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ABSTRACT

In conventional design practice, the tethers of tensioned buoyant platforms
are operated at a sufficiently high pre-tension so as not to go slack in
combinations of extreme environmental conditions — such as a 100 year
return period sea state combined with low tide and high platform variable
load. This high pre-tension imposes a significant payload and structural
weight penalty and is a motivation Jor investigation of TBP tether perfor-
mance at low tensions.

TPB tethers operated at lower mean tension would be prone to short
duration tension losses in extreme design case conditions. This is likely to
remain true despite the possibility of lower anchor connectors being able to
alleviate this tension loss by dropping down from their restraints. This
paper presents the results of an investigation into tether behaviour under
Iransient tension loss by solving the governing equation of lateral tether
motions “both analytically and numerically. The resultant amplification
Junctions and preferred modes of tether deformation are used Sor an
example tether to obtain criteria for allowable tension loss and duration
time to first attainment of maximum stress in the tether material.

It is shown that tensioii loss lasting a few seconds during the passage of
an extreme wave can be designed to be acceptable Sor typical tether struc-
tures.
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1 INTRODUCTION

The technology of tensioned buoyant platforms (TBPs) is reaching a
phase where cost reduction by refinement of platform and tether designs is
growing in priority. TBPs have conventionally been designed with really
quite substantial margins of tether pre-tension so as not to lose all tensions
under combined occurrences of extreme waves, low tide levels and high
platform variable weight. These high margins lead to penalties in struc-
tural weight and payload growth which could be alleviated by considering
the design and operation of TBPs at lower tether tensions.

Previous work on TBPs! has shown that as pre-tension is reduced, time-
varying axial forces play an important role in increasing lateral motions of
the tethers but that this lateral motion is still limited by quadratic damp-
ing in water. In these cases of reduced tension, acceptable platform and
tether motions are achievable in normal and moderately severe operating
conditions. However, during combined occurrences of extreme wave, tide
and variable weight, individual tether tensions will reduce to zero and
become compressive for part of a wave cycle. This transient tension loss
can also be defined as a dynamic pulse buckling phenomenon— the
application of an axial compressive force larger than the static Euler
buckling value for a short period of time.

In dynamic pulse buckling, it is known that a slender column can
survive (with acceptable stress levels), a sudden compressive axial load
much greater than the static Euler load as long as the load duration is
short enough. Pulse buckling has been extensively studied in other bran-
ches of engineering — for example, in the design of aircraft landing struts,
ballistic missiles and shock- or blast-resistant structures. An early
researcher in this field investigated time deflection relationships when an
axial force was very rapidly applied to a nearly straight bar.? Following
this work, the dynamic pulse buckling problem for slender bar-type
structures was extensively studied by many researchers.”® Lindberg and
Florence, in their book of 1987,” presented an integrated treatment of
dynamic pulse buckling including much of the research carried out in the
last two decades. However, all of this work has been carried out for
structures in air with pure axial forcing and no lateral added mass or
quadratic damping effects.

This paper presents an extension of the theory of pulse buckling for the
tethers of TBPs. This is done by developing and analytically solving the
governing equation of tether lateral motion for pulse buckling behaviour.
The solution yields an amplification function and modes of deformation
which are used to obtain an envelope of compressive axial load against
duration to maintain acceptable stress levels in a typical tether.
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2 GOVERNING EQUATION AND SOLUTION

The adopted idealisation is shown in Fig. 1 and the corresponding
governing equation of lateral motion is given as

a%y d'y O’y + y;) dy| dy
(my—i—ma)ﬁ-f—EI@-FPc — +va’5 5 =0 (1)

where ET is flexural rigidity, P, is tension loss, m; is physical mass per unit
length, m, is added mass per unit length, B, is damping coefficient, and Vi
is initial deflection of tendon.

