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A Study on the Identification and Speed Control of Diesel
Engine Using Levenberg—-Marquardt Backpropagation

Algorithm Neural Network

Kim, Kyung Yup

Department of Control and Instrumentation Engineering

Abstract

Diesel engine is known as nonlinear system because of its dead
time due to injection delay and ignition delay. So, it 1s very
difficult and complex to model this nonlinear system because it
varies widely according to number of cylinder and RPM.

In this paper, in order to design the speed control system of a
diesel engine, neural network architecture is introduced and the
optimal structure of neuro emulator is determined based on the
modelling of a diesel engine, trained with various backpropagation
algorithms and the performance of each trained networks is
compared . Also, neuro controller, the inversely trained neural
network of neuro emulator, is designed for the speed control
system of a diesel engine. The selective neuro controller is
proposed for the sake of improvement of the neuro controller
performance and by combining a PI controller with the proposed

controller, the efficiency of this combination speed control system

of a diesel engine is ascertained.



Chapter 1. Introduction

1.1 Background

Dead time, one of the main reasons which make diesel engine
to be a nonlinear system is mainly caused by injection delay and
ignition delay. So it varies according to the speed of the engine
and number of cylinders. There are a lot of studies on model of
diesel engine for speed control purpose. For example, G.E
Harland and K.F.Gill'® modelled diesel engine as second order

system which is shown in Fig. 1.1
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Fig. 1.1 Block diagram of a diesel engine control system
proposed by Harland

As the parameter of diesel engine system becomes changed, the
ratio of k;/k» is obtained experimentally and the method to tune
the PI controller in order to be close to model response was

implemented with analog computer.



PE.Wellstead, @ C.Thiruarooran, D.E. Winterbone”  made
modelling 6¢yl. 4 stroke, medium speed (operating speed 1000rpm
~ 1800 rpm), turbo-charged 6 YEX Ruston Diesel Engine(MARK
II) divided into three part, that is, HSHL(High Speed High Load,
1800 rpm, 810Nm), MSML (1400 rpm, 620Nm) and LSLL(1000
rpm, 210Nm) due to its nonlinear characteristics.

In the study on controlling the fuel injection timing in order to
minimize the rate of fuel consumption in 3 cyl. 350 ps marine
diesel engine, Y.Murayama, T.Terano, S.Masui, N.Akiyama[w]
measured the ratio of fuel consumption five times every injection
angle in order to obtain the precise ratio of fuel consumption and
sought for optimal value through the regression analysis based
on collected data in order to prevent the engine system from
hunting nearby the optimal value. After then, they composed the
fuzzy optimization control system to determine whether a series
of operating was proper or not based on the knowledge of
engineer and verified the performance through the simulation and
application to real plant.

k] company modelled the dead time of the engine,

Norcontro
combustion and revolution system as first order system each and
developed the DGS8300 digital governor system with PI
controller.

S. T. Lyngsom]’[m company developed the EGS 900 system
using MRAC(Model Reference Adaptive Control) algorithm.

But it is not easy to configure control system of diesel engine



with satisfactory performance over all operating range based on
linear control theory.

In Japan approximately 84% of the control industry still uses
the conventional PID controller for its simplicity to implement.m
From this fact, it seems that the specifications required for real
applications of control theories are that the control algorithm
should be simple enough to be implemented and to be
understood. Recently, with sophisticate increase of performance of
microprocessor, it is not difficult to implement complex control
algorithm like fuzzy control and neural network ,so called
intelligent control method which works well on the nonlinear
control system. This intelligence appears to fuzzy or neural
network in the shape of learning ability, flexibility, robust and

nonlinearity.



