The Effect of Spontaneous-Emission Factor and Inverted Population Factor on Direct Modulation of Injection Lasers.

Tchang-hee Hong, Dong-Il Kim

Abstract

In this paper, it has been shown that the inverted-population-carrier density of semiconductor laser cannot be negligible quantity in the analysis of the direct modulation, while it is conventionally neglected because the quantity is sufficiently small enough compared with the lasing threshold carrier density. The inverted-population carrier density is represented by a factor D defined as the inverted population factor.

Conventionally the value of the spontaneous-emission factor C has been estimated from the best parameter that makes the experimental-static curve of input current versus light output fit to the theoretical curve which is obtained from the rate equation without considering the factor D. It is shown that the value of the best-fit parameter is of the factor C multiplied by the factor D. Accordingly, it is pointed out that some corrections to the values of C which have been reported already is required, in other words, the value of C cannot be estimated without knowing the value of D.

1. 序 論

半導體レーザー(Laser)の 物理的特性に よっては、その近傍に は常に量子の 部分が存在している 場合がある。
(2) 1980년 3월 韓國海洋大學論文集 第1輯

용의학의 일 측면에서 본다면 아직까지도 未解決로 남아 있는 特性들이 많이 존재하고 있다. 이 論文에서는 半導体레이저의 直接變調特性を 解析하여 나가는 과정에 있어서 지금까지는, 踏본히 작으므로 解析상에는 無視하여도 큰 저항이 없다는, 要点가 적으므로 조금 더 흥미를 解析의으로 맴이고, 또 지급까지 報告되어 있는 解析結果에는 前文의 修正を 加해아 한다는 것을 指摘한다.

本 論文의 제2절에는 반도체레이저의 動作特性を 解析하는 데에 使用되어 오고 있는 운동방정식 을 紹介할과 同시에 解析에 利用될 수 있는 形式으로 方程式을 規格화하고 또 새로운 係數를 定義 한다.

3.1절에서는 바이어스特性에 나타나는 각 係數의 크기에 따른 性質을 밝히는 한편, 지급까지 報告되어 있는 實驗資料들과 比較検討하므로 報告되어 있는 係數의 값에는 修正이 不可避하다는 것을 指摘한다.

3.2절에서는 周波数特性에 鍵한 小信號解析을 行하여 係數의 크기에 따른 變調特性의 一般的인 性質들을 밝히고, 3.3절에서 調査되는 半導 報告特性에 對한 基礎資料들을 探求한다．

3.3절에서는 半導特性에 對한 小信號解析을 行하고, 實驗에서 얻어진資料들과 比較検討하므로 係數의 값에 推定 할 수 있는 方法을 提案한다.

2. 半導体 레이저의 直接변調에 對한 運動方程式

2.1 Rate Equation

単一 모드의 発振半導体레이저에 對하여서는 下の와 같은 運動方程式이 사용되고 있다①

\[
\frac{dn}{dt} = \frac{J}{ed} - \frac{n}{\tau_n} - g(n-n_e) \frac{s}{\tau_s} \tag{1}
\]

\[
\frac{ds}{dt} = g(n-n_e) \frac{s}{\tau_s} + C \frac{n}{\tau_n} \tag{2}
\]

여기서, \(n\) : 레이저 共振器内の 注入 Carrier 密度, \(s\) : 레이저 共振器내에 發生하는 光子의 密度, \(J\) : 電流密度, \(e\) : 電荷, \(d\) : 레이저 共振器의 有効厚, \(\tau_n\) : Carrier의 自然放出光壽命, \(\tau_s\) : 光子이 共振器내에 存在하는 時間, \(g\) : 光利得定數, \(n_e\) : 反轉分布 캐리어의 密度, \(C\) : 自然放出光 係數

(1), (2)式에서 反轉分布에 必要한 Carrier의 密度 \(n_e\)는 總 注入 Carrier의 密度 \(n\)과 比して 작다는 理由로 無視하여 解析을 行하여 왔다②) (1)式에서는 光子의 無視하여 解析을 行하더라도 다른 레이저 共振器의 特性상에 미치는 영향은 큰 것 같지 않지만 (2)式에 있어서는 \(g_n\)에 比하여 \(1/\tau_s\)가 充分히 크다는 보장은 없다.

