Development of High-Speed MIMO Active Vibration Control System using TMS320C6713DSK

Hyeung-Sik Choi* · Jae-Gwan Her** · Hae-Yong Seo**
*Division of Mechanical system Engineering, National Korea Maritime University, Busan 606-791, Korea
**Graduate school of National Korea Maritime University, Busan 606-791, Korea

ABSTRACT: This paper deals with the development of a very fast MIMO active vibration suppression system of the smart structures. First, we have presented the paper about the new high-speed active control system using the DSP320C6713 microprocessor and a peripheral system composed of a data acquisition system, A/D and D/A converters, piezoelectric (PZT) actuator/sensors, and drivers using PA95. We developed a fast MIMO data processor for a fast control loop. For this input and output channels are expanded by making extended 4 channel module of the MIMO system.

To easily use the active vibration control system, a GUI control algorithm was developed using the simulink of the matlab. Using the developed system, successful experiment results to control vibration of the plate actively is introduced.

KEY WORDS: Active vibration control, DSP(digital signal processing), MIMO

1. 서론

최근 Smart Skin 형태의 압착소자를 이용한 능동 진동 제어 시스템의 설계 및 개발에 대한 관심이 증가하고 있다. 이러한 제어 시스템은 다수의 센서와 액추에이터를 필요로 하여 고성능의 제어기를 적용하는 능동진동제어에 대한 연구가 시작되고 있다.

국내에서도 능동 진동제어 연구로 340x300x0.5[mm] 강철관
의 진동 제어를 위하여 DSP32C30 DSP 프로세서를 사용하여 다양한 입력의 텐서 입력을 갖는 Feedback 제어 알고리즘을 구성하여 제어 연구가 있다[5]. 또한, 270x180x0.6mm의 얇은 판판을 TMS32C30 DSP 프로세서를 이용한 제어시스템에 Filtered-X LMS 제어 알고리즘을 구성하여 제어하고[6], 전망 상부구조의 진동을 저감하기 위해서 DSP330C32-60을 이용하여 위상 제어기를 구성하여 능동 제어한 결과가 있었다[7].

본 연구에서는 기존의 연구에 사용하였던 PA67의 문제점을 보완해서 진동 제거 기능 및 노이즈에 대한 성능을 가진 PA66을 사용하여 4채널 MIMO 시스템을 갖춘 능동진동제어 시스템을 개발하였다. DSP 프로세서 중에서 가장 적합한 TMS320C6713DSK 프로세서 기반의 제어시스템을 이용한 제어경험이 기반으로 TMS320C671의 Matlab Simulink 연구 AD/DA interface에 대한 최적화된 Simulink 환경을 구현하고 알고리즘을 개발하였고, 제어시스템의 허드웨어 구현에 대한 설계 및 실험을 통하여 시스템의 안정성을 확인하고 이를 적용하여 폐관 구조물의 능동진동 제어 실험을 수행한 연구결과를 소개하였다.

여기서 s는 strain, s는 유일의 역수인 탄성 compliance, T는 응력, d는 압력계측치, E는 단위길이 단 전압을 나타내는 전도장도, D는 전선밀도, f는 표면전하밀도이며, c는 유전율을 나타낸다. e_T, e_f는 각각 전계가 일정하거나 ‘0’일 때의 용량이 일정하거나 ‘0’일 때의 값을 의미한다. 식에서

\[T=0, E=0 \]

의 경우에는 다음과 같이 표현된다.

\[T=0\text{인 경우: } S=dE, D=\epsilon T \]
\[E=0\text{인 경우: } S=sT, D=dT \]

측 전계에 비례한 strain, 응력에 비례한 전계가 얻어지는 식으로 표현된다. 이것은 정적 응력과 정전력의 가한 경우의 표현이다. 그러나 실제로 전장전의 진동이 있을 때에는 일반적으로 $T=0$, 혹은 $E=0$이기 때문에 위의 식의 해석은 단순 표현된다.

2.2 사용된 MFC 작동기의 구조

본 연구는 NASA Langley 연구소에서 개발하였고, Smart Material 사에서 상용화하여 유동되고 있는 MFC(Moisture Fiber Composite) 작동기를 적용하여 구성하였다. MFC 작동기는 양면 소자인 세라믹 파이버를 기초로 하여 기존의 소자 구조를 타입 타입 형상의 구조물에도 적용이 용이하며, d_{ij}의 상수를 사용하여 큰 작용 효율을 낼 수 있고, 이방성 구조가 가능하다. MFC 작동기는 각각의 압력 파이버의 전극을 정리하고, 점진적 전극(interdigitated electrode)을 사용하였으며, 파이버와 파이버 사이, 파이버와 전극 사이에는 에폭시를 쌓아하여 서로 접촉하는 것과 동시에 파이버를 보호할 수 있도록 하였다. Fig. 1에서 MFC 작동기의 기본 구성도를 나타내었다.

