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1. INTRODUCTION

The moment-generating function of a random variable X is defined as
Mx(#) = E(&"), provided the expectation E( ) exits in an interval |# < h.furthermore,
t]i()nz (d"Mx(t)/dt")=E(XY). We will now show that the mgf also generates

negative moments, provided certain regularity conditions are met. Williams (1941) is
the earlist appearance of this type of result we could find. Analogously, Chao and Str-
awdermans (1972) have used the probability ~ generating function to find the negative
integer moments of X + A > (), where X is a random variable and A a constant ;
see also Kabe (1976) and Schuh (1981) for an application in a branching process

problem.

2. THE RESULTS

Suppose for the moment that X is a positive random variable.

Since x = J._nwe'/"dt(x >0),

BX) = [Txafa) = [ [ o atar(n
L. [ art =" m,, (par

fMX'l(—t)dt.

il
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The interchange of this order of intergration is subject to E (e™"*) being integrable
from t=0 tot=c0 .

Finally, by substituing X' for X, we find
E(X )= L My (—1) dt, Q)

if either integral exists. Performing the integration analytically may not be easy; how-
ever (1) dose give an alternative way of evaluating an inverse moment (perhaps even
numerically).

There are two natural ways to generalize (1) to E(X™") ; one way gives

E(X")= f ) " £ilMx(—t,)dt,---dt2dt1 @

while the second way gives

EG™)=I(n)" [ My (-t at, 3)
Probably the most important extension form (1) is
EQYIX) = | lim (afoty)Mx. v (—t1. 1) dh, @)

if either integral exits, where My y(f,t)=E(e™"™) is the joint mgf of X>0 and
Y. Equation (4) can be very useful, since ratio statistics and equations concering their
bias arise frequently in statistical analyses. For example, Williams(1941) looked at
moments of the ratio of the mean squared successive difference to the squared differ—
ence from a nomal population, using a variant of (4). S-imilarly, Halperin and Gurian
(1971) caculated bias and mean squared error for the usual least squares slope
estimator when both variables are subjet to error.

Now relax the assumption that X be a positive random variable, although the
restriction that F(0+)= F(0) is necessary to avoid degeneracy: define sgn(x) =1 if
220, = —1if x<0 . Then X '=Y/|X| almost surely, where Y =sgn(X). Thus
E(X™') is given by (4), after calculating M\ x y(t;, t;) .

The interpretation of (1) to (4) deserves some comment. These equations are
merely expressing the well-known duality between function space and transfom space.
Negative moments clearly pertain to the behavior of the distribution at the origin,
which in turn suggests something about the behavior of the transform at infinity.
Also, there is the pkesing sysmmetry that whereas positive moments are generated
by successive differentiations of the mgf, negative moments are aconsequence of suces
-sive integrations. The next section expands a little on this.

3. INVERSE MOMENTS AND LAPLACE
AND MELLIN TRNSFORMS
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Suppose ( in the terminology of Abramowitz and Stegun 1965 ) that the original
function is G(#) and the image function is g(s) = ‘Lme—“ t 'G(#)dt . Then in Abram
-owitz and Stegun (1965, p. 1021), for example, we see that if the original function is
t 1 G(d ,its Laplace transform is Lwdx)dx ; that is

f;g(x) = fswe—“t'lc(t)dt.
If we put s=0, and interpret G(#) as the density function of a positive random
variable X with mgf Mx(s) = g(—s), we then have exactly (1). Thus the result is
by no means new, although most statisticians have probably not been aware of it.

The Mellin transform h(z)=L H(x)x* 'dx of the function H(x ) is a function

of the ( complex ) parameter 2. If we interpret H as adensity function of a positive
random variable X, then knowledge of the Mellin transform tells us all moments of
X, positive integer, negative integer, fractional, and so forth. This is hint then that
all moments are probably obtainable from the mgf by generalizing differentiation to fr-
actional diffentitation, including integrating as a special case of negative integer diffe-
rentiation. Thus the ath moment can be obtained from the

ath fractional derivative of the mgf, a € R ( see, e.g., Oldham and Spanier 1974 ).
Indeed, Laue (1980) has considered this idea for characteristic functions ; fractional
derivatives are used for the formulation of new conditions on the existence of positive
real moments of non-nega-tive random variables. We will not pursue this matter here,
since we believe that it detracts from the simplicity and thrust of (1), (2), (3),and (4).

4. EXAMPLE

Example 1. The inverse moment of aX+b is easily found by using (1) :
E((@X+)™) = [ ™ My(~andt

Example 2. Suppose X is gamma distributed with scale parameter a > 0 and
shape parameter A > 0 .
Then
Mx(t) = (1—at)™,
Therefore, from (1),
EX )= A-D7,
provided ( » > 1), and from formulas (2), (3),
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var( X = ¢ 2A-1"tQA-2)7" ,a>2

Example 3. Consider the important problem of estimating the success probability for
a negative binomial distribution. In this familiar situation, we let N denote the random
number of trials required to obtain a fixed number », of successes. Let p be the
probability of a success on any trial. Then

My(D=[pe’ (1—qe")}", o<t —logaq,
where ¢g=1-p. The maximum likelihood estimator p of p is #»/N, whose expectat-
ion is
ﬂp).: VHMI)=V£ ﬁ'/(" —a)'dt ,

using (1). Putting #=1—ge™" and then expanding (1—#)’~' by using the binomial
theorem gives

EP=r-D* (ol ogs— 5 (—1* (771) =",

Example 4. A beta random variable B, with parameters O>0)(u>0) can be
written as B = U/(U+ V), where U, V are independent gamma random variables
with parameters (@ ), (1), and (a ), ( u), respectively ( ¢ > 0 ). Then

Mysy ot B)=1—at))™ (1 —ot; +1,)) ~*

Partial differentiation with respect to #, and integration with respect tot; yields, using
(4), E(b)=A/(A+u) which is a well-known result.

5. CONCLUSION

- Sometimes a solution distribution can only be written in terms of its mgf, the in-
version being too difficult. In particular, the use of mgf's arises when independent
random variables are being added. Although the distribution might be inaccessible (po-
sitive), moments are easily derived from differentiation. This article shows that negati~
ve moments are also hidden in the mgf. Indeed, the most general result we can pre
-sent is for X > 0, Y random variables with joint mgf My y(#,#). Then it can

be easily seen that (1),(3),and(4) are special cases of
E(Y/XH =100 ™ [#7 Jim 0" My (~t,0) | 9t dty

where j=0,1,2, ...,k =12 3, ..., and when either integral exists. The result
has been in the literature in various forms for some time, but it is certainly not well
known.
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