A Category Classification of Multispectral Images Using a New Image Enhancement Method and Neural Networks

Yong-Wook Cho, Myung-Seok An, Hyun-Wook Shin, Seok-Je Cho

Abstract

In general, neural networks are widely used for the category classification. However, when low contrast images, such as multispectral images, are used as input of neural networks, neural networks converge very slowly and provide bad performance. To overcome this problem, we propose a new image enhancement method which consists of a smoothing process, finding the main valley...
and enhancement process. And the enhanced images by the proposed method are used as input of neural networks for the category classification. When the new category classification method is applied to multispectral LANDSAT TM images, it is verified that neural networks converge very fast and overall category classification performance is improved.

I. 서론

원격 감지 시스템(remote sensing system)은 지구의 표면으로부터 반사 또는 방사되는 에너지를 검출하여 지구상의 물체, 지역 및 기상 현상을 지표하는 시스템이다. 원격 감지 시스템으로부터 검출되는 에너지는 가시광선과 적외선 등의 여러 분광 대역으로 나누어져 영상으로 획득된다. 이 때 획득된 영상을 다중분광 영상(multispectral image)이라 한다. 다중분광 영상으로부터 정보를 얻기 위해서는 다중분광 영상의 각 화소를 주택지, 산림, 평야, 강, 바다 등으로 분류하는 것이 매우 중요하다. 이렇게 다중분광 영상을 의미있는 영역으로 분류하는 것을 카테고리 분류(category classification)라 한다. 카테고리 분류를 통해 획득한 정보는 지구의 기상 해석 및 예측, 농경과 도시 건설, 재난시의 피해 상황 및 위험, 자원 및 생태계의 조사, 토지 이용 지도, 군사적인 용도 등으로 사용된다.

카테고리 분류법은 통계적인 방법과 비통계적인 방법으로 크게 나눈다. 통계적인 방법으로는 최단 유클리드 거리법(minimum euclidean distance method)과 최대 유사 분류법(maximum likelihood classifier method) 등이 있고, 비통계적인 방법으로는 신경회로망을 이용하는 방법 등이 있다. 최근의 여러 연구에서는 신경회로망을 이용한 분류법이 통계적인 방법에 의한 것보다 우수한 분류능력을 보이고 있다.

신경회로망을 이용한 카테고리 분류의 주된 관심은 학습률, 모멘트 상수 및 온닉스의 뉴런 개수의 조정에 의한 분류성능 항상에 있다. 이러한 계수들의 최적화는 신경회로망의 성능을 결정하는 중요한 요소이다. 그러나, 대부분의 다중분광 영상은 카테고리간의 명암도(gray level) 차이가 작기 때문에, 신경회로망의 학습시 수렴속도가 떨어지고 분류성을 저하된다. 따라서 다중분광 영상의 명암도 차이를 크게 하면 신경회로망의 수렴속도가 빨라져서 분류성능이 항상된다. 영상의 명암도 차이를 크게 하는 방법으로, 혼합변수 측량법(linear contrast enhancement method)과 히스토그램 균일화법(histogram equalization method) 등이 있다. 혼합변수 측량법은 다중분광 영상의 경우 명암도가 전 구간에 걸쳐 존재하므로 다중분광 영상에 적용하기가 어렵다. 히스토그램 균일화법은 데이터를 높일 때 큰 히스토그램 도수에 비해 상대적으로 매우 작은 도수의 명암도가 거의 합쳐져 정보 손실이 발생한다.

본 논문에서는 새로운 환경법에 의해 항상된 영상을 입력으로 하는 새로운 카테고리 분류법을 제안하였다. 새로운 환경법은 기존 환경법의 단점을 보완하여 비슷한 명암도가 합쳐지는 현상을 역제하는 방법이다. 이 영상 환경법은 다중분광 영상 각 분광 대역의 히스토그램 분포에 대해 주된 곡의 수를 구하고 이 수에 따라 전체 명암도를 균등하게 나눈 후 골과 골간의 히스토그램 분포를 균등
관계 나누어진 부분 영역에서 균일화하는 방법이다. 신경회로망은 다층 신경회로망인 오차 역전파 (error backpropagation) 신경회로망을 사용하였다. 항량전의 LANDSAT TM(Thematic Mapper) 영상 [1,2]과 항량한 LANDSAT TM 영상을 입력으로 하는 신경회로망을 비교한 결과 항량전 영상을 입력으로 하는 신경회로망보다 항량한 영상을 입력으로 하는 신경회로망이 학습 수렴속도가 더 빨랐고, 더 정확한 분류 결과를 얻을 수 있었다.

