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Abstract

In;this paper, the individual number of the future has depended not only
upon fhe present individual number but upon the present individual age, consi-
derigg‘the stochastic process model if individual number when the life span of
eachiindividual nunber and the individual age as a set, this becomes a Markov-
ian. Therefore, in this paper the individual is treated as invariable, without
depending upon the whole record of each individual since its birth., As a
result, suppose {N(t), t) O} be a counting process and also suppose Zn denote
the life span between the (n-1)st and the nth event of this process, (n=1) :
that is, when the first individual is established at n=1(time O), the Zn at
timeufhe nth individual breaks down. Random walk Zn is

Za=Xg + Xz *+ - -+ - - + Xn,. Zo=0 )
SS, fixed time t, the stochastic model is made up as follows;
A) Recurrence(Regeneration) number between(O,t)

N¢ =max{n;Zn <t}

B) Forward recurrence time(Excess life)

Tt=Zwts1 - t

C) Backward recurrence time(Current life)

Tv=t - Znt
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1. Introduction
In making a stochastic model for a real phenomenon, which is always necessa-

ry to make certain simplifing assumption so as to under the probability tract-

able. On the other hand, however, we can not make too many simplifing assumpt-

ions, for then our conclusions, obtained from the stochastic model, would not . %

be applicable to the real world phenomenon. Thus, in short, we must make enou-

gh simplifing assumption to enable us to handle the probability but not SO

Therefore, in this paper a class of probability models that has a wide vari-

aty of applications in the real world is using poission process and exponenti-

al distribution as random variables most frequently used simplifing assumption.

That is, by obtaining differential equation as to backward equation and for-

ward equation, practical examples about birth and death process are to be

applied to real life.

2. Differential Equations for Backward and Forward Equation.

Consider a system whose state at any time is represented by the number of

people in the system at that time. Suppose that whenever there are in people

in the svstem, then (i) new arrivals enter the system at an exponential rate-

An and (i) people leave the system at an exponential rate pan. That is, whene—

ver there are in persons in the systes, then the time until the next arrivals
is exponmentially distributed with mean 1/An and is independent of the time un-—
til the next departure which is itself exponentially distributed with mean 1/
An thus, a birth and death process is a continuous time Markov chain with sta-
tes {0,1,2, - - -} for which transitions from state n may g0 only to either
state n-1 or state n+l.

The relation between the birth and death rates and the state transition
rates and probabilities are
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vo=2Ao

vi=ii + gi, iy 0

Poi=1
' _ Ai .
Pii+g + 1= YT ’ 1>0
S S - - S
Pii+t 1 A+ fi ’ 1>0

The preceding follows, since when there are i in the systenm, then the next
state will be i+l if a birth occurs before a death, and the probability that
an exponential random variable with rate A;i will occur earlier then an
mdepende -nt exponential with rate pi is Xi/Ai+ui

—*
Ai + fi

(andrs.o. Pii+1 =
and the time until either occurs is exponentially distributed with rate Ai+u;

(and so, vi=ii + Hi)

Let Pij(t) =P{x(t+s)=jix(s) =i}

Pij(t) represents the probability that a Markov process presently in state i
will be in state j time later. We shall attempt to derive a set of differenti-
al equations for these transition probabilities Pi(t). However, first we will

need- the following two lemmas.

Lemma 1.
. 1-Pii(h) _
2) lia=——y— =u
P..
b) 11m=#@—=uipu, (i=j)
h~0 h

Proof: we first note that since the amount of time until a transition occur
is exponentially distributed, it follows that the probability of two or more
transitions in a time h is o(h). Thus, 1-Pii(h), the probability that a proce-
ss in state i at time o will not be in state i at time h, equals the probabil-
ity that a transition occur within time h plus something small compared to h.
therefore,
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1-Pii(h) =hvi+o(h)
and part (a) is proved.

To prove the part (b), we note that Pi.(h), the probability that the process
goes from state i to state J in a time h, equals the probability that a trans—
ition occur in this time multiplied by the probability that the transition is_‘:
into state j, plus something small compared to h, that is, o

Pi.(h)=hv;i Pi_ +o(h)
and part (b) is proved.

Lemma 2. : A
For all s>0, t=0

Pij(t+s) =§gik(t) Pxj(s)

Proof : In order for the process to g0 from state i to state j in time t+s,
it must be somewhere at time t and thus
Pij(t+s) =P{x(t+s) =j11X(0)=J} T
=£g{x(t+s)=5. x(t) =k| x(0) =i}

=§g{x(t+s>=j|x(t>=k. <(0) =i} P{x(t)=kix(0)=1}

=Z°°I;{x(t+s)=.jlx(t)=k} P{x(t) =k|x(0) =i}

= kaJ () Pix(t)
k=0

and the proof is completed.
Hence, we have the following theorem.
Theorem 1. Differential equation for backward equation
For all states i, Jj and times t20
Pij(t) =AiPi+1(t)-AiPij(t)
Proof: From Lemma 2, we obtain.