1.2 Study Objective

As above mentioned, various modellings of diesel engine
system have been achieved. Due to the nonlinearity of many
parameters of diesel engine system, the control parameters need
to be adjusted in order to apply to real system in the whole
area through many experiments. It is difficult to find the
appropriate parameters controlling the diesel engine system
satisfactory over all situations. So, because of these difficulties of
controlling diesel engine, intelligent control theory, that is, using
control algorithm of fuzzy and neural networks has tendency to
be applied to real plant. Especially, neural networks were found
to be suitable for solving nonlinear and complex control problems
that conventional and traditional control methods have no
practical solution yetm.

In this paper, even if the control plant is nonlinear and the
system parameters of the plant are not clear, in order to control
the speed of diesel engine used for driving generator robustly, it
1s proposed to design the speed control system of diesel engine
using neural network. Because the training data collected from
the engine aren’t represented over all kinds of situation, the PI
controller to compensate the generated error by only neuro
controller is proposed and simulated to ascertain the performance

of the speed control system using the MATLAB program.



This paper comprises 5 chapters. Chapter 2 gives a brief
overview of neural networks to provide background knowledge
for the purpose of modelling systems and designing controllers.
In Chapter 3, an emulator is designed to model the feedforward
dynamics of a diesel engine by various backpropagation
algorithms. The neuro emulator is trained using training data
collected from a real diesel engine system under various
backpropagation algorithms. In Chapter 4, a neuro controller is
designed, and trained with the selected backpropagation
algorithm. Diesel engine speed control system is composed with
trained neuro emulator and controller. After then, the results of
this simulation is analyzed. Chapter 5 summarizes the conclusions

of the study.



Chapter 2. Review of Neural Networks

This section provides background information on neural
networks. Basic concepts and learning algorithms of neural

networks are briefly described here.
2.1 Neuron Model

An ordinary artificial neuron (non-fuzzy neuron) 1is an
information processing element which basically attempts to model
the behaviour of the biological neuron. The model of an ordinary
neuron is shown in Fig. 2.1. the input-output relationship of the

neuron is given below:

o= f( éowixi—l—ﬁ) (2.1)

_10_



Fig. 2.1 A neuron model

where, x, 1s the ith input, g ; is the synaptic weight associated

with x , 6 is a threshold level, o is the output, n is the number
of inputs and f is an activation function which can be a hard
limiter, a sigmoid function, a hyperbolic tangent function or a

linear function, etc as follows.

(i) Hard limiter
1 x=0

fix) = (2.2)
0 x<0

_11_
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Fig. 2.2 Hard limiter

ii) Sigmoid function

flx)=——
1+ e
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Fig. 2.3 Sigmoid function

iii) Hyperbolic tangent function

fix)=tanh(x) (2.4)

-1.5 IS TR SN R SN S N R
-100 -80 60 40 20 © 20 40 60 80 100

Fig. 2.4 Hyperbolic tangent function

iv) Linear function

fix)=x (2.5)
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Fig. 2.5 Linear function

The neuron sums weighted inputs w;x; (I<i<n) and

passes the summed result through activation function f to

produce the final output o.

2.2 Neural Networks

Due to their simplicity, a number of processing elements can
be connected together in a well structured form called a neural
network(NN). In a NN, processing elements are linked to one
another via adjustable or fixed weights representing the strengths
of the connections. These connection weights reflect the effect of

the output of one neuron on another.

NNs can take a variety of forms, depending upon the way

their processing elements are connected. For example, NNs can

_14_



be classified as single-layer or multilayer networks, depending
upon the organization of layers of processing elements, such as
the input layer, the hidden layer and the output layer. If a
network has only an input layer and an output layer, it is called
a single-layer network. On the other hand, if a network contains
one or more hidden layers in addition to the input and output
layers, it is called a multilayer network.

NNs can be classified as feedforward or recurrent networks
according to the flow direction of input signals. In a NN, if the
input flows only in one direction from the input to the output,
the NN is called a feedforward network. If, however, the network
has at least on feedback loop, it is called a recurrent network.

The network structure and node interconnection are very
important in determining the performance of the network. There
1s currently no systematic methodology for defining them and
they are often decided by applying heuristics or trial-and-eror

techniques.

