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Asymptotic Behavior of Solutions
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(1) Abstract

First of all, Under the assusmption that a solution X(t) is bounded and approaches a closed
set Q, it will be shown that thke positive limit set of X(t) is composed of solution of some
system defined on © which is related to the unperturted system,

We present some conditions which ensure that the solution Y (x) of the ordinary differential
equation

Y'(x)=Ax)Y(x), Y(x)=1I, where xo=x<(oo and A(x), Y(x)
are nxn complex matrix-valued functions with A(x) continuous, has a nonsingular limit as

X—00,

(1) The theorem

(A) For a system defined on a set D
X'=f(x), xeD 1)
and for subset M of D, M is said to be a semi-invariant set of (1), if for each point of M
there exists at least one solution of (1) which remains in M for all future time, consider a
system
X'=f({t,x) +g(t,x) (2)
Let © be an open set in R* and suppose that f(¢,x), g(t,x) are continuous on IxQ.
Moreover Suppose that if X(#) is continuous and bounded on (¢, o), that is, for some co-
mpact set
Q*¥=Q, X(1)eQ* for all t (t,,0), then we have

|, 1805, X () ds<oo ®
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Let X (#,t., xo) be a solution of (2) through (fo,x.) and let I'* bs a set in R* such that
I't=n U X(t,tn,Xv)

toss<r sst
where the interval (f.,7) is the maximal interval of the solution X (¢, 2oy Xo).

Then I'+ is a closed subset in Q, and if X(Z,fox0) is bounded, I'* is non-empty and com-
pact.
Let Q be a closed set in the space @, suppose that a solution X (f) approaches Q as {—o0.
Then the positive limit set I'* of X1t) is contained in Q.
Now we shall make the following assumption for the system(2).
Let Q be a nonempty closed set in the space Q and suppose that f(t, x) of (2) satisfies the
following conditions:
i) f(t,x) tends to a function 2(X) for XeQ as t—oo and on any compact set in Q this
convergence is uniform.
ii) corresponding to each e2>0 and each YeQ, there exists a 3(¢,») >0 and a T (s y>>)0 such
that if |x—yl<C8() and t<T(ey), We have
Lf@t, %) — (&3 1<e
if f(t,x) satisfies condition (ii), for y:Q,, where Qg is a compact set in Q, We can
choose & and T which are in dependent of y and depend only on Q;.
Theorem 1
Suppose that a solution X (¢, x,) of (2) is bounded and approaches a closed set Q in the
space Q.
if f(¢. x) satisfies conditions i) and ii), then the positive limit set I't of X (¢t %0) is a
semi-invariant set contained in Q of the eguation,
X'h(x), XeQ (4)
proof)
| X (¢s) —w|<o for sufficiently large k.
Therefore, there exists a solution & (t) defined on 0<¢=<2 of System.
X/=h*(x), XeRr through (0, w) such that for a given e>>0, |X(t+t) —d(B) 1<e
for £e[0, 1), since X @) -+ as t—oo, if & is sufficiently large, i ()eN (2¢,1) for te(0, 2,
and also.
Be(®) =w+ [ ¥ ($u())ds for 00, X].
Thus, for a sequence {ex} approaching zero as K—oo, there exist solution ¢y (¢) of X/=h*

(x), XeR® such That

{¢k<t>=w+§:h*<¢k<s>>ds &)
Gr(t)eN (ex, I'*)

for te(0,2). Since {gx()} is uniformly bounded and equicontinuous, it has a uniformly co-
nvergent subsequence. Let é(#) be its limit function, Then, by (5),

$(5) =w+ [ H*(B(s))ds, $®er'* for (0, 2.
since I Q,, h* (@) =h(¢$)), which implies that.
$ () =w+j:h(¢(s))ds for te[0,4), that is, ¢() is a solution of system (4) through (0, w)
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and remain in I'*. Since 2 is arbitrary, We can find a solution of (4) defined on I which pa-
sses through (0, w) and remains in '+,

This proves that I™* is a semi invariant set of (4).
(B) consider the initial value problem

Y () =Ax)Y (%), xe<x<co
Y(x.)=1 ©)

Here A(x) and Y (x) are nxn complex matrix-x, valued function, and A(x) is assumed to
be continuous. The purpose of the paper is to give some sufficient conditious for lim x—ooY
(%) to exist and be invertible it is well knorwn[1) that one sufficient condition is

A(x)eL<0, 00), e, 'f;llA(x)de/\WhereH llis the norm (any of the equivalent ones) on
the space of nxn complex matrices,

On the other hand, if A(x) is a commutative family, the solution to (6) is
Y(x) :exp< EOA(S) ds>

and so Y(x) has an invertible limit at co provided the improper integral
lim x—oof  A(s)ds={ A(a)ds exists,
Theorem 2
Suppose A(x) =B(x) +C(x), wkere B(x), C(x) are continous, C(x)eL'(x.,00), H(x) =KB
(s)ds exist as an improper Riemann intezral, and H(x) B(x)eL!(x., o). Then limx—ooY (x)
exist and is invertible,
proof of the theerem. Let Y(x) be the solution of (6), and let
Z(x)=1+Hx)Y(x)
Since the first factor has the limit [ as x—oo, it suffices to show that Z(x) has an inve-
rtible limit at oo, Now for a<{x<Cco and a sufficiently large we have
Z(x)=(A(x) +Hx)Ax)Y (x) —B(x) Y{(x)
=(Cx)+Hx)C(x)+Hx)Bx)Y(x)
=R(x)Z(x), R(x)eL)(a, o)
This completes the proof of theorem.
Theorem 3
Suppose A (x) =B.(x) +Co(x), Co(x)eL!(x0, o)
Hy(x) = [ Ba(s)ds=B,(x) +C:(),
Ci(x) A(x)eL* (%0, 00)
H,(x) = [ By(5) A(5)ds = By(x) +Cs(x)
: C; (%) A(x)eL (%0, o)
Hoo(x) = fB,.2 () A(s)ds=Ba_y(x) +Cry (%)
Ca-y (x) A(x)eL* (%0, 00)
Hu() = [ Buy(s) A(s)ds
Ha (%) A(x)eL! (ts, 00)
Then lim x—ooY (x) exists and is invertible (all matrix-valued functions are assumed con-
tinous, and Jj integrals are improper Riemann integrals)
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proof) The proof is analogous to that of theorem 2, Let Y (x)te the solution of (6) and
Z(x)=U+H(x)+ + Ha(x))Y (%)
The first factor has limit I at co 4, so We need only show that Z(x) has an invertible
limit at co, For a<{x<co and a sufficiently large We have
Z/(x) = (A(x) + Hi(x) A(x) ++++ee +Ha(x) A(x))Y (x)
+(—=Bo(x) =B (x) A(x) = ++++++— Bary () A(%)) Y (x)
= (Co(x) —~C(x) A(x) +++-++Cr1(x) A(x)
+ H:a(x) A(2) Y (%)
=R(x)Z(x), R(x)eL'(a, )
Which proves theorem 3,
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