II. 다중분할 영상의 카테고리 분류

지구 상의 물체, 지역 및 가상 현상은 다중분할 영상의 영역도 차이로 표현된다. 이 영역도 차이는 구별하여 의미있는 영역으로 분류하는 것이 카테고리 분류이다. 카테고리 분류법에는 최단 유클리드 거리법과 최대 유사 분류법 등의 통계적인 방법과 신경회로망을 이용하는 비통계적인 방법이 많이 사용된다.

최단 유클리드 거리법은 분류하려는 다중분할 영상에서 설정한 각 카테고리 표본 데이터(sample data)의 평균 벡터와 입력되는 다중분할 영상의 각 좌표의 영역도간의 유클리드 거리를 구하여 이 거리를 가장 짧게 만드는 카테고리에 입력 화소가 속하는 것으로 판정하는 방법이다. 그리고 최대 유사 분류법은 조건부 확률의 베이즈 정리(bayes’ theorem)에 근거한 분류법으로 평균, 분산, 공분산을 이용하는 방법이다. 다중분할 영상에 대한 값만을 특정값으로 하는 최단 유클리드 거리법보다 학습 데이터들의 평균값과 데이터들간의 분산 및 공분산값을 특정값으로 사용하는 최대 유사법의 분류 성능이 더 우수하다. 특히 데이터들이 가우시안 분포를 가질 때 최대 유사 분류법은 아주 우수한 분류 정답률을 가진다. 그러나 다중분할 영상의 경우 대부분이 가우시안 분포를 가지지 않기 때문에 최대 유사 분류법보다 신경회로망을 이용한 분류법을 더 많이 이용한다.

1. 신경회로망을 이용한 카테고리 분류

신경회로망은 다중분할 영상의 카테고리 분류에 가장 많이 사용된다. 본 논문에서는 학습을 통해 목표값과 신경회로망의 출력값의 차가 최소가 되도록 각 층간의 연결강도를 변화하는 오차 역전파 신경회로망을 사용하였다. 오차 역전파 신경회로망의 학습은 다중분할 영상에서 어떤 카테고리로 분류될지 알고 있는 화소를 선택하여 학습 데이터로 만들고, 이를 이용하여 연결강도를 조정하는 작업이다. 학습 데이터 O_i는 T_i와 같이 연결강도 w_{ij}의 곱과 힌트한 층(layer)의 초기 출력 v를 만들고 식 (2)와 (3)의 단극성 시그모이드 활성화 함수를 거쳐 최종 출력 O_i가 된다. 식 (4)는 목표치 T_i와 O_i간의 오차 함수 E를 나타낸다.
새로운 영상 양상법과 신경회로망을 이용한 다중분량 영상의 카테고리 분류

\[u = O_i w_{ij} \] \hspace{1cm} (1)

\[f(u) = \frac{1}{1 + e^{-u}} \] \hspace{1cm} (2)

\[O_i = f(u) \] \hspace{1cm} (3)

\[E = \frac{1}{2} \sum_{i=1}^{m} (T_i - O_i)^2 \] \hspace{1cm} (4)

오차가 적게 나도록 \(f(u) \)를 미분해서 신경망을 학습한다. \(f(u) \)의 1계 도함수는 식 (5)와 같고, 오차가 초기에 설정한 목표값에 미치지 않으면 식 (1)~(4)의 과정을 반복하기 위해 각 층에서의 연결

\[f'(u) = f(u)(1 - f(u)) \] \hspace{1cm} (5)

\[w_{ij}^{(t+1)} = w_{ij}^{(t)} + \Delta w_{ij} \] \hspace{1cm} (6)

\[w_{jk}^{(t+1)} = w_{jk}^{(t)} + \Delta w_{jk} \] \hspace{1cm} (7)

\[w_{ij} = w_{ij}^{(t)} + \eta \delta_i O_i \] \hspace{1cm} (6)

\[w_{jk} = w_{jk}^{(t)} + \eta \delta_j O_j \] \hspace{1cm} (7)

이렇게 연결강도가 조정되어 학습이 끝난 신경회로망에 분류하고자 하는 데이터를 입력하면 입력

노드의 값과 연결강도의 조합에 의해 해당 카테고리로 분류된다.

