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Abstract

In this paper cf-semistratifiable space is introduced and the relationships between cf-
semistratifiable spaces and several classes of topological spaces are investigated. It is

shown that a locally finite union of closed cf-semistratifiable space is cf-semistratifiable
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and the image of cf-semistratifiable space under "a closed continucus pseudo open map is
cf-semistratifiable. And we give some conditions for cf-semistratifiable spaces to be «a-
spaces.

As the main result we prove that every regular cf-semistratifiable space has a GF-
diagonal and a space X is a cf-semistratifiable w4-space if and only if it is developable.
This result is used to show that in w4-space, every compact cf-semistratifiable space is

metrizable.

1. Introduction

In [1], J.G. Ceder defined an M;-space to be a Ty-space with a o-cushioned pairbase
(see definition in §1. below) as a generalization of metric spaces, M;-space was renamed
stratifiable space by Borges [8]. G.D. Creede [2] again generalized the space to semistr-
atifiable spaces which lies between the class of semi-metric spaces and the class of spaces
in which closed sets are Gs.

In this paper we study a class of spaces called cf (convergent filterbase)-semistratifiable
spaces which lies between the semistratifiable spaces and K-semistratifiable spaces. We
wish to discuss a means of constructing topological spaces which may deserve to be better
known. We begin with a slight modification due to Creede [2] and Sakeng [21].

Through out this paper the set of positive integers will be denoted by N. Most terms
and nctations which are not defined in this paper are used as in J. Dugundji [14]. In
what follows, all spaces are assumed to be T}.

Let F be 2 map from NX.7 to the family of all closed subsets of a spaces (X, ).

Consider the following conditions of F;

oo

(a2) For each Ue.7, U=U1 F(n, U)

(b) If U, Vesg and UCV, then F(n, U)CF(n, V)
for each ne N.

(c) For each convergent filterbase #={A4,: a=.%, where 57 is a directed set} to x in
X, and for U=.7, containing x, there exist a ke N and a = such that xeF(k,
U) and A.CF(k, U) for all a=g8, acs .

(d) For each Uey, U= I:l1 Fn, U)° where F(n, U)° is the interioer of F(n, U). In [8]

F is called a stratification for X if F satisfies (a), (b) and (d).
(e) If CcU with C compact and U open there is a ze N such that CCF(»n, U).
In [5] F is called a K-semistratification for X if it satisfies (a), (b) and (e) and finally
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On Cf-semistratifiable Spaces 3

a semistratification whenever it satisfies (2) and (b) in [2].

Definition 1.1.

A map F which satisfy (2), (b) and (c) is called a cf-semistratification for X.A topo-
logical space is said to be a cf-semistratifiable space whenever it has a cf-semistratification.

By comparing the above definition with Definition 1.1. of [8]. One can seethat strati-
fiable—K-semistratifiable—cf-semistratifiable—»semistratifiable.

In saction 2, stratifiable spaces and semistratifiable spaces being initiated by Borges [8]
and Creede [2] respectively, we verify some relationships of their several similarities
which are given by means of a o—cushioned pair-filterbase and cf-semistratifiable func-
tions.

In section 3, some properties of cf-semistratifiable spaces are shown. Moreover we note
that cf-semistratifiability is hereditary.

In section 4, we show that the image of a cf-semistratifisble space under a closed con-
tinuous pseudo-open map is cf-semistratifiable.

In section 5, the cf-stratifiable w4-spaces are shown to be semidevelopable, every(reg-
ular) cf-semistratifiable space has a G}-diagonal, and finally a space X is a cf-semistrati-
fiable wd-space if and only if it is developable.

In the last section 6, we give necessary and sufficient conditicns for a cf-semistratifia—

ble space to be metrizable.

2. Relationships between the cf-semistratifiable space and
other topological spaces

A net work (or net) [16] in a space X is collection @ of subsets of X such that given
any open subset UCX and x€U, there is a member B of & such that xeBCU. A K-net
(called a pseudo base by Michael in [24])is a collection &7 of subsets cf X such that given
any compact subset K and any open subset U of X containing K, there is a B€ % such
that KCBCU. A cs-network [25] is a collection & of subsets of X such that given sny
convergent sequence x,—x and any cpen U containing x, there is 8 Be€ & such that xe BC
U and <x,)> is eventually in B.

