loads are
assessed when all the extreme conditions of wind, current and tides occur
simultaneously, which clearly has an extremely low probability of
occurrence in reality. In addition, for extreme water level, the lowest
design water level is taken as lower than LAT (the lowest astronomical
tide). Therefore, a more. complete probablistic approach to estimating
loads due to combinations of environmental conditions is necessary for
the payload increase over conventional design of TLPs. Such probability
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considerations for TLPs must, of course, take account of the relatively
greater importance of absolute sea levels for TLPs in comparison to
other platforms.

The second line of enquiry needs to investigate the feasibility of
adopting low tension tethers which would involve the tethers being
adequately tensioned in normal sea states but going close to negative
tension for short durations in a hundred year extreme sea state. This
paper addresses this latter point and reports the first stage of an investi-
gation into the dynamics of tethers with reduced pre-tension.

Some recent research work on TLP tethers is described below as back-
ground to the work presented in this paper. Harding and Banon?
performed a reliability analysis to determine the adequacy of TLP tether
maximum and minimum tension design criteria. Their results showed
that the tether failure probability due to maximum tension (tension
above yield) is much greater than that due to minimum tension (tension
loss) when wave impact loads are included. This result suggests the
possibility of tether tension reductions.

Brekke and Gardner® analysed the tether bending stress, platform

motion and tether re-tensioning by a numerical simulation when tethers
experience brief tension loss. They concluded that a brief period of tether
tenston loss does not lead to excess platform motion.
When a high pre-tension is reduced. the time-varying axial force acting
on the tether becomes more important. Consideration of this force
makes the governing equations of the tether itself and the surface
platform become Mathieu type equations which describe parametric
oscillations. In this first stage of work on low tether tensions. only the
enhanced potential of a Mathieu stability of a tether is investigated.

Notable work has been carried out on the analysis of parametric oscill-
ations of a long cylinder in water. Hsu* investigated the response of a
parametrically excited hanging string in fluid. Stickland and Mason®
analysed the importance of parametric oscillations on a TLP tether. This
research showed that the hydrodynamic damping force plays an
important role in limiting the response amplitudes of parametric oscill-
ations. However, all of this work was confined to small magnitudes of the
Mathieu equation parameters. In this case of TLPs, typical numerical
values for such platforms lead to parameter values that are large and,
therefore, it is necessary to investigate the Mathieu equation over a large
parameter range.

In this paper the governing partial differential equation of tether
lateral motion is reduced to the nonlinear Mathieu equation by applying
Galerkin’s method and the method of separation of variables. The
Mathieu chart for large value parameters is obtained followed by the
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steady-state solution of a parametric oscillation in the first instability
region using a perturbation method. Due to the large magnitude of para-
meters, a fourth-order Runge-Kutta method is employed to obtain the
phase plane and time history of tether motions.

GOVERNING EQUATION OF TETHER LATERAL MOTION

The tether of a TLP is considered as a straight, simply supported column
of uniform cross section as shown in Fig. 1. The tether is subjected to a
time varying axial force exerted by the platform with wave and current
forces on the tether neglected. Using simple beam theory and neglecting
axial inertia, the governing equation of lateral motion can be written as:
a?y+EI§-;—-‘--’—{(P S cos o) }+BI I (1)
where M is the sum of physical and added masses per unit length of the
tether, EI is the tether flexural rigidity, P is axial tension, S is the imposed
axial force amplitude, w is the wave frequency and B, is the quadratic
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Fig. 1. (a) Tether model configuration; (b) element notation.
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fluid damping coefficient. Here the wave-induced axial force, S cos wt, is
assumed to be sinusoidal. The assumption is based on the fact that even
if ocean waves are irregular, the time-varying axial forces become more
regular (that is a more narrow banded spectrum) due to the transfer
function from wave action to tether forces. In addition, the possibility of
slackening of low tension tethers is rather greater in large long period
waves which tend to be more narrow banded in spectral content.

Taking the fundamental mode (the largest amplitude mode of the
model) only and using the method of separation of variables, the
solution of eqn (1) can be written in the form:

Y1) = f)sin T )

where L is the total length of the tether. The analysis for high modes also
needs to be carried out since these are active in the coupling between
platform and tether dynamics. However, these high modes have notbeen
considered here for brevity.

