저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
A study on the remote management system of lithium battery for ship based on BLE

2016年 2月

韓國海洋大學校 大學院

權 赫 柱
본 논문을 권혁주의 공학석사 학위논문으로 인준함.

위원장 김 윤 식 (인)
위원 서 동 환 (인)
위원 이 성 근 (인)

2015년 12월

한국해양대학교 대학원
목 치

List of Tables .. iv
List of Figures .. v
Abstract .. vii

1. 서 론
1.1 연구 배경 및 필요성 ... 1
1.2 시장현황 ... 3
1.3 연구 목적 ... 6

2. 관련 이론
2.1 에너지 저장장치의 종류 및 특성 .. 7
2.2 BMS 이론 .. 13
 2.2.1 C-rate ... 13
 2.2.2 DOD .. 14
 2.2.3 SOC ... 15
 2.2.4 SOH .. 17
2.3 Bluetooth Low Energy .. 21
 2.3.1 Bluetooth 통신 개요 ... 21
 2.3.2 블루투스 패킷 구조 ... 25
 2.3.3 BLE Advertising mode .. 26
2.4 PLC .. 28

3. 배터리 원격관리시스템 구성
3.1 하드웨어 ... 30
 3.1.1 BMS 구성 ... 31
 3.1.2 하드웨어 설계 ... 33
3.2 소프트웨어 구성 ... 39
 3.2.1 BMS 모니터링 소프트웨어 .. 39
<table>
<thead>
<tr>
<th>3.2.2 BMS 내부 소프트웨어 순서도</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3 배터리의 이론적 수명 계산</td>
<td>44</td>
</tr>
<tr>
<td>3.2.4 온도 회로 보정값</td>
<td>45</td>
</tr>
<tr>
<td>3.3 실험 및 결과 고찰</td>
<td>47</td>
</tr>
<tr>
<td>3.3.2 배터리 이론 및 실험 수명 예측</td>
<td>51</td>
</tr>
<tr>
<td>3.3.3 배터리 OCV 및 SOH 측정에 의한 잔존용량 계산</td>
<td>53</td>
</tr>
<tr>
<td>3.3.4 전력선 및 BLE 통신 실험</td>
<td>56</td>
</tr>
<tr>
<td>4. 결론</td>
<td>60</td>
</tr>
<tr>
<td>간사의 글</td>
<td>51</td>
</tr>
<tr>
<td>참고문헌</td>
<td>52</td>
</tr>
</tbody>
</table>
List of Tables

Table 1 Battery management system important function 31
Table 2 BMS module design .. 35
Table 3 Testbed System Integration .. 49
Table 4 OCV Reset value ... 52
List of Figures

Fig. 1 Viking Queen vessel equipped with lithium batteries 2
Fig. 2 Domestic energy storage device status ... 3
Fig. 3 Research and development status of international and domestic leader technology companies ... 4
Fig. 4 Order status of electric propulsion ship .. 5
Fig. 5 Overview and characteristics of energy-saving type 7
Fig. 6 Various numerical types of energy storage device .. 8
Fig. 7 Principles for the pumped hydro storage ... 8
Fig. 8 Compressed air energy storage system ... 9
Fig. 9 Comparison of lead acid batteries and lithium batteries 10
Fig. 10 BESS system .. 11
Fig. 11 Super capacitor energy storage system ... 12
Fig. 12 Battery C-rate discharge characteristics .. 14
Fig. 13 Battery life characteristic test under normal temperature 15
Fig. 14 Randles circuit schematic .. 19
Fig. 15 Impedance estimation method using an open circuit voltage 20
Fig. 16 40 channels used in bluetooth low energy technology 24
Fig. 17 BLE packet structure ... 25
Fig. 18 Advertising operating mode of the BLE .. 26
Fig. 19 The principle of power line communication ... 28
Fig. 20 Power line communication modules ... 29
Fig. 21 Configuration of the proposed system ... 30
Fig. 22 Voltage measurement circuit .. 36
Fig. 23 OCV test circuit ... 37
Fig. 24 Shunt resistor circuit .. 38
Fig. 25 INA226 circuit .. 38
Fig. 26 Configuration of monitoring software .. 39
Fig. 27 SOC measurement flowchart ... 42
Fig. 28 SOH measurement flowchart .. 43
Fig. 29 temperature sensor with steel head ... 45
Fig. 30 BMS temperature value(MCU-A, PC-B) 46
Fig. 26 Configuration of monitoring software .. 30
Fig. 27 SOC measurement flowchart .. 32
Fig. 28 SOH measurement flowchart .. 33
Fig. 29 temperature sensor with steel head ... 35
Fig. 30 BMS temperature value(MCU-A, PC-B) 36
Fig. 31 Experimental configuration ... 48
Fig. 32 The monitor screen of battery monitoring system 49
Fig. 33 The measuring voltage by each cell and voltage curve of pack 50
Fig. 34 OCV calculation ... 51
Fig. 35 Discharge calculation for C-rate .. 43
Fig. 36 Battery discharge curve .. 45
Fig. 37 SOH estimation ... 45
Fig. 38 Measurement portion of the wireless communication and power line communication .. 46
Fig. 39 Measurement of the BLE output intensity 47
Fig. 40 Measurement of the BLE output intensity for sample 1 47
Fig. 41 Measurement of the BLE output intensity for sample 2 48
Fig. 42 Measurement of power line communication 48
A study on the remote management system of lithium battery for ship based on BLE

by Kwon, Hyuk Joo

Department of Electrical and Electronic Engineering
Graduate School of Korea Maritime University

Abstract

The International Maritime Organization referred to the reduction of carbon emissions of all ships with the strengthening of emission restriction on greenhouse gases and air pollutants (NOx, SOx, PM), set up a strong goal that reduce carbon emissions by 10% in 2015, and will continue to do that, on into the future.

Today, to reduce those emissions, ‘green ship’, such as hybrid or electric propulsion vessels powered by large batteries are being built.

And therefore, it is necessary to manage batteries more strictly, because they have getting wider usages enough to be used as a power source for hybrid ship and electric propulsion ship.

Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries.

This paper proposes a remote monitoring system of lithium batteries for green ship using BLE wireless communication modules and power line modem.

KEY WORDS: LiFePo4 Battery 리튬 인산철 배터리, Bluetooth Low Energy 저전력 블루투스.
제 1 장 서 론

1.1 연구 배경 및 필요성

100GT 이상의 선박용 내연기관에서 발생하는 대기오염물질 NOx(정소산화물)는 전 세계 배출량의 10~15%, SOx(황산화물)는 4~6%, CO2(산화탄소)는 2%를 차지하고 있다.

육상, 해상, 항공의 수송부문 기준으로 볼 경우 NOx는 40%, SOx는 60%, CO2는 15%의 배출량을 차지하고 있으며, 선박의 배기가스 70%가 해안 400km부근에서 발생하기 때문에 해안 근처의 대기오염으로 인한 산성비 유발, 해안지역 거주민 건강에 악영향 등의 문제가 심각하다.

국제 해사기구에서는 온실가스 및 대기오염물질(NOx, SOx, PM)배출 규제의 도입 및 강화와 함께 모든 선박의 탄소배출량 감소를 이야기하고 있으며 2015년 탄소배출량 10%감소, 이후 5년마다 10%씩 탄소배출을 줄이는 강력한 로드맵을 세우고 있다.