2.3 Learning of Neural Networks

A NN can learn by employing a learning (or training)
algorithm to capture knowledge. Interconnection weights between
processing elements dictate the intelligence of the NN. The
learning algorithm adjust the values of these weights to learn
specific tasks. There are three types of network learning:

supervised, unsupervised and reinforcement.

_15_



Supervised learning needs a set of training data. In this
particular model of learning, the learning rule adjusts network
weights according to the difference between the desired output
and the network output, usually in such a way that the
difference is minimized. Unsupervised learning is required in
cases where the network is provided with only input signal.

In this learning mode, weights are adjusted by a learning rule
based solely upon the input signals and the current network
outputs. In reinforcement learning, the network receives a
reward/penalty signal. The weights of the network are modified
to develop an input and output behaviour which maximizes the
probability of receiving a reward and minimizes that of receiving

a penalty.
2.3.1 Simple Backpropagation

The dominant learning algorithm for NNs used in real
applications 1s backpropagation[l]. Backpropagation is a supervised
learning technique based on the gradient-descent method, which
minimizes a quadratic error criterion measured at the output layer
by means of modifying network weights. Backpropagation

algorithm is explained as follows.

0= net ;) }

_16_
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Oj:ﬂ %etj) }

nez‘jzzzwﬁ 0i+ 6]' 2.7)

Ep:%;( Tp— Ok)2 }
EF=>F
Zpl ’ (2.8)

where, 1, j, 4 . input, hidden and output layer respectively.
r, - engine output

- output of neuron at j % layer

net ; , + values of network at j, £ layer

E . sum squared error
b . pattern number

0, - bias values of neuron at j, k layer

Ax) * activation function

Learning can be carried out by following equations to reduce

error for the output layer.

wk](k—|-1)= wk,(k)-l-dwkj(k)
dwp=7n" 0y 0;

S,=Cr4— 04+ f (net,) (2.9)

where, 5 ‘ learning rate, (>()
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S8 - error signal of neuron at j, £ layer
And, for hidden layer the following equations can be carried out.

wﬂ(k—l—l): w,,(k)+dw],(k)
Aw,~1=77- 8]“ 0 ;

2.3.2 Backpropagation with Momentum(BPM)

There are often cases to drop into local minima when a
system is learned with simple backpropagation and the error

can't be reduced. For this, a momentum term is included.

Awkj(k+l)778k0j+ad wk,-(k) }

Adw;(k+1)=78;0,+ad w;(k (2.11)

where, a i1s called momentum and generally used to be set to

09 .
2.3.3 Adaptive Backpropagation(BPA)

In order to decrease training time, adding the adaptive learning

rate is very helpful. If L e >1,O4[2]

, the new weights, biases,
E old

_18_



output, and error are discard, and continued with new learning
rate selected multiplying by 0.7% In other cases, if E2I2X E .,

the increased rate continued with multiplied by 1.05%,

2.3.4 Fast Backpropagation(BPX)

This is the hybrid type of two backpropagation algorithms, that
is, backpropagation with —momentum(BPM) and adaptive
backpropagation(BPA). The former tends to minimize the
possibility that the sum squared error stays in local minima with
high error, and the latter tends to train faster than just
backpropagation algorithm. So, this algorithm is called as fast

backpropagation algorithm.

2.3.5 Levenberg-Marquardt Backpropagation(BPLM)

Gradient descent is a very simple search technique  where
parameters, such as weights and biases, are moved in the
opposite direction to the error gradient. FEach step down results
in smaller error until an error minima is reached. The use of
momentum changes this only sightly by making changes
proportional to a running average of the gradient.

The Levenberg-Marquardt algorithm changes parameters by

following rules and is more powerful than gradient descent.