By peering into the above definitiens, cne can see that any K-netwerk is a cs-network,
which is a network. A space with a o-lecally finite network is called a o-space and =
regular space with a countable network is called a cosmic space [24] (In[3], X is a cosmic

space if and only if it is the regular continuous image of a separable metric space).
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Let & be a collection of ordered pairs of subsets of the Ti-space X such that, for each
P=(4, By Ais cpen and ACB, and such that, for every x&X and every neighbor-
heod U of x, there is a P= < for which x€ACBCU. Then & is called a pair base for
X. Moreover, +& is called cushioned if, for every QTS CIU{4; P=(4; Byeicu
{B; PeQ} and & is o-cushioned if it is the union of countably many cushioned collec-
tions. A Ms-space is a T)-space with a o-cushioned pair base. These definitions are due
to R. W. Heath in [3]. Ncte that Borges calls M;-spaces stratifiable spaces in [8]. Acco-
rding to this, Ms-spaces are cf-stratifiable spaces.

We are about to generalize the concepts of network and pairbase. Let & be a collection
of ordered pairs P=(A4, B) of subsets of the space X with ACB for all Pe S(Here, A is
not necessarily open). Then . is called a pairnet for X if for every xeX and every
neighborhood U of x, there is a Pe < for which xe ACBCU. Moreover, < is said to
be cushioned if for every QC &, CIU{4; P=(A4, B)eQ}cU{B; P=Q)}, & is said to be
o-cushioned if it is a union of countably many cushioned collections.

A pair net is called a K-pairnet if given any CCU with C compact and U open, there
is a Pe & for which CCAcCBcU.

A pairnet is called a cf-pairfilterbase if given any convergent filterbase #={A4,; ac
57} converging to x and an open subset U containing x, there exist a P= <& and a Be
for which xe A.CACBCU, for all a=p, ac. v,

It is easily checked that any K-pairnet is cf-pairfilterbase and a cf-pairfilterbase is a
pairnet. Note that Borges calls M;-spaces stratifiable spsces in [8], which was charaterized
as;

A Ti-spaces is stratifiable if and only if there is a map T: NX.9">.9" such that,

() For each Ue.77, CI T(n, U)cU

(b) For each Ue. 7, _CJ:T(%, U)=U, and
() For U, Veyg, T(n, U)cT(», V) whenever UCV.

We can see that the above characterizaticn is equivalent to the definition of Cede;rs’ in
[17.

As for the stratifiable spaces, semistratifizble spaces can be charaterizedas follows;

Theorem 2.1. For a topological space (X, 7 ), the followings are equivalent.

(1) X is semistratifiable

(2) X has a o-cushioned pairnet

(3) there is a function

g: NXX—.7 such that
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On Cf-semistratifiable Spaces 5

(@) Nz gi(x)=1[x} for each x=X and

(b) if ¥ is a point of g:(x)) foerall ieN. Then the sequence <{x,> which lies in X con-
verges to y.

Procf. (1)&(3) follews from the thecrem 1.2 due to Creede [2]. To show(D)e(2),
let F be a semistratification ¢f X. Define F={(F(n, U), U): U5} for each n=N.
Then each &, is cushicned. Since, let .5 be a subcollection of 7, then F(n, U)CF(n,
UlU: Useg™)) for each U957, and so U{U: Use9")DF(n, U{U: Uss7"})=Cl F(n,
U{U: Ueg")HDCIU{F(n, U): Us.s"} Conversely, suppose there is a o-cushicned
pairnet. P=U, for X. For each neN and Uc 7, F(x, UH=ClU{A: P=(4, B e,
BcU)}. It is clear that F is a semistratification for X.

For K-semistratifiable speces we have an analogous result whose proof cen be proved
by teking an analogous precess to thecrem 2.1 and so we can omit the proof cf the
following theorem 2. 2.

Theorem 2.2. For a space (X, 97), the followings are equivalent;

(1) X is K-semistratifiable

(2) X has a o-cushioned K-pairnet

(3) there is a semistratifiable function g with an additional condition:

(¢) if CCU with C compact and U open in X, then there isan zeN with CNU{g.(x)
: x&X—U})=¢. In this case, g is called a K-semistratifiable function.

Theorem 2.3. For a space‘ (%, 77), the followings are equivalent.

