

저작자표시-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 <u>이용허락규약(Legal Code)</u>을 이해하기 쉽게 요약한 것입니다.

Disclaimer =

공학석사 학위논문

Al 5083-O Pulse MIG의 용접변수가 용접품질에 미치는 영향에 관한 연구

Effect of pulse parameter on weld quality in Al 5083-O Pulse MIG welding

2012년 8월

한국해양대학교 대학원

조선해양시스템공학과

박 지 용

本 論文을 차 智 湧의 工學碩士 學位論文으로 認准함.

위원장 : 공학박사 조효제 (인)

위 원 : 공학박사 박주용 (인)

위 원 : 공학박사 남종호 (인)

2012년 8월

한국해양대학교 대학원

목 차

List of Figures	
List of Tables	II
Abstract	III
제1장 서론	1
제1.3 시는 1.1 연구배경	
1.1 연구매성	
1.2 2十 亏宽	o
제2장 알루미늄 및 알루미늄 합금	4
2.1 Aluminum과 알루미늄 합금의 종류 및 일반적 성질	4
2.2 Aluminum과 알루미늄 합금의 용접 특성	8
제3장 알루미늄 및 알루미늄 합금의 용접공정	9
3.1 GMAW 및 GTAW	9
3.2 Pulse GMAW	15
제4장 용접 실험 및 분석	
4.1 펄스 변수에 따른 용접품질에 관한 연구	
4.2 실험 결과 및 분석	30
4.3 직류 용접 실험	36
제5장 결론	34
참고문헌	37

List of Figures

Fig.	1 세계 에너지 수요 전망	1
Fig.	2 알루미늄 및 그 합금 분류	4
Fig.	3 GMAW원리	10
Fig.	4 단락 이행	11
Fig.	5 입상이행	12
Fig.	6 스프레이 이행	12
Fig.	7 Pulse 이행 과정	13
Fig.	8 GTAW 원리	14
_	9 펄스 파형	
Fig.	10 용접기(Daihen DP-500)	18
Fig.	11 Kawasaki D plus	18

List of Tables

Table. 1 알루미늄 합금의 체계	5
Table. 2 비열처리 알루미늄 합금의 제조 상태와 용도	6
Table. 3 열처리 알루미늄 합금의 제조 상태	· 7
Table. 4 설계한 펄스 변수 조건	19
Table. 5 펄스 용접 실험 조건	20
Table. 6 조건 1의 비드형상 및 펄스 전류 파형	23
Table. 7 조건 2의 비드형상 및 펄스 전류 파형	25
Table. 8 조건 3의 비드형상 및 펄스 전류 파형	27
Table. 9 조건 4의 비드형상 및 펄스 전류 파형	
Table. 10 직류용접 실험 조건	31
Table. 11 140A 직류 및 펄스 MIG 용접의 비드 형상	
Table. 12 160A 직류 및 펄스 MIG 용접의 비드 형상	33
Table. 13 170A 직류 및 펄스 MIG 용접의 비드 형상	34
Table. 14 180A 직류 및 펄스 MIG 용접의 비드 형상	34
Table. 15 190A 직류 및 펄스 MIG 용접의 비드 형상	35

Effect of pulse parameter on weld quality in Al 5083-O Pulse MIG welding

Ji-Yong Park

Division of Ocean Systems Engineering Graduate School of Korea Maritime University

Abstract

The purpose of this study is effect of pulse parameter on weld quality in Al 5083-O Pulse MIG welding. The weld quality is comprised bead geometry and arc stability, pulse MIG weld can control amount of deposition, while the pulse is described by six parameters, main factor of four parameters is the $I_p(peak \ current)$, $T_p(peak \ time)$, $T_b(base \ current)$ and F(frequency), these influence the deposition size and arc stability, if select ideal parameter, deposition size similar wire diameter and metal transfer appear which the OPOD(One Pulse, One Drop) not occur spatter, once melting site become stable, this result can obtain good weld quality, first test controlled four parameters after bead geometry and pulse waveform analyzed, second test analysis the weld quality of pulsed weld and DC MIG weld. The test results showed that the pulse MIG weld is useful for good weld quality.

제 1 장 서 론

1.1 연구배경

세계적인 에너지 수요 증가와 석유 자원 고갈에 따라 국제유가 상승으로 대체 원료인 LNG(Liquefied Natural Gas) 수요는 매년 지속적으로 증가하고 있다. IEA(International Energy Agency)에 따르면, 개발도상국들의 천연가스 수요 증가와 선진국들의 발전용 천연가스 수요 증가에 힘입어 향후 연평균 2%이상 증가하여 2030년에는 2004년 보다 1.7배 정도 증가 할 것으로 전망하였다.

Fig. 1 세계 에너지 수요 전망

이러한 LNG수요증가에 따라 LNG carrier 및 LNG FPSO 선박 시장도 증가 될 것으로 기대 된다. 하지만 LNG 선박은 점차 대형화 되고 있으며, 매장 지역도 점차 환경조건이 열악한 해영 및 북극연안에 위치함에 따라 안전하고 저장 공간도 확보할 수 있는 SPB(Self-supporting Prismatic shape type-B)형 LNG선의 수요가 증가하고 있는 추세이다.

SPB형 LNG선박은 천연가스를 보관하는 탱크가 MOSS형과 같이 선체와 저장 탱크가 독립형이기 때문에 화물의 하중이 과대하게 선체에 전달되지 않으며, 저장능력은 Moss형 보다 20% 정도 우수하다. 그리고 SPB형 저장탱크 알루미늄 5083합금을 사용하여 극저온 취성과 내식성, 피로파괴에 우수하다.

하지만 알루미늄 및 그 합금의 경우 steel용접과 달리 용접 시 결함에 민감하고 우수한 용접부를 얻기가 어렵기 때문에 알루미늄의 용접품질에 관하여 많은 연구가 필요하다.