1

d,= (]T( xk)](xk)+/1k])7 ]T( xk)F( x/e)

_19_



Xpe1= Xp— dy

where, A, . adaptive value (2.13)
J(x,) - Jjacobian of F( x,)
F(x,) - error vector for all patterns
I . identity matrix

X . weight vector

If F(x,)<F(x,;,), adaptive value A 1is decreased by

1 (3]

multiplying predefined value O. If F(x)>F(x,.1), M s

increased by multiplying predefined value 10%,

2.4 Initialization of Neural Networks

In general, the weights of NNs are initialized randomly. For
enhancing the learning performance in this paper, the weights are
initialized using the Nguyen-Widrow initialization method, which
considers the numbers of input nodes and output nodes. This
method focuses optimal setting of the weights between input and
hidden layer. Therefore, the weights between the hidden and
output layers are initialized with the value between -0.5 and
+05”. Those between the input and hidden layers are also

initialized in this range —(.5¢ wﬁ<+0-5[5]- After then, they are

changed and used by following rule before training[5].

_20_



old
new B W ji

w .. ==
7t || wjz' old“
B=0.7"p
where, n : the number of input layer neurons. (2.14)

p . the number of the hidden layer neurons.

The biases weights in the hidden layer 8;, is in the range of
— B 6 4B

This method readjusts the weights between input layer and
hidden layer before training and results in shortened training time
in some application including XOR operation®.

As already mentioned, NNs involve parameters, such as the
learning rate and the momentum, selected for optimizing the
learning performance. The values of these parameters are often

determined by employing heuristics or trial-and-error techniques.
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Chapter 3. Design of a Neuro Emulator for
Diesel Engines

To obtain NNs to emulate a diesel engine system, the
relationship between input and output of NNs needs to be
designed considering the characteristic of the diesel engine
system. For this, a model of the diesel engine system represented
by a block diagram is considered in this chapter. Then, NNs are
trained using above mentioned algorithms and are compared in
terms of the training efficiency. The trained network is employed
to the speed control system as the neuro emulator of diesel

engine in the next chapter.

3.1 Modelling of a Diesel Engine System

The schematic diagram of a diesel engine speed control system

is like Fig. 3.1.

Ref U .| Actuator F.O , RPM
—»(—» Controller Mechanism M Rack Engine

v

Fig. 3.1 Schematic diagram of the speed control system of

diesel engine

Even if it is slightly different according to what kinds of

actuator 1s used, actuator is generally regarded as first order

_22_



system because the actuator movement is quite small in normal
status. Injection delay and ignition delay make engine dead time
as mentioned in Chapter 1. Combustion and revolution system

can be modelled as a first-order system respectively, and shown

in Fig. 3.2

KL <4——
Load HP
ues) +V Y(S)

> ¢ s rs P TS (PO —| L

b Y
. Engine o JS
Fig 3.2 Block dlagram—of-th }ﬁg)ntro led-systemm cas@PM

of regarding the engine dead time

where, L is the total dead time summing injection delay and
combustion delay, 7. and £ _ is time constant and steady state
gain respectively in combustion system of engine, Ki is the load
characteristics to convert rpm to Horse Power at operating rpm,
J 1s the moment of inertia including propeller and additional
water effects, Kg - m - sec’. Y, is the constant to convert Horse
Power developed by engine to rpm. This engine system used for
a generator holds on 1800[rpm] for four poles diesel driven
generator. Even though the combustion system is modelled as
first order system in Fig. 3.2, the pressure generated by
combustion appears similarly to the shape of rectangular wave
with delay time in 1800[rpml]. So, in high speed 1800[rpml], the

combustion system considered with the dead time obtained from

_23_



ignition delay and injection delay can be modelled as first order
system. In this study, the diesel engine system is assumed with

third order system considering the dead time.

3.2 Structure of a Neuro Emulator

The internal structure of a neuro emulator is configured like

Fig. 3.3 based on a diesel engine modelled as third order

System[l]’m].
u(k) Input ] Output y(K)
» Engine >
Error e(k) +
Emulator

"___"_____________—' _____________________ 1

> -1 .\\.

