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Study on the Compensation Algorithm for 

Inertial Navigation System 

Graduate School of Korea Maritime University 

Department of Far East Logistics 

Duy Anh Nguyen 

 

Abstract 

   

This paper describes a method that how a relatively compensate the 

position errors in the using of low cost Inertial Measurement Unit (IMU) has been 

evaluated and compared with the well established method based on a Kalman 

Filter (KF). The compensation algorithm for IMU has been applied to the problem 

of integrating information in Inertial Navigation System (INS). The KF is used to 

estimate and compensate the errors of an INS by using the integrated INS velocity 

and position, respectively.  

 First by using Kalman Filter, we try to reduce noise of acceleration data, 

where two of an acceleration, constant drift and period drift, are considered. With 

the constant drift, it depends on sensor and it always keeps on constant error. 

When using double integration for calculates distance and velocity, these kinds of 

drifts can make increasing velocity and position errors. So, we tried to find these 
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errors and used constant compensation algorithm for compensation of errors in 

data. 

 Second, external environment circumstance is changed ordinarily. Almost 

of them can be changed on periodic time. The average drift can be obtained during 

constant periodic time. And use this value, we consider with a factor as a periodic 

external disturbance which affects to the exact position. We used a repetitive 

method to reduce the external environment change. We verified the proposed 

algorithm by simulation results. 
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Chapter 1.  Introduction 

 

1.1 Background and Objective   

Over the years, there has been a major upsurge of interest in the integrated 

global positioning system (GPS) and inertial navigation system (INS) as a cost-

effective way of providing accurate and reliable navigation aid for civil and 

military vehicles (ships, aircraft, land vehicles, and etc) (Britting 1971, Chui and 

Chen 1987, Farrell and Barth 1998, Loebis et.al. 2004).  

The Global Position Systems (GPS) and Inertial Navigation Systems (INS) 

are widely used for position and attitude determination applications. When 

combined together, GPS and INS provide many complimentary characteristics 

that overcome the limitations experienced when using each sensor individually. 

The primary restriction in the proliferation of such technology into a broader 

range of applications is the high cost of the inertial sensors. A low cost IMU 

(Inertial Measurement Units) that can be integrated with GPS are now available 

for approximately $5000 or less. However, they suffer from large sensor errors 

such as biases and scale factor errors. Another problem experienced with low cost 

sensors is that the error sources are not stable and have to be constantly calibrated 

using GPS updates.  

For auto sailing system in the sea, generally a GPS is very useful for 

measuring the exact position, because of no obstacle between ship and satellite. 

But, the GPS module suffers a large bound of position error. Also, when the ship 

is passed through in the sea-pollution area, it requires a precise auto sailing system. 
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However, for measuring precise position, also the INS device needs a high 

resolution and high price of GPS module.  

To overcome these errors, the phi-angle approach and psi-angle approach 

(Benson 1975, Bar-Itzhack 1981, 1988) have proposed. But, that solution requires 

a small attitude error. In many case, the requirement can not satisfied for low cost 

inertial measurement whose sensitivity is not enough to measure the earth rate. 

Thus, the INS error models with small angle assumption can not satisfy in given 

accurate and performance for the navigation system with low cost IMU. 

GPS and INS sensors are typically combined using with Kalman filter. The 

Kalman filter requires a dynamic model to describe the way in which the errors 

develop over time, and a stochastic model to describe the noise characteristics of 

each sensor. The standard inertial navigation system error model is generally 

considered to be sufficient to model the inertial system.  

 

1.2 Inertial navigation system  

Generally, the INS includes two modules: alignment module and 

navigation module. From these modules, any errors in either the alignment 

module or the navigation module will be integrated and will propagate over time. 

The performance and the navigation accuracy of the INS are determined by its 

errors.  

IMU (Inertial Measurement Unit) is assumed to include a set of three 

orthogonal installed accelerometers and three orthogonal installed gyros. The 

standard IMU is shown in Fig. 1. By install their sensors with vehicle body, this 

kind of INS is called strap-down INS. For implementation, the INS should 
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overcome to the unbounded growth in the position and the velocity errors due to 

the integration of inertial measurements that will contain various forms of error. 