1.2 연구 목표

LNG 저장탱크에 알루미늄 판재를 사용할 경우, 판재간의 Butt 용접과 구조물의 강성 확보를 위한 Stiffener의 제작 시 다량의 Fillet용접이 필요하게 되어용접 작업양이 많아지게 된다. 하지만 이렇게 많은 작업 양을 우수한 용접부를 확보하는 것과 동시에 자동화시키기 위한 알루미늄관련 연구결과가 많이 나오지 않고 있어 난이도가 높은 알루미늄 용접을 대부분 수작업으로 이루어질 수밖에 없다. 그리고 국내에서 알루미늄 용접 시 해외용접기 회사의 펼스용접제품들을 선호하고 있어 문제 발생 시 해외용접기 회사에 의존 할 수밖에 없다. 이로 인해 선가의 경쟁력 하락이 우려되며, 생산성면에서도 큰 차질이 미칠 것으로 예상 된다.

이러한 문제점들을 대처하기 위해서는 LNG 저장탱크 재료로 쓰이는 Al5083-O을 바탕으로 연구한 용접데이터들을 구축해야 할 것이다. 따라서 본연구에서는 모재 Al5083-O를 용접재료 ER5183으로 필스 변수들을 조절하였을 때 용접부에 어떤 결과가 나타나는지 보았다. 이 실험을 검증하기 위해 필스변수인 피크전류, 베이스전류, 피크시간, 베이스시간들을 변수로 설정하여 용접실험 하여 용접품질에 어떻게 미치는지를 연구하였으며, 필스 MIG용접에서 출력된 평균전류를 바탕으로 직류 MIG 용접과 용접품질에 얼마나 차이가 나는지 연구 하였다.

제2장 알루미늄 및 알루미늄 합금

- 2.1 알루미늄과 알루미늄 합금의 종류 및 일반적 성질
- 2.1.1 알루미늄과 알루미늄 합금의 특성 및 분류

Al합금의 비중은 2.7g/cm³ 이며, 철은 7.8g/cm³로 철의 약 1/3정도로 가볍고 철강에 비해 높은 비강도를 가지며, 인체와 환경에 무해하며 재활용에 용의하여 선박, 항공기, 차량과 같은 운송기기, 건축용재, 화학 공업용 탱크 등 널리사용되고 있다.

Al합금은 크게 판, 형재, 관, 단조품등의 전신재와 주물, 다이캐스트 등의 주 조재로 나뉘며, 각 종류마다 열처리에 의한 경화여부에 따라 열처리, 비열처리 알루미늄 합금으로 나눠진다. 여기에서 조선 산업에 주로 쓰이는 것은 전신재이 다.

Fig. 2 알루미늄 및 그 합금 분류

전신재 내에 많은 알루미늄 합금이 개발 되었으며 알루미늄 협해(Aluminium Association)에 의해 4자리의 숫자의 시스템이 개발 되었으며 가공용 알루미늄 합금 종류를 나타내기 위해 ASTM에 의해 채택 되었다.

주요합금 원소	표기법	합금원소의 특징
Al 순도 99%이상	1xxx	전기 화학산업 적용
Cu	2xxx	강도 개선, 내식성 및 용접성 나쁨
Mn	3xxx	재결정 온도 상승, 강도개선
Si	4xxx	융점 감소, 내충격성 저하
Mg	5xxx	내식성 및 강도 개선
Mg, Si	6xxx	용접성과 내식성 개선
Zn	7xxx	결정립 미세화 효과
나머지 원소	8xxx	

Table 1. 알루미늄 합금의 체계

2.1.2 알루미늄 합금의 제조 상태

알루미늄협회와 ASTM은 가공용과 주조용 알루미늄 합금에 사용되는 제조기호 시스템을 규정하고 있으며, 제조 기호를 명시하는 과정에서 합금의 기호에하이픈(-)에 의해 분리하며 기초적인 문자로 구성되어 있다. 알루미늄 합금을 열처리에 의한 경화여부에 기준을 두어 구분하였다.

(1) 비열처리 알루미늄과 알루미늄 합금의 제조 상태

비열처리 알루미늄 합금의 강도는 Si, Fe, Mn, Mg등의 원소에 의한 고용 강화 혹은 분산 강화에 의해 결정된다. 이에 속하는 금속은 1xxx, 3xxx, 4xxx, 5xxx 합금들이 속하는 금속이다. 근본적으로 석출물에 의해서 경화하는 조직상의 특성을 가지고 있기에 열처리에 의해 경화하지 않고, 이들의 합금을 경화하기 위해서는 가공 경화의 방법이 적용된다.

제조 기호	제조 상태
-F	제조한 상태 그대로의 것
-O	어닐링 후 재결정시킴
-H1	가공경화만 한 것
-Н2	가공경화 후 일부 어닐링
-Н3	가공경화 후 안정화 처리

Table 2. 비열처리 알루미늄 합금의 제조 상태와 용도

(2) 열처리 비열처리 알루미늄과 알루미늄 합금의 제조 상태

알루미늄 합금의 강도는 합금 원소에 의해서 결정된다. Cu, Mn, Zn, Si등의 원소를 알루미늄 합금의 온도가 올라갈수록 고용도가 높아진며, 열처리에 의해 서 이들 합금 원소의 석출과 고용화에 의한 경화를 이룰 수 있다. 이러한 의미 에서 이들 합금 원소가 첨가된 알루미늄 합금을 열처리 알루미늄 합금이라고 구분한다.

여기에 속하는 합금은 2xxx, 6xxx와 7xxx 그리고 합금 원소 조합에 따라일부 4xxx가 있다. 비열처리 합금과 마찬가지로 열처리 알루미늄 합금의 경우에도 명칭 뒤에 하이픈(-)을 넣어 제조 상태를 표시 한다.