(1) X is cf-semistratifiable

(2) X has a o-cushioned cf-pairfilterbase

(3) There is a semistratifiable function g with an additional condition;

(d) Given a convergent filterbase #=(A4.: a5/} to x in X end sn cpen set UCX
containing x, there is a KeN such that Aad;,eyhugk(x) snd {ae.r; A,C xELA;J_U
&«(x)} is finite. In this case g is called a cf-semistratifiable function.

Proof: (1)&(2) follows from thecrem 2.1. To show that (De(3), let F be a cf-semi-
stratification for X. For each &N and x& N, define the function &by g.(x)=X—F(n,
X—{x}). Creede proved g is a semistratifiable function in [2]. To show g satisfies(d),
consider the following zgv g,(x):#{}{X—F(k, X—{x})}:X—er‘], F(k, X—{x}) which is
contained in X—F(&, V). If A.e% is contained in Fk, V) for all a=8, a, Bess, («
SRV A“ngv g«(x)} is finite. Conversely, by putting F(z, U)=X—IE1!YJ_L;g,,(x), we get a

cf-szmistratifiable function.
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3. Properties of cf-semistratifiable spaces

As we would expect, the class of cf-semistratifiable spaces shares certain nice properties:
with the more familiar classes of spaces mentioned above.

Theorem 3.1. Every subspace of a cf-semistratifiable space is cf-semistratifiable.

Proof. Straightforward

Theorem 3.2. The countable product of cf-semistratifiable spaces is cf-semistratifiable..

Proof. For each i, let X; be a cf-semistratifiable space and g; (theorem 2.3.(3)) be cf-
semistratifiable function. Let X=II,=; X; and let #; be the projection of X onto X;. For
each i, j and xeX, let h;(x)=g;(m:(x)) if i<j and h;(x)=X; if i>].

Now let gj(x)———ifi; hi;(x) for each j and x. The function g satisfies the conditions of cf-
semistratifiable function for the space X.

To prove that g satisfies (d) of theorem 2.3. (3), let #={A.: ac7{ be a filterbase
converging to z and let zeU<.9. Take a open neighborhood V of z, V=ILe; Vi ><ie(1}_”
X,CU, where I is a finite subset of . For each 7, (m:(A): as 7} is a set sequence
containing #:(z), and #;(V) is open in X; and contains 7;(z). There is a k; such that {«
e mi(A)CU (gu,(8): seXi—n;(V)}} is finite for each iel. Let k=max{k;: icl}.

Then A“C,,ey_vg"(’o if and only it there is an xeX—V such that A.C g (%) if and only
if there is an x= X such that m;(x)eX,—#,(V) for some i€l and A.Cge(x) if and only
if there is an x=X, such that =.(x)eX;—m:(V) for some icl and %i(Aa)Cg;k(ﬂi(x))-
This implies 7:(Aa)CU {ga(8): se X;—=:(V)}. Thus {ae" A“CZELXJ-x}gk(x)} is finite, this

insures that {a¢e: A,C AL’Jng(x)} is finite since VCU.
L1 &

Theorem 3.3. The union of two closed cf-semistratifiable spaces is cfsemistratifiable.

Proof. Let X be X.UXs where either X, or X is also cf-semistratifiable space respec-
tively. If XaNXe=0, then X=X,UXp is a cf-semistratifiable since there is a cf-semistra-
tification function for X, or Xs. Suppose X.NXp#@, mnow let V,=[VN Xa—Xp)1.UVN
XaNXe)aU[VN(Xg—Xa)]. for V open in X, then the correspondence V—{V,}5=; is a cf-
semistratificaticn for X satisfying the conditions of Definition 1.1. in § 1.

Corollary 3.4. The union of a locally finite, closed cf-semistratifiable spaces is cf-
semistratifiable.

Proof. Let X be the union of a locally finite collection {X.: @]} of closed cf-semis-
tratifiable spaces. For each ae], let F be a cf-semistratification for X, and .7~ the topo-

logy of X.
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Define F: Nx.9—the collection of closed subsets of X by F(n, U)=UJ F.(n, UNXL.
Each {F.(#, UNX.): ae]} is locally finite, hence it has the closure preserving property.
This insures each F(n, U) is closed in X. To show that F is a cf-semistratification for

X. For the condition (a) of Definition in §1,

Ql F(n, U)igag Fn, UNX)=y ;EJI Fu(n, UNX)=U (UNX)=U. For (b): this
conditicn is clear. For (¢): Let #={A.: ac.7} be a filterbase in X converging to x.
Given an open set U of X containing %, there is an open set V such that xeVCU and
{Be]; XsNV+0) is finite. We denote this finite subset of J by I={1, 2, -, k}. For
each i, if {A,: A.CX;} is infinite, x must be contained in X;. The cf-semistratifiab-
ility of X; insures that there is an #; such that A, is contained in Fi(n;, VNXi) for all
a=p(a, Be. . Let no=max{n;: icI}. Then A, is contained in F(no, V)z,-LeJ; F;(n,,
VNX) for all a=pg since I is finite.