국토해양부에서는 연안의 400GT 미만 중소형 선박의 배출가스를 규제하기 위한 법규를 마련 중으로 관련 시장(수산업, 해양레저산업, 연안 운송업)의 침체를 막기 위한 대체 기술개발이 요구된다.[1]

선박은 위와 같은 환경오염을 줄이기 위한 대체 기술 개발로 하이브리드 선박, 분산전원을 사용하는 전기추진 선박과 연료전지 선박 등 친환경 선박으로 진화해 나가고 있으며 최근 해당 분야에 대한 연구
및 실용화가 집중적으로 이뤄지고 있다.

이러한 친환경 선박들은 성능을 만족하기 위해 리튬 배터리 또는 리튬 배터리를 이용한 ESS가 주로 사용되고 있다. 현재 소형 선박에 주로 사용이 되고 있으나 점차 대형 선박에 적용이 되어가고 있다. 대표적인 예로 DNV-GL의 경우 FellowShip 프로젝트를 통해 연료전지와 배터리가 결합된 추진선인 Viking Lady호 개발(2012)에 참여하였고 최근 노르웨이 아이데스빅(Eidesvik)사의 세계 최초 친환경 하이브리드 해양 작업지원선(OSV: Offshore Supply Vessel)인 ‘바이킹 뀌린(Viking Queen)’ 호에 LG 화학의 리튬 배터리를 사용하는 것으로 확인 되었다.[2]

본 논문에서는 선박 내 장착되는 다수의 배터리의 상태를 점검하기 위해 개략적인 SOC와 SOH 측정기능을 포함한 BMS와 BLE를 이용한

\[Fig. 1 \] Viking Queen vessel equipped with lithium batteries
통신 장비를 제작하여 다수의 배터리를 손쉽게 모니터링 하는 장비를 개발한다. BMS에 이어 선박의 컨트롤 룸에서 확인이 가능한 모니터링 프로그램과 해당 프로그램과 전력선 통신으로 연결된 전력선 통신 모듈과 BLE를 이용한 휴대용 측정 장치로 구성이 된다.

1.2 시장현황

국내 시장현황을 확인하기 위해 중소기업청에서 발간한 중소기업 로드맵에서 에너지 저장장치의 산업 추세를 확인하면 납축전지로 사용하던 에너지 저장장치 기술이 리튬 이차 전지로 이동 되는데 이동 되는 것이 확인되며 리튬 이차 전지의 사용률은 Fig. 2와 같이 독보적임을 알 수 있다.[4]

Fig. 2 Domestic energy storage device status
(based on 2014, horizontal-year, the vertical - 10 million)
Fig. 2는 에너지 저장장치 시스템의 리튬 이온 배터리 시장 규모에 관한 것으로 시장 규모는 전체 2015년 3조 3천억에서 2020년 4배 가까이 증가함을 알 수 있다.

선도 기술 업체와 국내 업체의 연구개발 단계를 표시하면 Fig. 3과 같이 표시 된다.

<table>
<thead>
<tr>
<th>구분</th>
<th>선도기술업체</th>
<th>국내업체</th>
<th>R&D단계</th>
<th>기술수준(세계최고:100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>리튬이온전지</td>
<td>미쓰비시, GS(요미야)</td>
<td>삼성SDI, LG화학</td>
<td>응용제품개발</td>
<td>55 70 95</td>
</tr>
<tr>
<td>NoS전지</td>
<td>NGK(일본)</td>
<td>포스코</td>
<td>초기개발</td>
<td>35 35 30</td>
</tr>
<tr>
<td>Flow배터리</td>
<td>Prudent Energy(중국)</td>
<td>다신전, 대원토폴</td>
<td>초기개발</td>
<td>40 40 45</td>
</tr>
<tr>
<td>수퍼캡라시터</td>
<td>매탕소(미국)</td>
<td>베스랩, 대원토폴</td>
<td>응용제품개발</td>
<td>50 55 80</td>
</tr>
<tr>
<td>플라워볼</td>
<td>보링(미)</td>
<td>전력연구원</td>
<td>제품개발</td>
<td>70 60 70</td>
</tr>
<tr>
<td>암흑광기저지</td>
<td>PGS(미)</td>
<td>삼성테크윈</td>
<td>초기개발</td>
<td>60 70 55</td>
</tr>
</tbody>
</table>

Fig. 3 Research and development status of international and domestic leader technology companies

대부분의 선도 기술은 미국과 일본에서 보유하고 있으며 국내 업체의 기술수준은 원천기술과 부품 소재기술은 부족하나 응용제품개발이 되는 에너지 저장장치의 제조기술은 80%~95%가까이 성장한 것을 확인할 수 있다.
전기추진 선박은 소형선박 중심으로 성장하고 있다. 소형 전기 추진 선박에 대한 주문이 급증하면서 대형 전기 추진 선박에 대한 증가도 예상되고 있다. 레져보트 시장 규모만 년 6천척 규모로 증가하고 있으며 그 외 기존 선박을 전기 추진 선박으로 교체하거나 해양 플랜트 관련 선박들의 배터리 사용량도 증가하고 있다. Fig 4의 2013년 3월에 발표된 전기 추진 선박의 Clarkson의 연구조사에 따르면 2012년 신규 계약 선박 중 약 13%가 전기추진선(단, 군함선 제외)으로, 이미 다수의 실증을 통해 에너지 절감 효과가 증명되었으며, 2013년 발표된 IDtechEX의 연구조사에 따르면 2023년에는 전기추진선박 시장이 약 63억 달러에 달할 것으로 예상되고 있다.[1][2][3]
1.3 연구 목적

전기추진 선박과 하이브리드 선박의 안정적인 운영을 위해서 양호한 품질의 전력을 안정적으로 공급 받는 것이 중요하다. 리튬 배터리는 다른 배터리들에 비해 단위 면적당 출력량이 좋으나 물과 접촉할 경우 폭발할 가능성이 있어 선박에서는 사용이 힘들었다. 하지만 배터리 업체들은 고도의 방습, 방진 기술을 이용하여 선박에 적용을 성공하였다. 하지만 배터리의 용량이 증가 할수록 배터리 관리에 어려움이 있어 배터리의 잔존 용량(SOC : State of Charge)과 건강상태(SOH : State of health)를 측정하는 BMS가 장착되어 있다.

BMS는 배터리를 관리하기에는 효율적이나 배터리가 증가할수록 그 배터리에 대한 정보를 전달하는 통신 회로에 대한 절연 장치와 통신 케이블 및 방습, 방진 장비의 사용량도 증가하게 되어 전체 배터리 팩의 무게 증가로 kg당 출력과 비용증가를 유발하고 있다.