제조 표기	제조 상태
-F	가공한 상태 그대로
-O	어닐링 처리한 후 재결정 시킨 상태
-W	고용화 열처리
-T1	시효 경화한 상태
-T2	가공온도에서 냉간가공한 후 시효 처리한 상태
-T3	고용화 열처리 후 냉각하면서 자연 시효한 상태
-T4	고용화 열처리 후 자연시효한 상태
-T5	고온 성형 후 냉각하여 인공시효한 상태
-T6	고용화 열처리 이후 인공시효한 상태
-T7	고용화 열처리 이후 안정화 한 상태
-T8	고용화 열처리 한후 냉간 가공한 다음 인공시효함
-T9	고용화 열처리 한 후 인공시효한 다음 냉간 가공함.
-T10	가공온도에서 냉각 하고 냉간 가공한 다음 인공시효함.

Table 3. 열처리 알루미늄 합금의 제조 상태

2.2 Aluminium과 그 합금의 용접 특성

알루미늄은 일반 철강과 다르게 표면에 Aluminum과 산소가 결합하여 산화 피막(Al₂O₃)을 형성되어 우수한 내식성을 가질 수 있어 양극산화방식으로 두꺼운 산화피막을 얻어 더 높은 내식성을 얻기도 하지만 용접과정에서는 유해한 경우가 많다. 이산화 피막은 녹는점이 1926℃로써 알루미늄 합금 중 가장 녹는점이 높은 660℃보다 약 3배 정도 높아 용접되는 과정에서 용융되지 않고 용접 비드 내부에 미세하게 존재하여 용접결함을 일으키기도 하며, 용접과정에서 산화피막이 분해 될 때 수소를 발출시켜 용접부에 기공을 만들어 용접 결함을 초래한다. 산화피막은 용접 전에 제거 되어야 하며, 산화물의 제거 방법은 화학적, 전기적, 기계적 방법으로 제거 할 수 있다. 제거 한 뒤 8시간 이내 용접이 이루어져야 한다.

그리고 알루미늄은 철강에 비해 높을 열 전도율을 가지고 있으며, 알루미늄의 열전도도는 196kcal/c°이며, 철은 62kcal/c°으로 철에 비해 약 3배 정도 높으며, 전기 전도도 또한 철보다 4배정도 크다.

이는 철보다 1/2보다 낮은 융점을 가지고 있지만 높은 전류로 많은 열을 이용하여 용접을 하여야 한다는 의미를 가진다. 하지만 너무 높은 열은 높은 열전도도가 우수하여 열이 모재에 넓게 퍼져 팽창이 일어나면서 열 변형을 일으킨다. 그래서 알루미늄을 용접은 높은 입열량으로 빠른 속도의 용접법으로 하여야한다.

제3장 알루미늄 및 알루미늄 합금의 용접공정

3.1 GMAW 및 GTAW

대부분 조선소에서는 넓은 작업 환경과 두꺼운 모재 등 여러 가지 이유로 용융용접을 적용하고 있다. 이때 용융용접의 열원은 모재와 전극사이에서 발생되는 아크열이며, 이 아크로 용접이 이루어진다. 용융용접에는 여러 가지 용접법이 있으나 알루미늄용접에 적용되는 용접법은 GMAW(Gas Metal Arc Welding)와 GTAW(Gas Tungsten Arc Welding) 이 두 가지 용접법을 적용한다.

3.1.1 가스 금속 아크용접 (GMAW)

(1) GMAW의 원리

GMAW(Gas Metal Arc Welding)는 가스노즐을 통해 공급되는 보호가스 (shielding gas) 영역 내에서 연속적으로 송급 되는 와이어와 모재 사이에 발생하는 아크에 의해 와이어와 모재가 용융되는 용접법이다. GMAW는 사용하는 보호가스에 종류에 따라 세분화 되며, Ar, He과 같은 불활성 가스(inert gas)를 사용 하는 경우는 MIG(Metal Inert Gas)용접이라고 하며, 다양한 혼합가스 또는 CO2와 같은 활성 가스(active gas)를 사용할 경우는 MAG(Metal Active Gas)용접이라 한다. 알루미늄과 같은 비철금속은 용접과정에서 용융되었을 때 산화반응이 민감하여 불활성 가스를 사용해야 하므로 MIG용접으로 이루어진다.

Fig. 3 GMAW원리

(2) GMAW의 용융금속이행

GMAW에서 용융금속이행은 와이어가 아크열에 의해 용융된 금속이 아크에 작용하는 여러 가지 힘의 조합에 의해 모재로 이행하는 현상이며, 이를 용적이행, 금속이행(Metal transfer)이라고도 한다. 용융금속이행은 용접재료, 보호가스, 용접조건 등에 따라 여러 가지 형태로 나타난다. 다음운 GMAW에서 나타나는 용접금속이행의 종류이다.

① 단락 이행 (Short Circuiting Transfer)

단락 이행은 보호가스 종류에 무관하게 아크길이가 짧은 상태에서 나타나는 이행형태이며, 와이어 끝의 용적이 용융지에 순간적으로 접촉 즉 단락되면서 용융지로 이행한다. 이 이행에서 가장 영향을 주는 힘은 표면장력이며, 전자기력이 보조역할을 한다. 그리고 이 이행은 초당 70회 내외로 이행되며, 저전류 및 저전압(20V)에서 나타나는 것이 특징이다.

Fig. 4 단락 이행

② 입상 이행(Globular Transfer)

입상 이행은 고전류 영역에서 CO₂가 30% 이상 포함된 혼합가스나 He을 사용할 경우 나타나는 이행형태이며, 용적의 직경은 용접 와이어의 직경보다 크게되며 주로 중력의 작용에 의해 용융지로 이행한다. 이 이행에서 가장 영향을 주는 힘은 중력이며 표면장력과 전자기력이 보조역할을 한다. 이 이행은 초당 수회에서 수십회 정도 용적이 이행되며 불규칙적으로 단락현상이 나타난다.