It is noted that dynamic pulse buckling involves very high modes so the
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Fig. 1. Pulse load condition of tether.
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bending stiffriess force is important even for the long cylinder case. The
following parameters are introduced for convenience:

. P, 1 AFE m
k- — ¢ rZ 2 — s 2 — a
E] A my ¢ b+ m

()

where E'is the modulus of elasticity and / is the second moment of area of
the structure with cross-sectional area, A;. Equation (1) becomes

e 3%y oYy kzé)"y_LB.. oy|dy L%y
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In the case where high modes become dominant, it is useful to express
eqn (3) in a non-dimensional form. Instead of the actual structure iength,
¢ is adopted as a characteristic length because the wavelengths of interest
in pulse buckling are very short in comparison to the total length of a
typical TBP tether. Thus, the actual length of the tether has a negligible
influence on the response and for practical purposes even the shortest
feasible TBP tether length would still fall within the range of being very
much larger than pulse buckling wavelengths. Similarly. it is usual to
normalise lateral deflections with respect to the radius of gyration. r of
the structure cross-section. The following non-dimensional variables are
introduced:

w=y/r E=kx t=(k’rchfe B=(B.r)/(m,+m,) (4)

where B=0-5p, Cydy and r = \/IfA, with p,C, and d, denoting sea
water density. drag coefficient and tether outer diameter, respectively.
Equation (3) can be then expressed in a non-dimensional form as

ow| ow _ 8w,
ot| ot 9¢e?

w 9w 9w -
—_— 4 (3
50 "o Tgath )

The boundary conditions are

Py

I w
0&?

For the above boundary conditions, the solution of eqn (5) can be put in
the following form:

=0 at{=0 and ¢=1/(=kL)

W =

w(é, 1) = Zg,,(r)sinmf (6)

n=1

wi(&) = Za,,(t) sinnyé (7)

n=1
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where an axial wave number 7 is introduced by
n=nnfl (®)

and g,, a, are Fourier coefficients for the response deflection and initial
deflection, respectively.
Substituting eqns (6) and (7) into eqn (5) gives

dg,

d’g, s
_— - 1 — 2 = 2
a7 (1 —n°)g, = n%a, (%)

dg.,
dr? ¢

dr

where [sinn¢|sinn¢ = (8/3)m sin n¢ is used and thus

e=28F/3n (10)
The solution of eqn (9) becomes hyperbolic for < 1 and trigonometric
for n> 1. The trigonometric form gives stable motion, that is, the
compressive axial force is less than the Euler buckling load. Thus, only the
hyperbolic form is considered here. For such a condition, eqn (9) becomes

dg, [dg,!dg,

=071 — 7)o — 2
da T arl g T = m)gn = 7la, (1)

The non-linear damping term makes it difficult to obtain an exact closed-
form solution for eqn (11). An approximate closed-form solution is
obtained in the following form:'

L, 20-9)
Vil =n3) " ea,

&1 = ——L{coshl 1 — 2ea, X V131 —n2? rJ - l}

for 0 <1<

(] —7]:—28(1”) 1 —T’Z

(12)

where [, is the wavelength corresponding to response amplitude g,,;

1 2(1 —7?)
Ly
Vil —n?) €ay
1 a, 1 /3 B 2(1 - 2
gr1(7]~ T) =T T { 77_(I - 7)')T - /Il—% (]3)

ot =
2 (1 —n?)  4e

ca, ?
+2,/0-5 + =
V (r- n‘)}

Equation (11) can also be solved numerically by using the fourth-order
Runge-Kutta method.

for 7>
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When hydrodynamic damping is not considered, i.e. ¢ = 0, the solution
can be given in the following form by putting ¢ = 0 in eqn (12):

gn(n,r)=(—1~‘f—(coshw1 “Pr—) (14)

—1?)
3 PREFERRED MODE OF BUCKLING
The ratio between the Fourier coefficient, a,, of the initial deflection and

the coefficient g, () of the response deflection is called the amplification
function and is expressed as follows:

Ga(0) = £ — - feosh(ry/ T=770) - 1] (1s)
n

The preferred mode, i.e. the most amplified mode, can be obtained by
differentiating the amplification function with regard to wave number and
setting the result to zero. It should be said that this is done for ¢ = 0, that
is, without viscous damping. It is assumed that hydrodvnamic damping
does not affect the preferred mode of buckling since the preferred mode is
initiated before the hydrodynamic damping forces come into effect. Using
this argument, the preferred mode of buckling can be obtained by finding
1 which satisfies the following condition:

ﬁ = (16)
d(n?)
Then the resulting preferred mode is taken as
Ner = 1/V2 (17)

or

1 T
H., _ﬁ ;—-——2

for a better estimate. This solution is obtained from eqn (16) and is also a
turning point of eqn (15). The corresponding wavelength is found from

2 (18)

S

¢, =2n or ¢,=2m

by replacing 7, with 7,,.
The corresponding wave length in dimensional units is obtained from
eqn (4) as

X, = 8-88/k (19)