Pij(t+h)-Pi;(t) =§};ik(h)PkJ (t)-P1;(t)
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= fPix(h)ij (t)-[1-Pi:i (W) IPi;(t)
k=20

ant thus
15 (E+h) =Py ( Pix(h P
" Pij(t+h)-Pij(t) —lin {z“’__"(_)__ Prj(t)- [i—-—d—(h—)—-]PiJ(t)}
e h hro ‘i2: h

Now Aass'uming that we can interchange the limit and the summation in the abo-
ve and applying Lemma 1.
We obtain that

Pij(t) ———Viél:ik(h)PkJ (£)-viPi;(t)

and the proof is completed
Hence, from Lenma 2 and theoren 1
We have the following the backward equations for the birth and death process.
Poj’ (t) =poP1t(t)-VoPo, (t)

P.\J (t)—(Vx'*Ih)[ —_—Px+1.)(t) Px 1J(t)] (Ul*‘ﬂx)Pu(t)

Vit
Theoren 2. Differential equation for forward equation
For all states i,j and times t2>O0.
Pij’(t) =k3.‘,ukij Pix(t)-viP;(t)
J

Proof: From Lemma 2, we have
Pij(t+h)-Pi;(t) =§gik(t)PkJ (h)-Pi;(t)
=§?ik(t)ij(h)‘[l-ij(h)]Pi,j(t)

and thus

1ig RLCEMPi(0) gy {ZPikt) Prjh) _  1-Pij(h)
h~o0 h h~o kzJ h

IPi (L)

and assuming that we can interchange limit with summation, we obtain by Lemma
1 that
Pi;j’ (t) =ZTuxPkj Pik(t)-viPij(t)
k=

and the proof is completed.
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hence, from Theorem 2, we have the following the forward equations for birth
and death process.

The forward equations for thd birth and death process

Pio’(t)=i2%(kk+pk)PkoPik(t)—Xipso(t)

H1
Vit

=(vi+1) X Pi1(t)-voPiol(t)

=p1Pi1(t)—VoPio(t)
Pij’(t)=i;5(lk+uk)PkPik(t)—(ls+u1)Pij(t)

l._ .

= (i 4l i=1  p.._ . . Hi+t .,

(Aj-1+5-1) TN ij L)+ (A ++p+1) NPT XPij+1(t)
~(A3+u)Pi (V)

==lj-1Pij—x(t)+ﬂj+1Pij+x(t)—(l3+u3) Pij(t)

3. Numerical Example

Consider a continious time Markov chain consisting of two states. Suppose a
machine that works for an exponential amount of time having mean 1/A before
breaking down, and suppose that it makes an exponential amount of time having
pean 1/p to repair the machine. If the machine is in working condition at time-
0, then what is the probability that it will be working at time t=07

To answer the above question, we note that the process is a birth and death

process with state 0 meaning that the pachine is working and state 1 that it &~

is being repaired having parameters
lo=A UL =H
xi=0, i*0 ui=0, ix1
From the backward equations for the birth and death process.
wed obtain,
(3.1) Pos(t) =A[P1o(t)-Poo(t)]
(3.2) P1o(t) =pPoolt)—pP1o(t)
multipling equation (3.1) by u and equation (3.2) by A and then adding the
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two equation yields,

UPoo(t)+APso(t) =0

By integrating, we obtain that

UPoo(t)+AP1o(t) =C (C:constant)

However, since Poo(0) =1 and P;1o(0) =0,

we obtain that C=pu and hence

(3.3) [Poo(t)+AP1o(t) =p

or equivalently

APso(t) =u[Poo(t)]

By substituting this result in equation (3.1), we obtain

Poo(t) =pl1-Poo(t) I-APoo(t)
=p—(u+A)Poo(t)

A
B

Let h(t) =Poo(t)-

hit) =p—(u+1) [h(t)+ 1

A
oy
==(uN) h()

hit)
h(t)

By integrating both sides, we obtain

=-(u+i)

log h(t) =-(u+A)t+c
or h(t) =K - EXP(-(u+\)t)
and thus

u
7328

Poo(t) =K - EXP(—(u+A)t)-

Which finally vyields, by setting t=0 and using the fact that Poo(0)=1,that

S - u
Poo(t) = sy EXP(—-(u+)t)+ TSy

From equation (3.3), this also implies that

A A

H+R g8

Pio(t) = EXP(~(u+A)t)

Hence, our desired probability Poo(10) equals
- 59 -
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u
72

(Examples)
1. u=2 A=3
Poo(10) =0.973
2. u=5 r=4
Poo(10) =0.202
3. u=3 r=5
Poo(10) =0.926

4. Conclusion

As seen on the above numberical example, if the value of p and A is given,

i

it is thought to be applied to real life, because a model of the most suitablé_l»;z

value as to individual number process under continuous time Markov chain can :

N

be obtained.
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