Fig. 5 입상이행

③ 스프레이 이행(Spray Tranfer)

스프레이 이행은 고전류 범위에서 Ar 함량이 70% 이상되는 보호가스를 사용했을 경우 나타나는 이행형태로 와이어 직경보다 작은 용적이 이행되며 단락이일어나지 않는다. 이 이행에서 가장 영향을 주는 힘은 전자기력이며, 중력이 보조역할을 한다. 그리고 이 이행은 초당 100~300회 정도의 용적이 이행되며, 후판용접, 철강, 알루미늄 및 구리합금 용접에 적용된다.

Fig. 6 스프레이 이행

④ 펄스 이행(Pulsed Transfer)

필스형의 전원을 사용할 때 나타나는 이행형태를 펼스 이행이라고하며, 용적은 와이어 직경과 비슷하고 단락이 없는 상태로 이행된다.

펄스 이행은 베이스 전류가 흐르는 동안에는 아크 유지가 주목적이며 용융될 와이어 끝부분을 예열하며, 피크 전류가 흐르는 동안에 와이어가 급격히 용융되 며 강한 전자기력에 의해 용적이 와이어에서 분리되어 용융지로 이행된다. 용접 금속이행 횟수는 펄스의 주파수에 의해 결정된다.

펄스 이행은 OPOD(One Pulse One Drop)이행 즉 1개의 펄스 주기에서 1개의 용적이 모재로 이행되는 것이 가장 이상적인 이행이며, OPOD일 때 아크가 가장 안정이며 한 번의 용접 이행 후 다음 용적이행이 이루어질 때 까지 용융지가 안정화 되어 고품질의 용접부를 얻을 수 있다.

3.1.2 가스 텅스텐 아크용접 (GTAW: Gas Tungsten Arc Welding)

가스 텅스텐 아크용접은 비소모성인 텅스텐 전극과 모재사이에 발생한 아크열로 모재를 용융시키며 필요한 경우 외부에서 별도의 용가재를 사용하여 모재와 함께 용융시켜 용접하는 용접법이다. 그리고 용융지를 보호하기 위해 보호가스는 불활성 가스인 Ar 또는 He을 사용하며 TIG(Tungsten Inert Gas)용접으로 부르기도 한다. 이러한 GTAW는 아크가 안정되고 용접부 품질이 우수하며 주로 알루미늄 및 알루미늄 합금, 스테인리스강 등의 고합금강 용접에 적용하며, 주로 5mm이하의 박판용접에 적용한다.

Fig. 8 GTAW 원리

GTAW 전원은 수하특성을 갖는 직류 또는 교류전원을 사용하며 아크 발생을 용이하게 하기 위해 고주파 아크 발생기를 사용하는 것이 일반적이다. 직류전원 인 경우 정극성을 일반적으로 사용하는데 이는 텅스텐 전극의 마모를 줄이고 모재의 용입을 깊게 할 수 있는 이점이 있다. 그리고 교류전원은 매 사이클의 반주기 동안 역극성이 나타나며 이때 크기가 큰 양이온 재에 충돌하여 알루미 늄 표면의 산화막과 다른 불순물을 제거하는 청정효과가 나타나는 이점이 있다.

3.2 Pulse GMAW

3.2.1 Pulse GMAW 정의

GMAW는 쉽게 자동화가 가능하고 로봇에 적용하기가 용이하여 많은 산업에서 여러 목적으로 많이 사용하고 있다. 그리고 GMAW는 연속적인 송급과 높은 용접 전류에 의한 높은 용착량과 용접속도 등 많은 이점이 있지만 용접금속이행을 조절하는데 한계가 있으며, 기공과 여러 복함 결함에 민감하다는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 Pulse GMAW가 개발되었다. 이 Pulse GMAW는 용접기를 펼스 형태의 공급하는 전원장치를 사용한 것이며, 펼스 파형의 변수를 조절함으로서 정밀한 용착량 제어가 가능하다.

Fig. 9 펄스 파형

(1)피크전류(I_p)

필스 파형의 전류크기에서 높은 전류이며, 이 전류 크기에서 스프레이 이행이 이뤄진다.

(2)베이스전류(I_b)

필스 파형의 두 개의 전류크기에서 낮은 전류이다. 이 전류는 아크를 유지 시 켜주는 것이 주된 역할이다.

(3)피크전류의 시간(T_P)

피크전류가 흐르는 시간이며, 이 시간이 길어질수록 용접재료의 용융되는 양과 상관관계가 있다.

(4)베이스전류의 시간(T_b)

베이스전류가 흐르는 시간이며, 이 전류가 흐르는 동안은 용융금속이행이 이뤄지지 않는다.

(5) Rise slope time(Tup)

베이스 전류에서 피크 전류까지 도달 하는데 걸리는 시간을 뜻한다.

(6) drop slope time(T_{dw})

피크전류에서 베이스전류까지 떨어지는데 걸리는 시간을 뜻한다.

(7)펄스 주파수(f)

펼스 주파수는 초당 일어나는 피크전류의 수이며, 또한 사이클 시간(cycle time, sec.)으로 표현하기도 한다. 이 사이클 시간은 하나의 피크 전류에서 다음 피크전류까지 걸리는 시간을 말한다.

$$f = \frac{1}{T}$$
, Hz

(8)Load duty cycle(D)

사이클 시간에서 자치하는 피크전류의 시간의 비율을 뜻한다.

$$D = \frac{T_p}{T_p + T_b} \times 100\%$$

3.2.3 Pulse GMAW의 장·단점

(1) Pulse GMAW의 장점

- 스패터가 거의 없는 용접금속이행이 이러난다.
- GMAW보다 낮은 에너지에서 비슷한 비드를 얻을 수 있다.
- 두께가 얇은 모재에도 용접기 가능하다.
- 펄스 변수의 수치적 수정이 쉽다.

(2) Pulse GMAW의 단점

- 장비가 비싸다.
- 우수한 용접부를 얻기 위한 펄스 변수 설정하기가 어렵다.
- 우수한 풀질의 용가재가 용구된다.
- 용접경사각(< 40°)에서 수직하향 용접에는 부적절하다.