본 논문은 배터리의 점검 요소인 SOC와 SOH를 추정하고 해당 데이터를 무선 통신중 하나인 Bluetooth low energy(BLE)를 이용하여 전송하고자 한다. 무선 통신을 이용한 절연 장치 및 통신 케이블을 제거하고 전력선 통신을 이용하여 외부로 나가는 통신 케이블을 제거하게 되면 통신 케이블 및 방습 방진 설비의 무게와 비용 절감을 통해 같은 무게와 공간에서 더 많은 용량을 탑재 할 수 있도록 하는 것을 본 논문의 목적으로 한다.
제 2 장 관련 이론

2.1 에너지 저장장치의 종류 및 특성

에너지 저장장치는 전기 에너지 저장을 목적으로 에너지를 물리적이나 화학적으로 변경하는 장치를 뜻한다. 효율적인 전력 활용 및 고품질 전력 확보, 안정적인 전원공급 측면에서 에너지 저장장치의 필요성이 증대되고 있다.

선박에서의 비상용 전원공급 목적 외에도 전력 피크 대응 장치, 신재생에너지 보조용 장치, 수용가의 전력 효율을 높이는 장치 등으로 많은 에너지 저장장치가 사용되고 있으며 Fig. 5와 같이 배터리를 이용한 ESS 외에도 양수 저장기술이나 압축공기 저장기술, 플라이휠, 초전도 자기 에너지 저장시스템, 슈퍼 커패시터를 이용한 에너지 저장시스템 등이 있다.

구분	유형	기여
전기화학식	Ultra–capacitors	정전기 저장장치, 이중관리 장치, 고출력, 빠른 충전/정전 보유
운동	Flywheels	운동 전자장치, 전진, 저장, 고출력, 빠른 충전/정전 보유
압축공기	Compressed Air	압축공기 기반 전자장치, 높은 전력로 정전 보유
풀면	Pumped Hydro	물의 풀면에너지로 전환, 저장
외부적 에너지	Rechargeable Battery	외부적 에너지 저장, 저장, 풀면, 내연, 리튬, 소비 등 다양한
지로 전환	Flow Battery	외부적 에너지 저장, 저장, 풀면, 내연, 리튬, 소비 등 다양한
Materials	Hydogen	물리적 에너지 저장, 생산, 활용, 공격적 에너지 저장대로 활용

Fig. 5 Overview and characteristics of energy-saving type(Quotation : LG ERI)
Fig. 6 Various numerical types of energy storage device(Quotation : LG ERI)

에너지 저장 기술에 대해 Fig. 6에서 나온 방법들에 대한 설명은 다음과 같다.

1. 양수 저장기술(PHS) : 양수 저장기술(PHS : Pumped Hydro Storage)의 작동 원리는 물의 중력에너지 관리에 근거를 둔다. 전력 수요가 낮은 기간 동안에 여유 전력을 사용하여 펌프로 낮은 저수지의 물을 높은 저수지로 끌어 올려 둔다. 전력수요가 많아지면 높은 저수지로부터 낮은 저수지로 물을 흘려 보내 터빈을 작동시켜 전력을 생산한다. PHS 에너지의 상위 저수지에 저장된 수량 및 물의 낙차 높이에 비례한다.

PHS는 대규모 에너지 저장시스템에 적합하므로 고 출력용으로 가장 많이 사용된다. PHS 시스템은 1분 미만의 빠른 반응시간 때문에 전력망 주파수제어 및 예비 발전대비책으로 사용 할 수 있다. Fig. 6은 양수 발전의 원리를 나타낸 것이다.

Fig. 7 Principles for the pumped hydro storage(Quotation : Samsung SDI)
2. 압축공기 저장기술(CAES): 압축공기 저장기술(CAES : Compressed Air ES)은 에너지를 지하 저장 동굴에 압축된 공기 형태로 저장한다. 전력망에 에너지를 투입할 필요가 발생하면 압축공기를 지하 동굴로부터 끌어 올리고 가열시켜 고압터빈과 저압터빈을 통해 펑칭 시킨다. 이때 압축공기 에너지가 회전 운동 에너지로 변환된다. CAES기술은 전통적인 터빈 기술을 이용한다. 압축공기는 추가로 천연가스와 혼합되어 연소된다. CAES 시스템은 현재 널리 사용되지 않는다. 시스템의 자체방전(Self Discharge)이 매우 낮기 때문에 CAES 시스템은 PHS와 경쟁할 수 있는 장기적인 에너지 저장시스템이라 할 수 있다.

Fig. 8 Compressed air energy storage system (quotation: donga science)

배터리 에너지 저장시스템(BESS) : 배터리 에너지 저장시스템(BESS : Battery ESS)은 원하는 전압과 용량의 에너지를 얻기 위해 직렬, 병렬
또는 직렬-병렬로 연결된 다중 전지 내에 전기 화학에너지 형태로 저장하는 방식이다. 비용 효율적이고 고 전력용으로 전환하기 위하여 니켈 카드뮴(Ni-Cd) 배터리 기술 또는 리튬 이온(Li) 배터리기술을 집중적으로 개발하고 있다. 아래에 Fig. 9는 납축전지와 리튬 계열 전지를 비교한 표이다.

<table>
<thead>
<tr>
<th>구분</th>
<th>단위</th>
<th>리튬 전지</th>
<th>납축 전지</th>
<th>상대 배수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>수명</td>
<td>년</td>
<td>10</td>
<td>5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>충방전 사이클</td>
<td>회</td>
<td>5000</td>
<td>1000</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>자가 방전율</td>
<td>%/일</td>
<td>10</td>
<td>35</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>사용 온도</td>
<td>도(℃)</td>
<td>-20~+60</td>
<td>25이하</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>요구용량</td>
<td>KWh</td>
<td>250</td>
<td>500</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>평균 가격</td>
<td>$/KWh</td>
<td>800</td>
<td>300</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>동일 설치비</td>
<td>$</td>
<td>200,000</td>
<td>150,000</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9 Comparison of lead acid batteries and lithium batteries
(Quotation : Meritz Securities)

납축전지, 니켈 카드뮴(Ni-Cd) 전지 및 리튬 이온(Li ion) 전지 저장기술에 대해 설명한다. 납축전지는 일명 납산(Lead-Acid) 배터리라고 불리며 가장 성숙된 기술 단계에 와 있다. 납축전지는 30Wh/kg의 낮은 비에너지 및 180W/kg의 저 비출력 등의 약점이 있고 특히 잠수형 배터리의 경우 주기적으로 물을 보충하여야하는 단점이 있다. 니켈 카드뮴(Ni-Cd) 배터리는 납축전지 대비 10배가 넘는 비용 때문에 상업적으로 성공하지 못했지만 니켈 카드뮴 배터리의 총 생산량은 계속 증가하고 있다. 니켈 카드뮴(Ni-Cd) 배터리는 내부저항이 대단히 낮기 때문에 방전 주기가 빠르고, 2시간 동안에 정격전력(Rated Power)을 주입할 수 있다. 그러나 유효성, 배모리효과 등 약점 때문에 미래 전망은 불확실하다. 리튬 이온(Li-ion)배터리는 모바일 전화기, 휴대용 전자기기 등
소규모형 에너지원으로 널리 사용된다. 강점으로는 170∼300Wh/l의 고
에너지 밀도, 75∼125Wh/kg의 높은 비에너지, 급속 충전 및 방전능력
등이 있다. 약점으로는 상대적으로 높은 일일 자체 방전으로 인해 단
시간 규모에 주로 사용된다. 게다가 가연성 유기 전해질을 사용하기
때문에 안전성과 환경에 대한 문제가 제기되고 있다.