發生된 光子이 共振器내에 存在할 수 있는 시간 \(\tau_p\)는 下方과 같이 等価의으로 表現된다．共振器 내의 自由電子 및 不純物에 依한 單位容量의 損耗을 \(\alpha loss (cm^{-1})\) 그리고，共振器의 길이를 \(L\)，

\[
K = R \cdot E_0 \left(\alpha loss + \gamma loss \right) L = E_0 \tag{3}
\]

에서 共振器내의 總 損耗은

--- 82 ---
自然放出램프수와 반전분포 Carrier의 천정사도와 반전체 에너지의 직접방정식에 미치는 영향

\[\alpha_{\text{total}} = \alpha_{\text{loss}} + \frac{1}{L} \ln \frac{1}{R} \]

(4)

로 주어진다. 전자하면서의 안전성을 \(u_c \) 또는 \(c_0 \)하나 하여, (4)식을 벗어나날 수 있는 관계자를 정의로 고려 한다면

\[1/\tau = -\frac{c_0}{u_c} \left(\alpha_{\text{loss}} + \frac{1}{L} \ln \frac{1}{R} \right) \]

(5)

로 주어진다.

\[G_{\text{as}}\text{z의 레이저라든 } u_{\text{ref}} \approx 3.6, \alpha_{\text{ref}} \approx 50 \text{cm}^{-1}, R \approx 0.3 \text{이며 } \text{공선} \text{의 } L = 300 \mu \text{m} \text{라고 한다면, \tau의 값은 약 } 1.5 \text{ps 정도가 된다.} \]

\[\sigma \text{까지 알라내는 바에 의하면 } g \approx 10^{-8} \sim 10^{-9} \text{cm}^3/\text{sec}, \]

\[n_s \approx 10^9/\text{cm}^3 \text{정도} \]가 알려져 있다. 따라서 \(1/g \) \(\approx 10^{-12} \sim 10^{-13} \text{cm}^3/\text{sec} \)가 되므로 \(\tau \)와 비슷한 크기의 값을 가지고 있음을 알 수 있다. (2)식에서

\[gn_s + \frac{1}{\tau} = \frac{1}{\tau} \]

(6)

이러므로

\[gn_s = \frac{1}{\tau} \left(1-D \right), \quad D = \frac{\tau_s}{\tau} \]

(7)

가 얻어진다. 여기서 \(\tau_s \)는 등기적 사망, \(D \)는 반전분포기저에 따라 정의한다. 그런데 \(gn_s > 1 \)이어야 하므로 0<\(D < 1 \)인 값임을 가지게 된다. (7)식을 (1), (2)식에 대입시켜 정리하면 다음과 같은 식이 얻어지게 된다.

\[\frac{dn}{dt} = \frac{I}{ed} - \frac{n}{\tau} - gn_s + \frac{1}{\tau} (1-D) s \]

(1')

\[-\frac{ds}{dt} = gn_s - \frac{1}{\tau} s + C \]

(2')

(1), (2)'식으로 비교하여 보면, \(gn_s \)은 상관없는 식과 (1)'(2)'식은 (1)식의 마지막 부분이 다르다. (1)'(2)'식을 연속시키면 \(s \)에 대한 2次微分방정식이 얻어질 것이고 \(D \)계수는 \(s \)의 一次微分방정식 계수로 부합해질 것이다. 2次微分방정식에서 1次微分항의 계수는 \(\text{制振係数} \)는 때의 \(\text{制振係数} \)라는 것은 잘 알려진 사실이다. 따라서 \(D \)계수는 \(\text{抑制作用} \)와 \(\text{闘乱関係} \)를 가지고 있음을 알 수 있다.

2.2. 方程式의 规格化

(2)식에서 \(C \) \(n/\tau \)항은 \(\text{発振} \)에 포함되어 나오는 자연放出光의 数을 말하는 것으로서 레이저의 \(\text{発振} \)作用과는 \(\text{直接} \)의 \(\text{關係} \)는 없으므로 이를 \(\text{無視} \)한다고 하면, \(\text{発振} \)에 필요한 \(\text{注入 Carrier} \)의 密度는

\[n_{\text{in}} = \frac{1}{g\tau} \]

(8)