Also, alignment module and navigation module are included in INS. From 

the accelerometers and the gyros, the measured data are inputs to the INS. In 

consideration of installation of accelerometers and gyros, the measured data 

should be converted to base position in INS. By mis-alignment of accelerometers 

and gyros, the error of alignment will be integrated in obtaining velocities and 

positions. 

 

 

Fig. 1 An IMU installed in a vehicle 

 

In navigation module, there compensates the gravity and non-gravity 

acceleration sensors, and transforms to the coordinate system. From the 

transformed data, double integral calculation will be done for obtaining the 

position. In this case, bias factor, integration error, zeros setting and other 

environment changes will be integrated together. Also, the signal of acceleration 

sensor is passed through filter and amplifier. The acceleration signal includes the 
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infinitesimal drift in steady state. So it makes an immense position error in case 

that the drift passed by double integral calculation for converting to position. 

In this thesis, an INS compensation (Periodic Drift Compensation and 

Constant Drift Compensation Gain) algorithm for auto sailing system was 

proposed. A low cost IMU (Inertial Measurement Unit) was used for measuring 

the acceleration. To develop the compensation algorithm, we used a repetitive 

method to reduce the external environment changes and verified the proposed 

algorithm by using experiment results. First, we denote the basic INS algorithm 

with IMU and show that how to compensate the error of position by using low 

cost IMU. Second, in considering the ship’s characteristic and ocean environments, 

we consider with a factor as a periodic external disturbance which effects to the 

exact position. The computer simulations were carried out by using MATLAB.  
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Chapter 2. The Kalman Filter and 

Application in INS 

 

2.1 The Kalman filter  

It is an extremely effective and versatile procedure for combining noisy 

sensor outputs to estimate the state of a system with uncertain dynamics. The 

Kalman filter useful for reduce the noise in follows case: 

 

l  The noise of sensors may include in GPS receivers and inertial 

sensors (accelerometers and gyroscopes, typically) also there include speed 

sensors (e.g., wheel speeds of land vehicles, water speed sensors for ships, 

air speed sensors for aircraft, or Doppler radar), and time sensors (clocks). 

l  The system state in question may include the position, velocity, 

acceleration, attitude, and attitude rate of a vehicle on land, at sea, in the 

air, or in space, but the system state may include ancillary nuisance 

variables for modeling correlated noise sources (e.g., GPS Selective 

Availability timing errors) and time-varying parameters of the sensors, 

such as infinitive active position system scale factor, output bias, or (for 

clocks) frequency.  

l  Uncertain dynamics includes unpredictable disturbances of the host 

vehicle, whether caused by a human operator or by the medium (e.g., 

winds, surface, currents, turns in the road, or terrain changes), but it may 

also include unpredictable changes in the sensor parameters. 
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The Kalman filter maintains 2 types of variables 

First is estimated state vector: the components of the estimated state vector 

include the following: 

üüüü  The variables of interest (i.e., we want or need to know, such as position 

and velocity). 

üüüü  Nuisance variables that are of no intrinsic interest but may be necessary to 

the estimation process. These nuisance variables may include, for example 

the selective availability errors of the GPS satellites. We generally do not 

wish to know their values but may be obliged to calculate them to improve 

the receiver estimate of position 

üüüü  The Kalman filter state variables for a specific application must include all 

those system dynamic variables that are measurable by the sensors used in 

that application. For example, a Kalman filter for a system containing 

accelerometers and rate components do not have to be those along the 

sensor input axes, however. The Kalman filter state variables could be the 

components along locally level earth-fixed coordinates, even though the 

sensors measure components in vehicle-body-fixed coordinates. 

üüüü  In similar fashion, the Kalman filter state variables for GPS-only 

navigation must contain the position coordinates of the receiver antenna, 

but these could be geodetic latitude, longitude, and altitude with respect to 

a reference sphere, or ECEF Cartesian coordinates, or ECI coordinates, or 

any equivalent coordinates. 