2. 제한된 신경회로망 카테고리 분류

오차 역전파 신경회로망의 분류 성능 향상을 위해서는 다음과 같은 조건을 만족해야 한다.

- 신경회로망의 전체 오차크기가 작아야 한다.
- 신경회로망의 오차 수렴시간이 빠라야 한다.

이중 오차 수렴시간을 빠르게 하기 위해서는 식 (8)의 연결강도 변화량 \(\Delta w \)값을 크게 해야 한다.

\[w(t+1) = w(t) + \Delta w \] \hspace{1cm} (8)

\[w(t) \] : 티 번째 학습때의 각 층과의 연결강도

\[w(t+1) \] : 티+1 번째 학습 때의 각 층과의 연결강도

\[\eta \] : 학습률 (learning rate)

\[f'(u) \] : 활성화 함수의 미분

\[(T - O_i) \] : 목표값과 출력노드값의 차

\[O_i \] : 입력노드의 값

-120-
연결강도 변화량 \(\Delta w \) 가 0에 가깝게 되면 t번째 연결강도와 t+1번째 연결강도의 변화가 거의 없다는 것을 의미하므로 오차 수렴시간이 아주 느려진다. 연결강도 변화량 \(\Delta w \) 가 0에 가깝게 되는 조건은 식 (8)에서 \((T - O_t) \approx 0, f'(u) \approx 0\) 또는 \(O_t \approx 0\) 이다. 이 중 첫 번째 조건인 \((T - O_t) \approx 0\)
은 목표값과 출력노드값간의 차가 0에 가까운 것이다. 이는 신경회로망 학습이 모두 이루어져 오차가 최소치에 도달할 것을 의미한다. 이 때는 비록 오차 수렴시간이 느려지더라도 신경회로망의 학습이 모두 끝난 것이므로 신경회로망의 성능에는 아무런 영향을 미치지 않는다. 두 번째인 \(f'(u) \approx 0\)
은 활성화 함수의 도함수가 0에 가까운 것이다. 이는 신경회로망 학습때 생성된 헛노드의 값이 포화되었다는 것을 의미한다. 마지막으로 \(O_t \approx 0\)는 입력이 0에 가까운 것이다. 이는 명암도가 작은 부분에서 큰 변동수를 가지고, 명암도가 큰 부분에서 작은 변동수를 가지는 학습 데이터를 정규화(normalization)할 경우에 발생한다. 이 경우 신경회로망의 오차 수렴 시간이 늦어져 전체적인 신경회로망의 성능을 떨어뜨리게 된다. 따라서 \(O_t \approx 0\)가 되지 않도록 학습 데이터를 영상 향상법을 통하여 대비를 크게 하여 주변 오차 수렴시간을 단축하여 신경회로망 성능을 높일 수 있다.

본 논문에 사용되는 다중분광 영상 역시 대비가 낮고 명암도가 작은 부분에서 큰 변동수를 가지고 명암도가 큰 부분에서 작은 변동수를 가지므로 이를 신경회로망의 입력으로 사용하면 오차 수렴시간이 들어져 신경회로망의 성능이 떨어진다. 이를 극복하기 위해서 본 논문에서는 새로운 영상 향상법을 통하여 대비를 높이고 이 향상된 영상을 신경회로망의 입력으로 하는 새로운 카테고리 분류법을 제안하였다. 이 방법은 영상의 대비를 크게 하여 입력 데이터가 0에 가깝게 되는 현상을 방지해 준다. 그 결과 신경회로망의 오차 수렴시간이 크게 줄어들어 신경회로망의 분류성능이 높아진다.

그림 1은 본 논문에서 제안한 신경회로망의 구조이다. 새로운 영상 향상법에 의해 향상된 영상은 각 입력노드의 입력으로 하고, 분류하고자 하는 카테고리를 각 출력노드의 출력으로 하여 신경회로망을 학습한다.