3.2.4 펄스 변수들의 영향

1945

펼스 변수들을 어떻게 설정하는가에 따라 용적이행, 용착량, 아크의 안정성, 용접품질에 영향을 준다. 먼저 피크전류는 전자기력에 의해 스프레이 용적 이행시키는데 영향을 준다. 이 전류가 너무 낮게 설정하게 되면 용적이 불안정하게되어 아크 안정성에 악영향을 끼치게 된다. 베이스 전류는 아크를 유지 되도록하며, 이 전류가 너무 낮게 설정하면 용접공정 도중 아크가 꺼지는 현상이 발생되게 하며, 너무 높게 설정하면 베이스 전류에서 전극이 용융되어 계산된 용착량보다 많아지게 된다. 피크전류의 시간(Tp)은 이 시간동안 전극을 용융시키며전극의 용융량에 영향을 준다. 이 시간을 너무 짧게 설정하면 전극의 용융양이작아지며, 너무 길게 설정하면 전극이 과도하게 용융되어 이행되는 과정에서 스패터가 발생 할 수 있으며, 또는 1필스/n드롭 되어 아크 안정성에 악영향이 미친다. 베이스전류의 시간(Tb)은 베이스전류가 흐르는 시간이며, 이 시간의 정도에 따라 필스의 주파수에 영향을 준다.

제4장 용접 실험 및 분석

4.1 펄스 변수에 따른 용접품질에 관한 연구

4.1.1 실험 재료 및 장비

본 실험에서는 길이 80mm X 폭250mm X 두께8t 의 Al5083-O에 Φ1.2mm Al 5183 wire(ER5183)으로 Daihen DP-500 inverter 제어 방식의 용접기와 kawasaki D plus 6축 다관절 로봇을 사용하여 bead on plate 용접 하였다. 펄스 전류 전압은 모니터링 장비로 측정 하였으며, 용접비드 형상의 계측에는 B-one 계측 장비가 사용 되었다.

Fig. 10 용접기(Daihen DP-500)

Fig. 11 Kawasaki D plus

4.1.2 용접 조건

다음 용접실험하기 앞서 설계한 용접 조건이다. 이 실험은 네가지의 부분으로 나누어 실험하였다. 먼저 조건 1은 피크전류를 변수를 선정하였고, 조건 2는 베이스전류를 변수로 선정하였으며, 조건 3은 피크시간을 변수로 선전하였으며, 마지막 조건 4는 베이스시간을 변수로 선정하여 pulse 변수들이 용접 비드형상에 어떤 영향을 미치는지 실험 하였다.

	피크전류 (A)	피크시간 (ms)	베이스전류 (A)	베이스시간 (ms)	주파수(f)	평균전류(I _m)
1.1	340	3	50	3	166.67	141.83
1.2	390	3	50	3	166.67	157.67
1.3	440	3	50	3///	166.67	173.50
1.4	490	3	50	3	166.67	189.33
2.1	390	3	20	3	166.67	137.17
2.2	390	3	0 50	3	166.67	157.67
2.3	390	3	80	3 %	166.67	178.17
3.1	390	2.5	50	3.5	166.67	140.67
3.2	390	3	50	3	166.67	157.67
3.3	390	3.5	50	2.5	166.67	197.33
4.1	390	3	50	4	142.86	142.29
4.2	390	3	50	3	166.67	157.67
4.3	390	3	50	2.2	192.31	174.23

Table. 4 설계한 펄스 변수 조건

용접기	Daihen DP-500
모재	Al 5083-O
용가재	Al 5183 wire 1.2 (ER 5183)
접합 타입	Bead on plate
보호가스	100% Ar(15 <i>l</i> /min)
용접속도	45cm/min
CTWD	15mm
온도 & 습도	25℃, 75%

Table 5.펄스 용접 실험 조건

4.1.3 펄스 변수에 따른 용접 품질 평가

각 각 용접조건에 따라 얻어진 용접비드 및 펄스 전류과형을 분석하여 변수 들의 변화에 따라 용접품질에 어떤 영향을 주는지 연구하였다.

(1) 피크전류를 변수로 선정한 실험

1 조건에서는 다른 펄스 변수들은 변화를 주지 않고 피크전류만 340A, 390A, 440A, 490A 로 변화를 주어 용접 하였다. Table 6.는 설계한 조건에 따라 용접한 비드형상 및 전류 파형이다. 피크전류가 커질수록 비드형상과 전류 파형 분석 결과 전체적으로 큰 문제는 발견되지 않았으며, 비드높이가 440A까지 피크전류 크기에 따라 정비례하게 커지는 바람직한 형상이 나타났다. 그리고 피크전류 크기가 커질수록 비드 폭은 연속적으로 커졌으며, 이는 피크전류가 상승할수록 용착량 또한 증가한다는 것으로 볼 수 있다.

	평균전	평균	피크전	피크	베이스전	베이스	スポム	비드	비드
	류	전압	류	시간	류	시간	주파수 (f)	폭	높이
	(A)	(V)	(A)	(ms)	(A)	(ms)	(1)	(mm)	(mm)
	140.11	22.73	341.32	3.0	49.08	3.1	163.93	11.17	2.43
1.1	유접전류 350~1	27.5		, UU II	10-19		K.M.N		>
1.1	300 - 250 - 200 - E T 150 - 100 - 50 - 8.7602	18 8.	77 8.7		5.79 8.8 A/21	8.81	882	8.83	8.83453

	평균	평균	피크	피크	베이스	베이스		비드	비드
	전류	전압	전류	시간	· · · · · · · · · · · · · · · · · · ·	시간	주파수	· 폭	높이
	(A)	(V)	(A)	(ms)	(A)	(ms)	(f)	(mm)	(mm)
	161.87	24.16	390.05	2.9	49.22	3.0	161.87	12.80	2.70
))"		rigina yiliya	111111	BENEVALED AND STORY		ti myza.)
1.2	용접전류 400~> 350~								
1.2	용접전류 400 350 300		2A.N. 2A.A.						8.82222
1.2	물접전류 400 350- 300- 250- 250- 4 150- 100- 50-		Lan Lana	Man of	MAN				8.82222