플라이 휠 에너지 저장시스템(FESS): 플라이 휠 에너지 저장시스템
(FESS : Flywheel Energy Storage System)에서는 에너지를 운동 에너지
형태로 저장하는 전기 기계적 시스템이다. 저장 에너지는 회전속력의
제곱 및 관성에 달려 있다. 플라이 휠 FESS는 상업용으로 사용하고 있는 두 가지
유형의 기계는 축 방향 유속 영구자석 기계와 반지름방향 유속 영구자
석 기계 등이다. 완전 FESS에서 자체 방전 용은 시간당 저장 용량의
20% 이다. 그러므로 FESS는 장기 에너지 저장용으로는 적합하지 못하
다.

초전도 자기 에너지 저장시스템(SMES): 초전도 자기 에너지 저장시스템
(SMES : Superconducting Magnetic Energy Storage)은 자기장에 저장
된 에너지를 사용한다. 이 자기장은 극저온에서 대형 초전도 코일을 통하는 직류 전류로 생성된다. 냉각시스템이 핵심 요소로 고려된다. 장점으로는 단시간에 대량의 에너지를 주입 흡수하는 능력이다. SMES 시스템은 기술적 특성이 좋지만 고 비용 때문에 실제로 거의 설치되지 않고 있다.

Fig. 11 Super capacitor energy storage system
(quotation : maxwell, tacate group)
2.2 BMS 이론

BMS는 배터리 셀과 팩 전체 시스템의 실시간 감시를 수행하는 것을 바탕으로 배터리 감시 중 계측된 데이터(전압, 전류, 온도)를 바탕으로 배터리 상태를 판단하는 두 가지 지표인 SOC(State Of Charge)와 SOH(State Of Health)를 추정한다. 이 두 가지 항목을 연산하기 위해서는 계측된 데이터 외에 추가적인 정보가 필요할 때 그것은 C-rate와 DOD이다.[5]

2.2.1 C-rate

C-rate는 셀의 용량만큼의 전류량이다. 10Ah의 용량의 배터리에 기준 1C-rate(이후 C)는 10A가 되며 2C는 20Ah가 된다. 이것을 공식으로 옮기면 식 (1)과 같다.

\[C\text{-rate}(C) = \frac{\text{방전전류량}(A)}{\text{배터리 용량}(Ah)} \]

이는 방전과 충전 둘 다 적용이 되는 단위이며 대부분의 배터리 용량 산정시 0.2C의 용량으로 평가되며 이는 5시간동안의 충전량과 방전량을 의미하여 이것을 5시간을 이라고도 한다. 배터리 별로 다르나 공통적으로 사용하는 C-Rate가 높아지면 배터리 용량이 감소하며 C-rate가 낮을수록 배터리의 용량이 증가되는 것을 알 수 있다.

배터리 제조사는 최대 충전전류와 최대 방전전류를 A로 표시하기도 하나 CA(C-rate Ampere)로 표시하기도 한다.

Fig. 12는 배터리의 C-rate 별 방전 특성을 나타내는 그래프로 3C의 경우 배터리 용량을 표시하며 0.1C로 방전시 보다 10%이상 용량차이가 나는 것이 확인가능하다. 전류량이 큰 방전을 할수록 전압 강하량이 크고 용량을 100% 사용하지 못한다.
2.2.2 DOD(Depth of Discharge)

DOD(Depth of Discharge)란 방전 심도를 이야기 하며 방전 심도란 SOC의 반대 개념이며 전체 배터리 용량 대비 사용 용량을 의미한다. 예를 들어 10Ah인 배터리에 10Ah를 사용하면 DOC는 100%가 되며 SOC는 0%가 된다. 배터리는 전기화학적인 과정을 거쳐 전력을 저장, 전달되기 때문에 SOC가 0%가 되더라도 사용이 가능하다. 그렇 경우 배터리 잔존 용량(SOC)를 기준으로 할 경우 연산할 경우 발생하는 오차로 인해 DOD 즉 방전심도라는 단위를 사용하게 된다. 또한 DOD를 몇 %로 사용하는지에 따라 배터리 수명이 달라지기도 한다. [5]
Fig. 13 Battery life characteristic test under normal temperature

Fig. 13과 같이 배터리의 DOD를 0 ~ 60% 사용 시 0 ~ 100% 구간 사용 시의 충·방전 사이클 횟수의 차이가 발생하는 것이 확인 가능하다.[6]

2.2.3 SOC(State Of Charge) : 배터리 잔존 용량 추정

리튬 계열의 이차전지는 기존의 일차전지와 다르게 충전이 가능하여 여러 번의 충전과 방전을 수행할 수 있으며 그에 따라 서로 다른 에너지 저장 상태를 가질 수 있다. 에너지 저장능력은 용량(Capacity)으로 정의 될 수 있다. 용량이란 배터리의 만충 상태에서 만방상태까지 일정한 전류로 방전했을 때 방전 전하의 총량으로 정의된다. 만충 상태는 손상되지 않는 범위 안에서 수용할 수 있는 전하를 최대로 받은 상태이다. 보통 과전압 상태에서 부반응이 과도하게 발생하기 때문에 충전 시 일정전압으로 제한을 두어야 손상을 입지 않고 충전할 수 있다. 즉 일정 전압으로 충전하여 더 이상 전류가 흐르지 않는 상태를 만충

Fig. 13 Battery life characteristic test under normal temperature
상태로 정의한다. 만방 상태로 정의한다. 만방 상태로 정의한다. 만방 상태와 비슷하게 배터리가 손상되지 않는 범위에서 방전 가능한 전하를 모두 배출한 상태로 정의한다. 배터리의 용량을 결정하는 요소로서 방전 전류의 선택 및 온도나 노화의 영향도 중요하게 고려되어야 한다. 일반적으로 배터리 제조사에서 제공하는 용량은 정격용량(Rated capacity) \(Q_{\text{rated}} \)로서 상온(25도)일때 만충 상태부터 만방 상태까지 규정된 전류 조건 \(i_{\text{rated}} \)로 방전했을 때의 값으로 정의하고 식(2)과 같이 나타낸다. 방전 전류의 크기에 따라 용량의 값이 변하게 되므로 식(2)에서 정의한 정격 용량을 사용하지 않고 식(2)를 개선하기 위해 식(3)을 유도하였다.

\[
Q_{\text{rated}} = \int_{t_0}^{t_f} i_{\text{rated}} \, dt
\]

따라서 식(2)를 개선하기 위해 식(3)을 도출하였다.

\[
SOC_{\text{batt}} = \frac{SOC_{\text{batt0}} - \int_0^t i_{\text{bat}} \, dt}{Q_{\text{discharge}}}
\]

배터리의 현재 상태는 이전의 배터리 SOC상태에서 방전 전류를 적분한 값을 방전용량으로 나누어 빼주는 방식으로 구성하였다. 충전용량과 방전용량은 배터리의 충전효율에 따라 차이가 나는 만큼 배터리 용량이 아닌 방전 용량을 사용한 것이 특징이다. Fig 13은 리튬 인산철 배터리의 전류에 따른 방전 커브를 나타낸다. 전류의 크기가 작을수록 만충 상태에서 만방 상태까지 방전 시간이 길어짐을 알 수 있다. 전류와 측정된 시간을 이용하여 방전용량을 측정하였다. 하지만 SOC가 90% 이상인 지점과 10% 미만 지점에서 화학반응으로 인해 SOC의 오차가 떨어지는 단점이 있어 해당 값 아래에서는 OCV를 이용한 리셋방법이 필요하다.[7][8][9]
2.3.5 SOH(State Of Health): 배터리의 수명