![Fig. 1 Structure of MFC actuator](image)

3. 제어 시스템의 설계

초고속 프로세서인 TMS320C671DSK를 이용하여 능동 진동 제어시스템의 성능을 시험하기 위하여 Fig. 2와 같이 구조물을 발견하는 진동을 능동적으로 제어하기 위한 시스템을 목
표로 연구를 수행하였다.

3.1 TMS320OC6713DSK의 특성
포트계 TMS320OC6713DSK는 PLL을 이용한 clock rate의 중복으로 최대 1800MIPS의 성능을 갖고 있다. 이는 기존의 atmega128(16MIPS)이나 TSM320C32(30MIPS)계열의 DSP와 비교하여 60~112배에 달하는 성능이다. 또한 RISC 구조의 32bit Floating point processor이며, 32bit의 EMIF와 EDMA, 16pin의 GPIO를 지원하여 주변장치의 제어 및 응용이 가능하다. 그리고 USBhost interface를 이용한 엘리드 JTAG emulator가 채택되어 있어 전용 프로그래밍 Code Composer studio를 이용한 프로그래밍 및 시뮬레이션이 가능하다.

진동 제어기의 다양한 알고리즘 적용에 있어서 이러한 고성능의 제어기를 사용하는 것은 MIMO(Multi Input Multi Output)시스템의 구현에 있어서 알고리즘 적용에 따른 필드가 적다는 장점을 제공한다. 또한, AD/DA(Analog to Digital/Digital to Analog)변환으로 인한 시간지연을 최소화 시켜준다. Fig. 3은 시스템에 사용한 TMS320OC6713DSK starter kit이다.

3.2 A/D, D/A 신호 변환 장치 구성
고성능의 시스템을 구성하기 위하여 본 연구에서는 16bit의 고분해능도 10μs의 고속의 샘플링 속도를 갖춘 AD 및 DA 변환 회로인 ADS7865와 DAC712를 이용하여 외부를 구성하였 다.

Fig. 4는 1대의 고속 포트계에서 여러 진동 모드를 제어할 수 있도록 4개의 AD/DA 소자를 동시에 적용하여 신호를 실시간 처리할 수 있는 4 채널의 A/D 및 D/A 신호처리 보드의 제작 사항이다.

3.3 PA95를 이용한 중복회로의 구성
PA95는 ±50~300V의 전압 공급을 필요로 하며, 30V/μs의 slew rate를 가진 교전압 · 교성능의 연산 중복기이다.

Fig. 5의 회로를 사용하여 앰프를 구성하였으며, 여기서 다이오드 Di, D2는 입력단의 파전압 방지를 위한 보호 회로이다. 그리고 RCL_A는 외부 저항에 의한 전류 제한용 소자로, 20Ω을 사용하여 30mA로 전류를 제한하였다. 20배의 반전 중복을 사용하였으며, 실제 성능 테스트에서 Fig. 6과 같이 20배의 중복률을 나타내는 것을 확인할 수 있었다. 교전압 앰프의 경우 따른 응답성을 위해서 slew rate 특성에 중요하다. Fig. 7의 측정 결과에서 27.6V/μs의 측정값으로 데이터 시트상의 30V/μs의 사인을 성능을 확인할 수 있었다.
3.4 제어부의 성능시험

実験적인 전동 발생에 대한 설립 이전에 함수 발생기를 이용하여 AD/DA 인터페이스로 통합한 전환 시스템을 테스트 하였다. Fig. 8의 오실로스코프 판상의 (프로브×1) 번은 함수 발생기의 정밀과 일치를 나타내고, 제어부 (TMS320C6713DSK) 및 고전압 중폭기를 통한 신호는 알고리즘의 적용에 따라 (프로브×10) 번과 같은 20배의 반전 중폭 신호가 출력되는 것을 통해 성능을 확인하였다.

4. 제어 알고리즘

4.1 PPF 제어 알고리즘

다음의 PPF 제어 알고리즘을 적용하였다.

![Block diagram of PPF algorithm](image)

다지털 PPF 제어기의 응용선도는 Fig. 9와 같이 나타낼 수 있으며, 파드릭의 전달함수 \(H(s) \)는 다음과 같이 표현할 수 있다.

\[
H(s) = \frac{\omega_f}{s^2 + 2\zeta\omega_fs + \omega_f^2} \tag{4}
\]

여기서 \(\omega_f \)는 각각 PPF 보상회로의 필터 주파수와 감쇠인자이다. 일반적으로 PPF 제어기는 \(\omega_f \)를 대상 구조물의 고유전동수와 일치시킴으로써 높은 전동 제어를 달성한다. 식 (4)을 디지털 제어기로 전환하기 위해서 다음과 같은 Bilinear 변환을 사용한다.

\[
s = \frac{2}{T_s} \frac{z-1}{z+1} \tag{5}
\]

여기서 \(T_s \)는 디지털 제어기의 Sampling 시간을 나타내며 불안정을 일으키지 않도록 측정하여 빠르다고 한다. 식 (5)를 식 (4)에 대입하면 다음과 같은 식이 유도된다.

\[
H(z) = \frac{b_0z^2 + b_1z + b_0}{z^2 + a_1z + a_0} \tag{6}
\]