평균	평균	피크	피크	베이스	베이스	주파수	비드	비드
전류	전압	전류	시간	전류	시간	(f)	폭	높이
(A)	(V)	(A)	(ms)	(A)	(ms)	(1)	(mm)	(mm)
191.12	25.47	499.61	3.0	54.21	3.1	163.93	16.67	2.97
	,)«			11.10()	1000	(1) (1) (1) (1)	(y+4)(i))
용접전류								

Table 6. 조건 1의 비드형상 및 펄스 전류 파형

1945

(2) 베이스전류를 변수로 선정한 실험

2 조건에서는 베이스전류를 20A, 50A, 80A로 높여주어 용접 하였다. 베이스전류가 20A에서는 용접 스타트 부분에서 다소 불안정 현상이 나타났으며, 다른 베이스전류 조건에 비해 상대적으로 비드높이가 불규칙하게 비드형상이 이루어졌다. 이는 베이스전류 구간동안 아크가 불안정한 것이 원인이며, 20A 이하에서는 아크가 끈기는 현상 및 미려하지 못한 비드가 생성되어 20A 이하에서는 아크안정성에 문제가 나타났다. 그리고 80A 에서는 비드폭과 비드높이가 너무커져 바람직하지 않은 것으로 나타났다.

	평균	평균	피크	피크	베이스	베이스	주파수	비드	비드
	전류	전압	전류	시간	전류	시간	(f)	폭	높이
	(A)	(V)	(A)	(ms)	(A)	(ms)	(1)	(mm)	(mm)
	142.62	22.96	392.13	3.0	24.10	2.9	169.49	10.23	2.5
)							V
2.1	용접전투 400 - 350 - 300 - 250 - 250 - 4 150 - 100 -								

Table 7. 조건 2의 비드형상 및 펄스 전류 파형

(3) 피크전류시간을 변수로 선정한 실험

3 조건에서는 피크를 2.5ms, 3ms, 3.5ms로 변화를 주어 용접 하였다. 피크 전류 시간이 2.5ms영역에서는 아크가 불안정하였으며, 스패터 또한 많이 발생 하였으며, 3ms 이상부터는 아크가 안정적으로 이루어졌다. 그리고 피크전류시 간이 길어질수록 평균전류가 급격하게 상승하였으며, 피크전류시간이 3.5ms에 서는 1조건에서 피크전류 490A와 근접하게 상승하였으며, 비드 폭과 비드높이 또한 급격하게 커지는 것을 볼 수 있다.

	평균	평균	피크	피크	베이스	베이스	주파수	비드	비드
	전류	전압	전류	시간	전류	시간		폭	높이
	(A)	(V)	(A)	(ms)	(A)	(ms)	(f)	(mm)	(mm)
	140.26	22.85	391.90	2.5	46.62	3.4	169.49	10.67	2.53
		plan		ry/ ///	H Inne		17.12.70		F
3.1	용접전류 400- 350- 300- 250- 250- 150- 100- 50-								~
ļ	0 - 8.749028	8.7	6 8.77		3.78 8.79	8.8	8.81	8.82	8.82604

Table 8. 조건 3의 비드형상 및 펄스 전류 파형

(4) 베이스시간을 변수로 선정한 실험

4 조건에서는 베이스시간을 4ms, 3ms, 2.5ms로 변화를 주어 용접실험을 하였다. 베이스 시간 4ms영역에서 비드형상은 4.1의 비드형상 사진과 같이 비드폭과 비드 높이가 미려하지 못한 것을 볼 수 있으며, 베이스 시간 3ms 이상일때 아크와 비드형상이 미려하게 이루어 졌다. 그리고 베이스시간이 줄어들수록단위 시간당 포함되는 피크전류가 많아져 평균전류가 상승하는 것을 볼 수 있으며, 평균전류가 커질수록 용접비드 크기 또한 커지는 것을 알 수 있다.

평균	평균	피크	피크	베이스	베이스	주파수	비드	비드
전류	전압	전류	시간	전류	시간		폭	높이
(A)	(V)	(A)	(ms)	(A)	(ms)	(f)	(mm)	(mm)
143.32	22.86	391.78	2.9	48.91	4.0	144.32	10.47	2.53
				2,1,4	100	u Jin		
용접전류								

Table 9. 조건 4의 비드형상 및 펄스 전류 파형

4.2 실험 결과 및 분석

필스 변수인 피크전류, 베이스전류, 피크전류시간, 베이스시간들을 변화를 줄수록 아크의 안정성, 비드형상과 비드 크기, 스패터량 등에 영향을 주었으며, 먼저 피크전류 실험에서 아크 안정성 및 비드형상 평가에서는 전체적으로 큰문제가 발견되지 않았다. 그리고 피크전류크기에 비례하여 비드 폭과 높이가 커졌으며, 이는 피크전류 변화에 따라 평균전류가 커져 용착량이 증가 하는 것을 알 수 있었으며, 440A에서는 비드높이가 커지지 않고 비드폭만 증가하는 정상적인 현상이 나타났다. 그리고 1 조건 실험에서는 390A~440A범위에서 실험조건 내에서 가장 이상적인 아크 안정성, 비드형상과 비드크기를 얻을 수 있었다.

그리고 베이스 전류 실험에서는 20A이하에서는 아크가 끈기는 현상과 같은 불안정한 현상이 나타났으며, 비드 높이 또한 다른 조건에 비해 미려하지 않았으며, 이는 베이스전류의 주목적인 아크를 유지하기엔 너무 낮은 전류인 것으로 판단된다. 그리고 80A에서는 평균전류가 커져 과도하게 큰 비드크기가 얻어져 펄스용접의 장점인 에너지효과에 좋지 않음을 알 수 있었다. 베이스 전류 실험에서는 적정 베이스 전류크기는 50±10A정도가 펄스용접의 장점을 가지면서도 아크의 안정성, 미려한 비드형상을 얻을 수 있는 범위인 것을 알 수 있었다.

