

Journal of the Research Institute of Basic Sciences, Korea Maritime University, Vol.1,1991.

On the Fuzzy O-Continuous Mappings

Park, Jin Han*, Lee, Bu young**, and Lee, Jong $H\infty^{***}$

Abstract: The concepts of fuzzy almost continuous, fuzzy θ -continuous and rioq fuzzy weakly continuous have been introduced in [9,14]. The aim of this paper est is mainly to study and to find the mutual interrelations among these concepts.

174

- 30m/

B, € A(∀)

1. Introduction

The concepts of fuzzy almost continuity and fuzzy weakly continuity, defined by Azad [1], were introduced by Yalvac [14] using the concept of quasi-coincidence. Recently, Mukherjee and Sinha [8,9] also defined and studied certain types of near-fuzzy continuous mappings between fuzzy topological spaces, some of which were independent of and the restrictly weaker than fuzzy continuous mappings.

The notions of fuzzy δ-closure and fuzzy δ-closure of a fuzzy set in fuzzy topological space were introduced by Ganguly and Saha [4] and Mukherjee and Sinha [9], respectively. These concepts were very interesting in the study of those some near-fuzzy continuous mappings between fuzzy topological spaces.

In this paper, we show that fuzzy almost continuity implies fuzzy θ -continuity and to give some sufficient conditions for fuzzy θ -continuous (fuzzy weakly continuous) mapping to be fuzzy almost continuous. And we study some properties of fuzzy θ -continuous mappings on fuzzy topological spaces.

^{*,**} Department of Mathematics Dong-A University

^{***} Department of Applied Mathematics Korea Maritime University Pusan 606, Korea

2. Preliminaries

Fuzzy sets of a nonempty set X will be denoted by the capital letter as A, B, C, etc. The value of a fuzzy set A at the element x of X will be denoted by A(x), and fuzzy points will be denoted by ρ and r. And $\rho \in A$ means that fuzzy point ρ takes its non-zero value in [0,1] at the support x_P and $\rho(x_P) \leq A(x_P)$ (see in [6]). For definitions and results not explained in this paper, the reader were referred to the papers [1,2,13,14 and 15] assuming them to be well known. The words "fuzzy", "neighborhood" and "fuzzy topological space" will be abbreviated as "f", "nbd" and "fts", respectively.

Definition 2.1 [6]. Let A and B be f.sets of X and let ρ be f.point in X. ρ is said to be quasi-coincident with A, denoted by ρqA , if $\rho(x_P) + A(x_P) > 1$ or $\rho(x_P) > A'(x_P)$. A is said to be quasi-coincident with B, denoted by AqB, if there exists $x \in X$ such that A(x) + B(x) > 1.

Theorem 2.1 [6]. Let A and B be f.sets of X. $A \le B$ if and only if A and B are not quasi-coincident denoted by A/B.

Theorem 2.2 [2,14]. Let $f:X\longrightarrow Y$ be a mapping and let A and B be f.set of X and Y, respectively. The following statements are true:

- (a) $f(A)' \le f(A'), f^{-1}(B') = f^{-1}(B)'.$
- (b) $A \le f^{-1}(f(A)), f(f^{-1}(B)) \le B.$
- (c) If f is one-to-one, then $f^{-1}(f(A)) = A$.
- (d) If f is onto, then $f(f^{-1}(B)) = B$.
- (e) If f is one-to-one and onto, then f(A)' = f(A').

Let f be a mapping from X to Y. Clearly for every f.point ρ in X, $f(\rho)$ is a f.point in Y, and if $\operatorname{supp} \rho = x_P$ then $\operatorname{supp} (f(\rho)) = f(x_P)$, $f(\rho)(f(x_P)) = \rho(x_P)$. If ρ is a f.point in Y then $f^{-1}(\rho)$ need not be a f.point in X. If f is one-to-one

and ρ is a f.point in f(X) then $f^{-1}(\rho)$ will be f.point in X In this case if $\operatorname{supp}_{\rho} = y_{\rho}$ then $\operatorname{supp}_{f}^{-1}(\rho) = f^{-1}(y_{\rho})$ and $f^{-1}(\rho)(f^{-1}(y_{\rho})) = \rho(y_{\rho})[14]$.

