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Overfitting Probabilities of Model Selection Criteria

C. K. Park
Abstract

Probabilities of overfitting for model selection criteria in regression are derived for
several different situations. First, one candidate model with one extra variable is
compared to the current model. This is expanded to m candidate models. We
assume that these comparisons are independent and discuss upper bounds for
overfitting probabilities. We found the overfitting probabilities of AIC, AICe, SIC,
SICc, and HQ on one extra variable case and multiple extra variable case.

1. Introduction

We introduce the forms of model selection criteria and find the probabilities of
overfitting. We then expand the probabilities of overfitting to the multiple
candidate model case where none of the additional variables are important to the
model. This is similar to a repeated testing problem where all null hypotheses are
true. The distribution of SSE(Sum of Square of Errors) and the distribution for
the difference in SSE between two nested models are discussed. The probability
that a model selection criterion is overfitted by one variable can be written as an
F-test. By assuming independence in the F-tests, upper bounds for probabilities of
overfitting can be easily computed. Probabilities of overfitting are independent
across orders due to variables entering the model on the basis of their order

statistics. We begin with a discussion of the orthogonal regression model.
2. Orthogonal regression model

Let the true model orthogonal regression model be
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Y = X.fB.+e., (1)
where &, ~ N(0,d%1,), X, is the #nxk, design matrix with &, = rank(X.,), ¥
is an #x]1 vector of observations, , B. is a &,x1 vector of unknown
parameters, and &, 1S an #zX] vector of errors. The candidate orthogonal
regression model is

Y = XB+e, 2)
where & ~ M0,dI,) and k= rank(X). Without loss of generality, we assume
that the design matrices X,=(1,x,", %) and X=(l,x, ", 2, )satisfy
X.X.=nlp,and X X=wul, , respectively, where xi=(xj 5, %) . In
addition, we define underfitting as k& < & (X € X,) and overfitting as
k> ko (X, CX).

Based on candidate model (2), the least estimator of . 8 is
B=(XX)"'X'Y = XY/n, where Y={y;,,v,)", and the resulting sum
of squares of errors is

SSE=(r-P'(v-1- Z-Lx, v, @3)
where X represents the jth variable included in the model. The unbiased and
maximum likelihood estimates of o are si=SSE,/(n—£k) and o.=SSE,/n,
respectively.

One consequence of orthogonality is that to compare all subsets of the available
candidate variables for orthogonal regression, one only needs to compute SSE for
all one variable models. In this case, when the jth variable X; is added to the
candidate model, the variable count increases by one and the SSE decreases by
(X;V)*/n. The best one wvariable model is that for  which
(Y=D)(Y-D)— (X" n is the smallest (or alternatively, that which consists
of the variable with the largest (X;Y)?/n). Without loss of generality, in the

discussions that follow we assume that candidate variables have been sorted in
this way.

The variable with the largest (X,'-YJZ/ 7 are entered into the model first. QOrder
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k = 1 refers to the intercept only model. kK = 2 represents the best 1-variable
model in the sense that this model has the smallest SSE for all 1-variable models.
The k = 2 model contains the variable with largest (X;Y)?/n. In general, the
order k model refers to the k-1 variable model with the smallest SSE and

containing variables with the largest (X;Y)%/n. Order K represents the order of

the model with all X; include.

The (X}Y)Z/ n are independent (possibly non-central) x? random variables.
Redﬁction in SSE has a distribution based on the order statistics of independent
random variables. However, they may have a central or non-central distribution.
In the simplest case, we have independent identically distributed order statistics.
Typically, some of the X; are important (yielding non-central 7?) and we have
independent but not identically distributed.

Consider the underfit model Y= Xy8,;+ €., where X, has been omitted from

the model. Underfit models tend to be too simplistic and make poor predictions. B
is unbiased for £ but s% is biased high for . The overfit candidate model is

Y= X80+ Xi8s;+ X382+ &, where X,=(X;:!X,) and this model contains

the extra variables in X3. The model is needlessly complex. Both ? and s? are

unbiased. However, when k, the number of parameters including the intercept, is
close to the sample size n, we can get biased estimates. The overfit model can
also make poor predictions, which is unnecessarily complex. The controlling of
underfitting and overfitting is an important rule for finding the best model in

regression.
3. Review of model selection criteria

NOW’, we review some common efficient criteria. Akaike(1973) showed that AIC
is asymptotically unbiased for the Kullback-Leibler information (Kullback and

Leibler, 1951) up to a constant. AIC= nlog( ) +2(k+ 1)+ nlog(27)+ n ; the last
two terms are Tnot important for model selection, so we can ignore them.