필스전류시간 실험에서는 2.5ms에서는 아크가 불안정하고 미려하지 못한 비드형상을 볼수 있었으며, 이는 필스전류시간이 짧아 한 파형에서 전극이 용융되어 용접금속이행이 되지 못하여 불 일정한 용적이행에 의해 얻어진 결과로 판단된다.

베이스시간 실험에서는 시간이 늘어날수록 비드형상이 미려하지 못하고 비드 크기 또한 작을 것을 볼 수 있었다. 이는 베이스시간이 늘어남에 따라 펄스의 주파수가 낮아져 용접속도에 비해 용착량이 적어 비드외관이 미려하지 못하고 비드크기도 작을 것을 알 수 있었다.

4.3 직류 용접 실험

4.3.1 실험 재료

본 실험에서는 길이 80mm X 폭250mm X 두께8t 의 Al5083-O에 Φ1.2mm Al 5183 wire(ER5183)으로 용접 실험 하였다.

4.2.3 실험 방법

펄스 용접에서의 평균전류를 바탕으로 140A, 160A, 170A, 180A, 190A로 용접전류를 설정하였다. 그리고 모든 실험조건 또한 펄스 용접과 동일하게 설정하여 용접을 실행 하였다.

AND ME // ...

용접기	Daihen DP-500			
모재	Al 5083-O			
용가재 8가재	Al 5183 wire 1.2 (ER 5183)			
접합 타입	Bead on plate			
보호가스	100% Ar(15 <i>l</i> /min)			
용접속도	45cm/min			
CTWD	15mm			
온도 & 습도	26℃, 70%			

Table 10. 직류용접 실험 조건

4.2.2 실험 결과 및 고찰

다음은 직류 용접에서 얻어진 용접비드이다. 비드 외관으로는 펄스 용접에 비해 미려하지 못한 비드외관을 볼 수 있고 특히 저전류 영역 일수록 시작 부분이 불안정하게 나타났으며 비드 높이 또한 일정하지 못하였다. 그리고 스패터또한 외관에 영향을 줄 수 있는 탈착되어 형성되는 부분이 다소 발견되었다. 그리고 특히 저전류 영역에서 비슷한 전류에서 직류 용접보다 펄스용접으로 얻은비드 형상이 더 미려하며, 비드 크기가 크다는 것을 확인 할 수 있으며, 180A이상부터는 비드형상은 괜찮았지만 펄스 경우 비드크기가 더 크고 더 미려했다.

		전류(A) 전	1압(V)	비드 폭(mm)			비드높이(mm)			
		140		17.81 7.6				3.1			
직류 MIG 용접	1		The state of the s								
		평균	평균	피크	피크	베이스	베이스	주파	비드	비드	
		전류	전압	전류	시간	전류	시간	수	폭	높이	
		(A)	(V)	(A)	(ms)	(A)	(ms)	(f)	(mm)	(mm)	
	1.1	140.1	22.7	341.3	3.0	49.0	3.1	163.9	11.1	2.4	
						11. 19. 19. 19. 19. 19. 19. 19. 19. 19.	POPERAL	Victa. 10)			
		142.6	22.9	392.1	3.0	24.10	2.9	169.4	10.2	2.5	
Pulse MIG 용접	2.1			(-)-			erthiolia vol pe				
		140.26	22.8	391.9	2.5	46.62	3.4	169.4	10.6	2.53	
	3.1			Carm		(197-15- 1 97-15-19	Sale William 19	Truck)			
		143.32	22.8	391.7	2.9	48.91	4.0	144.3	10.4	2.53	
	4.1					22200	ger my Sin	(politic de la constitució de			

Table 11. 140A 직류 및 펄스 MIG 용접의 비드 형상

		전류(A) 건		압(V)	刊	드 폭(mm	1)	비드높이(mm)			
		160	1	8.78	9.9			3			
직류				-		A THE	A Section of	A TO THE A			
MIG	2										
용접			37		E I E S		E Alles		20 D		
		평균	평균	피크	피크	베이스	베이스	주파	비드	비드	
		전류	전압	전류	시간	전류	시간	수	폭	높이	
		(A)	(V)	(A)	(ms)	(A)	(ms)	(f)	(mm)	(mm)	
	1.2	161.87	24.1	390.0	2.9	49.22	3.0	161.8	12.8	2.7	
								l), otherse it			
							A PACIFIC AND A PACIFIC AND ADDRESS OF THE PACIF	0.00002 2 20 1 1 2			
		159.36	21.3	392.3	3.0	59.91	3.1	163.9	12.8	2.8	
Pulse MIG 용접	2.2				(h)) (j. 1	(1) (1) (1) (1) (1)	AND SECURITY OF THE PARTY OF TH	Mry A	>		
		161.64	21.2	392.2	3.1	47.8	2.8	161.6	13.1	2.8	
	3.2		401			was specific		en train. O p oli nario)6		
		157.33	24.1	392.1	3.0	48.5	3	166.6	13.5	2.6	
	4.2				general en		White	de di			

Table 12. 160A 직류 및 펄스 MIG 용접의 비드 형상

		전류(A	.) 전	입압(V)	刊	드 폭(mm)	비드	.높이(mn	n)		
170 2			20.05	0.05 11.9				2.7				
직류			San									
MIG	3											
용접					2000	ar Editor S			10			
		평균	평균	피크	피크	베이스	베이스	주파수	비드	비드		
		전류	전압	전류	시간	전류	시간	(f)	폭	높이		
		(A)	(V)	(A)	(ms)	(A)	(ms)	(1)	(mm)	(mm)		
	1.3	173.3	24.7	447.4	2.9	54.0	3.2	163.9	13.6	3.0		
Pulse MIG						er gerta manan da	is , , , , , , , , , , , , , , , , , , ,					
용접								a New York of the State of the				
		176.6	24.9	393.6	2.9	78.38	3.2	163.9	14.1	2.73		
	2.3			Compression De	67-1 - Com	ege , jery ypysj	120000000000000000000000000000000000000		The state of the s			