Theorem 2.3 [14]. Let $f:X \longrightarrow Y$ be a mapping and let ρ be a f.point in X.

- (a) If $B \le Y$ and $f(\rho)qB$, then $\rho qf^{-1}(B)$.
- (b) If $A \leq X$ and $\rho q A$, then $f(\rho) q f(A)$.

Definition 2.2 [6]. Let X be fts and A be f.set of X. A is q-nbd of a f.point ρ if there exists a f.open set B such that $\rho qB \leq A$.

:00

Theorem 2.4 [6]. Let A be f.set of X and ρ be a f.point. $\rho \in \overline{A}$ if and only if for each q-nbd B of ρ , BqA.

3. Fuzzy θ-continuity

Let f be a mapping from a fts X to another fts Y.

Definition 3.1. f is said to be

- (a) f. θ -continuous if for each f.point ρ in X and each f.open q-nbd V of $f(\rho)$, there is a f.open q-nbd U of ρ such that $f(\overline{U}) \leq \overline{V}[9]$,
- (b) f.almost continuous if for each f.point ρ in X and each for f.open q-nbd V of $f(\rho)$, there is a f.open q-nbd U of ρ such that $f(U) \leq (\overline{V})^0[14]$,
- (c) f.weakly continuous if for each f.point ρ in X and each f.open q-nbd V of $f(\rho)$, there is a f.open q-nbd U of ρ such that $f(U) \leq \overline{V}[14]$.

Theorem 3.1. Every f.almost continuous mapping is $f.\theta$ -continuous.

Proof. Let $f: X \longrightarrow Y$ be f.almost continuous. Let ρ be f.point in X and let V be f.open q-nbd of $f(\rho)$. Then by f.almost continuity of f, there is a f.open q-nbd U of ρ such that $f(U) \le (\overline{V})^{\circ}$. We show that $f(\overline{U}) \le \overline{V}$ and then complete the proof. Let there exists a f.point r in X such that $r \in \overline{U}$ and $f(r) \notin \overline{V}$. Since

 $f(r)(f(\mathbf{x}_r)) \nleq \overline{V}(f(\mathbf{x}_r)), \ f(r)q(\overline{V})$. Then (\overline{V}) ' is f.open q-nbd of f(r). Since f is f.almost continuous, there exists f.open q-nbd W of r such that $f(W) \leq \overline{((\overline{V})')^\circ} = (\overline{V})$ '. But since $r \in \overline{U}$, we have WqU. Hence $f(U)q(\overline{V})$ '. This is contrary to the fact that $f(U) \leq (\overline{V})^\circ \leq \overline{V}$.

Clearly, f. θ -continuous mapping is f.weakly continuous. And f.almost continuous mapping is f. θ -continuous. But that the converse need not be true is shown the following examples.

Example 3.1. Let X = [0,1], $\tau_1 = \{X, \phi, A\}$ and $\tau_2 = \{X, \phi, B\}$, where

$$A(x) = \begin{cases} \frac{1}{4}, & x = 0 \\ 0, & x \neq 0, \end{cases} \quad B(x) = \begin{cases} \frac{1}{5}, & x = 0 \\ 0, & x \neq 0. \end{cases}$$

Let $f:(X,\tau_1)\longrightarrow (X,\tau_2)$ be the identity mapping. Then f is $f.\theta$ -continuous but not f.almost continuous.

Let ρ be a f.point in (X,τ_1) and V be any f.open q-nbd of $f(\rho)$ in (X,τ_2) . If V=B, then we choose U=A and then U is a f.open q-nbd of ρ such that $f(\overline{U})=A$. Again, $\overline{V}=\overline{B}=B'$. Hence $f(\overline{U})\leq \overline{V}$. In case V=X, the conclusion is obvious. Hence $f(\overline{U})=A$ is f. θ -continuous.

Let us consider the f.point $\rho = (0, \frac{5}{6})$. Now B is a f.open q-nbd of $f(\rho)$ in (X, τ_2) , and A and X are f.open q-nbd of ρ in (X, τ_1) . But $f(A) \nleq (\overline{B})^{\circ}$ and $f(X) \nleq (\overline{B})^{\circ}$. Thus f is f.almost continuous.