3. 제안한 영상 향상법

기존의 흑백 영상 향상 알고리즘으로 선형대비 향상법과 히스토그램 균일화법 등이 많이 사용되어 왔다. 선형대비 향상법은 원 영상의 명암도를 선형적으로 새로운 명암도로 바꾸는 방법이다. 선형대비 향상법은 원영상의 명암도 비율 그대로 유지한다는 장점이 있다. 선형대비 향상법을 다중분광 영상에 적용하는 경우에는 문제점이 있다. 그 이유는 다중분광 영상의 경우 대부분의 화소들이 어두운 부분에 편중되어 있지만, 소수의 화소들이 밝은 부분에도 존재하기 때문이다. 히스토그램 균일화법은 히스토그램 명암도 비도수를 명암도에 따라 균일하게 분포되도록 재배치하는 방법이다. 히스토그램 균일화법은 밑짐도가 높은 다중분광 영상의 대비를 높일 수 있으나 도수가 작은 밝은 부분이 명암도끼리 서로 혼합되는 현상이 발생하여 정보의 손실을 가져온다. 이와 같은 현상을 보완하기 위해 본 논문에서는 대비를 크게 하면서도 정보의 손실을 최대한 억제할 수 있는 새로운 영상 향상법을 제안하였다.
새로운 영상 향상법과 신경회로망을 이용한 다중분광 영상의 카테고리 분류-7

Fig. 1. Structure of a proposed neural network

제안한 방법은 다중분광 영상 각 분광 대역의 히스토그램 분포의 주된 끈의 개수에 따라 전체 명암도를 대응하게 나누는 후 결과를 같은 히스토그램 분포를 대응하게 나누어진 부분 명암도에서 균일화하는 방법을 제안하였다. 이 방법은 데미를 크게 할 수 있을 뿐만 아니라 작은 도수의 명암도끼리 합쳐지는 현상을 억제하여 정보의 손실을 줄여 준다. 제안한 방법은 크게 평활화 과정, 주된 끈 찾기, 그리고 향상 과정으로 이루어진다.

1) 평활화 과정

평활화 과정은 히스토그램 분포의 주된 끈과 마루의 위치를 명확하게 찾기 위한 과정이다. 식 (9)와 같이 다중분광 영상 각 분광 대역의 히스토그램을 가우시안 필터(Gaussian filter)를 이용하여 평활화시킨다.

\[F(x, \sigma) = f(x) * g(x, \sigma) \]
\[= \int_{-\infty}^{\infty} f(u) \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-u)^2}{2\sigma^2}\right] du \tag{9} \]
여기서, \(f(x) \)는 각 분광 대역의 히스토그램 분포이고, \(g(x, \sigma) \)는 가우시안 필터이다. 이 때, \(\sigma \)는 표준편차로서 가우시안 필터의 폭을 결정한다. 이 표준편차의 크기에 따라 히스토그램의 평활화 정도가 달라져서 두드러진 골영역들은 존재하고, 작은 골영역들은 소멸된다.

2) 주된 골 찾기

주된 골을 찾는 과정은 평활화된 각 분광 대역의 히스토그램 분포에서 골의 위치를 찾는 과정이다. 본 논문에서는 평활화된 히스토그램 분포를 미분했을 때 0이 나오는 명암도 중 골에 해당하는 부분을 선택하였다.

3) 향상 과정

향상 과정은 찾은 골의 수에 따라 히스토그램 전체 명암도(0~255)를 동일한 간격으로 대등하게 나누고, 나누어진 영역을 기준으로 골과 골 사이의 히스토그램 분포를 균일화하는 과정이다.

나누어진 부분영역에 대한 \(n-1 \)번째 골의 명암도 \(T_{n-1} \)에서 \(k \)번째 명암도의 도수누적 \(S_{kn} \)은 식 (10)과 같다.

\[
S_{kn} = \sum_{i=T_{kn-1}}^{T_{kn}} \frac{N_{ni}}{N_n} \quad \text{(단,} \ n = 1, 2, \ldots, M, \ k < T_{n-1})
\]

\(M \) : 총 골의 개수
\(T_{n-1} \) : \(n-1 \)번째 골의 시작 명암도(단, \(T_0 = 0 \))
\(T_{n-1} \) : \(n \)번째 골 바로 전의 명암도
\(N_n \) : 명암도 \(T_{n-1} \)에서 \(T_{n-1} \)까지의 총화소수(단, \(T_M - 1 = 255 \))
\(N_{ni} \) : \(T_{n-1} \)에서 \(T_{n-1} \)까지의 구간에서 명암도가 \(j \)개의 픽셀의 개수

따라서 계산된 히스토그램 균일화 방법에 의해 균일화된 명암도 \(C_{kn} \)은 식 (11)과 같다. 식 (12)는 255개의 명암도 구간을 대등하게 \(M+1 \)등분 했을 때 \(n \)번째 밝기값 \(TH_n \)(단, \(TH_0 = 0 \))를 나타낸다.