Corollary 3.5. Every space with the properties of paracompactness and locally cf-
semistratificaticn is cf-semistratifiable.

Procf. Let X be the space given, for every x=X, there is an open neighborhoed U(x)
of x such that U (%) is cf-semistratifiable and there is a locally finite closed refinement
{Bs: B} of {U(x): x=X). Then each Bs is cf-semistratifiable by theorem 3.1, so

that X is cf-semistratifiable by using theorem 3.3.

4. Mappings

Charles C. Alexander introduced the concept cf pseudo map in [18].

Definition 4.1[18]. Let X and Y be topological spaces. Then a surjective map f from
X onto Y is pseudo-open if and only if for each y€Y and each cpen neighborhocd U of
1) in X, yelnt f(U).

Theorem 4.2. The image of cf-semistratifiable space under a closed continuous pseudo-
open map is cf-semistratifiable.

Proof. Let f be a closed continuous pseudo-open map from a cf-semistratifiable space
X onto a space Y. Let F be a cf-semistratification for X.

For each cpen V, containing a peint y of Y and neN, let S (, M =f(Fn, f~)).
By Definiticn 4.1. S is a semistratification for Y. Moreover it clearly satisfies the ccnd-
ition (¢) of §1. Since, let U be open neighborhood in X including /' (V(¥)), then X
has a filter base #={A,: ac .} converging to f~(») in U such that yeint f(U). On
the other hand, owing to the cf-semistratifiability of X, there exist a n,eN and a Bess
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such that A4 is contained in F(n, f~Y(V(y)) for ac s/, a=B. That is, ys(A4)int (f
[F(ny, fFYVO)D. Thus f(AL) is contained in S(ry, V)=f[F(,, f1(V(»))] for a=4,
o, Be .

5. Spaces with a semi-development and spaces with a G:*-diagonal

Let X be a set, & a cover of X, x an element of X. The star of x with respect to &,
denoted by st(x, &), is the union of all elements of % containing x. The order of x
with respect to &, denoted by ord(x, %), is the number of elements of & containing x.

Definition 5.1[12]. A development for a space X is a sequence 4={¥<,: n=1, 2, --}
of open cover of X such that {st(x, <,): n=1, 2, -} is a local base at for each x<X.
A space is developable if and only if there exists a development for the space.

Definition 5.2[18]. Let 4={%¥,: n=1, 2,.--} be a sequence of (not necessarily open)
covers of a space X.

(1) 4 is a semi-development for X if and only if for each xeX, {(st(x, &,): n=1,
2,--+} is a local system of neighborhoods at x.

(2) A semi-development 4 of X is a strong semi-development if and only if for each
MCX and x]7 there is a descending sequence {G,: #n=1, 2, .-} such that xeG,eZ,
and G, M=+=4.

Lemma 5.3. Let 4={¥,: n=1, 2,---} be a semi-development for a To-space X: If
{G,: n=1, 2,---} is a sequence of sets such that G, ¥, for each %, then N(G,: n=1, 2,
---} contains at most one point.

Proof. There is a point x such that x=G,Cst(x, &,) for each %, since a semi-develo-
pment for the topological space X is Ty-space and then it has a local base at x=X. Hence
x=N{G,: n=1, 2, ---}Cst(x, L.

From the aid of Alexander [18], recall that a space X is semi-metrizable if and only
if it is a semi-developable T,-spsce. Moreover every To-semidevelopable spsce is T;.

Definition 5.4[8]. A space X is a wd-space if there is a sequence &, &, -+ of open
covers of X such that, for each x in X, if x,est(x, &,) for n=1,2, .- then the sequence
{x.y has a cluster point. Such a sequencz cf open covers is called a wd-sequence for X.

Lemma 5.5. A cf-semistratifiable w4-space is semi-developable.

Proof. Let F is a cf-semistratification for a space X, and let 4={Z,: n=1, 2, .-} is
a wd-sequence for the space X.