Example 3.2. Let X = [0,1], $\tau_1 = \{X, \phi, A, B\}$ and $\tau_2 = \{X, \phi, C\}$, where

$$A(x) = \begin{cases} \frac{1}{5} & x = 0 \\ 0, & x \neq 0, \end{cases} \quad B(x) = \begin{cases} \frac{11}{20} & x = 0 \\ 0, & x \neq 0. \end{cases} \quad C(x) = \begin{cases} \frac{1}{4} & x = 0 \\ 0, & x \neq 0. \end{cases}$$

1945 0/ OF 1-1/ 6) . .: 1

i id

i, f

AIN!

is a

Ther-

1: }

" Jright

r ral

5 A 38

.. 577

. 11 JAN.

. . .

11 702

1. 1. 1.

(Collection

Let $f:(X,\tau_1)\longrightarrow (X,\tau_2)$ be the identity mapping. Then f is f.weakly continuous but not f. θ -continuous.

Let ρ be a f.point in X. If $x_P \neq 0$, then V = X is only f.open q-nbd of $f(\rho)$, and then U = X is a f.open q-nbd of ρ such that f(U) = V. Suppose $x_P = 0$, and V is a f.open q-nbd of $f(\rho)$. If V = X, the case becomes trivial. So let V = C. Then $\rho(x_P) \geq \frac{3}{4}$ so that B is a f.open q-nbd of ρ such that $f(B) = B \leq \overline{C} = C'$. Thus f is f.weakly continuous.

Now consider the f.point $\rho=(0,\frac{31}{40})$ in X. Then C is a f.open q-nbd of $f(\rho)$. Let U be any f.open q-nbd of ρ . Then U=B or X, and $f(\overline{U})=A'$ or X (according as U=B or X) $\not = \overline{C}=C'$. Hence f is not f. θ -continuous.

Definition 3.2 [4]. A f.point ρ is said to be a f. δ -cluster point of a f.set A if and only if every f.regularly open q-nbd U of ρ is q-coincident with A. The set of all f. δ -cluster points of A is called the f. δ -closure of A and is denoted by $[A]_{\mathcal{O}}$. A f.set A is f. δ -closed if and only if $A=[A]_{\mathcal{O}}$ and the complement of a f. δ -closed set is called f. δ -open.

Pefinition 3.3 [9]. A f.point ρ is said to be a f. θ -cluster point of a f.set A if and only if for every f.open q-nbd U of ρ , \overline{U} is q-coincident with A. The set of all f. θ -cluster point of A is called the f. θ -closure of A and is denoted by [A]e. A f.set A is f. θ -closed if and only if A=[A]e and the complement of a f. θ -closed set is f. θ -open.

It is easy to see that $\overline{A} \le [A] = [A] \circ (A) \circ (A)$

Lemma 3.1. For a f.semi-open set A in a fts X, $\overline{A} = [A]$.

Proof. It is sufficient to show that $[A] \cap \leq \overline{A}$. Let $\rho \in [A] \cap \text{ such that } \rho \in \overline{A}$.

Then there exists a f.open q-nbd V of ρ such that $V \not AA$. Since A is f.semi-open, there exists a f.open set G such that $G \le A \le \overline{G}$. Then $V \le A' \le G' \Rightarrow \overline{V} \le \overline{G'} = G' \Rightarrow (\overline{V})^{\circ} \le (G')^{\circ} \le G' \Rightarrow (\overline{V})^{\circ} A \Rightarrow \rho \ne [A]^{\circ}$. This is contrary to the fact that $\rho \in [A]$.

Definition 3.4 [9]. A f.set A in fts X is said to be a f. δ -nbd(f. θ -nbd) of a 2.27 f.point ρ if and only if there exists a f.reqularly open q-nbd(f.closed q-nbd)

V of ρ such that VqA'.

Theorem 3.2. If $f:X \longrightarrow Y$ is a mapping, then the following are equivalent:

- (a) f is f.almost continuous.
- (b) $f(\overline{U}) \leq [f(U)]$ for every f.set U in X.
- (c) The inverse image of every $f.\delta$ -closed set in Y is f.closed set in X.
- (d) The inverse image of every f.δ-open set in Y is f.closed set in X.
- (e) For each f.point ρ in X and each f. δ -nbd N of $f(\rho)$, $f^{-1}(N)$ is a q-nbd of ρ .