1 N0
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4 ESTIMATES OF CRITICAL TIME AND APPLIED FORCE

Imperfections (initial deflections) can be divided into two types: one type
having amplitudes proportional to the radius of gyration of the structure
cross-sectional area, and the other having amplitudes proportional to the
wave length of the buckling. It was shown by Lindberg and Florence’ that
the critical times ., for buckling do not depend strongly upon which type
is assumed. Here, imperfections (initial deflections) having amplitudes
proportional to the radius of gyration of the structure cross-section are
used.
The initial imperfection is assumed as

A, =7r (20)
In a non-dimensional form
a, =7y =0-2r/d, 2n

The criteria for buckling of the structure is taken to be when the bending
stress (03) plus the compressive axial stress (0.) due to P, reaches 67% of
tiie yield stress (0,). ie.

oh + 0. = 0-670, (22)
The bending stress for the column-type structure is

_ Edyk’r 9w
=55

Th (23)

and the radius of gyration of the cylindrical structure cross-section is

[ =

where dy and d; are the outer and inner diameters of the tether, respec-
tively.
Thus, substituting eqns (24) and (2) into eqn (22) yields

. 2EP, 9w 25)
h = - —"_3 PR,
A1+ (d/dy)? 9%
For a preferred mode of buckling. w is given in the following form:
w(¢. 1) = g,(1)sinn,¢& (26)
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Substituting the above equation into eqn (25) and using the modulus cf
the second derivative in eqn (25) gives

o _L(T) (17)

p =
V 1+ (di/dy)

where 7, = 1/v/2 from eqn (17) and 6, = P./ A, are used.
From eqns (22) and (27), the following equation is finally obtained:

1 8p(7) (28)

-1
=l =—— 1|14
H ST i+ gy

8,(17) in the above equation can be obtained numerically or from approx-
imate solutions of eqns (i2) and (13). In the calculation of g,(t). the non-
dimensional initial imperfection a, and damping coefficient ¢ can be found
from cqns (21) and (10). respectively. Equation (28) is plotted in Fig. 2 for
different damping coefficients and shows that the hydrodyamic damping
force does not have a significant influence. Figure 3 is the result of buck-
ling criteria for different initial deflections and denotes the relative
importance of initial deflections. Therefore. for better accuracy of buck-
ling criteria, more research into evaluating initial deflections is needed.
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Fig. 2. Critical time and applied load to first yield for different damping coefficients, ¢.
a, = 0-15.

11T N



Tensioned buoyant platform tether response 551

From these figures, the allowable applied compressive load (P, = o, 4;)
and duration time can be obtained for a slender cylinder subjected to
compressive pulse axial load.

5 CASE STUDY AND CONCLUSIONS

The results of the above analysis are illustrated by a case study applied to
relatively short tethers as used on the UK North Sea Conoco Hutton field
TBP. Table 1 presents the nominal physical data used.

The case study is aimed at identifying an allowable envelope of axial
compressive force against its duration. This would need to be used in
conjunction with the extreme event statistics of tether tensions for the
platform to determine a safe level of reduced mean tether iension. The
resultant allowable envelope is presented in Fig. 4 as a plot of allowable
compressive axial load on the vertical axis against duration in seconds
on ihe horizontal axis. It can be seen that a significant axial load of i
MN can be sustained for a maximum duration of 1 s and that loads of
0-24 MN can be acceptable for durations of over § s. Thus, for typical
periods of high waves of from 14 to 20 s, the compressive load of 0-29
MN can be sustained for a significant proportion of half these wave

periods.
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Fig. 3. Critical time and applied load to first yield for different imperfections. ¢ = 0-02.
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Fig. 4. Relationship between allowable compressive force and duration iime for Hutton
tether.

The results of this work can be compared with those of Brekke and
Gardner® who carried out a numerical simulation for an example TBP to
show that it can survive a momentary tether tension loss without causing
large motions of the surface platform, large bending stresses in the tethers
or significant tension amplification as the tethers undergo retensioning.
Even though they did not provide the magnitude of the ncgative tension,
the results from this work are in qualitative agreement with those presen-
ted by Brekke and Gardner.?

TABLE 1
Nominal Data for Hutton Tether

Length (m) 114-0
Top tension (N} 80 x 10"
Flexural rigidity (N m?) 529 x 10

Outer diameter (m) 0-26
Inner diameter (m) 0-076
Dry mass (kg:m length) 472
Yield stress (MPa) 795

Drag coefficient, 11
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