로 얻어져 나타낼 수 있다. 한편, \(\text{発振} \)전면에는 \(\text{光} \)는 특이한 것으로 (1)'식의 갑에서 두 \(\text{項} \)은 \(\text{無視} \)할 수 있고, 따라서 \(\text{発振} \)開始電流는 \(\text{상과} \)가 같이 나타낼 수가 있다. 즉

\[J_{\text{th}} = \frac{ed}{\tau} - n_{\text{in}} \]

(9)

(8), (9)식을 이용하여 (1)', (2)'을 规格化시킨다면 다음과 같은 规格化된 方程式을 얻을 수 있다.

\[\frac{d\bar{n}}{dt} = J - T(\bar{n} - 1 + D) \bar{s} \]

(10)

\[\frac{ds}{dt} = T(\bar{n} - 1)\bar{s} + C\bar{n} \]

(11)

여기서, \(\bar{n}, \bar{s} \)는 각각 \(n/n_{\text{in}}, s/n_{\text{in}} \)을, \(J = J/J_{\text{th}}, \bar{t} = t/\tau \)로 정한다. 한편, \(T = \tau_s/\tau_s \)로써 \(10^8 \sim 10^9 \)의
3. 변동특성

이 절에서는 앞절에서 구한 방정식 (10), (11)을 이용하여 전류가 바이어스 전류 \(J_n \) 변동전류 \(J_{n}(t) \)일 때 (즉, \(J_n = J_n(t) \))의 출력 광 (\(s_s + s_m(t) \))에 대한 응답특성을 해석하고, 특히 자연 방출 광계수 \(C \)와 반전 분포 Carrier계수 \(D \)가 변동특성에 미치는 영향에 대하여 조사한다.

3.1 바이어스 특성

시간 변화가 없는 정대상태에 있어서는 (10), (11)에서 \(ds/dt' = 0, ds'/dt' = 0 \) 이므로 두 방정식을 연립시키고 풀면 \(\tilde{n} \) \(s \)에 대해 다음과 같은 결과만 얻는다.

\[
\tilde{n} = \frac{J_n + 1-C(1-D)-\sqrt{(J_n-1+C(1-D))^2+4CD)}}{2(1-C)} \quad (12)
\]

\[
T_s = \frac{(J_n - \tilde{n} - (1-C))/D}{D} \quad (13)
\]

여기서 자연 방출 광계수 \(C \)는 \(10^{-4} \)보다 작은 값을 가진 것으로 알려져 있으며 \(B \), \(s \), \(s_m \) \(D \)는 1보다 작아야 하는데 (12), (13)은 다음과 같이 근似식으로 나타낼 수 있다.

\[
\tilde{n} \approx \frac{J_n + 1 - \sqrt{(J_n - 1)^2 + 4CD}}{2D} \quad (12')
\]

\[
T_s \approx \frac{J_n - 1 + \sqrt{(J_n - 1)^2 + 4CD}}{2D} \quad (13')
\]

각 인자의 근호를 보면 \(C \)와 \(D \)의 값이 특성에 영향을 주고 있음을 알 수 있다. (13)'식도 양변을 \(D \)로 곱하여 준다던가 절체적으로는 (12)'식과 다를 바 없다. 따라서 바이어스의 특성으로부터 \(C \)나 \(D \)의 특성이 변하는 특성은 얻어낼 수 없다. 그림에도 불구하고, \(C \)계수의 값을 미리 정한 후에는 \(D \)을 무시한 해석과 실험결과를 가장시켜 타당하게 추정하는 방법이 이용되어 있다. 따라서 본 논문의 해석결과에 의하면 이렇게 추정되었던 \(C \)의 값은 임의로 쉽게 할 수 있다.

그림은 (13)식으로부터 계산한 \(T_s \)에서, 출력 광의 바이어스 특성을 나타낸다. (13)'식에서 알 수 있듯이 \(J_n < 1 \)인 영역에서는 특성이 거의 \(\tilde{n} \)에 의해서 좌우하고 \(J_n > 1 \)인 영역에서는 \(D \)에 의하여 특성이 좌우되고 있다. 그러나, \(C = 10^{-4} \times 10^4, D = 0.1 \times 10^{-4} \)에 대한 변형선은 절대 \(C = 10^{-3}, D = 1.0 \)인 상대의 채인이 없을 때의 이용가능한 것이 있다. 이는 전반적인 바이어스 특성으로부터 \(C \)와 \(D \)의 값을 구분하여 추정할 수가 없음을 알 수 있는 것이다.