3°1.

Proof. (a) \Rightarrow (b): Let $\rho \in \overline{U}$ and let V be a f.open q-nbd of $f(\rho)$. Then there exists a f.open q-nbd W of ρ such that $f(W) \leq (\overline{V})^{\circ}$. Now, $\rho \in \overline{U} \Rightarrow WqU \Rightarrow f(W)qf(U) \Rightarrow (\overline{V})^{\circ}qf(U) \Rightarrow f(\rho) \in [f(U)] \cap P \in f^{-1}([f(\overline{U})] \cap P)$. Thus $U \leq f^{-1}([f(\overline{U})] \cap P)$ so that $f(U) \leq [f(U)] \cap P$.

(b) \Rightarrow (c): Let K be f. δ -closed set in Y. Then [K] = K and hence by (a), $f(f^{-1}(K)) \leq [f(f^{-1}(K))] \leq [K] \leq = K$ so that $\overline{f^{-1}(K)} \leq f^{-1}(K)$. Thus $f^{-1}(K)$ is f. closed set.

(c) \Rightarrow (d): Let K be f. δ -open in Y. Then K' is f. δ -closed and by (c), $f^{-1}(K')$ is f.closed. Since $f^{-1}(K') = (f^{-1}(K))'$, $f^{-1}(K)$ is f.open.

(d) \Rightarrow (a): Let ρ be a f.point in X and V any f.open q-nbd of $f(\rho)$. Then $(\overline{V})^{\circ}$ is a f.regularly open q-nbd of $f(\rho)$. Since f.regularly open sets are f. δ -open, $(\overline{V})^{\circ}$ is f. δ -open. By (d), $f^{-1}((\overline{V})^{\circ})$ is a f.open set in X and $\rho \notin (f^{-1}((\overline{V})^{\circ}))^{\circ}$. Putting $B = (f^{-1}((\overline{V})^{\circ}))^{\circ}$, since B is a f.closed set, there exists a f.open

q-nbd U of ρ such that $U \not \in B$. Then $\rho \cap U \subseteq B' = f^{-1}((\overline{V})^0)$ which proves that $f(U) \subseteq (\overline{V})^0$. Next we show that $\rho \notin (f^{-1}((\overline{V})^0))'$. If $\rho \in (f^{-1}((\overline{V})^0))'$, then

$$f(\rho)(f(x_{\mathsf{P}})) = \rho(x_{\mathsf{P}}) \le (f^{-1}((\overline{V})^{\circ})^{\prime}(x_{\mathsf{P}}) = ((\overline{V})^{\circ})^{\prime}(f(x_{\mathsf{P}})). \tag{1}$$

Now since V is f.open, $V \leq (\overline{V})^{\circ}$ so that $V'(f(x_P)) \geq ((\overline{V})^{\circ})'(f(x_P))$. Then since V is a q-nbd of $f(\rho)$, we have $f(\rho)(f(x_P))+V(f(x_P)) \geq 1$ which implies

$$f(\rho)(f(\mathbf{x}_{\mathbf{P}})) \rangle V'(f(\mathbf{x}_{\mathbf{P}})) \geq ((\overline{V})^{\circ})'(f(\mathbf{x}_{\mathbf{P}})). \tag{2}$$

Clearly, (1) and (2) are incompatible.

(a) \Rightarrow (e): Let ρ be a f.point in X and N any f. δ -nbd of $f(\rho)$. Then there exists a f.open q-nbd V of $f(\rho)$ such that $(\overline{V})^{\circ}qN'$. Since f is f.almost continuous, there exists a f.open q-nbd U of ρ such that $f(U) \leq (\overline{V})^{\circ} \leq N$, so that $U \leq f^{-1}(N)$ and hence $f^{-1}(N)$ is a q-nbd of ρ .

(e) \Rightarrow (a): Let ρ be a f.point in X and V any f.open q-nbd of $f(\rho)$ in Y. Then $(\overline{V})^{\circ}$ is a f. δ -nbd of $f(\rho)$. By (e), $f^{-1}((\overline{V})^{\circ})$ is a q-nbd of ρ . Hence there exists a f.open set U such that $\rho q U \leq f^{-1}((\overline{V})^{\circ})$ so that $f(U) \leq (\overline{V})^{\circ}$. Thus f is f.almost continuous.