To find the unknown deflection f(¢), the Galerkin variational method
is used. Substituting eqn (2) into eqn (1), multiplying it by sin (mx/L) and
integrating with respect tox between 0 and L, gives the following equation:

&f _ (EIn* _ Pn* _ Sm 8B, 44/ _
ar (ML“+ML2 ML’C"S“”> St sodlalar = )

using the following integrals

L X L X 4L
277 - 32 = —
fo sin 7 dx 3 fo sin T dx I

From eqn (3), it can be seen that if tether length is long, the bending
stiffness force is very small compared to pre-tension and can be
neglected. However, for slightly loaded and/or short structures, the
bending stiffness force plays an important role in parametric oscillations.

It is convenient to introduce a dimensionless time variable, t, such
that:

& w? &
g~ T @

Substituting eqn (4) into eqn (3) gives the final equation:

2t = wt, then

d2
d—rfz+(5—2qcos2r)f+clg—{lg—{= 0 5)
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where:

5= Q@ __ 2@ _ 8B, @=1/E
*? 9 Pw? 3InM Lv M

and @ is the frequency of the first mode of free vibration of a loaded
tether. Equation (5) is the nonlinear Mathieu equation which describes a
parametrically excited system. The Mathieu equation has some particular
characteristics - its solution becomes stable or unstable aécording to the
combination of the parameter of § and g. However, if a nonlinear
damping term is included as in eqn (5), even the unstable solutions
become limited in amplitude. If the nonlinear damping term is
linearised, the stability areas of the Mathieu chart increase but unstable
areas remain. This leads to the two results becoming quite different from
each other and therefore linearisation cannot be carried out in the
parametric oscillation case. So far previous research into the Mathieu
equation has been carried out for small magnitudes of § and ¢. However,
in the case of the tethers of TLPs or rigid risers, numerical values of § and
g can be very large up to 300 for § and 150 for ¢ in metric units. It is
therefore necessary to obtain the Mathieu stability chart for these large
parameters.

MATHIEU STABILITY CHART FOR WIDE
‘~ RANGE OF PARAMETERS

A canonical form of the Mathieu equations takes its form by excluding
the nonlinear damping term of eqn (5), i.e.

2
:11—15 + (6 — 2gcos 2t)f = 0 6)
A particular characteristic of the Mathieu equation is that it contains a
periodically varying coefficient as a special case of the Hill equation.
This means that the solutions of the Mathieu equation can be stable or
unstable according to the combination of § and g. Thus the approach to
the Mathieu equation is to obtain a general solution like other
differential equations and a stability chart which shows whether the
system is in a stable or unstable condition. In this analysis, the stability
chart is obtained with the nonlinear damping term excluded.

For small magnitude parameters, a stability chart already exists as
reported by Ince® and Goldstein’. Based on Goldstein’s approach, the
stability chart up to large parameters is obtained as follows.
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It is known that when & of eqn (6) belongs to a certain countable set of
characteristic values, eqn (6) is satisfied by one of the following periodic
solutions:

f= Z A,, cos 2nt (Even solution of period )

n=0

f= Z A, +1c0s(2n + 1)t (Even solution of period 2r)
n=0

f= Z B,, ., sin(2n + 1)t (Odd solution of period )

n=10

f= Z B,, +2sin (2n + 2)r  (Odd solution of period 27r)  (7)

n=0

If the above series are substituted in turn into eqn (6) and the coefficients
of cos (2nt), cos (2n + 1)r,sin (2n + 1)t and sin (2n + 2)7 are equated to
zero forn =0, 1, 2. ..., recurrence relations are obtained. With some
manipulation, these recurrence relations can be expressed into infinite
and terminated continued fractions. In order for the recurrence relations
to be consistent, two continued fractions must be equal. By using a trial
and error method, and inter- and extrapolation methods, satisfiable
values can be obtained for given » and g values.