> Z-2 A

J -3

Z

—

Estimateg
0

4
N
o)

Fig. 3.3 Internal structure of a neuro emulator

The neuro emulator architecture considered in this paper is

_24_



composed of three layers, an input layer, a hidden layer and an
output layer. Based on the third-order system like Fig. 3.2,
engine control signal u(k), engine output revolution per minute
y(k) and their delayed signals u(k-1) ,uk-2), u(k-3), y(k-1),
y(k-2), y(k-3) are chosen as input of neuro emulator.

In order to determine the proper number of hidden node, the
same structure as Fig. 3.3 with respect to the various number of
hidden node was trained respect to the various number of hidden
node. As expected, if the numbers of hidden node is small, the
error of networks tends not to be converged at large error. But
if the number of hidden node is too large, the convergency tends
to be improved, but the number of epoch for training to be large.
Based on try-and-error experiment[5], when the node number is
selected from 9 to 12, this network meets convergency speed.
Finally, eleven nodes for hidden layer are chosen.

The output layer consists of only one node corresponding to
the estimate value of the engine output. The tangent sigmoid
function is used for the activation function of the input neurons

and the hidden neurons and the linear function for output layerm.

3.3 Data Collection

_25_



To obtain training data set, the following system as shown in
Fig. 3.4 is considered and then input and output data patterns
are made. Data acquisition is carried out from a diesel engine
speed control system composed of four parts; a digital governor,
an actuator, a MPU, and a PC. Whenever MPU approaches close
to the fly wheel teeth, it generates pulse relating to rpm and
this rpm data makes feedback to the digital governor. According
to the difference between reference rpm and feedback rpm,
appropriate control input is generated. This control input signal
makes an actuator operated and the fuel quantity injected into
the engine is adjusted according to the control input. And,
reference, rpm and control input are transmitted to the PC and
stored in the shape of text files wusing RS232 serial

s e 4]
communication.

RS232C E
SERIAL_COMMUNICATION D i
*>

PC

_rem | Digital Engine
Governor HLY|WHEEL
Acutuator MPUI——r|

Fig. 3.4 Engine system

Table. 3.1 shows the specification of experimental devices in

Fig. 3.4.
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Table. 3.1 Engine system specification

Engine

220[V], 3-phase, 50[Kw] Generator
Driving 4 Cycle and 4 Cylinders
1800[rpm] ISUTSU Diesel Engine

Digital Governor and Actuator

Digital Govenor . ASA FzPI200
Actuator(Solenoid) : GAC 175

Fig. 3.5 presents the control input with respect to above output
data entering the actuator and the fuel quantity is adjusted
according to this control input signal. Fig. 3.6 shows the trend of
the diesel engine rpm used for training data. These data are
obtained from above system and includes some disturbances and
load condition so as to train the neural network in various

conditions.

_27_



100

90

BO |

0F

B0

contral inpud[%]
[5;]
=
[

Time[zac|

Fig. 3.5 Control input signal of the diesel

engine used for training

Output[%]
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Fig. 3.6 Output signal of the diesel engine used
for training
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3.4 Training Results and Analysis with respect to
Various Backpropagation Algorithms

When the system is identified using NNs as depicted in Fig.
3.3, the off-line training using input and output patterns obtained
through the engine system results in Fig. 3.7 and Fig. 3.8

according to three kinds of backpropagation algorithms.

a Mean -Squared Netwark Error for 4000 Epachs
? |
']
] l
N
wn?H
B \
T L1
.
® 10} ’
2 \ BPM
g |\
% x\ '\/
] o
= -
i i
r\-\ "'-—_\H- z 1
ol BP — BPLM