SOH(State of Health)는 배터리의 잔존수명을 %로 나타낸 것을 말한다. 배터리의 수명과 노화과정은 배터리 기술의 중요한 문제 중 하나이다. 배터리는 전기화학적인 과정을 거쳐 전력을 저장, 전달하며 노화과정은 화학적, 전기적, 기계적 특성 등의 다양한 요소로부터 영향을 받는다. 일반적으로 SOH를 통해 노화 정도를 표시하지만, SOH를 정확히 측정, 분석하는 것은 매우 어렵다. 배터리의 최대 용량은 SOH와 매우 밀접하게 관련되어 있으며 최대 용량의 80%가지 배터리 용량이 감소되면 배터리는 Dead상태로 고려된다. 또한 내부 등가 저항으로 인한 전력손실에 기인한 배터리의 효율 또한 중요한 고려 요소 중 하나이다. 이러한 전력손실은 또한 열을 발생시켜 수명에 부정적인 영향을 끼친다. 배터리의 노화과정은 동작, 온도, 최대 충전, 방전, 각 주기의 DOD 등에 의해 결정된다. 리튬 이온 배터리는 SOC가 너무 높거나 낮은 경우 배터리 셀은 손상을 입어 배터리 수명이 단축된다. 따라서 SOC를 계속 감시하여 일정 수준으로 유지하는 것이 중요하며, 따라서 배터리 전압을 가능한 일정하게 유지하는 것이 중요하며, 온도에도 매우 민감하여, 리튬 배터리가 고전류로 충전 방전 되는 경우 그 내부 저항으로 인한 온도증가로 파괴속도는 더욱 빨라진다. 또한 저온에도 취약하여 특히 충전 시 배터리 셀이 얼지 않도록 온도를 유지하여야 한다. 일반적으로 배터리는 충전 방전을 반복함에 따라 불가피하게 성능이 저하되고, 수명이 단축되며, 배터리의 불안정한 특성으로 사고의 위험성을 가지게 되어 BMS의 전체적인 신뢰도 저하를 야기 시킨다. 또한 배터리의 정확한 잔존수명을 판단할 수 있는 방법이 제시되지 않아 배
터리 제조사에서 권장하는 시간이 경과하면 배터리의 상태에 관계없이 모든 배터리를 교체함으로 수명이 다하지 않는 배터리의 교체 및 배터리의 주기적인 관리에 따른 인력 낭비 등 많은 문제점을 가지고 있다. 이러한 단점을 보완하고 배터리의 효율적인 관리를 위해서 배터리의 상태를 최적으로 관리할 수 있는 SOH 추정방법 개발이 필요하다.

Fig. 14은 Randles의 배터리 1차 모델이다 SOH의 추정은 Randles 이론 모델을 바탕으로 수행한다. Rs와 C 그리고 Rct를 이용한 등가 회로로 내부저항과 임피던스를 계산하고 계산된 결과 값을 이용하여 배터리의 수명을 파악할 수 있다.

SOH 추정 방법 중 가장 많이 사용되는 방법은 본 논문에서 사용하는 임피던스를 이용하는 추정 방법이 가장 많이 사용된다. 임피던스를 이용한 추정 방법도 전압드롭을 이용하는 임피던스 측정 방법, 임피던스 스펙트럼을 분석하는 방법(임피던스 분광법)등 다수의 방법이 연구되고 있으며 임피던스 스펙트럼 분석방법은 주파수에 따른 임피던스를 측정되는 AC특성은 배터리 노화 상태를 평가하고 저주파에서 측정되는 DC 특성은 배터리의 충전 상태를 판단하는데 사용이 된다. 임피던스는 전극에서 화학 반응을 일으킬 때 전기 전달을 방해하는 원인으로 해석되며 배터리 분석을 정확하고 신속하게 수행하기 위해 임피던스 스펙트럼 분석 방법을 사용한다.

하지만 임피던스 스펙트럼 분석 방법은 교류를 발생하는 장치와 교류를 분석하는 장치 등 다수의 하드웨어가 포함되어야 해서 금전적인 단가가 높다. 따라서 다수의 배터리에 장착해서 배터리 정보를 얻어 들여야 하는 선박 등에서는 맞지 않아 부품이 가장 적고 경제적인 내부저항을 이용한 임피던스 측정 방법을 결정 하였다.
Fig. 14 Randles circuit schematic

SOH를 계산하기 위한 Randles 이론 모델을 이용하여 유도한 값은 Fig. 14과 같이 유도 된다. Randles 모델은 배터리 내부저항 R1, 분극(Polarization)을 나타내는 충·방전 전류에 의한 이온화 손실 저항 R2 그리고 2중층의 커패시턴스 C로 구성된다. RC 병렬회로에서 충·방전 전류에 대한 배터리 단자 전압(Terminal Voltage) Vt의 동적 응답을 시상수로 표현되며 식(1)과 같이 표현된다. Randles 모델의 파라미터는 충·방전 전류의 크기, 잔존용량, 충·방전 모드, 노후화, 온도 등의 다양 한 요인에 따라 변화하여 실제의 배터리와 유사한 배터리 모델을 설계하는데 어려움이 발생한다. 제안된 모델에서는 충·방전 전류의 크기, 잔존용량, 충·방전 모드에 따라서 파라미터를 실험을 통해 도출하고 적용하였다.[10][11]
Fig. 15 Impedance estimation method using an open circuit voltage

R1은 부하 연결시 최초로 전압강하가 일어나는 지점의 전압을 측정하여 전류로부터 나눠 외부값을 구하고 화학특성에 따른 외부값은 최초 전압강하가 시작되고 그 이후의 전압값과 시간을 가지고 계산을 한다. 해당 값을 이용하여 R1과 R2를 계산하고 임피던스 계산을 위해 C를 구하면 식은 다음과 같이 식 (4), (5), (6)에서 식을 이용하여 유도하면 식 (7)과 같이 유도 할 수 있다.[12][13]

\[V_{R1} = R_1 \times I \]

(4)

\[V_{R2} = R_2 \times I \]

(5)

\[V_{exp} = R_2 \times I \times e^{-\frac{-t}{R_2 C}} \]

(6)

\[C = \frac{-t}{R_2} \ln \left(\frac{V_e}{R_2 I} \right) = \frac{-t}{R_2} \cdot \frac{1}{\ln \left(\frac{V_e}{R_2 I} \right)} \]

(7)
2.3 BLE(Bluetooth Low Energy)

2.3.1 Bluetooth 통신 개요

블루투스의 역사는 1994년 세계적인 통신기기 제조회사인 스웨덴의 에릭슨사에서 연구를 시작하였으며, 1998년 에릭슨을 주축으로 노키아, IBM, 도시바, 인텔 등의 대표적인 첨단 IT 기술회사 들로 구성된 블루투스 SIG가 발족했다.