Following the above procedure, a computer program was developed to
obtain tabulated values of § and ¢ for n = 1,2,.... In this paper, the
values of § and ¢ are calculated up to 280 and 140, respectively. The
computing time to calculate these large values of 6 and g takes less than 1
min on a Digital Equipment Corporation Micro VAX-II computer. The
tabulated values are plotted in Fig. 2 which is called the Mathieu stability
chart or the Ince-Strutt chart.

For small values of § and ¢, the results obtained in this work are in
agreement with conventional exact results. However, there is no such
information in the research literature for large values of 6 and g. Thus the
Mathieu eqn (6) is solved numerically using the fourth-order Runge-
Kutta method to check that the solution is stable in stable regions or
unstable in unstable regions. One result for the ninth instability region is
shown in Fig. 3. The response amplitudes, f, are the values of numerical
calculation at non-dimensional time t = 100. As can be seen from
Fig. 3(b). in the unstable range. § = 98 to 102, the response amplitudes
are very high but in the adjacent stable regions. the amplitudes are zero.
This Mathieu stability chart was also verified for other regions of
instability at high values of q.
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Fig. 2. Mathieu stability chart up to large parameters (shade regions are unstable).

It is useful to apply the chart to TLP tethers. Figure 4 shows how the
stability condition of an example tether taken from the Hutton TLP
platform varies with its characteristics of tether length, pre-tension and
wave induced force amplitude. The straight line OA in Fig. 4 denotes a
boundary between slack and tensioned tether conditions. In other words
q — 6 values for a slack tether plot above OA whereas those for a
tensioned tether plot below OA. It can be observed that this boundary
line passes alternately through stable and unstable regions of the
Mathieu chart. Point B shows the present normal operating condition of

80.0
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Fig. 3. Examination of the Mathieu stability chart. (a) Ninth instability region: (b)
response amplitude at g = 50.
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Fig. 4. Behaviour of stability condition for the Hutton TLP Tether. +, Amplitude of axial
force variation; ©, tether length; ®, present condition; *, pre-tension; , transition
line.

-

a tether of the Hutton TLP. If the pre-tension of this tether was reduced,
the operating point B would shift towards C and encounter the first
unstable region at a value of § of approximately 190. Line BD denotes
movement of the operating point for increasing tether length (or water
depth) whereas lines EBF indicate the variation of operating point due to
changes in the amplitude of axial force variation.

While constructing the Mathieu chart, the damping term was not
considered. In reality, in the tether case, the nonlinear hydrodynamic
damping force plays an important role in limiting tether oscillations. So,
even if a tether is in an unstable condition, the response amplitude will be
limited due to the nonlinear damping force. This feature is investigated
below. It is noted that if a system corresponds to a stable condition, the
response amplitude becomes zero and so the following approaches are
carried out only for unstable regions of the Mathieu chart.

PERTURBATION METHOD TO SOLVE THE NONLINEAR
MATHIEU EQUATION FOR SMALL PARAMETERS

Perturbation methods are usually employed to analytically solve a

nonlinear differential equation. Some research workers have used the
method for the nonlinear Mathieu equation with a quadratic damping
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term and/or a cubic displacement term (Hsu®, Nayfeh,’). Perturbation
methods are, however, confined to small parameters but very useful to
identify the global pattern of solutions.

Of the perturbation techniques, the averaging method is employed in
this work to solve the nonlinear Mathieu equation, eqn (5). The solution
is considered only to a first approximation. Following the averaging
method (see e.g. Minorsky' for further details), the solution is obtained as:

Py

f = dcos(t+ ) — (aq) {cos 20 cos 3(t + 6) + sin 26 cos 3(z + 6))

8
. 8 )
52 s _

+ d‘c Z pmy .y sinm(t + 0) m 579,..... ®)

where: d = 3ﬂ 7 — (6 - 17 ©)
8¢

y = Lo i - 1P
9 = 7sin I-"0" (10)

The above result is related to the first instability region of the Mathieu
chart and provides important information for the nonlinear Mathieu
equation with a quadratic damping term. As can be seen from eqn (9), the
response amplitudes are limited even if a system is in the instability
region. Substituting eqn (8) into eqn (2) gives a complete solution of
parametric tether oscillations in a condition corresponding to the first
instability of the Mathieu chart. One important result is the steady-state
response amplitude, 4, plotted againsté and g in Fig. 5. Até = 1,i.e. atthe
centre of the instability region, 4 has its maximum value:

., _ 3m
dm = %q (11)

It can be seen that 4,, is proportional to the strength of the parametric
oscillation, ¢ and inversely proportional to the damping coefficient, c.