Theorem 3.3. Let X, Y and Z be fts's such that Y is product related to Z. Let $f_1: X \longrightarrow Y$ and $f_2: X \longrightarrow Z$ be any mappings. Then $f: X \longrightarrow Y \times Z$, defined by $f(x) = (f_1(x), f_2(x))$, for all $x \in X$, is $f.\theta$ -continuous if and only if f_1 and f_2 are so.

1

Proof. Let ρ be f.point of X and U_1 , U_2 be f.open q-nbd of $f_1(\rho)$ and $f_2(\rho)$ in Y and Z, respectively. Then $U_1 \times U_2$ is clearly a f.open q-nbd of $f(\rho)$. Since f is f. θ -continuous, there exists a f.open q-nbd V of ρ in X such that $f(V) \leq \overline{U_1 \times U_2} = \overline{U_1} \times \overline{U_2}$. By Lemma 2.9 (a) in [7], then we have $f_1(\overline{V}) \leq \overline{U_1}$ and $f_2(\overline{V}) \leq \overline{U_2}$, so that f_1 and f_2 are f. θ -continuous.

Conversely, let ρ be f.point of X and W be any f.open q-nbd of $f(\rho)$ in X×Z. Then by Lemma 2.9 (b) in [7], there exist f.open q-nbds U_1 of $f_1(\rho)$ and U_2 of $f_2(\rho)$ such that $f(\rho)qU_1\times U_2\leq W$. Since f_1 and f_2 are f. θ -continuous, there exi-

st f.open q-nbds V_1 and V_2 of ρ in X such that $f_1(\overline{V_1}) \leq \overline{U_1}$ and $f_2(\overline{V_2}) \leq \overline{U_2}$, so that $f_1(\overline{V_1}) \times f_2(\overline{V_2}) \leq \overline{U_1} \times \overline{U_2}$. Now by hypothesis, putting $V = V_1 \cap V_2$, V is obviously a f.open q-nbd of ρ and $f(\overline{V}) \leq f_1(\overline{V_1}) \times f_2(\overline{V_2}) \leq \overline{U_1} \times \overline{U_2} \leq \overline{U_1} \times \overline{U_2} \leq \overline{W}$. Hence f is f. θ -continuous.

Theorem 3.4. Let X and Y be fts's such that X is product related to Y. Let so for $f: X \longrightarrow Y$ be a mapping and $g: X \longrightarrow X \times Y$, given by g(x) = (x, f(x)) for each $X \subseteq X$, such that X is product related to Y. Let so for $f: X \longrightarrow Y$ be a mapping and $g: X \longrightarrow X \times Y$, given by g(x) = (x, f(x)) for each $X \subseteq X$, such that X is product related to Y. Let so for $f: X \longrightarrow Y$ be a mapping and $g: X \longrightarrow X \times Y$, given by g(x) = (x, f(x)) for each $X \subseteq X$, such that X is product related to Y. Let so for $f: X \longrightarrow Y$ be a mapping and $g: X \longrightarrow X \times Y$, given by g(x) = (x, f(x)) for each $X \subseteq X$, such that X is product related to Y. Let so for $f: X \longrightarrow Y$ be a mapping and $g: X \longrightarrow X \times Y$, given by g(x) = (x, f(x)) for each $X \subseteq X$ continuous.

Proof. Let ρ be a f.point in X and V be any f.open q-nbd of $f(\rho)$. Then $X \times V \in \mathbb{R}^n$ is f.open set and $g(\rho)qX \times V$. Since g is f. θ -continuous, there exists f.open q-nbd U of ρ such that $g(\overline{U}) \leq \overline{X} \times \overline{V} = X \times \overline{V}$. Also since g is graph of f, we have $f(\overline{U}) \leq \overline{V}$. Hence f is f. θ -continuous.

Theorem 3.5. Let X, Y and Z be fts's and $f:X\longrightarrow Y$ and $g:Y\longrightarrow Z$ be $f.\theta$ —continuous. Then the composite mapping $g\circ f:X\longrightarrow Z$ is $f.\theta$ —continuous.