그림2는 Carrier에 의한 바이어스 특성을 나타낸다. \(J_n > 1 \)인 영역에서 \(\tilde{n} = 1 \)인 것은 광의 바이어스 density에서 가까워지는 한편, 대입한 후에는 특성이 추정되어야 할 것을 알 수 있다.
3.2 周波数特性 (小信号 解析)

変調電流の振幅 I_m は、バイアス電流が一定の状態で周波数 f に依存する 2 次単形方程式で与えられる。

$$\frac{d^{2}S_m(t)}{dt^2} + 2b\frac{dS_m(t)}{dt} + a^2S_m(t) = kJ_m(t)$$

(14)

ただし，a, b, k は、変調振幅の周波数特性に応じた定数である。

$$2b = 1 + T(1 - \bar{n}) + T_s$$

$$a^2 = T(J_m + 1 - 2\bar{n})$$

$$k = 1 + T_s$$

(15)

ここで，$J_m(t) = J_m e^{int}$ は，変調電流の振幅を示す。動作周波数成分は、変調電流の周波数特性と密接に関連する。

$$|S_m(\omega)| = \sqrt{\frac{k}{a^2 - a^2 \omega^2 + 4b^2 \omega^2}}$$

(16)

(16)式の a と b の大小関係に応じて共振特性を示す。これらの値は，共振周波数と共振強度の関係を示す。共振周波数 D が変化すると，共振強度が変化する質量因子 Q を反映する。共振周波数 D と共振強度の関係を表す。共振周波数は，C, D の関係である。

1) 共振周波数 D と共振強度 Q の関係
(16)식의 周波数 \(\tilde{\omega} \)에 따른 最大값을 보이는 \(\tilde{\omega} \)을 求해보면 다음과 같다.
\[
\tilde{\omega}^2 = a^2 - 2b^2 = T'(J_s + 1 - 2\tilde{n}) - \frac{1}{4}(1 + T(1 - \tilde{n}) + T_1)^2 \tag{17}
\]
\(C, D \)'의 경우에 따른 \(\tilde{\omega} \)의 變化를 調査한 결과는 그림1에서 指摘한 바와 같이 바이어스電流의

領域を \(J_s < 1 \)과 \(J_s > 1 \)인 둘 領域으로 나누는 것이 便利하다. 但, \(J_s < 1 \)領域에서는 \(a < b \)이므로 共振特性을 보이지 않는다.

i) \(J_s < 1 \) 영역에 對하여：이 영역에서는 그림1에서 알 수 있듯이 \(T_1 < 1 \)이며, 한편 \(T(1 - \tilde{n}) \)이므로 (17)式은 \(\tilde{n} \)의 特性만에 依存함을 알 수 있다. (12)式에서 調査하였듯이 \(\tilde{n} \)는
\(C \times D \)'의 形態로 \(C \)와 \(D \)'의 影響를 分기 때문에 이 영역에서는 \(C \)와 \(D \)'의 影響을 구분하지 못한다.

ii) \(J_s > 1 \) 영역에 對하여：이 영역에서는 \(T_s \approx 1 \), \(\tilde{n} \approx 1 \)이므로 (17)式은 다음과 같이 近似시킬 수 있다.
\[
\tilde{\omega}^2 \approx T(J_s - 1) - \frac{1}{2}(1 + T_1)^2 \tag{17}'
\]
(13)式에서 알 수 있듯이 \(T_1 \)는 \(1/D \)에게 비례함으로 이 영역에서는 \(D \)獨立에 依하여 \(\tilde{\omega} \)가 影響을 받는 것처럼 보이나, \(T(J_s - 1) \)의 \(1/D \times T_1 \)'의 形態로 \(D \)나 \(C \)'의 影響을 거의 받지 않는다.