여기서,

\[
a_0 = (4/T_s - 4\zeta\omega_f/T_s + \omega_f^2)/\Delta
\]
\[
a_1 = (2\omega_f^2 - 8/T_s^2)/\Delta
\]
\[
b_0 = \omega_f^2/\Delta
\]
\[
b_1 = 2\omega_f^2/\Delta
\]
\[
b_2 = \omega_f^2/\Delta
\]
\[
\Delta = 4/T_s^2 + 4\zeta\omega_f/T_s + \omega_f^2
\]

식 (6)을 이산화된 형태로 표현하면 다음과 같다.

\[
u_k = -a_1u_{k-1} - a_0u_{k-2} + b_2(y_k + 2y_{k-1} + y_{k-2}) \tag{7}
\]

여기서 \(y_k \)는 감지기 값을 나타내며 \(u_k \)는 계산된 제어력을 의미한다. 디지털 PPF 제어기를 구현함에 있어 가장 중요한 파라미터는 \(T_s \)인대 그 역할은 디지털 제어기의 샘플링 주파수 가 된다. 디지털 PPF 제어기가 효과적으로 작동하기 위해서는 샘플링 주파수가 제어 대상인 전동 포드의 고유 전동수보다 커야 한다. \(\zeta \)는 0.3의 감쇠율을 정하였으며 \(\omega_f \)는 FFT 분석기 사용하여 갖춰지게 된다. 식 (7)의 이산화 된 PPF 알고리즘은 C언어로 프로그래밍하여 TMS320C6713DSK를 이용한 실험을 수행하였다.
4.2 Simulink를 이용한 GUI 환경 구성

사용자 편의와 신호 발생에 따른 데이터의 실시간 확인을 위하여 Matlab의 Simulink 기반의 GUI 환경을 구성하였다. Fig. 10은 개발한 Simulink 기반의 DSP 6xxx 계열의 전체적인 시스템 Block Diagram을 보여주고 있다. Simulink를 통하여 연동하는 TMS320C6713DK는 하드웨어적인 구성이 아니라도 소프트웨어적인 시뮬레이션을 가능화하고 D/A 변환이나 A/D 변환의 기능도 적용시켜 시스템의 결과 여부를 손쉽게 확인할 수 있어서 이를 이용하는 제어 알고리즘을 적용하는 시스템의 기초적인 환경을 구성하였다.

Fig. 10 Application of the Simulink with TMS320C6713

4.3 PPF 알고리즘을 적용한 성능 시험결과

개발한 실험용 구조물로 Fig. 11의 하중은 130 x 450 x 15 크기의 알루미늄 펑판을 제작하고, 경계조건에 고 종합의 지지대를 설치하여 외부로 인한 오차를 줄이도록 하였다. MFC 센서는 기존 및 세력 발전에 사용되는 M-8528 (112 x 43.5) x 4 매와 센서유니트 M-8507(102.5 x 16) x 2 매를 부착하고, MFC를 부착한 구조물에 대한 가속도 센서 및 FFT 변환기를 사용하여 모달 테스트를 수행하여 1, 2차 모드 (533Hz, 702Hz)의 고유주파수를 파악하여 PPF 알고리즘에 적용하였다.

Fig. 11 Construction of system

MFC(M-8528)로 인가하여 진동을 발생시켰다. 평판의 진동에 따른 센서 MFC(M-8507)의 출력을 Fig. 11의 시스템을 통해 제어 시그널을 발생시키고 나머지 2매의 제어 MFC(M-8528)에 인가하여, 그에 따른 변화를 가속도 센서로 유도하여 측정하였다.

Fig. 12는 533Hz와 702Hz 두 개의 공진 모드에서의 실험 결과에 대한 주파수 응답 곡선을 나타내었다. 각각의 실험 결과 1차 모드의 533Hz에서는 약 13.5dB의 진동 저감 효과를 확인할 수 있었고, 2차 모드의 702Hz에서는 약 11.8dB의 진동 저감 효과를 확인할 수 있었다.

Fig. 12 Vibration reduction at the natural frequency

5. 결론

고속 4채널 MIMO 시스템을 갖춘 능동진동제어 시스템을 개발하였다. 사용자의 편의를 위한 matlab 기반의 simulink를 이용하는 GUI 프로그램을 개발하고 MIMO시스템을 적용하여 성공적인 평판 구조물의 능동진동 제어 실험을 수행하였다.

PA05를 적용한 엔드 부는 고전압에서도 안정적인 동작이 가능한 것을 확인할 수 있었고, PPF 알고리즘을 적용한 시스템의 제어 실험에서 최대 13.5dB의 제어 성능을 확인할 수 있었다.

후기

이 연구는 방위사업청/국방과학연구소가 지정한 UVRC(수 중동체특화센터)의 지원에 의하여 수행되었으며, 이에 관계자 여러분께 감사드립니다.

참고문헌

design for active noise control, Control Engineering Practice 12, pp.1055-1064

[9] L. P. Hong, 2001: Experiment about digital PPF controller by using micro controller, Korea aero space university master’s thesis