Table 13. 170A 직류 및 펄스 MIG 용접의 비드 형상

		전류(A) 전압(V)			用门	드 폭(mm)		비드높이(mm)			
		180 21.71			13.5			3			
직류				国		and the second	No. of the last	· increase	0		
MIG	4			6	a) a) A)	Managing P.)		
용접					1194						
		평균	평균	피크	피크	베이스	베이 스	주파	비드	비드	
		전류	전압	전류	시간	전류	_ 시간	수	폭	높이	
Pulse		(A)	(V)	(A)	(ms)	(A)	(ms)	(f)	(mm)	(mm)	
MIG	4.3	180.65	25.0	393.6	2.9	48.80	2.2	180.6	14.7	2.6	
용접						(1) (1) (1) (1) (1) (1) (1) (1)		ny mandal	>		

Table 14. 180A 직류 및 펄스 MIG 용접의 비드 형상

	전류(A) 전				刊	드 폭(mm)	비드높이(mm)			
		190	4	23.08 14.1				2.8			
직류											
MIG	5				1.1.1	11/10/2	· only		Ž.		
용접					112	-					
		평균	평균	피크	피크	베이스	베이스	주파	비드	비드	
		전류	전압	전류	시간	전류	시간	수	폭	높이	
	1.4	(A)	(V)	(A)	(ms)	(A)	(ms)	(f)	(mm)	(mm)	
		191.1	25.4	499.6	3.0	54.2	3.1	163.9	16.6	2.9	
Pulse MIG 용접						,		novid)			
		199.04	25.6	395.7	3.6	47.96	2.5	163.9	15.4	2.9	
	3.3						e New York				

Table 15. 190A 직류 및 펄스 MIG 용접의 비드 형상

제 5 장 결과

본 연구에서는 모재 Al5083-O를 용접재료 ER5183 wire로 펄스 변수들을 조절하여 용접결과에 어떤 영향이 미치는지 연구하였다. 이 실험을 검증하기 위해 펄스 변수인 피크전류, 베이스 전류, 피크시간, 베이스시간들을 각 각 변수로 설정하여 용접실험을 하였으며, 용접공정에서 모니터 시스템에 기록된 전류, 전압으로 아크 안정성을 평가하였으며, 비드외관 및 크기를 측정하여 용접품질을 평가 하였다. 그리고 펄스 MIG용접과 일반 MIG용접의 용접결과를 비교 분석 하여 아래와 같은 결론을 얻었다.

- 1) 펄스 변수 조정 실험에서 피크전류가 390A~440A, 베이스 전류는 40A~60A, 피크전류시간은 3ms~3.5ms, 베이스시간은 3ms~2.5ms에서 아크가 안정성, 비드의 외관 및 크기 등 최적의 용접품질을 얻을 수 있었다.
- 2) 펄스 MIG용접에서 일반 직류에 비해 흡착되는 스패터가 상대적으로 더 적었으며, 저 전류 영역에서는 일반 직류에 비해 현저하게 미려한 비드외 관이 나타났으며, 비드 크기 또한 크게 나타났으며, 특히 비드폭은 일반 직류에 비해 16.1% 높게 나타났다. 이는 같은 전류에서도 용착량이 더 큰 것을 알 수 있었다. 그리고 180A이상에서는 육안으로 확인이 가능할 정도로 펄스 전류를 쓸 때 현저히 비드외관이 미려하게 나타났다.

본 연구를 통해 구축된 용접 데이터를 바탕으로 실험 범위를 박판과 후판으로 확대하여 용접품질에 대해서 추가 연구할 필요가 있으며, 조선소에서 많이 이루어지는 필렛용접에 펄스 MIG용접을 적용하여 변형률, 용착량, 비드형상 및 크기에 대해 추가 연구를 하여야 할 것이다.

참고문헌

- 1. 홍성호, "액화천연가스 저장탱크의 현황 및 전망," 대한용접학회지, 제 13권, pp.1-1, 1995
- 2. Sky Al products corporation, 일본 경금속용접, 41(2003) 544
- 3. 김성종, 알루미늄 선박용 재료와 용접기술, 한국마린엔지니어링학회지, 제 30권, 제 5호, pp14-25, 2006
- 4. 김대만, 조진안, 윤승종, 공형상, 조상명. "스테인리스강 MIG용접에서 원펄스 원드롭의 완전 스프레이 이행을 위한 펄스 파형 결정 방법", 2005년도 추계 학술발표대회논문, pp. 111-113
- 5. 최재호, 최병도, 김용석 "알루미늄의 펄스 전류 미그 용접" Journal of KWS, Vol. 20, No. 5, pp. 703-709, October, 2002
- 6. T.P. Quinn, Process sensitivity of GMAW: aluminum vs. steel, Weld. J. 81 (4) (2002) 55s-60s.
- 7. P.E. Murray, Selecting parameters for GMAW using dimensional analysis, Weld. J. 81 (7) (2002) 125-s-131-s.
- 8. U. Tomoyuki, "MIG welding machine of aluminum and its alloy", Journal of the japan Welding Society, vol, 30, no. 3, pp. 39-44, Mar. 2001

- 9. T. j. Kim, C. U. Kim, R. H. Rim, "development of a power supply for the Pulse MIG arc welding with the changes of output current polarity", in Proc, IEEE IECON' 04, col 1., pp. 203-206, Nov. 2004.
- 10. P.K. Palani, N. Murugan, "Selection of parameters of pulsed current gas metal arc welding", Journal of materrials Processing Technology, pp. 1-10, 2006
- 11. J.C. Needham, A.W. Carter, Material transfer characteristics with pulsed current, Brit. Weld. J. 5 (1965) 229–241.

12. 박주용, "용접생산공학" GS인터비전. 2010