\[
C_{kn} = TH_{n-1} + (TH_n - TH_{n-1}) \cdot S_{kn} \quad \text{(11)}
\]

\[
TH_n = \frac{255}{M} \cdot n \quad \text{(단,} \ n = 1, 2, \ldots, M) \quad \text{(12)}
\]
새로운 영상 향상법과 신경회로망을 이용한 다중분량 영상의 카테고리 분류

Fig. 2. Proposed enhancement method

Fig. 2는 제안한 향상법의 과정을 히스토그램으로 나타낸 것이다. Fig. 2의 (a)는 LANDSAT TM 영상 분광 대역 7에서의 히스토그램 분포를 나타낸다. 그림 2의 (b)는 (a)의 평활화 과정을 나타내고 Fig. 2의 (c)는 주된 골을 찾는 과정을 나타낸다. 여기서는 주된 골의 개수를 3개로 잡았다. 그리고 Fig. 2의 (d)는 향상과정을 통해 향상된 영상의 히스토그램을 나타낸다. Fig. 2는 일반적인 히스토그램 균일화법을 적용한 히스토그램이다. Fig. 2의 (d)와 Fig. 3을 비교하면 제안한 방법이 대비를 높이하면서 도수가 작은 명암도가리 감체자는 현상을 방지하는 것을 확인할 수 있다. Fig. 4은 제안한 방법을 통해 향상된 LANDSAT TM 영상의 7번 분광 대역을 나타낸다.
본 논문에서 제안한 방법을 평가하기 위해 LANDSAT 5호에서 촬영한 부산지역에 대한 TM 영상을 사용하였다. TM 영상 데이터중 해상도가 높아지는 분광 나역 6번을 제외한 분광 나역 1~5, 7의 6개 를 카테고리 분류에 사용하였다. 각 영상의 크기는 512×400 화소이고, 각 화소는 256의 평균도를 가진다. 분류할 카테고리는 산악(mountain), 평야(field), 나머지 및 도로(ground), 강(river), 바다(sea), 도심지(urban) 의 총 6가지이다.

그림 5는 실험의 순서도이다. LANDSAT TM 영상을 제안한 향상법을 통해 향상한 후 신경회로망의 입력으로 하여 카테고리를 분류한다. 그리고 분류결과를 이용하여 옵영에 의한 오분류를 줄인다.

제안한 향상법의 평활화 단계에서 가우시안 필터의 표준편차는 4로 설정하여 히스토그램을 평활화 하였다. 신경회로망은 입력층 1개, 은닉층 1개 그리고 출력층 1개로 구성하였고, 입력노드 6개, 은닉
이 새로운 영상 형태별과 신경회로망을 이용한 다중분광 영상의 카테고리 분류

Fig. 5. Flowchart of experiment

노드 22개, 그리고 출력노드 6개를 사용하였다. 신경회로망은 양상전 영상의 표본 데이터(sample data)와 제안한 영상형태에 의해 양상전 영상의 표본 데이터를 학습 입력으로 하는 두 개의 신경회로 망을 만들어 카테고리 분류 성능을 비교, 평가하였다. 신경회로망에 인가 받은 학습 데이터는 사용한 6 개의 분량 대역에서 추출된 6가지의 카테고리 패치(patch)의 조합으로 구성하였다. 카테고리 패치의 조합은 6개의 분량 대역 중 한 분량 대역에서 도심지 카테고리들 10×10 크기로 4개를 추출하여 카테고리 패치를 구성하고, 산림지, 평야, 나노지 및 도로, 강 그리고 바다 카테고리도 같은 방법으로 추출하여 총 6개의 패치를 각 영상으로 조합한 것이다.

Fig. 6. Structure of category patch

그림 6)을 신경회로망 학습을 위해 입력노드에 입력되는 카테고리 패치를 나타낸다.

