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Abstract

In this paper cs-semidevelopable spaces are defined and shown to be the same as the
semimetrizable spaces. Strongly cs-semidevelopable space are defined in a natural way
and proved to coincide with an important class of semi-metric space, namely those in
which “Cauchy sequence suffice”. These space are shown to possess as few other interes-
ting properties. Probably the most significant of these are that a space X is a cf-
semistratifisble wd-space if and only of it is cs-semidevelopable and that the image of a

cs~semidevelopable space under a closed continuous pseudo open is cs—-semidevelopable.
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1. Cs-semidevelopable spaces

Definition 1.1. (D,). A development for a space X is a sequence
4 = {g.|n=N}
of open covers of X such that {st(x, g.)|#=N} is a local base atx, for each x&=X. A
space is developable if and only if there exists a development for the space,

Definition 1.2. Let 4 = {g.|#=N} be a sequence of (not necessarily open) convers of
space X,

(D2). 4 is a semidevelopment for X if and only if, for each x=X, {st(x, ga)InE=EN} is
a local system of neighborhoods at x.

(D). A semidevelopment of X is a strong-semidevelopment if and only if for each
MCX and x<M there exists a  descending sequence {G.|#=N} such that x&G.=g, and
GaN M.

(Ds) A semidevelopment 4 for X is a point-finite semidevelopment if and only if for
each ¥=X and for each positive integer 7 x is contained in only a finite number of sets
in g,.

(Ds) A semidevelopment 4 for X is a cs-semidevelopment if and only if for each conv-
ergent sequence x,—x and for each open subset U containing x=X, there is a positive
integer % such that xEst(x, g,)CU and (%,) is eventually in st (x, g).

A space is called semidevelopable if and only if ther exists a semidevelopment for X.
Similarly, X is called strongly (and/or point finite) semidevelopable if and only if there
exists a strong (and/or point-finite) semidevelopment for X

Finally, a space X is called cs-semidevelopable if and only if and only if there exists a
cs-semidevelopment for X. Similarly that X is cailed strongly (and/or point-finite) cs-
semidevelopable if and only if there exists a strong (and/or point-finite) cs-semidevelop-
ment for X.

Proposition 1.3. In order that a sequence Ad={g.|nEN} of cover of a space X be a cs-
semidevelopment it is necessary and sufficient that for each MCX and x& A1 there exists
a sequence {G.|#EN} such that x&G.Sg, and G.\M+4¢
Proof: Straightforward from Definition 1.2.

For late use, we note that every (point-finite and/or strongly)cs-semidevelopable space

has a (point-finite and/or strong) cs-semidevelopment {g.|#&N}having the property that
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On Cs-Semidevelopable Spaces 3

gn1<gn for each positive integer »&N. Hence, whenever the existence of a cs-semide-
velopment is assumed in a theorem. We may assume that it has the property mentioned
above. cs-semidelopments having this property shall be called refining cs-semidevelopments.

Definition 1.4. A metric on a space X is a function d:

XX X-—R (real numbers) satisfying the following conditions:

For each x, vy, 2&X and ¢#+MCX

(1) d{x,x) =0

(2) d(x 9)>0 if x#y

(3) d(x, y) =d(y x)

@) d(x 2)=d(x, y)+d(3, 2)

(5) x=M if and only if d(x, M) = inf {d(x,m)|m&EM} =0

Definition 1.5. A semi-metric on a space X is a function d: XX X—R satisfying condi-
tions (1), (2), (3) and (5) above By. a (semi-) metric space we mean a space X together
with a specific (semi-) metric on X, In this paper, whenever the (semi-) metric is not
specified it will be assumed to be denoted by the letter “d”, the sphere about the point
x of radius “s” will be denoted by S(x:e). Note that spheres need not be open that x&
Int S(x:e) if e>0.

1t should be noted that in most of our theorem the 7, property is assumed. This is
usually done to insure that a cs-semidevelopable space satisfies (2) in the previous defini-
tion which is satisfied in a semi-metric spaces.

Definition 1.6. Let (X,d) be a semi-metric space. A sequence {%,|#&N} in X is a
Cauchy sequence if and only if for each >0 there exists an integer Ny such that d(Xny Xm)
‘e whenever m, 7n>Ny.

Note that because of the lack the triangle inequality not all convergent sequence in ‘a

semimetric space are necessarily Cauchy sequences.
2. Theorems for Cs-semidevelopable spaces

Theorem 2.1. A space X is semi-metrizable if and only if it is a cs-semidevelopable
space.

Proof: Let 4= {g.|#=N} be a refining cs-semidevelopment for the cs-semidevel-
opable space where, without loss of generality, g1={X}. For x, y&X, let n(x,y) be the
smallest integer » such that there is n, element of g, containing both x and y. If no such
integer exists let n(x, y)=oo.