Taking st (x, &) such that xest(x, &,)TF(k, U). For arbitrary open U in X, there
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On Cf-semistratifieble Spaces 9
is an A, belonging to a cenvergent filter base #={4.: a7} such that x= A.Cst (x,
ZOCF(k, UycU. Thus {&,: n=1, 2,---} is a semi-development for X.

Definition 5.6[18]. A topological space X is semi-metric if there is a distance functicn
dy; XX X-R satisfying conditions such that,

(D dlx, »=d(y, x)=0

(2) d(x, »)=0 if and only if x=y,

(3) x=37 if and only if d(x, M)=inf{d(x, m): me M =0(.

Creede [2] proved that a T-space is a semi-metric space if and cnly if it is & countable
semistratifiable space. We can see an analogous result for a cf-semistratifiable space,

replacing a semistratifiable space by a cf-semistratifiable space.

And we can see, from the above Lemma 5.5, that a cf-semistratifiable wd-spsce is a
semi-metric space.

Thus, given a semi-development 4={¥,: n=1, 2,.--} for a tcpological space X, we
will let d; denote the semi-metric on X defined from 4 as theorem 1.3 in Alesander [18].
Similarly, given a semi-metric d on X, we will let 4, denote the semi-development on
X defined from d as Alexander [18]. Hence we can define a semimetric d on the cf-

semistratifiable w4-space.

Theorem 5.7. In a cf-semistratifiable w4-space, every convergent sequence has a

Cauchy subsequence.

Proof. Let F be a cf-semistratification on X and let S={x,: n=1, 2,---} be a sequence
in X converging to the point xeX, If x,=x for infinitely many #, then clearly we can
define a Cauchy subsequence of S, Otherwise let F(n, U)={x,: n=1, 2,---}—{x}.

Then x=U implies, since U=UF(n, U) in the condition (a) of Definition 1.1, that
there is a descending sequence of sets{G,: n=1, 2,---} of the convergent filter base =
{A.: a=57} to x such that for every open neighborhood U of x we can find a n,=N and
for each n=n,, x=G, and G,NF (n, U)+¢ for which G,C 4., CU. We now define a
subsequence of {x,: #=1, 2,---} inductively. Choose x,€G,NF(n, U) and n=n,. Now
observe that G,NF(n, U) is infinite. For suppecse not; say G,NF(n, U)={a1, @z -+, @n}.
Then for sufficiently large number n,, diam G,.0<inf diam {d(x, a): i=1, 2,---, m}
(Since X is semimetrizable if and only if X is a semidevelopable To-space and then every
T, semi-developable space is 7. By Creeds [2], T} is a semi-metric space if and only if
it is a countable cf-semistratifiable space. Hence there is semi-metrie d on the cf-semist-
ratifiable wd-space) clearly a:EG, for each i=1, 2,---, m But then F(x, U)ﬂG,,OCF(n,

HNG={a,, as, -, a,} implies F(n, U)NG, =0 which is a contradiction. Hence we can
(V]
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choose %,,€G,,NF(, U) such that %, >#,_,=n,. Thus we have defined a subsequence
{%.,: k=1, 2,.--} ofS which is Cauchy. For let £&(>0) be given, then there an integer 7,
such that diam G,, <& For i, j=n, we then have x, €G,CG,, and x, €G,CG,. Thus d
(%n;y %2 ) <diam G, <é&.

In light of the characterization of spaces with a Gs;-diagonal by Ceder [1] and Borges’
study of spaces with a Gs-diagonal(see [26]). Hodel [20] introduced the following defin-
ition.

Definition 5.8[20]. A space X has a G*,-diagonal if there is a sequence &;, “, -
of open covers of X such that, for any two distinct points x and y of X, there is a # in
N such that ye&st(x, &,). Such a sequence of open covers is called a G*;-sequence for
X.

In [27] Kullman proved that every regular 6-refinable space with a G;-diagonal has a
Gs-diagonal. Since every space with a ;-diagonal has a G*;-diagonal, in [26] Hodel

showed the following Lemma.

Lemma 5.9. Every regular ¢-refinable space with a G;-diagonal has a G*;-diagonal.
In particular every regular semiatratifiable space has a G*;-diagonal.

The next result relates the cf-stratifiable property to the G*;-diagonal.

Lemma 5.10. Every (regular) cf-semistratifiable space has a G*;-diagonal.