Second is a Covariance Matrix: a Measure of estimation uncertainty. The 

equations used to propagate the covariance matrix (collectively called the Riccati 
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equation) model and manage uncertainly taking into account how sensor noise and 

dynamic uncertainty contribute to uncertainty about the estimated system state. 

By maintaining an estimate of its own estimation uncertainty and the 

relative uncertainty in the various sensor outputs, the Kalman filter is able to 

combine all sensor information optimally, in the sense that the resulting estimate 

minimumizes any quadractic loss function of estimation error, including the 

mean-squared value of any linear combination of the state estimation errors. The 

Kalman gain is the optimal weighting matrix for combining new sensor data with 

a prior estimate to obtain a new estimate. 

The Kalman filter is a two-step process, the steps of which we call 

prediction and correction.  The filter can start with either step, but we will begin 

by describing the correction step first. The correction step makes corrections to an 

estimate, based on new information obtained from sensor measurements. 

The derivation begins with background on properties of Gaussian 

probability distributions and Gaussian likelihood functions, then development of 

models for noisy sensor outputs and a derivation of the associated maximum-

likelihood estimate (MLE) for combining prior estimates with noisy sensor 

measurements. 

The rest of the Kalman filter is the prediction step, in which the estimate 

and its associated covariance matrix of estimation uncertainty P  are propagated 

from one time epoch to another. This is the part where the dynamics of the 

underlying physical processes come into play. The state of a dynamic process is a 

vector of variables that completely specify enough of the initial boundary value 

conditions for propagating the trajectory of the dynamic process forward in time, 

and the procedure for propagating that solution forward in time is called state 
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prediction. The model for propagating the covariance matrix of estimation 

uncertainty is derived from the model used for propagating the state vector. 

In this section, the method of using Kalman filter is described. The 

Constant Drift Compensation and Periodic Drift Compensation method are also 

reviewed. To apply Kalman filter for estimation, the error model based is used. 

More details can be seen in B. Boberg and S.L. Wirkander (2002). The state 

equations can be written in the following form 

 

  
2 tan

2 sin
v v v LN D Ev f v LN N E R h R h

= − Ω + −
+ +

&    (1) 

tan
2 ( sin cos )

v v LD Nv f v L v L vE E N D E R h

+
= + Ω + +

+
&   (2) 

22
2 cos

vw NEv f v L gD D E R h R h
= − Ω − − +

+ +
&    (3) 

vNL
R h

=
+

&         (4) 

( ) cos

vE
R h L

λ =
+

&        (5) 

h vD= −&         (6) 

where, vN , vE  and vD  are the components of the vehicle's velocity vector 

relative to the earth, L  and λ  are the latitude and longitude, respectively, h  is the 
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height of the vehicle over the earth's surface, Ω  is the earth angular speed, and 

R is the radius of the earth. The specific force component,f
N

, fD and fE  are 

considered input signals.  

Similarly in B. Boberg and S.L. Wirkander (2002), to compare the two 

methods we will use the Kalman estimation algorithm, but for the discrete time 

case to estimate the INS error from an error model based. In this case, we consider 

the model  

      ( 1) ( ) ( ) ( )x t Ax t Bu t Bw t+ = + +      (7) 

             ( ) ( ) ( )y t Cx t v t= +        (8) 

where t  is the time, x  and y  are the state and the measurement vectors. ,A B and 

C  are the system matrices. w  and v  are discrete white noise.  

The block diagram below shows how to generate both true and filtered 

outputs.  

 

Fig. 2 Block Kalman filter 
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2.2 Acceleration sensors  

All acceleration sensors used in inertial navigation system are generally 

called accelerometers. These kinds of acceleration sensors are used for other 

purposes which include bubble levels (for measuring the direction of acceleration), 

gravimeters (for measuring gravity fields), and seismometers (used in seismic 

prospecting and for sensing earthquakes and under-ground explosions). From now 

we will show the accelerometer sensors. 