2) \(D \)와 \(C \)가共振最大값에 미치는 影響

一般的으로 (17)式에서 \(a^2 > 2b^2 \)'인 경우는共振特性を 나타내며 \(\tilde{\omega} = \tilde{\omega} \)에서 最大값을 보인다. (16)
式에 \(\tilde{\omega}^2 = a^2 - 2b^2 \)을 代入하고 또 \(\tilde{\omega} = \tilde{\omega} \)의 \(C \)와 \(D \)'의 影響을 摘取하여 之形態는 다음과 같은 式이 얻어진다.
\[
\frac{|S_m(\tilde{\omega})|}{|S_m(\tilde{\omega})|_{\text{peak}}} \approx \frac{T(J_s - 1)}{(1 + T_1 - \tilde{n}) + T_1} \sqrt{T(J_s - 1) - \frac{1}{4}(1 + T(1 - \tilde{n}) + T_1)^2} \tag{18}
\]
여기서도 바이어스를 \(J_s < 1 \)인 영역과 \(J_s > 1 \)인 영역으로 나누어 조사한다.

i) \(J_s < 1 \) 영역에 對하여：이 영역에서는 \(T_1 < 1 \)이므로 (18)式은 特性이 \(\tilde{n} \)의 크기에 따라 左右

되며, \(\tilde{n} \)는 \(C \)와 \(D \)'의 影響에 依하여 影響을 받으므로 이 영역에는共振最大값에서 \(C \)와 \(D \)'의

影響에 依하여 그 特性이 左右된다.

그림4a, b에는 (16)式의 數值計算例를 보여주고 있다. 그림4a는 \(J_s \approx 1 \)인 低バイアス 特性이다.

前報的 바와 같이 이 영역에서는 \(C \)와 \(D \)'의 影響에 依하여 特性이 影響을 받으므로 이를 摘取할 수 있다.

例로서 \(J_s = 1.01 \)인때의 \(C = 10^{-5}, D = 1 \)인 特性은 \(C = 10^{-4} \)가 \(D = 0 \)인 特性과 같은 影響을 받을 수 있고,

또 \(J_s = 1.04 \)인 경우에도 같은 特性을 보여주고 있음을 알 수 있다. 따라서 이 영역에서는 \(C \)와 \(D \)가

分離된 特性은 얻어 낼 수가 없음을 알 수 있다. 즉 低バイアス의 特性으로부터는 \(C \)나 \(D \)'의 影響을

推定할 수가 없음을 알 수 있다.

ii) \(J_s > 1 \) 領域에 對하여：이 영역에서는 그림2에서 보인 바와 같이 \(\tilde{n} \approx 1 \)이이고, 또 \(T_1 \approx 1 \)이므로 (18)式은 다음과 같이 쓸 수 있다.
\[
\frac{|S_m(\tilde{\omega})|}{|S_m(\tilde{\omega})|_{\text{peak}}} \approx \frac{T(J_s - 1)}{(1 + T_1)\sqrt{T(J_s - 1) - \frac{1}{4}(1 + T_1)^2}} \tag{19}
\]
따라서, \(J_s > 1 \)인 영역에서의共振最大값은 \(D \)에 따라서 差異한다.

그림4b는 高バイアス에서의 特性을 나타낸다. \(J_s \geq 1.2 \)부터는 \(D \)'의 减少에 따라 最大값이 현저하게
3.3 필스응답특성

이 절에서는 필스응답에 관한理论計算과 实験
결과를 比較検討 하며, 前節에서 論한 周波数

그림 4a. Low bias에서의 周波数特性

그림 4b. High bias에서의 周波数特性

그림 5a. Pulse 응답특성의 实験

그림 5b. Pulse 응답특성의 理論
응답 특성에서의 특성들 얻기 실험의 으로 수학하여 나타나서, 필스 응답특성으로부터 D계수를 측정할 수 있는 방법에 정해져 있다고 한다. 전산에 의한 시뮬레이션에는 Runge–Kutta 방법을 이용하였다.

그림 5는 AlGaAs의 LD에 대한 실험 결과와 이 값을 근거로 가정하여 산출하는 계수 계산 결과 가 정합되었다. 3.2절의 주파수 특성에서 D를 $D=1.0$의 특성과 $C=10^{-4}$, $D_0=0.3$의 특성이 갖는 약간 차이가 있음을 알 수 있다. 이는 주파수 특성에서 D의 특성이 높다.

한편, 그림 6의 a, b에는 각각 $C=D=10^{-4}$, $5 	imes 10^{-5}$에 대한 응답 특성이 그려져 있다. 그림 5의 특성을 실험 결과와는 상당히 다르다는 것을 알 수 있다. 따라서 이 데이터의 C와 D의 값은 약 $3 	imes 10^{-4}$인 값을 가지는 것으로 추정된다. 여기서 D는 1보다 작은 값을 가질 수 있도록 C의 값을 최소한 $3 	imes 10^{-5}$보다는 커야 한다.

