Frequency Analysis of Acoustic Signal Generated by Partial Discharge in Insulation Oil

Dae-Won Park* · Il-Kwon Kim* · Chan-Yong Park* · Hong-Keun Ji* · Gyung-Suk Kil**

*Division of Electrical and Electronics Engineering, National Korea Maritime University, Busan 606-791, Korea

ABSTRACT: This paper dealt with the frequency spectrum analysis of acoustic signal generated by partial discharge (PD) in insulation oil to apply in diagnosis of oil insulated transformers. Four types of electrode systems; the needle-plane, the plane-plane, the void, and the floating electrode were assembled to simulate partial discharges in oil insulated transformers. A decoupler and a low-noise, wide-band amplifier were designed to detect acoustic signal with high sensitivity. The frequency spectrum of the acoustic signal were 70 kHz-210 kHz in the needle-plane, 80 kHz-208 kHz in the plane-plane, 70 kHz-200 kHz in the void electrode and 60 kHz-193 kHz in the floating electrode system. Their main frequencies were 132 kHz, 130 kHz, 128 kHz and 126 kHz, respectively.

KEY WORDS: Acoustic signal, AE sensor, Oil insulated transformer diagnosis, Electrode system, Partial discharge (PD), Frequency spectrum

1. 서 론

전력수요의 증가와 고품질 전력공급의 요구로 전력설비가 초고압 대용량화 되면서 예방진단기술에 대한 연구가 활발히 진행되고 있다. 절연은 전력설비의 성능과 수명에 직접적 관련이 있으며 절연실험에 영향을 주는 요인으로는 전기적, 열적, 화학적 스트레스가 있다[1]. 특히 초고압 변압기는 사고시 정전 병발과 날고 수리나 교체에 막대한 비용이 소요되는 등 기술적·경제적으로 막대한 손실이 발생하므로 안정적인 전력공급을 위해 주기적인 진단과 상시 모니터링이 필요하다[2]-[7]. 이러한 변압기에 예방진단을 위한 기술로는 가스분석법, 부분방전 측정법, %Z 측정법, 유전손 측정 등이 있으며, 최근 절연진단법으로 부분방전측정법이 주류를 이루고 있다. 부분방전은 절연 물에 절연이 생기면 이 부분에서 전기가 집중되어 발생하는 것으로 알려져 초기에 검출할 수 있는 특징이 있다[8]-[10].
부분방전측정에는 전기적 방법과 비전기적 방법이 있으며, 전기적 방법은 감도가 우수하여 정밀 측정이 가능하지만 주변 전자기의 영향을 받기 쉬우며, 초고압의 경우 온도 중 경합 특성의 설계가 어려운 점이 있다. 비전기적 방법에는 음향검출, 광학적 검출 및 화학적 검출법이 있으며, 그 중에서 음향검출법은 전기적 방법에 비해 감도는 낮지만, 온도, 전압 측정의 선호가 용이하고 정밀적으로 진단되어 있어 주변 전자기 노이즈에 강한 장점이 있다. 또한 타부종의 셔터를 설치하여 음향신호의 도달시간차를 측정하면 부분방전 즉, 경합의 위치를 추정할 수 있다. 본 논문에서는 초고압 방전기의 상시 점전 전단에 음향검출법을 적용하기 위해, 유중에서 부분방전을 모의하고 이를 발생하는 음향신호의 검출과 주파수 특성분석에 관하여 연구하였다.

2. 음향신호 측정 시스템

유중부분방전의 영향에 의해 발생하는 음향신호를 검출하기 위해 주파수대역 50 kHz~200 kHz, 150 kHz의 공진주파수를 가지는 AE(Acoustic Emission) 센서(R15i, AST, PAC)를 사용하였다. AE센서는 전류 및 신호선을 공동으로 사용하므로 저류 전압 필수 신호를 분리하기 위한 필터 특성의 역설합회로와 음향 신호의 고감도 검출을 위한 저저항·저전려 증폭기 필요하다.

본 논문에서는 음향신호의 효과적 검출을 위해 역설합회로와 증폭회로를 Fig. 1과 같이 설계하였다.

역설합회로의 주파수응답은 Fig. 2와 같으며, AE센서에서 저류 전압분리로 10 kHz이상의 음향신호는 120 dB 이상 감쇠 (attenuation) 되며, 증폭회로의 입력단 측, R2로는 감쇄없이 진달하는 특성을 갖는다.