Accelerometer Types: Accelerometers used for inertial navigation depend on 

Newton's second law (in the formF ma= ) to measure acceleration (a ) by 

measuring force (F ), with the scaling constant (m ) called proof mass. These 

common origins still allow for a wide range of sensor designs.  

 

Fig. 3 Precession due to mass unbalance 
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Gyroscopic Accelerometers: Gyroscopic accelerometers measure acceleration 

through its influence on the precession rate of a mass-unbalanced gyroscope, as 

illustrated in Fig. 3. If the gyroscope is allowed to process, then the net precession 

angle change (integral of precession rate) will be proportional to velocity change 

(integral of acceleration). If the gyroscope is torqued to prevent precession, then 

the required torque will be proportional to the disturbing acceleration. A pulse-

integrating gyroscopic accelerometer (PIGA) uses repeatable torque pulses, so that 

pulse rate is proportional to acceleration and each pulse is equivalent to a constant 

change in velocity (the integral of acceleration). Gyroscopic accelerometers are 

also sensitive to rotation rates, so they are used almost exclusively in gimbaled 

systems. 

Pendulous Accelerometers: Pendulous accelerometers use a hinge to support the 

proof mass in two dimensions, as illustrated in Fig. 4a, so that it is free to move 

only in the input axis direction, normal to the paddle surface. This design requires 

an external supporting force to keep the proof mass from moving in that direction, 

and the force required to do it will be proportional to the acceleration that would 

otherwise be disturbing the proof mass. 

Force Rebalance Accelerometers: Electromagnetic accelerometers (EMAs) are 

pendulous accelerometers using electromagnetic force to keep the paddle from 

moving. A common design uses a voice coil attached to the paddle and driven in 

an arrangement similar to the speaker cone drive in permanent magnet speakers, 

with the magnetic flux through the coils provided by permanent magnets. The coil 

current is controlled through a feedback servo loop including a paddle position 

sensor such as a capacitance pickoff. The current in this feedback loop through the 

voice coil will be proportional to the disturbing acceleration. For pulse-integrating 

accelerometers, the feedback current is supplied in discrete pulses with very 

repeatable shapes, so that each pulse is proportional to a fixed change in velocity. 
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An up/down counter keeps track of the net pulse count between samples of the 

digitized accelerometer output. 

Integrating Accelerometers: The pulse-feedback electromagnetic accelerometer 

is an integrating accelerometer, in that each pulse output corresponds to a constant 

increment in velocity. The drag cup accelerometer illustrated in Fig. 5 is another 

type of integrating accelerometer. It uses the same physical principles as the drag 

cup speedometer used for half a century in automobiles, consisting of a rotating 

bar magnet and conducting envelope (the drag cup) mounted on a common 

rotation shaft but coupled only through the eddy current drag induced on the drag 

cup by the relative rotation of the magnet. (The design includes a magnetic circuit 

return ring outside the drag cup, not shown in this illustration.) The torque on the 

drag cup is proportional to the relative rotation rate of the magnet. The drag cup 

accelerometer has a deliberate mass unbalance on the drag cup, such that 

accelerations of the drag cup orthogonal to the mass unbalance will induce a 

torque on the drag cup proportional to acceleration. The bar magnet is driven by 

an electric motor, the speed of which is servoed to keep the drag cup from rotating. 

The rotation rate of the motor is then proportional to acceleration, and each 

revolution of the motor corresponds to a fixed velocity change. These devices can 

be daisy chained to perform successive integrals. Two of them coupled in tandem, 

with the drag cup of one used to drive the magnet of the other, would theoretically 

perform double integration, with each motor drive revolution equivalent to a fixed 

increment of position. 

Strain-Sensing Accelerometers: The cantilever beam accelerometer design illus-

trated in Fig.4b senses the strain at the root of the beam resulting from support of 

the proof mass under acceleration load. The surface strain near the root of the 

beam will be proportional to the applied acceleration. This type of accelerometer 
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can be manufactured relatively inexpensively using MEMS technologies, with an 

ion-implanted piezoresistor pattern to measure surface strain. 