A 8C£ q
3n q=-8+1
q=3-1
Fig. 5. Stationary amplitude of the
nonlinear Mathieu equation in the
first instability region. 1 3
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Equation (11) can be expressed in terms of tether characteristics from
eqn (5).
® . _ 9mMS

Atd = 5, dmn = 1355 P

(12)
Equation (12) indicates that maximum response amplitudes occur when
the external frequency is twice the natural frequency. It should be noted
that the above result is applicable to the first instability region only. It is
also possible to obtain analytically the steady-state solution for the
second and higher order instability regions. However, second and higher
order approximations are needed and the calculation becomes very
complicated. Therefore, the nonlinear Mathieu equation with large
magnitude parameters needs to be solved to take this investigation
further. This can only be done using a numerical method.

NUMERICAL METHOD

Of the numerical methods for ordinary differential equations, the fourth-
order Runge-Kutta method is widely used due to its stability and
accuracy. In this analysis the Runge-Kutta method is employed to obtain
the solution of the nonlinear Mathieu equation, eqn (5), with large
parameters. As can be seen from the previous analytical result, eqn (9),
the response also depends on the value of damping coefficient, c¢. Since
this work is focused on the relative importance of various conditions
under which parametric oscillations can occur, it was decided to adopt a
value of ¢ of 0-3 for those calculations. This value was chosen to be mid-
way between a typical range of from 0-2 to 0-4 for the coefficient of a TLP
tether. The initial conditions for the numerical solution do not influence
the steady-state solution of the nonlinear Mathieu equation and the
initial conditions f(0) = 0, df(0)/dt = 1-0 are used. Equation (5) is then
solved numerically for different values of parameters, 6 and gq.
Numerical results for the first instability region are compared with the
analytical result from eqn (11). There is close agreement between the two
as shown by Fig. 6.

Phase planes and time histories of generalised displacements are then
computed for different tether conditions; that is, tensioned, transitional
and slack conditions. These conditions are illustrated in Fig.. 7. For these
three conditions, phase plane and time histories of generalised
displacements of the first, third and ninth instability regions are plotted
in Figs 8,9 and 10, respectively, where the overdot denotes differentiation
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Fig. 6. Comparison of stationary amplitudes in the centre of the first instability region

between numerical (@) and analytical ( ) results.
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Fig. 7. Illustration of tether tension condition. (a) Tension; (b) transitional; (c) slack.

with respect to t. These figures can be expressed in terms of tether
conditions as follows:

Figs 8(a), 9(a) and 10(a) - Tension conditions

Figs 8(b), 9(b) and 10(b) - Transitional conditions between
tensioned and slack

Figs 8(c), 9(c) and 10(c) - Slack conditions

Figures 8, 9 and 10 give results for conditions at the centre of their
respective regions of instability; that is, they give the largest amplitude for
the same value of gq. As can be seen from the figures, the response
amplitudes reduce gradually as the order of instability increases. For
tensioned tethers, the responses are small even in the first region of
instability. In the transitional condition, when the pre-tension is equal to
the force amplitude, tether amplitudes are large in the first region of
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Fig. 8. Phase plane and time history of a generalised displacement in the first instability
region for (a)§ = 1.0, ¢ = 0-3 (tensioned condition); (b)é = 1-0, ¢ = 0-5 (transitional
condition); (c) 8 = 1-0, ¢ = 0-7 (slack condition).

instability. In metric units, the total displacement amplitude in the first
region of instability is 4 m. However, in higher order instability regions.
the responses are very small. It is clear from these results that the
Mathieu instability for low tension tethers is significant in lower order
instability regions. This. in fact, corresponds to numerical values for
tethers in deeper water. It should be noted that here time is non-
dimensionalised using eqn (4). So for a particular tether, the time
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Fig. 9. Phase planeand time history of a generalised displacement in the third instability
region for (a) 8 = 10-25, g = 4-75 (tensioned condition); (b) § = 10-5. g = 5-25 (transitional
condition): (c)8 = 10-75, ¢ = 5-75 (slack condition).

histories and the velocities of the phase plane should be dimensionalised
by using wave frequency w.