신경회로망의 출력층은 산, 평야, 나노지 및 도로, 강, 바다 그리고 도심지 순으로 구성된 것으로, 구성된 신경회로망은 각 출력노드의 가장 큰 오차가 0.0013에 들어오도록 학습을 하여 각 층간의 연결각도를 결정하였고, 최소 88번의 학습이 이루어지도록 하였다. 그리고 양상전 영상의 샘플 데이터를 이용하여 학습된 신경회로망에는 양상전의 전체 영상을 입력으로 하여 카테고리 분류를 하였고, 양상전 영상의 샘플 데이터를 이용하여 학습된 신경회로망에 양상전 전체 영상을 입력으로 하여 카테고리 분류를 하였다. 학습된 신경 회로망에 영상을 입력할 때 나오는 각 출력노드의 값 중 가장 큰 값에 해당하는 출력노드를 분류하고, 각 카테고리로 선택하였다. 이 때 나오는 출력노드의 값은 대부분 0.6이상이었다. 후처리 단계로 분류가 6개의 분량 대역 영상에서 30가지의 비영상 조합을 만들었다. 그 후 분량비가 가장 크게 발생하는 4 분량 대역과 5 분량 대역간의 산림지 그늘진 부분이 평야로 오분류되는 부분을 이용하여 분류 성능을 높였다.

그림 7)의 (a)와 (b)는 신경회로망을 학습할 때 발생되는 오차의 크기를 나타낸 것이다. (그림 7) (b)
Fig. 7. Error variation of the neural network

Fig. 8. Classified image

of the problem by applying the enhanced image used in the neural network to the input image. (a) Non-enhanced input image
(b) Enhanced input image

Fig. 8. Classified image
분류성능이 향상된 영상을 입력으로 한 제안한 방법이 좋다는 것을 확인할 수 있다. 특히 바다의 배
나 바파제 그리고 강의 다리와 같이 도수가 작은 밝기값을 대응하게 나누어 히스토그램 균일화를 적
용함으로써 이 부분들이 명확하게 분류되었다. 〈표 1〉은 전체 카테고리별 분류 성능을 나타낸다. 입력
에 사용한 학습 데이터를 제외한 각각의 카테고리별로 160개씩 추출하여 분류 성능을 비교한 결과
전체적으로 제안된 방법이 더 좋은 결과를 나타낸다는 사실을 확인할 수 있다.

〈표 1〉 전체 카테고리별 분류 정확도

Table 1. Classification performance of all categories

<table>
<thead>
<tr>
<th></th>
<th>non-enhanced image</th>
<th>enhanced image</th>
</tr>
</thead>
<tbody>
<tr>
<td>mountain</td>
<td>96.85%</td>
<td>98.31%</td>
</tr>
<tr>
<td>field</td>
<td>96.84%</td>
<td>97.96%</td>
</tr>
<tr>
<td>ground</td>
<td>95.92%</td>
<td>97.06%</td>
</tr>
<tr>
<td>river</td>
<td>99.25%</td>
<td>99.50%</td>
</tr>
<tr>
<td>sea</td>
<td>97.50%</td>
<td>98.96%</td>
</tr>
<tr>
<td>urban</td>
<td>97.43%</td>
<td>99.06%</td>
</tr>
</tbody>
</table>

IV. 결 론

본 논문에서는 인공위성으로부터 획득한 다중분광 영상을 새로운 영상 향상법과 신경회로망을 이용하여 카테고리 분류하는 방법을 제안하였다. 다중분광 영상은 카테고리간의 명암도차가 작아 분류를 위한 신경회로망 학습시 수렴속도가 떨어지고, 분류시 성능이 저하된다. 이를 개선하기 위해 제시한 새로운 영상 향상법은 다중분광 영상의 각 분광 대역의 히스토그램 분포를 가우시안 필터를 취하여 평활화한 후 주된 곡을 찾아, 그 수에 따라 전체 명암도를 나누어 각 부분에서 히스토그램 균일화 방법을 수행한 것이다. 이 영상 향상법은 다중분광 영상의 대비를 크게 할 뿐만 아니라 기존 영상 향상법의 문제점인 도수가 작은 밝기값들이 합쳐지는 현상을 억제하여 정보의 손실을 최소화한다. 제안한 방법으로 향상한 다중분광 영상을 신경회로망의 입력으로 하여 카테고리 분류하였다. 제안한 방법은 다중분광 영상의 대비를 높이고 도수가 작은 부분들이 합쳐지지 않아 정보의 손실을 최소화하므로 향상한 영상을 이용한 신경회로망 분류보다 수렴속도가 빨라졌고 분류 성능이 향상되었음을 확인할 수 있었다. 그리고 카테고리 분류한 후 분광비를 사용하여 응영에 의한 오분류를 줄였다.
참고문헌

11. 신현욱, 조석제, “인간의 감각 인식 특성과 신경회로망을 이용한 감각 영상 향상, 신호처리 핵심
15. 오창석, 뉴로컴퓨터, 知成出版社, 1996.