 

Fig. 4 Single-axis accelerometers 

 

 

Fig. 5 Drag cup accelerometer 
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Fig. 6 Single-axis vibrating wires accelerometer. 

 

Vibrating-Wire Accelerometers: The resonant frequencies of vibrating wires (or 

strings) depend upon the length, density, and elastic constant of the wire and on 

the square of the tension in the wire. The motions of the wires must be sensed 

(e.g., by capacitance pickoffs) and forced (e.g., electrostatically or 

electromagnetically) to be kept in resonance. The wires can then be used as 

digitizing force sensors, as illustrated in Fig. 6. The configuration shown is for a 

single-axis accelerometer, but the concept can be expanded to a three-axis 

accelerometer by attaching pairs of opposing wires in three orthogonal directions. 

In the push-pull configuration shown, any lateral acceleration of the proof 

mass will cause one wire frequency to increase and the other to decrease. 

Furthermore, if the preload tensions in the wires are servoed to keep the sum of 

their frequencies constant, then the difference frequency 

ma
left right

left right
ω ω α

ω ω
−

+
    (9)  
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Both the difference frequency left rightω ω−  and the sum frequency 

left rightω ω+  (used for preload tension control) can be obtained by mixing and 

filtering the two wire position signals from the resonance forcing servo loop. Each 

cycle of the difference frequency then corresponds to a constant delta velocity, 

making the sensor inherently digital. 

  Accelerometers cannot measure gravitational acceleration. An 

accelerometer effectively measures the force acting on its proof mass to make it 

follow its mounting base, which includes only non-gravitational accelerations 

applied through physical forces acting on the INS through its host vehicle. 

Satellites, which are effectively in free fall, experience no sensible accelerations. 

Accelerometers have scale factors, which are the ratios of input 

acceleration units to output signal magnitude units (e.g., meters per second 

squared per volt). The signal must be rescaled in the navigation computer by 

multiplying by this scale factor. 

2.3 Acceleration problems 

Accelerometers cannot measure gravitational acceleration. An 

accelerometer effectively measures the force acting on its proof mass to make it 

follow its mounting base, which includes only non-gravitational accelerations 

applied through physical forces acting on the INS through its host vehicle. 

Satellites, which are effectively in free fall, experience no sensible accelerations. 

Accelerometers have scale factors, which are the ratios of input 

acceleration units to output signal magnitude units (e.g., meters per second 

squared per volt). The signal must be rescaled in the navigation computer by 

multiplying by this scale factor. 
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Gravitational accelerations must be modeled and calculated in the 

navigational computer, then added to the sensed acceleration (after error and scale 

compensation) to obtain the net acceleration of the INS  

Accelerometers have output errors, including: 

l  Unknown constant offsets, also called biases; 

l  Unknown constant scale factor errors; 

l  Unknown sensor input axis misalignments; 

l  Unknown non-constant variations in bias and scale factor; and 

l  Unknown zero-mean additive noise on the sensor outputs, 

 including quantization noise and electronic noise. The noise itself 

 is not predictable, but its statistical properties are used in Kalman 

 filtering to estimate drifting scale factor and biases. 

2.4 Application in INS 

The time-varying Kalman filter is a generalization of the steady-state filter 

for time-varying systems or LTI systems with non-stationary noise covariance. 

Given the plant state and measurement equations as in (7), (8) the Kalman filter is 

designed as in B. Boberg and S.L. Wirkander (2002).  