Proof. Let ρ be any f.point in X and N be any f. θ -nbd of $g(f(\rho))$. Since g is f. θ -continuous, $g^{-1}(N)$ is f. θ -nbd of $f(\rho)$. Also since f is f. θ -continuous, $f^{-1}(g^{-1}(N))$ is f. θ -nbd of ρ . But $(g \circ f)^{-1}(N) = f^{-1}(g^{-1}(N))$. Therefore $g \circ f$ is $f \cdot \theta$ -continuous.

Definition 3.5 [10]. f is said to be f.almost quasi-compact if it is onto and V is f.open in Y whenever $f^{-1}(V)$ is f.regularly open in X.

Theorem 3.6. Let $f: X \longrightarrow Y$ be onto. The following conditions are equivalent:

- (a) f is f.almost quasi-compact.
- (b) V is f.closed in Y for every f.regularly closed $f^{-1}(V)$.
- (c) f(U) is f.closed in Y for every f.regularly closed inverse set U.
- (d) f(U) is f.open in Y for every f.regularly open inverse set U.

Proof. (a) \Rightarrow (b): Let $f^{-1}(V)$ be f.regularly closed in Y. Then $f^{-1}(V')=\blacksquare f^{-1}(V')$ is f.regularly open in X. By (a), V' is f.open in Y. Hence V is f.closed in Y.

- (b) \Rightarrow (c): Let U be f.regularly closed inverse set. Since $f^{-1}(f(U)) = U$ is f.regularly closed in X, f(U) is f.closed in Y.
- (c) \Rightarrow (d): Let U be f.regularly open inverse set. Then U' is f.regularly closed. Since f is onto and U is inverse set, $f(U)' = f(f^{-1}(f(U)')) = f(U')$. Thus $f^{-1}(f(U)') = f^{-1}(f(U)') = U'$. That is, U' is inverse set. By (c), f(U') = f(U') is f.closed. Hence f(U) is f.open set.
- $(d)\Rightarrow(a)$: Let $f^{-1}(U)$ is f.regularly open. Since f is onto, $f^{-1}(U)$ is f.regularly open invers set. By (d), $f(f^{-1}(U))=U$ is f.open. Thus f is almost quasi-compact.

Definition 3.6 [10]. f is said to be

- (a) f.almost open if the image of every f.regulary open set of X is f.open in Y.
- (b) f.almost closed if the image of every f.regulary closed set of X is f.closed in Y.

If $f:X\longrightarrow Y$ is bijective, by Nanda [10], then the following statements are equivalent:

- (a) f is f.almost open.
- (b) f is f.almost closed.
- (c) f is f.almost quasi-compact.
- (d) f^{-1} is f.almost continuous.

Definition 3.7 [9]. A fts X is said to be

- (a) f.almost regular if for each f.regularly open set V and each f.point pqV, there exists a f.regularly open set U such that $pqU \ \langle \overline{U} \leq V$.
- (b) f.semi-regular if for each f.open set V and each f.point ρqV , there exists a f.open set U such that $\rho qV \leq (\overline{V})^{\circ} \leq V$.

Theorem 3.7. A fts X is f.almost regular if and only if [A] = [A] = [A] for every

f.set A of X.

Proof. In [9], $[A] \in \geq [A]$. Thus we show that $[A] \in \leq [A]$. Let $\rho \notin [A]$. Then there exists a f.regularly open q-nbd V of ρ such that $V \not\in A$. Since X is f.almost regular, there exists a f.regularly open set U such that $\rho \in A \subseteq V$. Then $V \not\in A \Rightarrow A \subseteq V$ is $V \not\in A \Rightarrow A \subseteq V$.

Conversely, let V be a f.regularly open set and ρ be a f.point with ρqV . Then since V' is f. δ -closed in X, $\rho \notin V' = [V']_C = [V']_C$. Thus there exists f.open q-nbd U of ρ such that $\overline{U}qV'$, so that $(\overline{U})^0 \le V^0 \le V$. Putting $G = (\overline{U})^0$, then G is f.regularly open set in X such that $\rho qG \le \overline{G} \le \overline{U} \le V$. Hence X is f.almost regular.

Theorem 3.8. A fts X is f.almost regular if and only if A=[A] of or every f.semi-open set A of X.

Proof. follows easily by virtue of Lemma 3.1 and Theorem 3.7.