Define d: XX X—R as follows. For x, y&X, let d(x,y) = 27"*¥, where 2=0. Then
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clearly, for every x, y=X, d(x,x) =0 and d(x,y) = d(y, x), Also if x+y, then, since X
satisfies (Ds) in the previous Definition 1.2., there is an open set U containing one of
the points, say x but not the other. Then there is an integer » such that x&st(x,gn)C
U. Then y&U implies y&st(x, g,) which implies y&st(x, g:)for each 7=#n. It follows that
'n(x, ¥)=n and hence d (x,y)=2">0.

Now note that S(x:27")=st(x, g,) for each ¥*&X and each integer ». For y&S(x:27") if
and only if d(x, y)<2™" if and only if #(x, y)>>» if and only if there exists G&g, such
that x, y&G if and only if y&si(x, g.). Now let MCX. Then X&M if and only if st(x,
&»)(\M=¢ for each integer z if and only if S(x:2*)(\M+¢ for each integer » if and
only if d(x, M)=0 Hence, d is a semi-metric on X.

Conversely, assume that d is a semi-metric on X. For each positive integer »,let g. be

the collection of all sets of diameter less than 1/%#. Then for each #, S(x: 1/n#) = St(x, g,).
For let »&S(x:1/#). Then G = {x,}Eg, implies yEst(x,g,). On the other hand,
let y=st(x,g,). Then there is GEg, such that x, =G, and therefore, d(x,y)<diam G
<1/n thus, y=S(x:1/n).

Now let U be an open set containing the point x. Then there is an integer » such that
2& Int S(x:1/7)CS(x:1/n)CS(x, 1/n)C U.  Therefore, x2& Int si(x, g.)Cst(x, g,,)Cst
(%45 g2)CU and {x,) is eventually in st(x,g.). Hence {g:1#EN} is a cs-semidevelopment
for X. v

Corollary 2.2. Every cs-semidevelopable space is 7.

Proof: Since every cs-semidevelopable space implies 7, semi-developable and moreover
To semidevelopable spaces succeed 7i-space.

Theorem 2.3. In a cs-semidevelopable space the following conditions are equivalent:

(1) For each MCX and each &M, there exists a descending sequence of sets {Ga.|n
€N} of arbitrarily small diameters such that for each #, x&=G, and *&G.NU-+ 6.

(2} For each MCXand each x&M, ther existsa Cauchy sequence in M converging to x.

(3) Every convergent sequence has a Cauchy subsequence.

Proof: Let & be a semi-metric on X since every cs-semidevelopable space implies a semi-
metric space.

(1) implies (3). Let S={x.|#&=N} be a sequence in X converging to the point 2a&X. It
xp,=x for infinitely many #, then clearly we can define a Cauchy subsequenc of S.

Otherwise let M= {x,|#E=N}\{x}. Then x&M implies, by (1), that there is a descen-
ding sequence of sets {G.|#&=N} of arbitrarily small diameters such that for each 7,
*&EG, and G.\M+¢. We now define a subsequence of {x,|7#=N} inductively. Choose
X»;&=G1 [1M. Suppose xn; has been chosen for each /=1,2,-, 41, such that £, &=G; M
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On Cs-Semidevelopable Spaces 5
and #; >n;.;. Now observe that G,(\M is infinite.
For suppose not: say Gi(\M = {a:,+-»a,}. Then there exists #,>K such that diam G,,O
<min {d(x,a;)|i = 1,2, m}.Clearly, @Gy, for each i = 1,2, ---m. But then

MNG( CMNGy = {ai, ---» an} implies M\Gpy= ¢» which is a contradiction.

Hence we can choose x,,lc &GyNM such that 7, >m.,. Thus we have defined a subseq-
uence {x,,‘ |k=N} of S which is Cauchy. For let €>0 be given. Then there is an integer
N, such that diam GNO <e.For i, j=N,, we then have X EG;CGNOand x,,j EG,CGN;]

Thus d(xni, x,,j ) = diam GNo <e.

(3) implies (2): Assume MCX and & M. Since X is first countable there is a sequence
{xx|#&N} in M which converges to x. By (3), this sequence has a Cauchy subsequence
{x,,kaEN}. Then {x,,k[/aEN} is a Cauchy sequence in M converging to «.

(2) implies (1): Let MCX and assume =M. Then, by (2), there is a Cauchy sequence
{x.|#&=N} in M which converges to x. For each » let G,= {x:|7=»} U {x}. Then {G.|#=N}
is a descending sequence of sets of arbitrarily smally small diameters such that for each
n &G, and G.(\M=+£é.