Input signals include white noise and measuring device noise. By using 

Kalman Filter, we can receive the output-filtered signals. We using double 

integration for calculating the distance and velocity, these kinds of drifts can make 

the increasing the position error dramatically. We can use two methods: constant 

compensation algorithm and periodic compensation algorithm, for reducing errors 

in velocity and position. That method will show in next chapter. 
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Chapter 3.  Design Method for Drift 

Compensation Gain 

 

The drift of accelerometer is generated by its circumstance and it can be 

divided into two cases: constant drift and periodic drift. The constant drift is 

depended on the circumstance of sensor inside and kept on constant condition. But 

the outside circumstance will be changed with low frequency, which affected by 

seasonal, day and night, temperature, and atmospheric pressure etc. When using 

double integration for calculating the distance, these kinds of drifts can make the 

increasing the position error dramatically. Also when using ISN module, it’s 

certainly have errors. The errors consist of different combinations of white noise 

components and constant components. So we try to use constant drift 

compensation and periodic drift compensation to solve that problem. 

3.1 Design method for constant drift compensation gain  

The data we get from accelerometer included white noise and measuring 

device noise. First time, we use Kalman filter for reduces that noise. When we 

using double integration for calculating the distance and velocity, the position 

errors can make and increasing. So we try to find the constant drift of 

accelerometer and compensation that problem 

For compensating the constant drift of accelerometer, the following 

algorithm will be used generally.  

Step1: Acquire the acceleration sensor values with drift on x , y  and z  axes, 

respectively. 
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a a ax x xδ= +                 (10)  

where ax  denotes original acceleration sensor value and axδ  denotes an 

accelerometer value with drift on x  axis, respectively. 

Step 2: Calculate the velocity by using numerical integral method. 

 
1

( 1) ( ) ( )
t

v t a d v tx x x
t

τ τ
+

+ = +∫    (11) 

Step 3: Compensate the drift for velocity 

  ( 1) ( 1)v t v t dx x v+ = + +     (12) 

Step 4: Calculate the position by using numerical integral method. 

 
1

( 1) ( ) ( )
t

x t v d x tx
t

τ τ
+

+ = +∫     (13) 

Step 5: Compensate the drift of position 

( 1) ( 1)x t x t d p+ = + +                (14) 

In the above algorithm, the drift can be compensated by on-line calculation, 

thus vx  and x  can be obtained respectively, where an accumulated position error 

will be reduced by small sampling time, but computational error will be increased. 

To obtain design method for the drift compensation gains dv  andd p , we will 

show two methods: constant compensation algorithm and periodic compensation 

algorithm.  
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If the drift of accelerometer included into original signal, then the average 

drift can be obtained during constant periodic time. So the original signal can be 

estimated by drift compensation method from the measured signal with drift value. 

For this, the accelerometer should be installed in steady state and obtain 

the accelerometer data during constant periodic time. From these data, the velocity 

drift dv  and position drift d p  are calculated, respectively. At this time, the 

accelerometer should be leaved from the external circumstance changes with long 

experimental time. But, the constant drift compensation algorithm is not useful 

when the circumstance is changed or the type of accelerometer is changed. 

In constant compensation algorithm, after using Kalman Filter for reduced 

noise from accelerometer and measuring device noise, we can calculate, and 

compensate for velocity and position by velocity drift dv  and position driftd p .  

3.2 Design method for Periodic drift compensation gains  

Generally, the external environment circumstance will be changed 

ordinarily. Almost these kinds of circumstances can be changed on periodic time 

such as, seasonally, day and night, or tide etc. At the same time, the average drift 

can be obtained during constant periodic time and used this value, when drift 

includes into original signal. 

On the other hand, in auto pilot system for ship, the navigation module is 

used GPS system for detecting the position, but actually the GPS has position 

error and it depends on the weather condition. For compensation of the GPS signal, 

some time there uses an IMU. In this case, the sea condition such as tide, wind or 

sea surface condition etc. can affect to navigation ship. Under the general 

assumption, the ship can be moved by sinusoidal wave where tide or wind affects 
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to the ship sailing in periodically. From these conditions, we can make a periodic 

drift compensation algorithm by following procedure.  

An INS compensation (Periodic Drift Compensation) algorithm for auto 

sailing system was proposed. The main procedure to design the periodic drift 

compensation algorithm can be briefly described as the following  

In Fig. 7, the parameters vα  and pα  denote the velocity and position 

errors compensation gains and vβ  and pβ denote the periodic compensation 

gains for velocity and position errors, respectively.  