Proof. Let F be a cf-semistratification for X, and let “,={UcX: U open in X}, &,
open covers of X for each neN. To show that {g,,};l is a G*;-sequence for X, let =
and y be distinct points of X. There are two filter base #={A.: ac ¥} and F={B;s:
Be A} converging to x and y respectively. Now we choose 7 in N such that if every U
3%, containing x, then there is an A4, such that xe A.Cst(x, €)CTUF(, U). Simil-
ary we choose k=N such that if every V=%, containing y, then there is a Bg such that
yeBsCst(k, €)CTUF(k, V). It follows that A«Nst(y, L=0 and so x&st(y, L.

On the other hand BsNst(x, &.)=0 this y&st(x, &,). Thus &, L, is a G*s-seq-

uence for X.

Theorem 5.11. A space X is a cf-semistratifiable w4-space if and only if it is devel-

opable.

Proof. Necessity; It follows from the above lemma 5.10 and that every w4-space with
a G*;-diagonal is developable in Hodel [20].
Sufficiency; Let 5%, 5%, --- be a wd-sequence for X, and let #={A,: neN} be a

convergent filter base for X. For eachpositive integer », let &,={G: G=([11H,-)ﬂ(i{;]1A,-),
H,e5#:: Aie#}. To show that &, &,, - is a wd-sequence [with a cf-semistratifiable
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wd-sequence for X. We can choose a neighborhood U(x) of x such that xest(x, &)U
(%) sincz &, &, - is a development for X, and choose a sequence (x,) such that for
all n, x,est(x, &,). Then x,€U(x). This implies that (X,) converges to x since -
is an open refinement of &, for all neN. Hence there is G, %, such that x,eG,.Cst(x,
&) CU(x). Suppose the filter base Z#={A4.: o=} converging to x has a cluster point
p such that x#p. Then clearly there is a positive integer % such that for a neighborhood
V of p, V(p)Nst(x, €=0. Now for n=k, A.Cst(x, E)Sst(x, Zofor all a=p, a,
Be .57 and so AL V(p) for all @=B. This constracts the fact that P is a cluster point of
#. Thus {&,: n=1, 2, -} is a cf-semistratifiable w4-space.

Corollary 5.12. The following are equivalent for a regular w4-space X;

(a) X is a Moore space
(b) X is cf-semistratifiable
(c) X is f-refinable and has a G;-diagonal
(d) X has a G*;-diagonal.
Proof. The implication (a)=>(b) is due to Creede [2]. (b)=>(c) follows
from result by Hodel [20] (¢)=>(d) follows Lemma 5.10. (d)=>(a) follows
from theorem 5.11 above.
Definition 5.13[19]. A space X is an a-space if there is a function g from NXX into
the topology of X such that for each z= X,
(8) Na2y g, X)=({x}
(b) if yeg(n, x) then g(n, y)Sgn, x).
Such a function is called an a-function for X.
Lemma 5.14. The following are equivalent for a space X
(a) X is cf-semistratifiable
(b) There is a function g from NXX into the topology of X such that (1) for each x
=X and neN, xcgn, x); (2) if xegxn, x,) for n=1, 2, --- then x is a cluster
point of the sequence {(x,).

Proof. It is due to Hodel [4].

Theorem 5.15. In a reguler w4-space, the following are equivalent for a space X.

(a) X is cf-semistratifiable

(b) X is an a-space.

Proof. Necessity; Since if X is cf-semistratifiable then X is a Moore space by corollary
5.12 and then every Moore space is an c-space since every subparacompact space with a
G;-diagonal is an a”-space and every a’-space is an a-space in [4]. Sufficiency; Let &,
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%, -+ be a wd-sequence for X and let g be an a-function for X. Assume that for xe X
and neN, gn+1, x)Sg(n, x). For x in X and #neN, let h(n, x)=g(r, 2)Nst(x, L.
To show that the function % satisfies (b) of the above lemma.

Cleary (1) of (b) satisfied. To check (2), let x=h(n, x,) for n=1, 2,..- Then for n=
1, 2, - xest(x,, &, and so x,=st(x, ). Thus the sequence has a cluster point .
Suppose y#x. Now {y}:”f]l g(n, y) and so there is a £= N such that x&£g(k, ¥). Since
¥ is a cluster point of {x,) there is a m=Fk such that z,=g(k, ¥). Since g is an a-func-
tion for X, x,=g(k, y) implies gk, %.) gk, ).