Simplifying and scaling by n, we get
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AIC=]og(é?,e)+~l(kT+L)-. (4)

The model which minimizes AIC is considered to be closest to the true model
However, AIC tends to be overfitted in small samples (Nishii, 1984 ; Hurvich and
Tsai, 1989). Hurvich and Tsai (1989) attained the bias-corrected, in terms of
selected order, version of AIC. AICc estimates the expectation of K-L and
performs better than AIC in small samples.

AlCc is a better criterion than AIC to find the true model in small samples.
However, AICc is asymptotically equivalent to AIC in large samples. Hurvich and
Tsai modified AIC to provide an exactly unbiased estimator for the expected K-L
information, assuming that the errors have a normal

AlCe= log(gi) + 7%;%2‘ (5)

It can be shown that
AlCc= AlC+ -2kt D(kt2) |
n—k—2

When k increases to n-2, the second term of above equation goes to a plus
infinity. AICc is AIC plus an additional penalty term.

SIC(BIC) (Schwarz, 1978 ; Akaike, 1978) can be overfitted in small samples
due to the linear (in k) penalty function. The equation of SIC is

SIC= log(e}) +-102 Gk ®
In large samples, the penalty term o nn k is much larger than the 2(k+1}

penalty term in AIC. This large penalty function prevents overfitting in large
samples. ,

HQ (Hannan and Quinn, 1979) is a strongly consistent estimation procedure
based on the law of the iterated logarithm. The equation of HQ is

HQ=log () + 2lozloa(nk )

HQ behaves more like the efficient model selection AIC: When the sample size is
small, the penalty function of HQ is similar to that of AIC. For example,
loglog(100) = 1527, loglog(1000) = 1.933, and loglog(10000) = 2.220. The loglog(n)
term represents the ratio of the HQ penalty function to the AIC penalty function.
Indeed for n = 200000, loglog(200000) is 2.502, and the penalty function of HQ is
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only approximately 2.5 times larger than that of AIC.
The last criterion we consider is SICc (McQuarrie, 1999). SICc can be derived
by using the relationship between AIC and AICc. The penalty function of SICc is

the penalty function of SIC scaled by 7:’—/:—_—2- . SICc is defined as

SICc= log(%)Jr—;zl-Q_g%_l’g—. 8

4, Probabilities of overfitting

We are now examining probabilities of overfitting for these criteria. We denote
the reduced model k£ and the full model by k+1. We begin with the one candidate
model case only and compare the true model to this one candidate model. Suppose
that the true model is k, and add only one variable to the true model. We will
find the probability of overfitting of this situation (add one variable).

AIC : AIC overfits if AIC,+<AIC,.

PAIC, 1 <AICY =

P{Fy i1 n= k=D exp( £ ) -1)} ©)
AlICc @ AlCc overfits if AIC,, (AIC,
PlAIC,, CAICG) =

AFunse > (= k=0 o0 g2 gy )~ 1)) 10

SIC : SIC overtfits if SIC;4,<SIC,.
P{SIC,4+1<SICy}

P{FL,,_,@_I > (n—k—l)(exp('hg(ﬂ)')~l)}. (1D

”

SICc : SICc overfits if SICc,, <SIC, .

P(SIC,, <SICc} =
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L eI Gl & = =Rt 12

HQ : HQ overfits if HQL..H(HQ}J.
P{HQ:+ 1 {HQY =

A Fipeim (n—k—l)(exp(?lggl—;giﬂl) -1)}. (13)

We see that these probabilities all follow the F distribution and will be referred to
as F-tests.

Table 1 presents prebabilities using equations (9)-(13) for preferring order k+1
over the current order k. In table 1, n is the sample size, &= Rank(X), and K is
the number of total variables including the intercept. When the sample size
increases, the probabilities of overfitting for AIC, SIC, SIiCe¢, and HQ tend to
decrease, probabilities of overfitting for AICc increase. When K increases, there is
no change in the probabilities in Table 1. When & increases, probabilities of
overfitting of AIC, SIC, and HQ increase due to linear penalty functions of their
equations. When k increases, probabilities of overfitting of AICc and SICc decrease
due to dividing by n-k-2 in their penalty functions. Probabilities of overfitting for
SICc are smaller than those of the other model selection criteria. We say SICc has
the strongest penalty function.