블루투스 SIG에는 현재 모토로라, 마이크로소프트, 루손트 테크놀로지, 스리콤 등 세계적인 기업이 참여하며 전 세계적인 표준규격으로 자리잡았다. 1세대 블루투스의 전송속도는 721Kbps에 불과했다. 또한 다른 블루투스 기기와 연동시 확인되지 않는 기기는 접근을 차단하여 사용상의 불편함이 있었다. 2세대 블루투스에서는 이러한 문제를 일부 개선하였는데, EDR(Enhanced Date Rate)의 적용을 통해서 최대 3Mbps의 전송속도를 지원하고, 1세대의 단점으로 적용되었던 제한적 기기 연동은 SSP(Secure Simple Pairring) 적용으로 해소하였다.

그 뿐만 아니라 NFC와의 호환 기능도 탑재되었다. 이후 블루투스 기술은 IT 시장에서 본격적으로 사용되기 시작했다. 이는 3세대를 거치면서 더욱 향상되었는데, 3세대 블루투스의 가장 주요한 특징은 8배에 달하는 속도 향상이다. 프로토콜 적용 계층(PAL, Protocol Adaptation Layer)을 적용하여 최대 24Mbps까지 속도를 높였는데 이후 대용량 그림, 동영상 파일을 공유할 때에도 블루투스가 활발하게 사용되기 시작했다. 이렇게 발전을 거듭하던 블루투스는 4세대로 접어들면서 중대한 변화를 보여주었는데, 기존의 블루투스를 계승하는 ‘클래식 블루투스’, 와이파이 기반을 통해 속도에 집중한 ‘하이 스피드 블루투스’,
저 전력과 반응성에 초점을 둔 ‘로우 에너지 블루투스’와 같이 3가지 블루투스 세분화를 시도한 것이었다. 이 중에서도 로우 에너지 블루투스는 BLE라고도 불리면서 Bluetooth Smart, Bluetooth Smart Ready와 같은 이름으로 시장에 출시되었다. 그리고 변조지수 (Modulation Index)의 증가로 최대100미터에 달하는 안정적 데이터 전송 지원이 가능하다. 또한, 타 무선 신호와의 간섭을 최소화하고, 신호 간섭 시 빠른 연결 복구 등 다양한 개선 작업이 이루어졌는데, 이러한 특징은 4세대 블루투스가 사물인터넷(IoT)과 비콘의 기반 기술이 될 수 있는 큰 이유이다.

블루투스 로우 에너지 기술은 2013년 애플 개발자 회의에서 공식 지원을 발표하면서 큰 관심을 받기 시작했으며 애플이 공식적으로 지원하는 Estmote사 등이 대표적인 BLE 제작 업체이다. 블루투스는 계속적으로 영역을 확장해나가 가전제품에서 동추지 않고 자동차, 집, 카메라, 게이밍 기기, 의료분야, 스포츠 분야 등으로 점차 넓게 적용되고 있으며 최근 ABB에서는 선박 내 펌프 모니터링을 BLE로 구성하기도 했다. 블루투스는 휴대 기기간의 통신을 쉽게 하려는 탐에 보안성을 중시하여 암호화 엔진을 갖추고 있다. 또한 폰어링 과정을 규정해 연결되지 않은 기기간의 데이터 전송이 가능하지 못하도록 막았다. 사용 주파수는 ISM대역인 2.4GHz로 정의되었다.

기존의 블루투스(Classic bluetooth)에 비해 배터리 소모가 적은 것이 장점이라 할 수 있다. 기존의 블루투스와는 달리 코인 배터리로 최대 2년까지 작동이 가능하며 실내에서 최대 50M까지 통신이 가능하다. 이를 위해 기존의 블루투스 이용 시 필요한 pairing 과정을 없애는 광고(advertising)모드가 추가 되었다. BLE 프로토콜은 단말기 간 연결을
위해 Peripheral 역할과 Central 역할이 존재한다. Peripheral 단말기는 주위 단위 공간에 광고 메시지를 수신하며 Central 단말기는 Peripheral 단말기에서 전송하는 광고 메시지를 수신하고 Peripheral 단말기와 선택적으로 연결할 수 있는 기능을 가진다. Peripheral 단말기는 한 시점에 하나의 Central 단말기와 연결이 가능하며 Central 단말기는 여러 개의 Peripheral 단말기와 연결할 수 있는 Star 토폴로지 형태를 취한다. Central 단말기와 Peripheral 단말기 간 연결이 이루어진 후 프로파일(Profile)을 사용하여 응용 어플리케이션 데이터를 주고 받는다. 프로파일이란 블루투스를 이용하여 어플리케이션 데이터를 송·수신할 때 사용해야 할 프로토콜의 종류와 데이터 구조, 제공 기능, 사용 방법 등의 속성(Characteristic)들을 규정한 것으로 프로파일이 정의된 단말기가 프로파일 서버(Profile Server) 단말기가 되고 정의한 프로파일을 사용하는 단말기는 프로파일 클라이언트(Profile Client) 단말기가 된다. 이 역할은 BLE 토폴로지형성을 위한 Central 역할과 Peripheral 역할과는 독립적이다. BLE 프로토콜에서 프로파일 서버와 클라이언트 단말기 간의 프로파일에 정의된 기능에 해당하는 속성에 접근하여 쓰고 읽기 위해 사용할 수 있는 프로파일 메시지 프로토콜 형태는 크게 네 가지 형태로 구분할 수 있다. 첫 번째는 클라이언트가 서버에 어플리케이션 데이터를 전송하면 서버는 이에 대한 응답 메시지를 클라이언트에게 주는 형태이다. 두 번째는 클라이언트가 서버에 어플리케이션 데이터를 전송하지만 이에 대한 응답 메시지를 받지 않는 형태이다. 세 번째는 서버가 클라이언트에 어플리케이션 데이터를 전송하고 클라이언트의 응답 메시지를 받는 형태이다. 네 번째는 서버가 클라이언트에 어플리케이션 데이터를 전송하지만 클라이언트의 응답
메시지를 원하지 않는 경우이다.

BLE라고 칭해지는 장치는 Peripheral 장치(Bluetooth Smart)와 Central 장치(Bluetooth Smart Ready)로 구성된 Advertising 장비이며 연결(pairing) 없이 신호를 전송할 수 있는 장점이 있다.

Fig. 16 40 Channels used in bluetooth low energy technology

Fig. 16은 BLE 프로토콜은 2.4GHz ISM 주파수 대역을 사용하는 프로토콜로 37 개의 데이터 전용 채널(파랑색)과 3 개의 광고모드(advertising) 전용 채널(녹색)을 표시한다. BLE 프로토콜 패킷 종류는 크게 광고 패킷과 데이터 패킷으로 구분되는데 광고 패킷은 다른 단말에 자신의 존재를 알리고 연결을 요청하는데 사용되며 broadcast 채널을 통해 송수신 할 수 있다. 데이터 패킷은 Central 단말과 Peripheral 단말간의 연결 후에 주고받는 패킷으로 연결된 두 단말만 해당 패킷을 인지할 수 있다.
2.3.2 블루투스 패킷 구조

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Access Address</th>
<th>PDU Header</th>
<th>PDU Payload</th>
<th>CRC</th>
</tr>
</thead>
</table>

Fig. 17 BLE packet structure

Fig. 17은 BLE Packet Structure와 Ti사의 Smart RF Packet Sniffer에서 측정된 BLE 신호 분석표를 나타내었다. 각 송수신 장치와 슬레이브 장치 사이에 하나의 패킷이 교환된다. 패킷은 액세스 코드(access code), 헤더(header), 페이로드(payload)의 순서로 일정한 형태를 가지며, 각 패킷은 72비트의 액세스 코드로 시작되고, 이것은 마스터 장치의 주소로부터 발생되어 채널에 대해 유일하다. Fig. 17은 블루투스의 패킷 구조를 나타낸다.