 

e-Ls

αv,αp

+ +

- -

Data

Compensated
data+

-

e-Ls

period
compensation

+

+

βv,βp

 

Fig. 7 Block Diagram of Periodic Drift Compensation 
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< Procedure for Calculation of Periodic Compensation 

Gains >  

Step 1: Calculate the natural frequency and its magnitude for accelerometer 

circumstance by FFT method.  

Step 2: From the FFT results, decide the dominant frequency L of accelerometer.  

Step 3: Make periodic L  data table from decided dominant frequency modes.  

Step 4: Initialization of periodic L  data table.  

Step 5: Calculate the velocity drift compensation gain  

( 1) (max( ) min( )) / 2

( ( 1) ( 1 ) ( ))

d t peak peakv v
v t v t L d tv y y v

β
α

+ = +
+ + − + − −      (15) 

where max( )peak  and min( )peak denote the maximum and minimum value from 

obtained acceleration sensor data, respectively.  

Step 6: Calculate the position drift compensation gain  

( 1) (max( ) min( )) / 2

( ( 1) ( 1 ) ( ))

d t peak peakp p
y t y t L d tp p

β
α

+ = +

+ + − + − −
               (16) 

In the above procedure, the step 5 and 6 will be calculated by periodically on the 

calculation routine. And the calculated values should be saved and used it in next 

calculation.  
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Chapter 4.  Implementation and Results 

4.1 Using Kalman filter and IMU bias  

We have considered accelerometer data from acceleration signals. For our 

experiments, the Crossbow-CXL10LP3 accelerometer was used. The Crossbow-

CXL10LP3 can measure both dynamic acceleration (e.g., vibration) and static 

acceleration. The sampling time was 0.01[s], and the data in steady state for 60[s]. 

Output signals of the accelerometer are analog signals whose voltages are 

proportional to acceleration in each axis, respectively. The accelerometers output 

can be measured directly with A/D converter inside the microprocessor. UART of 

the microprocessor get the accelerometer data and transmits them to computer by 

serial port. The microprocessor used in data acquisition is ATMEL ATmega128L.  

 First time, we assumed the accelerometer do not to move. We tried to find 

the constant drift of accelerometer when environment do not change. From that 

condition, the data of accelerometer received. But normally the data of 

accelerometer also included noise from accelerometer (measuring device) and 

white noise. By using Kalman filter, we can reducing their noise and find the 

errors of sensor. When using double integration for calculating the distance, these 

kinds of drifts can make the increasing the position error dramatically. We could 

find the constant drift and reduced their errors by follow our method which last 

chapter we showed. With the bias drift problem, these errors would be 

accumulated and the accuracy is deteriorated as time increases due to integration. 

The data including acceleration input and white noise are given in Fig.8.   
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Fig.8 Accelerometer value included noise 

 

Fig.9 Accelerometer value after using Kalman filter 
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Applying Kalman Filter, the accelerometer data could reduce white noise 

and measuring device. Their results are given in Fig.9. After using Kalman filter, 

the distance and the velocity could be calculated by using double integrals. The 

result of distance and velocity without bias compensation is shown in Fig.10. In 

Fig.10, we observe that the errors of distance on x , y and z axes increased so 

high value.  We have to reduce that error by follow our method. We find the 

constant compensation value for velocity and distance. The results are show as 

table 1. 

 

 

Fig.10 Distance without bias compensation 
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Table 1 Calculated Bias for 60 [ s ] on each axes 

  x  Axis y  Axis z  Axis 

Velocity Bias -0.0012955 -0.0017321 -0.0021636 

Distance Bias -0.000081 0.000041 -0.000024 

 

By using Table 1, we can compensate the velocity and the distances, which 

calculated by integral method. The compensated distance and velocity data can be 

received as in Fig.11. 