Theorem 3.9. A fts X is f.semi-regular if and only if $\overline{A} = [A]$ for each f.set 2. A of X.

ा 🗓

Proof. The necessary condition is sufficient to show that $[A] \subseteq \overline{A}$. Let $p \notin \overline{A}$. Then there exists a q-nbd V of p such that $V \not\in A$. Since X is f.semi-regular, there is a f.open set U such that $p \in V \subseteq A$. Then $V \not\in A \implies (\overline{U}) \cap \subseteq V \subseteq A' \implies (\overline{U}) \cap \subseteq A$ $\Rightarrow p \notin [A] \subseteq A$.

Conversely, let V be f.open set and ρ be any f.point with ρqV . Since V' is f.closed set, $\rho \notin \overline{V'} = [V']$. Then there exists a f.open q-nbd U of ρ such that $(\overline{U})^{\circ} \notin V'$, so that $(\overline{U})^{\circ} \leq V$. Hence X is f.semi-regular.

Theorem 3.10. If $f:X\longrightarrow Y$ is a f.weakly continuous and Y is f.almost regular, then f is f.almost continuous.

Proof. Let ρ be a f.point in X and let H be a f.open q-nbd of $f(\rho)$. Since Y is f.almost regular, there exists a f.regularly open set N such that $f(\rho)qN \le \overline{N} \le (\overline{H})^{\circ}$. By f.weakly continuity of f, there exists a f.open q-nbd U of ρ such

that $\rho \neq U$ and $f(U) \leq \overline{N} \leq (\overline{M})^\circ$. Thus f is f.almost continuous. By the above theorem, the following corollary is easily obtained.

Corollary 3.11. Let $f:X\longrightarrow Y$ be a mapping. If Y is f.almost regular, then the following are equivalent:

- (a) f is f.weakly continuous.
- (b) f is $f.\theta$ -continuous.
- (c) f is f.almost continuous.

Theorem 3.12. If $f:X \longrightarrow Y$ is a f.weakly continuous, f.almost open, and X is f.semi-regular, then f is f.almost continuous.

Proof. Let ρ be a f.point in X and V be any f.open q-nbd of $f(\rho)$. Since f is f.weakly continuous, there exists a f.open q-nbd U of ρ such that $f(U) \leq \overline{V}$. By f.semi-regularity of X, there exists a f.open set W such that $\rho \neq W$ and $W \leq (\overline{W})^0 \leq U_{\overline{V}}$. Since f is f.almost open and $(\overline{W})^0$ is f.regularly open, $f(W) \leq f((W)^0) \leq (V)^0$. Thus f is f.almost continuous.

Theorem 3.13. If $f:X \longrightarrow Y$ is a f.almost open and $f.\theta$ —continuous, then f is f.almost continuous.

Proof. Let ρ be a f.point in X and V be any f.open q-nbd of $f(\rho)$. Then since f is f. θ -continuous, there exists a f.open q-nbd U of ρ such that $f(\overline{U}) \leq \overline{V}$. Since f is f.almost open and $(\overline{U})^{\circ}$ is f.regularly open, $f((\overline{U})^{\circ})$ is f.open. Thus we have $f(U) \leq f((\overline{U})^{\circ}) \leq (f(\overline{U}))^{\circ}$. Therefore $f(U) \leq (\overline{V})^{\circ}$. This shows that f is f.almost continuous.

By the theorem 3.12 and Theorem 3.13, the following corollary is easily obtained.

Corollary 3.14. Let $f:X \longrightarrow Y$ be f.almost open mapping.

(a) f is f.almost continuous if and only if f is f. θ -continuous.

(b) Let X be f.semi-regular. Then f is f.almost continuous if and only if f is f.weakly continuous.

Thus, if f is f.almost open and X is f.semi-regular, then f.almost continuity, f. θ -continuity and f.weakly continuity are equivalent.

Theorem 3.15. Let $f: X \longrightarrow Y$ be $f. \theta$ —continuous, f.almost open, f.almost closed and onto. If X is f.almost regular, then Y is also f.almost regular.