지급까지 보고되었던 바로 전자 $J_s>1$의 균치에서 C의 값을 추정할 때가 대부분이다. 따라서 이 특성을 C의 값에는 D의 값을 정할 수 있는 것이다.

그림 6은 $J_s>1$에 대한 필스 응답특성을 나타낸다. $J_s=1.5$인수면 특성은 C에 임의로 취한 C 값이 D에만 대응되어 있을 수 있다. 따라서 이러한 필스 특성의 특성에 대한 필스응답특성의 실험으로부터 D의 값을 추정할 수 있다.

(14)식의 점어진 얻어 이를 일반적으로 다음과 같이 이어 진다.

$$S_n(t)=S_0e^{-t'/a} \cos (a't' + \phi) \tag{20}$$

여기서,

$$b=\frac{1}{2}(1-\bar{n}) + TS_0 \tag{15}$$

이므로 $J_s>1$ 경우에는 (12), (13)식을 이용하면

$$b=\frac{1}{2} \{1+(J_s-1)/D \} \tag{21}$$

로 나타낼 수 있다. 한편 S_n이 $1/e$로 형성되는 때까지 일정 시간을 t'라고 한다면 (20)식의 $e^{-t'}$ 에서

$$t'=\frac{2D}{D+(J_s-1)} \tag{22}$$

로 구할 수 있다. (22)식에서 알 수 있듯이 필스응답에서의 형성 시간은 J_s와 D에만 의존하고 있다.

그림 7에는 (15)식을 이용하여 t'와 D의 관계를 계산한 데가 그려져 있다. 계수 $T=5.5 \times 10^4$의 값을 취하고 있다. (15)식에서 알 수 있듯이 필스응답에서는 T의 크기가 상당히 문제가 되지만 필스응답에서는 (22)식에 나타나 있듯이 T는 존재관계를 갖지 못한다. 그림 7에서 T가
5.5×10³으로 되어 있는 것은 \(J_0 = 1.05 \)의 때 설명적 결과가 \(D \)이 동일한 \(\gamma \)값의 변화를 보이고 있는 것이다. 마이바이어스 핵심에는 \(C \)의 값에 따라 변화를 보이고 있으나, 마이바이어스 핵 수록 \(C \) 비가 변환되는 것이고 있으므로 \(D \)을 수용할 수 있었다. 따라서 \(\gamma \)의 변화에 따라 \(D \)의 값을 측정하여 실험적 \(D \)의 값을 추정할 수 있다.

그림 8에서는 AlGaAs의 PS-LD의 경우를 실험한 것을 보고 있다. 이 \(\gamma \)의 \(\tau_0 = 3 \)ns, \(\tau_0' = 0.55 \)이 다수\(J_0 = 0.05 J_0 \), \(J_0 = 1.0 J_0 \)로 전도전자수의 \(J_0 = 1.05 J_0 \)에 해당한다. \(J_0 \)은 \(\gamma = 0.42 \)일 때 \(\gamma_0 = 0.42 \)일 때 \(\gamma_0 = 1.05 \)의 값이 \(C = 10^{-4} \)의 단위의 \(C \)을 보여 주고 \(D \)은 \(0.3 \)의 값을 가진다는 것을 알 수 있다. 그러나 이 마이바이어스 \(C \)의 \(D \)의 영향을 구하기에 생각되어야 할 수 없을 정도로 크고 마이바이어스의 측정은 이나 자가하였으나, 따라서 여기에서 \(D \)의 값의 \(C \)의 값과 \(D \)의 값과 \(C \)의 값과 \(D \)의 값을 알 수 있는 것으로 보여 \(C \)과 \(D \)의 값의 \(3 \)×\(10^{-4} \)는 물론이다.

4. 결론

본 논문에서는 레이저다이나모의 일반적 측정에 사용되고 있는 \(\gamma \)값에서 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값을 \(\gamma_0 \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보였으며 \(\gamma \)값은 \(\gamma \)값에 따라 역 방향 분포를 보았습니다.
参考文献

7. 洪影緯의 碩士論文의 實験資料에 서