Since this research is aimed at the potential of the Mathieu instability
of tethers at low tension, particular emphasis is placed on the zero
tension slack condition. Even if the tether is in a slack condition, all the
response amplitudes in the stable regions of the Mathieu chart become
zero. Therefore, in terms of parametric oscillation, slack tethers can be
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Fig. 10. Phase plane and time history of a generalised displacement in the ninth
instability region for (a)é = 98.0. ¢ = 47-5 (tensioned condition); (b)§ = 100-0. ¢ = 50-0
(transitional condition); (c) 6 = 103-0, ¢ = 55-0 (slack condition).

undoubtedly adopted in stable regions. However, in unstable regions, as
can be seen from Figs 8(c) and 9(c), the maximum response amplitudes
are somewhat larger in lower-order instability regions and these
magnitudes might not be permissible for an operational TLP. In higher-
order instability regions like Fig. 10(c), the maximum response amplitude
is small and can be permissible. By using the Mathieu chart obtained
here, the relative magnitude of response amplitudes of parametrically
oscillating tethers can be usefully determined for slack tether cases.
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As can be known from the above, the parametric oscillation is
important only in lower-order instability regions. Although in this work,
tether axial forces have been assumed to be regular, the random nature of
actual wave forces can cause the Mathieu instability to be less dominant.
However, there are two aspects of the problem which still require the
Mathieu instability in regular waves to be examined. The first is that
despite irregular incident waves, the inertia of a TLP can cause the
resultant tether axial forces to tend towards near sinusoidal oscillations.
A further reason for this study is that the Mathieu instability requires to
be examined in conditions of low tether tension.

It is often argued that if tethers go slack, the phenomenon of snap or
snatch loading of the tethers occurs. For example, when a towboat re-
tensions a slack cable, the snatch loading can be serious due to a
significant relative velocity between the ends of the cable. However, in
the case of tethers, the considered tension loss is not large enough and the
surface platform does not acquire the large velocity required for
significant snatch loading. The hydrodynamic drag force also plays an
important role in protecting against the adverse effects of snatch loading.
However, further research into snatch loading of slack tethers is
necessary and is being examined in later aspects of this work.

In this study, it has been assumed that the top ends of tethers do not
move in the horizontal direction. However, if the horizontal motion is
also considered, the motion of tethers becomes combined forced and
parametric oscillations, which is very complicated to solve analytically.
The combined oscillations and the interaction between the surface
platform and tether dynamics at low tension is being investigated and
will be presented in future work.

CONCLUSION

This paper quantifies the enhanced potential of Mathieu stability in
tethers with reduced pre-tension. This is studied as the first stage of an
investigation into the dynamics of low tension tethers to facilitate
payload increase over conventional design of a TLP. The Mathieu
stability chart up to large parameters is obtained and justified. Even for
tether operating in an unstable condition, their response amplitude is
limited due to hydrodynamic fluid damping force but the response
magnitudes vary according to the Mathieu parameters.

The response amplitudes of the tether in any condition (slack, trans-
itional or tensioned) increase as the instability region moves to lower
orders, which corresponds to deeper water tethers. Therefore, the

—112—



Dynamics of tension leg platform tethers at low tension. Part I 273

Mathieu type instability problem is more significant for deep water TLP
designs. In the slack tether case considered here, the maximum response
amplitude is zero in the stable regions and small enough to be acceptable
in the higher order instability regions but somewhat large in the lower
order instability regions.

Thus the Mathieu stability chart prescribed in this paper can be used
to guide design work aimed at reducing the mean pre-tension of TLPs as
an aid to payload increase over conventional design of a TLP. However,
further work needs to be carried out to examine the combined parametric
and forced oscillation of tethers as well as the coupling between the
surface platform and tethers dynamics at low pre-tension.
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