ERROR GOAL
0 S0 1000 1500 2000 2500 A0 3500 4000
Epoch

Fig. 3.7 Mean squared errors

Mean squared errors with respect to training epochs are shown
in Fig. 3/7. As seen through the above figure, BPM and BPX
have less efficiency than BPLM in a view of convergency speed
to the error goal. In addition, time responses of NNs trained by
the three backpropagation algorithms are compared with each
other as following Fig. 3.8, 3.9, and 3.10. As above mentioned,
the network trained by BPLM follows the real engine output
with small MSE compared with BPM and BPX.
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Fig. 3.8 The dynamic response characteristics of neural

networks trained by bpm algorithm
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Fig. 3.9 The dynamic response characteristics of neural

networks trained by bpx algorithm
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Fig. 3.10 The dynamic response characteristics of neural

networks trained by bplm algorithm

Table. 3.2 Simulation results using training data

BPLM BPM BPX
Learning

Rate" 0.0001

Momentum” 0.95
A 0.001

Epoch 4000 4000
Error Goal 0.1
Convergence O X

MSE 0.09 4.2 4.2

" o default
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In case of applying BPM and BPX, the mean squared error
didn’t reach the error goal in spite of 4000 epochs, but BPLM
algorithm needed 4000 epochs to converge on the error goal.
Table 3.2 shows the final parameters after training completion.

The efficiency of the trained network was evaluated with
validate data. It is shown in Fig. 3.11 that NNs outputs are
similar to the engine real output y(k) in case of using validate
data. The MSE calculated with neuro emulator and engine output

1s about 3.

120 T T T - T

£
S B0
=]
-

4[] L m

m L

- neuro emulataor
—— engine output
u 1 1 1 L 1
0 0s 1 1.5 2 25 3

Time[sec]

Fig. 3.11 The dynamic response characteristics of the diesel

engine and the neuro emulator using validate data
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Chapter 4. Design of a Neuro Controller for
Diesel Engines

In order to compose the neuro control scheme, a neuro
controller is designed using training data. Due to some issued
problems in this chapter, an alternative control system is

proposed to compensate the generated error.

4.1 Neuro Controller Design

For purpose of composing a series control system, a neural
network is employed to identify inverse dynamics models through
learning. Inverse dynamics identification is regarded as finding

the inverse mapping of the plant as illustrated in the following

architecture.

uk) y06),

+  Plant

2

R

MM

N

v u(k) | Neural
Netwark

Faa™
[aN]

&+
|

N
&

I

Fig. 4.1 Identification of plant inverse dynamics
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This architecture is similar to the above mentioned plant
identification scheme, but the input signals of networks are
different from the case of plant modeling.

Since this inverse identification is obtained for control purpose, it
should generate the control signal with respect to output signal.
The following Fig. 4.2 shows the comparison with the output of
the neuro controller trained using BPLM algorithm and the

training data control input u.

110 T T T T
100+ 9
QDL E
£ 80 ]
=1
o
cC
5
t 70H 1
8
G0 H : BPLM 1
= ¢ control ineut
a0k M J
+ +
40 1 1 1
] ) ) 0.7 0.8 09 1

Tlme[sec]

Fig. 4.2 The dynamic response characteristic of control
input of the neuro controller trained with

training data and real plant
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The MSE with respect to every pattern is about 4.33. The
inversely trained networks will generate appropriate outcomes and
be able to control the speed of the diesel engine instead of the
controllers which has been used conventionally. The following
graph compares real control input with the control input
generated by inversely trained neural networks, so called neuro

controller in case of using validate data.

1DD T T T T T
a0 E
a0 E
£ m ]
3
o
[y
=
€ B0 k
o
= NeuroControl ler
1 control input
1 S e
40 H k
real control input

SD 1 1 1
0 0.5 1 1.5 2 2.5 3
Time[sec]

Fig. 4.3 The dynamic response characteristics of neuro

controller by using validate data
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4.2 Design of a Neuro Control System

The neuro control scheme is shown in Fig. 4.4. In training the
neural network, the reference is included in training data because
the training data is collected based on reference value. So, like
Fig. 4.1, only six inputs, w(k-1), u(k-2), u(k-3), y(k-1), y(k-2),
v(k-3), are chosen as input of the neuro controller except for
reference r(k). Fig. 45 shows the response of the diesel engine
speed control system from start to steady state.