Consider the case where more than one candidate model is considered, which is
a multiple testing situation. Orthogonal regression vields independent chi-squares,
and we overfit if any of the overfit candidate models are selected. However, the
F-tests are not independent as shown below. Table 2 presents probabilities
assuming Lid. F-tests. We will compare these probabilities to those where we
include the dependence of the F-tests. Note that the probabilities in Table 2 are
much easier to compute. K denote the maximum possible model order (total
number of variables plus the intercept) and k% dencte the model order. There are
K-k 1-additional-variable models toc compare with the current model. Let o be the
probabilities of selecting one additional variable when only the current model is
compared to one candidate model containing one additional variable. Equations
(9)-(13) represent a probabilities. Assuming independence for illustration purpose,
the probability of favoring an order k+1 model over the. current order k model is
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1—(1—a)* *. Table 2 presents these probabilities.

In Table 2, we can see that the probability of overfitting increases as K
increases. With more candidate models to choose from, the higher the chance of
overfitting. As in Table 1, model selection criteria with stronger penalty functions
have smaller probability of overfitting. Probabilities for K = 6 and k = 5 are the
same as in Table 1 since there is only one candidate model to compare to the
current model. Although the variables are orthogonal, the F-tests are not
independent as we show below. However, the patterns in overfitting probabilities
are the same as including the dependence. Model selection criteria with weaker
penalty functions overfits with higher probability.

6. Conclusion and Further Research

Usual comparisons of one reduced vs. one full model describe the basic behavior
of model selection criterton. Criteria with stronger penalty functions have smaller
probabilities of overfitting. Assuming independence for these comparisons can lead
to overestimating the probability of overfitting due to the variables entering into
the model according to their order statistics.

We now think about comparisons of one candidate model with one extra
variable and expansion of m candidate models when these comparisons are not
independent. Probabilities will be computed using the dependence of F distributions
and F distributions based on order statistics of independent Chi-squares.
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Table 1. Single candidate model case.

K=6 K=11
n k | AIC AICc SIC SICc HQ AIC AICc SIC SICc HQ
10 1 10220 0072 018 0069 0.263 - - - - -
10 3 10293 0025 0259 0.024 0337 - - - - -
10 5 10400 0001 0366 0.001 0442 - - - - -
20 1 |018 0118 0.105 0.062 0.166 0.186 0118 0105 0.062 0.166
20 3 10213 0094 0127 0.046 0.192 0213 0094 0127 0.046 0.192
20 5 10245 0070 0155 0.031 0.223 0245 0.070 0.155 0031 0.223
50 1 (0168 0142 0054 0042 0.107 0.168 0.142 0.054 0042 0107
50 3 10177 0133 0039 0038 0.115 0.177 0.133 0059 0.038 0.115
50 5 0187 0124 0065 0.033 0.123 0.187 0124 0065 0033 0123
100 1 10163 0150 0.034 0.030 0.084 0.163 0.150 0.034 0030 0.084
100 3 10167 0146 0036 0.028 0.088 0167 0.146 0.036 0.028 0.083
100 5 0172 0141 0038 0.026 0.091 0172 0.141 0.038 0.026 0.091
10000y 1 0157 0157 0002 0.002 0035 0157 0.157 0002 0.002 0.035
10000 3 {0157 0157 0002 0.002 0.035 0157 0.157 0.002 0.002 0.035
10000 S 10157 0157 0002 0.002 0.035 0157 0157 0002 0.002 0035

Table 2. Multiple candidate models case, with independence.

K-=6 K=11
” k | AIC AICc SIC SICc HQ AIC AICc SIC SICc HQ
100 1 |0711 0313 0647 0301 0.782 - - - - -
10| 3 |0647 0074 0593 0.069 0.708 - ~ - - -
100 5 0.400 0.001 0.366 0.001 0442 - - - - -
200 1 0642 0466 0427 0.275 0596 0843 0676 0633 0440 0.804
200 3 |0513 025 0336 0132 0473 0813 0498 0615 0280 0.775
200 5 |0245 0070 0.155 0.031 0223 0.755 0303 0569 0.144 0.717
50 1 0602 0536 0.242 0.194 0.433 0809 0749 0393 0.322 0640
50| 3 0443 0349 0167 0109 0.307 0.745 0.633 0348 0.236 0575
50 5 0.187 0.124 0.065 0.033 0.123 0645 0485 0.286 0.156 0.482
100f 1 {0588 0556 0159 0.140 0.357 0.798 0.768 0.268 0.238 0.548
100 3 10422 0376 0104 0082 0241 0.722 0668 0226 0.180 0474
100 5 0172 0.141 0.038 0.026 0.091 0610 0533 0176 0.125 0.380
10000] 1 0575 0575 0012 0012 0.164 0.78 0786 0.022 0.021 0275
10000 3 |0.402 0401 0.007 0.007 0.102 0698 0.698 0.017 0017 0222
10000 5 0.157 0157 0.002 0.002 0.035 0575 0575 0.012 0.012 0.164
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