수신 장치들은 입력신호와 액세스 코드를 비교하여 두 개가 일치하지 않으면 수신 패킷은 채널 상에서 유효하지 않은 것으로 간주하여 그 내용의 나머지는 무시한다.

패킷의 확인 이외에 액세스 코드는 동기화와 오프셋을 보상하는데 이용된다.

액세스 코드는 간섭에 견고하기 때문에 잘 견디며, 수신 장치에서 액세스 코드의 상관관계(Correlation)는 직접 대역 환산에서처럼 처리이득(Processing Gain)을 얻는다. 액세스 코드 다음에는 헤더가 온다. 헤더에는 중요한 제어 정보를 포함하고 있으며, 이 정보의 내용으로는 3비트의 MAC(Media Access Control)주소, 패킷형태(Type), 흐름제어(Flow) 비트, ARQ(Automatic RetransmissionQuery)방법, header error check 영역 등을 포함한다. 헤더의 길이는 54비트로 정의하는데, 이것은 1/3
2.3.3 BLE Advertising mode

기존의 블루투스는 데이터를 전송하기 위해 주변 장치를 검색하고 검색 후 데이터를 전송할 장비와 페어링을 진행해야 했다. 하지만 블루투스 4.0이 출시되고 나서 BLE의 Advertising Mode는 장비를 검색하는 데이터를 주목했다. 검색 시 응답하는 데이터에는 장비의 기본적인 고유한 정보가 담겨져 있기 때문이다. 최근 Central 장치가 광고모드 (advertising)로 주변에 정해진 위치 신호를 발신하면 수신하는 Peripheral 모드의 모바일 디바이스나 단말기가 반응하는 방식의 장비가 많이 사용되고 있다.

GAP는 Generic Access Profile의 약자로 장비의 검색과 연결을 담당하는 프로파일이다. 블루투스 4.0에서 광고(advertising)와 연결 (connection)을 제어한다. GAP은 장치 간 연결 방법과 장치 정보를 표시하는 것에 중점을 두었다.

![Fig. 18 Advertising operating mode of the BLE](image-url)

GAP은 Fig. 18에서 표시된 Advertising Data와 Scan Response Data를 송신할 수 있으며 해당 데이터는 최대 31바이트까지의 데이터를
포함할 수 있다. 게시(advertising)은 특정 주기에 한 번씩 장치의 상태를 게시하는 데이터로 반드시 사용 되야 할 항목이며 Scan Response Data는 Scan Response Request가 장치에서 인식되어 추가 정보를 요청하면 회신해 주는 데이터로 선택적 구현이 가능하다. 본 논문에서는 Can 통신과 같은 방법으로 데이터별로 아이디를 부여하고 특정 주기 내에서 데이터를 변경하여 중계기의 입장에서는 주기적으로 데이터가 변경되어 수신 받는 방식으로 Advertising Data를 사용하였다. 해당 방법을 통해 다수의 장비에서 출력되는 데이터를 동시에 입력받아 중계기를 통해 선박 제어실로 보내는 것이 가능하였다.

Fig. 18과 같이 Peripheral 장비(BMS)는 특정 주기에 한번씩 Advertising Data를 송신하게 되는데 송신 되는 31 바이트 중 기준이 되는 6바이트를 남긴 나머지 바이트를 가변 하여 현재 계측 되는 BMS의 입력 값을 삽입하여 중계기로 전송하는 용도로 사용하였다. Advertising Data는 장비의 페어링 전 장비의 상태를 외부로 전달하는 기능을 이용하여 사용하는 것으로 특정 장비와 pairing이 되면 Advertising 데이터 전송을 중단하게 된다. 이런 상황에 비하여 제작한 BLE TAG는 시중에서 판매하는 비콘(Peripheral Device)과 같이 Pairing 후에 사용되는 proximity profile을 제거하여 페어링이 되지 않도록 하였다.[14]
2.4 PLC(Power Line Communication)

2.4.1 전력선 통신 원리

전력선통신(PLC :Power Line Communications)은 전기를 공급하는 전력선의 상용주파수(60Hz)전력신호에 고주파 신호를 중첩시켜 데이터를 전송하는 통신기술이다. 이는 교류를 입력받아 직류로 변환하여 사용하는 제품에는 고주파 등으로 인한 문제가 발생하지 않는다. 전력선 통신에서 신호를 수신할 때 저주파 대역의 전력은 커패시터에 의해 막히게 되고 고주파 대역에서의 정보 신호만 통과하게 된다. 전력선 신호 송신 시에는 고주파의 정보신호가 커패시터를 통과하여 전력선에 실리게 되고 인덕턴스 쪽으로는 누출이 되지 않는다.

Fig. 19 The principle of power line communication

Fig. 19은 전력선 통신의 원리를 나타낸 그림이다. 그림에서와 같이 220V 라인에 고주파의 신호를 섞어 전송하는 방식으로 교류를 직접 사용하는 모터와 평활하여 DC로 변경 후 사용하는 장비들에서는 문제가 생기지 않는다.

선박 내 유선 통신라인은 신호선 중심으로 설치가 되어 있고 현존선은 제한되게 설치되어 있거나 설치되지 않은 선박도 존재한다. 하지만
선박용 장비가 동작하는 선박 곳곳에는 선내 전력공급을 위한 전력선이 설치되어 있다. 선내에서 여러 가지 전력선을 사용하고 있기는 하지만 선박내 전력시설은 발전기로부터 출력되는 전력 라인으로 네트워크가 구성되어 있기 때문에 선박 내 장비들 사이의 통신이 가능하다. 또한 새로운 유선 통신을 위해 선을 포설할 필요가 없어 경제적이다.

하지만 이러한 전력선 통신에도 단점이 존재한다. 가장 큰 단점은 변압기 통과가 어렵다는 것이다. 변압기 특성상 1차 측과 2차 측간에 단절이 단절되어 있다는 것이 가장 큰 문제이며 변압기가 60Hz에 맞추어 설계되어 있기 때문에 고주파의 신호가 제대로 송신되지 않는 것이 문제이다. 하지만 선박 내 변압기의 경우 제어실(Control room)에 전기판넬이 모여 있기 때문에 해당 부분에서의 커플러 설치로 극복이 가능하다.