Definition 2.4. A space X is strongly semi-metrizable if and only if a semi-metric
satisfying any one of the conditions of the previous theorem can be realized on X.

Such a semi-metric is called a strong semi-metric.

Theorem 2.5. A space X is strongly semi-metrizable if and only if it is a strongly cs-
semidevelopable space.

Proof: Let d be a strong semi-metric for X then, by Theorem 2,3 d satisfies condition
(I). Now consider the cs-semidevelopment defined in Theorem 2.1. By the definition of
4, and the fact that 4 satisfies the condition (1), it follows immediately that 4, is a
strong cs-semidevelopment.

Conversely, let 4= {g.|#=N} be a refining strong cs-semidevelopment for X. Let d,
be the semi-metric on X as defined in Theorem 2.1 Observe that with this semi-metric,
diam G=2"" for each G&g, and »&=N. Thus it follows the definition of a strong semi-
developmetnt that d.,-satisfies condition (1) of the previous theorem and hence all of the
conditions.

Definition 2.6. A space X as a wd-space if and only if there is a sequence {g.|#=N}
of open cover of X such that, for each ¥&X, if x,&st(x, g,) for #=N then the sequence
{x») has a cluster point. Such a sequence of open covers is called a wd-sequence for X.

Theorem 2.7. A space X is a cf-semistratifiable wd-space if and only if it is cs—semid—
evelopable.
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Proof: Let F be a cf-semistratification for a space X, and let 4 = {g.|#=N} is a wd-
sequence for the space X. We can take a si(x, g.) such that st(x, g.)CA.CF(k U),
where A, is an element of any filterbase in X.

Since from definition of filterbase, g.,1 is a open refinement of g, for all . Thus {sf (x,
Z2)|#E=N} is a bocal system of neighbor hood at x, therefore {g.|#&=N} is a semidevelo-
pment for X and moreover, there is an convergent sequence {x,) is the space X since X
is a wd-space, there is a positive 2N such that xEsi(x, g.) and x.&st(x, g.)CU, for
all #&=N. Hence the semidevelopable space implies a cs-semidevelopable space as desired.

Conversely, let {8Z,.|#=N} be an open covers of X, and let ¥={A.|aE=57} be a
convergent filter base for X. For each positive integer », let g, = {G|G = (fjl Hf)ﬂ(_ﬂzl
Au)s HESP, AuS%), then {g.|n=N} is a cs-semidevedopment for );' To sl;ow
that {g.|#E=N} is a wd-sequence with a cf-semistratification for X. We can choose a
neighborhood U(x) of x such that ¥Est(x, g.)CU(x). Since {g.|#=N} is a semidevelop-
ment for X, and choose a sequence {x,y such that for all », x,&si(x,g.), then 2,=U(%)
this implies that {(x,) converges to x since gn.: is an open refinement of g. for all n=N.
Hence there is A.&g» such that x,&A4,Cst(x, g). Suppose the filter base Z/={A«|a=
&7} converging to x has a cluster point p such that ¥#p. Then clearly there is a positive
integer % such that for a neighborhood V of p, V(p)(st(x, gz)=¢. Now for n=k A.Cst
(xy gn)Tst(x, gy) for all a=8, x, BE and so AN V(p)=¢ for all a=S. This const-
racts the fact that p is a cluster point of %. Thus {g.|#&N} is a cf-semistratifiable w4~
space.

Corollary 2.8. Let X be a reqular wAd-space. Then X is an a-space if and only if X is

a cs-semidevelopable space.
3. Mappings

Charles C. Alexander introduced the concept of pseudo map.

Definition 3.1. Let X and Y be topological spaces, Then a surjective map from X onto
Y is pseudo-open if and only if for each &Y and each open neighborhood U of fU(y)
in X, y&Int f(U).

Theorem 3.2. The image of a cs~semidevelpable space a under continuous pseudo-open
map is cs~semidevelopable.

Proof: Let f be a continuous pseudo-open map from a cs-semidevelopable space X onto
a space Y and d={g,|#=N} a cs-semidevelopment for X.

For each open V, containing a point y of ¥ and for all #, we can put f (V) =st(x, gn)-
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On Cs-Semidevelopable Spaces 7
Since 4 is a cs-development for X and f is continuos, let U be any open set in X
including f™(V,), then there is an convergent sequence {x,> converging a point
x belonging to f () in U, where {y,> converges to » in Y. On the other hand, by
Definition 1.2. there exists a #&M such that st(x, £.) is contained in for all #>#, and
{x,) is eventually in st(x, g,,o ). that is, y&f(st(x, g.))Clnt F(st(x, g,,o )) and therefore

g» is contained Int f(st(x,gx o)) for all 7z>n,.
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