But xeh(m, x.)Sg(m, x,)Cg(k, x,) and so x=g(k, ¥) which is a contradiction. Thus
x=y and x is a cluster point of (x,>.

Definition 5.16. (a) Let X be a space and let g be a function from NXX into the
topelegy of X such that for all xeX and neN, x=g(n, x). The space X is g-space [23]
if x,eg(n, %) for n=1, 2,--- then the sequence {,> has a cluster point and the spece X
is called 1°-countable space [20] if x,=g(n, x) for n=1, 2,..- then x is a cluster point
of the sequence (x,>. (b) A space X is called a B-space [9]if there is a function g from
Nx X into the topology of X such that (1) for all xeX and reN, xegln, x), (2) If
€g(n, x,) for n=1, 2, then the sequence <x,> has a cluster point. Such a function is

called a B-function for X.

Theorem 5.17. A wd4-space is a B-space and a cf-semistractifiable space is a B-space.
Proof. Straightforwad.
We can replace theorem 5.2 of Hodel [20] by the following results whose proof can be

omitted.

Theorem 5.18. The following are equivalent for a regular spaceX;

(a) X is cf-semistratifiable

(b) X is a B-space with a G*;-diagonal

(c) X is an a-space and a B-space.

Theorem 5.19. A regular space is cf-semistratifiable if and only if it is a semistratr-
atifiable B-space.

Proof. The necessity is clear. To show the sufficiency, let X be a regular semistrati-
fizble B-space with a cf-semistratification F such that CI F(n+1, g(n+1, x))CF(n, g(n,
x)) for all #» and such that if xeF(»n, g(n, ,)) for all #=N then the filter base Z={g
(n, ¥.): neN} has a cluster point. Let y, y,=X such that yegn, y,)e% for neN. We
wish to show that {g(#, .): N} converges to y. The function g also has a characte-

rization of semistratifiable spaces due to Thecrem 1.1 in Creede [2]. The filter base %
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has at least cne cluster point, moreover every subsequence of % alsc has at least one
cluster point.

Now let x be another cluster point of % distinct from y. Chocse a subsequence of sets,
{g(n;, y.): meNiC{g(n, y): neN)=% with gd, x) centaining y,, for =1, 2,---and
Yo,y for all 7.

Since Cl F(i+1, gi+1, x))CF{, g3, x)), « is the only one cluster point of {g(n:, y.):
n;eN} it follows that %;—x so that there exists m such that xeg(n, {(x}Un) if n>m.

Take k>m. Then yetg(m, y)>g(k, %), which is a contradiction. It follows that x is
the unique cluster point of {g(n, 3,): neN} since every subsequence of %; has a cluster
point, % converges to 3.

Corollary 5.20. Let X be a cf-semistratifiable space. If for UCX, F(n, U) (where F
is a cf-semistratification for X) is a 1°-countable subspace of X, then X is 19-countable.

Proof. Let xeX, F a cf-semistratificaticn for X and U open in X such that x=F(n,
U). Since, for each subset U of X, F(n, U) is a 1°%-countable subspace and X is Ty, and
it is a cf-semistratifiable space, a countable collecticn which is a subfilter base U,={A,:
neN} of #={A.: a=7} converging to x in X may be found such that Cl(A,)CA,
F(n, U) for each neN. And now let V be any open set containing x, then there is a
natural number 7 such that xe 4,NF(r, U)CVNF&, U). It follows that Cl(A,11NF(n,
U)cCl(ADNFr, UcA.NFr, U)ycVnF(r, U). Note that Fn, HNA4,—V)=4.
Thus, F(r, U)N(CI(4.+1)~V)=g. We can put {G,: mN} to be a first-ccuntable(medk)
base for X. Since each subset is 1°-ccuntable subbsse of X, there is a me N such that x
€G,CX—(Cl(A,+D—V). It follows that x€4,.,NG,.CV and thst {4.NGn: neN, meN)

is a local base at x.

6. Metrization

In this section, we wish to give necessary and sufficient conditicns for a cf-semistrati-
fiable space to be metrizable.

Definition 6.1[9]. A system G={g(n, x): xX, neN} is called a graded system of
open covers if

(a) xeg(n, x) and g(n, x) is open for each xr& X and each naturalnumber ne N

(b) g(n+1, x)Sgn, x) for all neN and each x=X, and

(© {x}=N{g(n, x): neN} for each x=X.