 

Fig.11 Distance with constant bias compensation 
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From this result, with the environment do not change, the value of distance 

and velocity just fluctuate kept within value which we can accept and the 

deviation is acceptable. We can observe that the constant bias compensation 

algorithm effects to the accelerometer bias compensation.  

4.2 Constant bias compensation  

To verify the constant bias compensation, we did an accelerometer test by 

experiment. In natural environment condition, we never have good condition. The 

boat can under the influence of wave, wind e.g., so the boat always floating on the 

waves. For experiment that case, we considered the accelerometer is oscillated 

on x , y  and z  axis with sinusoidal. We tried to vibrate amplitude our 

accelerometer for simulation sinusoidal signal. Certainly the accelerometer data 

are included white noise and errors from measuring device signals. First, using 

Kalman filter for reduced white noise and measuring device. With the constant 

drift compensation method, the velocity and position can be compensated. The 

results are given from Fig. 12 to Fig. 14 forx , y  and z  axis. In that fig, 

accelerometer value for each axis is a value after using Kalman filter. 
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Fig. 12 Constant bias compensated data on x  axis 

 

Fig. 13 Constant bias compensated data on y  axis 



 30 

 

Fig. 14 Constant bias compensated data on z  axis. 

Although using Kalman filter and constant drift compensation method, the 

distances were increased by external environment changes. When we did the 

experiments, our vibration amplitudes have just around 0.3 [m ]. But the distances 

received after applying constant bias compensation, is 3.16 [m ] on x  axis. We 

can see that error to high. So we tried to use Periodic bias compensation.  

4.3 Periodic bias compensation  

In this subsection, we used Period bias compensation. First, we verified the 

environment changes. To do this, we used FFT method to check the main 

frequency term, which affected the accelerometers. The FFT result is shown in 

Fig.15  
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Fig.15 FFT results on x axis 

In Fig.15 the main frequency is 0.199967 [Hz ] and its magnitude is 

3.025656. From the frequency, the period is calculated as 5.0008[s ]. In 

simulation for periodic bias compensation, we defined the parameters as Table. 2.  

 

Table 2: Parameters for periodic bias compensation 

  x  Axis y  Axis z  Axis 

  V  D  V  D  V  D  

α  0.5 0.5 0.5 0.1 0.5 0.1 

β  6.0 2.0 5.0 1.0 5.0 4 
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By using the parameters in Table 2 and the periodic compensation 

algorithm, we can get the results in Fig. 16 - Fig. 18, where the same 

accelerometer's data with constant bias compensation method are used. 

 

 

Fig.16 Periodic bias compensated data on x  axis 
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Fig. 17 Periodic bias compensated data on y  axis 

 

Fig. 18 Periodic bias compensated data on z  axis. 
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From Fig.16 to Fig.18, we can see the distance data after using Periodic 

bias compensation, are reduced when external environment changes. Last time, 

when we use constant drift compensation method, the distance is 3.16 [m ] for x  

axis. But now as you see in Fig 16, the distance just oscillate around 0.05 [m ]. So 

we verify that the above results show is good noise cancellation. 
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Chapter 5. Conclusions 

 

In this thesis, we applied the method of Kalman filter for estimating the 

acceleration data and compensate constant bias. In constant drift compensation 

method, there can only reduce the velocity and distance errors in some extents. 

The compensated error was still relatively large. This due to the fact that Kalman 

filter requires error model. With FFT method through periodic bias compensation, 

we could reduce the error effectively.  

In container terminal, they are use AGV to transfer the container. Their 

AGV included the GPS modules for detected the position of AGV. Sometimes, 

when AGV move to under Gantry Crane, the GPS signal can not received data 

into control room. Their Gantry Crane included some noise. That noise bringing 

the transmission has interrupt or delay data. At that condition, the INS included 

out method very useful. By our INS solution, we can know exact the position of 

AGV.  

In the future research, we will try to compare the periodic compensation 

algorithm with numerical double integration of acceleration measurements in 

noise using rectangular and trapezoidal rules. At that time, the angle sensors might 

be considered to improve the accuracy of the position for vehicle. 
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