In addition, impulse disturbance is added to system, and the
dynamic characteristics of the diesel engine speed control system
i1s investigated. But, as seen in Fig. 4.2, current neuro controller
was trained with training data obtained from the start to steady
state without disturbance. As shown by the Fig. 4.6, when the
system is stimulated by disturbance, neuro controller does not
work well and generate system hunting. However, if the neuro
controller is trained using training data including disturbance and
load condition, it tends not to be trained very well in whole area.
In other words, the training stops with relatively large MSE. In
order to solve this difficulties, this training data is divided into
two parts; the part from start to steady state without disturbance
and the disturbance part. Using these two kinds of training data,
two neuro controllers, that is, neuro controller 1 and neuro
controller 2, are trained with respect to each part. After then,
one of the two neuro controllers is selected according to the

operating environment as Fig. 4.7.
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Fig. 4.5 The dynamic response characteristics of the

engine by using series control system
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Fig. 4.6 The dynamic response characteristic of neuro

3
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Neuro Controller 1 ul
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Engine Emulator
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Fig. 4.7 Switching of the neuro conroller
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The proposed neuro controller, Fig. 4.7, performs appropriate
operation for the noise like Fig. 4.8. However, after the system is
stimulated by disturbance, it takes much time to return to the
reference. So, this delay time will be compensated by a PI

controller.

120

100} h__/—J\,_M e i
J/

ED[ ., engine output

60

AN AT AN

40t ‘ control input

20F

-20 . . x -
0 0.5 1 15 2 25 3
Time[sec]

Fig. 4.8 The dynamic response characteristics of the

engine in case of adding some impulse noise

4.3 Design of Combination Control System with PI and
Neuro Controller

As depicted in the above figures, the control scheme has some
potential problems, that is, hunting, offset, etc because the trained
network doesn’t globally represent the system. As far as there

are these kinds of problems, it is not desirable to apply this
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neuro controller to the diesel engine control system. So, to make
better control performance of the neuro control systemfor diesel
engine, a compensated control scheme is introduced as proposed

1 (1]

by Kawato et al.”". Fig 4.9 shows the control scheme with a PI

type compensator.

ref(k) Neural w (k) . u(k) Emulator (k)
Network ) g
etwor Tuz(k)
Pl Controller
‘/Le
- +
Vv<

Fig. 4.9 Combination type neuro control scheme with a PI type

compensator

In the control scheme, NNs play a role as a main controller
and the PI controller as a auxiliary controller. The PI controller
is used to adjust control input wu(k) for the plant to follow a
desired reference ref(k) as precisely as possible. As shown in Fig
4.10, the response approaches the reference level faster than the

control scheme using only a neuro controller.
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Fig. 4.10 The dynamic response characteristic of
engine using proposed combination

control system
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Chapter 5. Conclusion

In this thesis, neural emulator and neuro controller for speed
control system of diesel engine are proposed. To find out optimal
configuration of neuro emulator for diesel engine, various kinds
of backpropagation algorithm is compared. Among above
mentioned  three  Kkinds of  backpropagation algorithms,
backpropagation algorithm using Levenberg—Marquardt
optimization was proven to be most optimal for diesel engine
identification.

In order to improve the control performance, selective training
method for neuro controller is proposed and neuro controller
trained by this method was proven to be more efficient on speed
control of diesel engine in the case of existing disturbance.

For fast response in the case of existing disturbance, combination
control system which is combined with neuro controller and
conventional PI controller is proposed. Simulated results show
that combination control system with neuro controller and
conventional PI controller controls efficiently speed of generator
driven by diesel engine in the case of existing disturbance.

In the future the study about developing dedicated controller
implemented this combined neuro control system and application

to real diesel engine should be done.
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