A graded system of open covers {g(n, x): neN, x=N} is called a c-semistratification

for X provide that A= {g(n, A): neN} for each clesed compact set 4 where g(n, A
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=U{g(®, x): xcA). A space is c-semistratifiable if it has a c-semistratification.

Definition 6.2[13]. A space X is a wM-space if it has a sequence 4={%,: #=N} of
open covers of X such that if xest®(x, &,) for each 7, the sequence (x> has a cluster
point.

Definition 6.3[11]. A spsce X is said to be developable (mod %) if there exists a
compact covering % of X and a sequence 4={%,: n=1, 2,-} of open covers of X such
that for each xreKe .9, KCU where U is open, then there is a =N such that st(x, &)
CU. A regular developable (mod %) space is called a Moore (mod %) space and 4 is called
a development (mod %) for X.

From the above definiticn we can easily sce that every wM-space is a wd-space [5.4]
and we can give the following theorem. '

Theorem 6.4. A Freche’t cf-semistratifiable space is c-semistratifiable.

Proof. Suppose that A is a compact subset such that N{g(n, A): neN}+A. Then there
exists an x such that xerj {g(n, A): neN}—A. We can choose 4, belonging to filter
base #={A4,: ac 7} converging to x& X such that x&A4.Cg(n, A.). Let y be a cluster
point of <x,> in A and the Freche’tness of the space guarantess the existence of a subs-
equence {x,,» of <x,> in A« which converges to y. That is, kQN gk, A)={y}ULx.pCTA
implies x= A. This is a contradiction.

Theorem 6.5. X is a Hausdorff cf-semistratifiable space if and only if it is a cf-
semistratifiable space.

Proof. Necessity: Let x, y be two distinct points of X. There are open sets g (%, %.)
and g(n, ¥,) of a graded system such that xeg(n, %), ysg(n, y.) and g(n,%,)Ngx,
y,)=¢ and there are closed compact sets {y}U{¥.» and {x}U<x,> for each x, y(x#y).
These satisfy Definition 1.1. Since a convergent filterbase are replaced with ={g(n,
x,): neN, each xeg(n, x.)} and U, is replaced with g(z, {x}U<x.).

Sufficiency: straightforward. '

Theorem 6.6. A developable (mod k) space is a wd4-space.

Proof. Let (X, %%, <) be a developable (mod k) space. We may assume that each

@41 1s a refiniment “,. Let x,est (x, &) for each n. Assume <x,> has no cluster
point. Let K& % containing x. Then it is shown that <(x,> NK is a finite set so that we
may assune x,&K for all n. Since X—(x,) is an open set containing K, there exists a
positive integer k such that st(%, Z)CX—{x,». This implies that x.est(x, <,), which
is a contradiction.

Corollary 6.7. A regular space X is a Moore space if and only if X is a Fréchet cf-
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semistratifiable space and a Moore (mod k) space.,

Proof. Straightforward.

Corollary 6.8. A regular space is metrizable if and only if it is a cf-semistratifiable
wM-space.

Proof. Note that wM-space is a B-space and apply thecrem 5.19 and Corollary 5, in[9].

Theorem 6.9. In wd-space, every countable compact cf-semistratifiable space is metr-
izable.

Proof. Since, in the wd-space, a cf-semistratifiable space has a G*;-diagonal and then
it succeeds a Mcore space and every countably compact Mocre space is metrizable. Now
apply that a cf-semistatifiable space is 2 Moore space in a regular space.

Example. The ordinal space [0, Q] is a compact space and so it is a developable (mod
k) but not metrizable. Since Q belongs to [0, Q], even if we would take sup {a,: a,<{
Q}, it is a member of a countable set but  is a uncountalbe set. Thus («,) does not

converge to Q.

7. Summary

We can summarize the above results as follows. That is, the relationship between some
of the classes of spaces considered in this paper can be summarized is a diagram as

follows.

Metizable g
" countable compuct

< ' developable"
! N 4 l \!
P regular
l wd 5P developable d ve]lopable (wod k)

wM - spale ¢«———semi
P oo

space"’/ : C-semistratifiable 1 - countable

l
L L wd-sp

wd -
Fréchet
q - spaces _— ——<cf - semistratifiable 4 Fréchet
_,7\ i rcgular
#G¥-diagonal i wd-sp
) g - spate & « — space_’
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