Fig. 2 Frequency response of the decoupler

중폭회로에는 이득-주파수 대역이 70 MHz인 광대역 연산중폭 기를 사용하였으며, 이득은 40 dB로 설계하였다. 제작된 음향신호 검출회로는 합수 발생기로 1 kHz에서 2 MHz까지 점진과 입력전압에 대한 출력전압의 비율로 주파수 특성을 분석했으며, Fig. 3과 같이 -3 dB의 고역차단 주파수는 18 MHz, 저역차단 주파수는 1.6 kHz로 AE센서의 주파수대역(50kHz~200 kHz, 3 dB)을 충분히 포함하고 있음을 알 수 있다.

Fig. 3 Frequency response of the amplifier

3. 실험 및 분석

본 논문에서는 유일변압기의 상시전단을 위한 방법으로 음향신호 검출법을 적용하였으며 유중부분방전 발생장면에 따른 음향신호의 측정과 주파수 특성을 분석하였다. 유중부분방전을 모의하기 위하여 급속제 의약(740 mm × 740 mm × 1000 mm)과 절연물의 점착에 따른 부분방전 발생모델로 큐-평판, 평판-평판, 보이드 및 플록딩 구조의 전극계를 Fig. 4와 같이 제작하였다. 평판은 금 등의 특성과 구리의 함유율로 두께 1.5 mm, 지
60 mm로 설계하였으며 가장저리를 등급계 처리하여 전계의
집중이 발생하지 않도록 하였다.

(a) Needle-plane (b) plane-plane
(c) void (d) floating

Fig. 4 Configuration of the electrode system

유압변압기의 모의실험장치는 Fig. 5와 같이 구성하였으며,
전극체를 유압에 위치시키고 전류전압을 가변(0~50 kV)하여
부분방전 발생을 모의하였다. 유증분방전에 의한 응향신호는
금속 외담에 설치된 AE센서로 검출되며 역점합회로와 중복회
로를 통해 오실로스코프(LeCroy 9314C, 400 MHz)로 전달된다.

Fig. 5 Configuration of the experimental apparatus

4가지 형태의 전극체에서 측정된 부분방전의 응향신호와 주파
수 스펙트럼을 Fig. 6에 나타내었다. 응향신호의 주파수 스펙트
럼 분석결과, 침-평판 전극에서 발생한 응향신호의 주파수대역
은 70 kHz~210 kHz에 분포하며 최대주파수는 132 kHz이었다.
평판-평판 전극에서는 80 kHz~208 kHz, 최대주파수는 130
kHz로 측정되었으며 보이드 전극에서는 76 kHz~200 kHz, 최
대주파수 128 kHz의 주파수특성을 나타내었고 평판-평판 전극
과 보이드 전극에서의 응향신호는 침-평판 전극에 비해 낮은
플로팅 전극에서는 60 kHz~193 kHz, 최대주파수 126 kHz로
침-평판, 평판-평판, 보이드 전극에 비해 낮게 분석되었다.

Fig. 6 Acoustic signals and FFT results
5. 결론

본 연구에서는 유중분부방전의 응향신호를 측정, 분석하였다. 모의 결합구조로 4층의 분부방전 전극체를 제작하고 유중에서 인가전압에 따른 분부방전 응향신호를 측정하였다. 측정에는 50 kHz~200 kHz의 주파수대역을 갖고 공진주파수가 150 kHz인 AE센서를 사용하였으며 주파수대역 1.6 kHz~1.8MHz(-3 dB), 40 dB의 이득을 갖는 증폭회로를 구성하였다. 유입영입기에서 발생할 수 있는 부분방전을 모의하기 위해 첩-평판, 평판-평판, 보이드 및 폴로딩 전극재를 제작하였으며 첩-평판전극과 평판-평판전극사이에는 프레스보드 접연지를 삽입하여 프레스보드 접연지 내부의 부분방전을 모의하였다. 첩-평판 전극에서 응향신호의 주파수특성 분석결과, 주파수대역은 70 kHz~210 kHz로 나타났다. 평판-평판 전극에서 응향신호의 주파수대역은 80 kHz~268 kHz로 나타났다. 보이드전극과 폴로딩전극에서 측정된 응향신호의 주파수대역은 76 kHz~280 kHz 및 60 kHz~193 kHz로 나타났으며 각 전극에서 발생한 응향신호의 최대주파수는 132 kHz, 130 kHz, 128 kHz, 126 kHz로 측정되었다. 실험결과로 AE센서를 이용하여 유중분부방전의 검출이 가능함을 확인하였다. 결합의 종류에 따른 응향신호의 주파수 성분이 달라지므로, 데이터의 분석과 측정을 통하여 변압기 전반에 중분히 활용할 수 있을 뿐만 아니라 진단의 신뢰도를 향상시킬 수 있을 것으로 기대한다.

참고 문헌

원고접수일 : 2008년 1월 10일
원고체결일 : 2008년 1월 23일