1

Proof. Let $f(\rho)$ be a f.point in Y and B be any f.regularly open set such that $f(\rho)qB$. By theorem 3.13 and theorem 3.5 in [8], $f^{-1}(B)$ is a f.regularly open set of X such that $\rho qf^{-1}(B)$. Since X is f.almost regular, there exists a f.regularly open set U such that $\rho qU \le \overline{U} \le f^{-1}(B)$. Since f is f.almost closed, $f(\overline{U})$ is f.closed. Hence $\overline{f(U)} \le f(\overline{U})$ and $f(\rho)qf(U)$. Putting $V = (\overline{f(U)})^0$, then V is f.regularly open set such that $f(\rho)qV$ and $\overline{V} = (\overline{f(U)})^0 \le \overline{f(U)} \le f(\overline{U}) \le B$. Thus Y is f.almost regular.

Definitions 3.8 [13]. A fts X is said to be f.Urysohn if for any distinct f.points ρ and r in X(i,e., satisfying $x_P \neq x_r$), there exist f.open sets U and V scuh that $\rho \neq U$, $r \neq V$ and $\overline{U} \cap \overline{V} = \phi$.

Theorem 3.16. Let $f:X \longrightarrow Y$ be $f.\theta$ -continuous and one-to-one. If Y is f.Urysohn space, then X is also f.Urysohn.

Proof. Let ρ and r be distinct f.points in X. Then $f(\rho)$ and f(r) are distinct f.points in Y. By f.Urysohn property of Y, there exist f.open sets V_1 and V_2 in Y such that $f(\rho)qV_1$, $f(r)qV_2$ and $\overline{V_1}\cap\overline{V_2}=\phi$. Since f is f. θ -continuous, there exist f.open sets U_1 and U_2 such that ρqU_1 , rqU_2 , $f(\overline{u_1}) \leq \overline{V_1}$ and $f(\overline{U_2}) \leq \overline{V_2}$. Since f is one-to-one,

$$\overline{U_1} \cap \overline{U_2} = f^{-1}(f(\overline{U_1})) \cap f^{-1}(f(\overline{U_2}))$$

$$= f^{-1}(f(\overline{U_1})) \cap f(\overline{U_2}) \leq f^{-1}(V_1 \cap V_2) = \phi.$$

Thus X is f. Urysohn.

References

- [1] K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal Appl. 82(1981) 14-32.
- [2] C.L. Chang, Fuzzy topological spaces, J.Math. Anal. Appl. 24(1968) 182-190.
- [3] S. Ganguly and S. Saha, On separation axioms and separation of connected sets in fuzzy topological spaces, Bull. Calcutta Math. Soc. 79(1987) 215-225
- [4]————, A note on δ -continuity and δ -connected sets in fuzzy set theory, Simmon Stevin 62(1988) 127-141.
- [5] B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectednessmin fuzzy setting, Fuzzy Sets and Systems 35(1990) 345-355.
- [6] P.P. Ming and L.Y. Ming, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J.Math. Anal Appl. 76(1980) 571-599.
- [7] M.N. Mukherjee and B. Ghosh, Some stronger forms of fuzzy continuous mappings on fuzzy topological spaces, Fuzzy Sets and Systems 38(1990) 375-387.
- [8] M.N. Mukherjee and S.P. Sinha, On some weaker forms of fuzzy continuous and fuzzy open mappings on fuzzy topological spaces, Fuzzy Sets and Systems 32(1989) 103-114.
- [9] ______, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34(1990) 245-254.
- [10] S.Nanda, On fuzzy topological spaces, Fuzzy Sets and Systems 19(1986) 193-197.
- [11] T.Noiri, Between continuity and weak-continuity, Bollettino U.M.I. (4) 9(1974) 647-654.
- [12] M.K. Singal and A.R. Singal, Almost-continuous mappings, Yokohama Math. J. 16(1968) 63-73.
- [13] R. Srivastava, S.N.Lal and A.K. Srivastava, Fuzzy Hausdorff topological spaces, J.Math. Anal. Appl. 81(1981) 497-506.

Park, Jin Han · Lee, Bu young · Lee, Jong Hoo

[14] T.H. Yalvac, Fuzzy sets and functions on fuzzy topological spaces, J. Math. Anal. Appl. 126(1987) 409-423.

[15] ______, Semi-interior and semi-closure of a fuzzy set, J, Math. Anal. Appl. 132(1988) 356-364.

1 (1.2