본 논문에서는 배터리 룸 및 외부에 장착된 배터리의 정보를 제어실로 전송하기 위해 Fig. 20와 같은 전력선통신을 이용하였다. 전력선통신 모듈은 Qualcomm 사의 atheros 칩을 사용하는 리산테크의 전력선모듈을 사용 하였으며, 해당 칩은 전력선으로 송수신되는 정보를 RS-232 통신과 Ethernet 선으로 변경하는 역할을 한다.[15]

Fig. 20 Power line communication modules
제 3 장 배터리 원격관리시스템 구성

장비의 시험은 제작된 측정 장치와 모니터링 PC 측정 모듈을 이용하여 배터리 무선 측정 모듈을 개발 및 시험하였다. 배터리에서 수집이 가능한 데이터는 특수한 목적의 장치를 쓰지 않는 이상 전압, 전류, 온도 세 가지이다. 배터리 잔존용량(SOC)과 배터리 잔존수명(SOH)의 추정 또한 위의 세 가지 데이터를 연산하여 도출한다. 따라서 배터리 무선 상태 측정 장치를 제작하기 위해서는 Fig. 21과 같은 구조가 필요하다.

Fig. 21 Configuration of the proposed system
3.1 하드웨어

3.1.1. BMS 구성

BMS(Battery Management System)는 배터리의 관리 시스템을 말하며 배터리의 제어의 최적화를 통해 배터리 에너지의 효율적인 사용과 안전성을 확보하는 기술을 지칭한다. 배터리의 각 상태를 판단하여 최적 효율 점에서 작동토록 하여주는 배터리 충전상태(SOC)제어 기술과 배터리 수명상태 추정기술등이 대표적인 기술로 구분된다. BMS 기술은 5가지 항목으로 기술적 분류가 된다. 5가지 항목은 테이블 1에 표시하였다.

<table>
<thead>
<tr>
<th>측정</th>
<th>Cell과 Pack의 전압, 전류, 온도 측정</th>
</tr>
</thead>
<tbody>
<tr>
<td>관리</td>
<td>배터리 모니터링, 보호기능, 셀 밸런싱기능</td>
</tr>
<tr>
<td>평가</td>
<td>SOC, SOH 평가</td>
</tr>
<tr>
<td>통신</td>
<td>외부와의 통신</td>
</tr>
<tr>
<td>저장</td>
<td>데이터 저장</td>
</tr>
</tbody>
</table>

3.1.1.1 측정

측정은 BMS의 각종 데이터를 수집하는 단계로 셀별 전압, 팩의 전압, 온도, 전류 등을 측정한다. 측정된 데이터는 관리와 평가의 단계에서 사용이 된다. 측정하는 항목은 다음과 같이 구성된다.

1. 배터리 전압 : Cell과 Pack 전압을 측정하는 역할을 한다. 각
Cell의 전압을 측정하여 배터리의 충전 상태에 따른 셀의 과전압, 저전압 상태를 판단하는 기준이 된다. 측정하는 방법에 따라 A/D 컨버터를 이용한 측정 방법과 분압저항을 이용한 전류 측정 방법이 있으며 측정 부와 배터리 사이를 절연하는 접연형 방식과 비절연 방식으로도 구분된다.

2. 배터리 전류 : 전류 측정 방법은 보통 PACK 전체의 전류를 측정하는 방법을 사용하며 측정 방법에는 Hall effect를 이용한 전류 센서를 이용하는 방법과 Current Shunt resistor를 이용하는 방법이 주로 사용된다.

3. 배터리 온도 : 배터리 주위 온도를 측정하는 방법은 열전대, 서모 커플러 등 다양한 방법이 존재한다.
3.1.1.2 관리

배터리 관리기능은 배터리 모니터링, 보호, 밸런싱, 세가지 기능으로 나눌수 있다.

1. 배터리 모니터링은 측정된 데이터를 수집하여 모니터링 하여 문제 가 될 요소를 파악하고 이를 사전에 외부로 알리고 위급 상황시 배터 리를 차단하는 역할을 수행한다. 측정된 전압, 전류, 온도 데이터를 기 반으로 SOC(State Of Charge)와 SOH(State Of Health)를 연산할 수 있 다.

2. 배터리 셀 밸런싱 회로 : 배터리 셀 밸런싱이란 다수의 배터리를 직렬로 연결하는 배터리 팩에 팩단위의 충전, 방전이 일어날 경우 배터리 셀의 균등한 전압 충전 방전이 일어나지 못해 충전편차 또는 방 전 편차가 발생하는 현상을 이야기 한다. 이는 배터리의 충전상태 (State of Charge)가 셀별로 달라지는 현상이 되어 배터리 셀간 전압의 편차를 발생시키고 이는 배터리의 용량 감소 및 배터리 팩을 손상 시킬 수 있다. 이러한 이유로 BMS 내부에는 배터리 셀 밸런싱 회로가 사용된다. 배터리 셀 밸런싱 회로는 액티브 셀 밸런싱 방법(Active Cell Balancing)과 패시브 셀 밸런싱 방법(Passive Cell Balancing)으로 나뉘어 있다. 액티브 셀 밸런싱의 경우 SOC가 높은 셀의 에너지를 SOC가 낮은 셀의 에너지로 옮길 수 있으나 트랜스포러나 대용량 캐페시터가 필요하며 사용공간이 크고 제작 가격이 액티브 셀 밸런싱에 비해 고가이다. 이해 비해 패시브 셀 밸런싱 방법은 가장 용량이 낮은 배터리 셀이 충전된 후에도 충전을 계속 할수 있도록 용량이 낮은 셀의 충전 전류를 저항을 통해 열로 소모하는 방식이다. 구성이 단순하고 사용공 간이 적으며 액티브 셀 밸런싱 방법에 비해 저가 이다.
3.1.1.3 배터리 보호 기능

배터리의 최적의 성능을 유지하기 위해 과 충전과 과 방전으로부터 보호해야 한다. 리튬인산철 배터리(LiFePo4)의 경우 리튬이온과 같은 폭발위험이 없다. 배터리 보호 기능은 사용되는 어플리케이션에 따라 조금씩 다르게 구성된다. 위급한 상황에서도 바로 배터리를 차단하지 못하는 전기자동차와 같은 어플리케이션에서는 배터리에 문제가 발생하면 통신을 통해 외부로 상태를 전달하는 역할을 한다. 하지만 UPS와 같은 장비의 경우에는 장비가 작동하다가 배터리가 Cut-Off 전압이 되면 자동으로 차단이 되도록 구성되어야 한다. PCM(Protect Circuit Module)이 있는 모듈에서 데이터를 계측하는 경우에는 PCM에 배터리 팩의 과충전 보호 기능(Over-charge Protection), 과방전 보호 기능(Over-discharge Protection), 과전압 보호 기능(Over Voltage Protection), 저전압 보호 기능, 과전류 보호 기능(Over Current Protection), 과온 보호 기능(Over Temperature Protection), 단락 보호 기능(Short Protection)이 추가 되지만 PCM 없이 BMS만 있을 경우에는 BMS에 보호 회로들이 삽입된다.
3.1.2 하드웨어 설계

Fig. 21에 나온 구성의 배터리 매니지먼트 시스템을 구현하기 위해 위의 3.1.1 설계를 진행하였다. 보드는 BMS 역할이 가능하며 PC와 마이크로프로세서에서 사용이 가능하도록 구성하였다.

Table 2 BMS module design

<table>
<thead>
<tr>
<th>측정부 회로</th>
<th>회로 제작과 3D 모형제작</th>
<th>실제 제작</th>
</tr>
</thead>
</table>

설계는 전압, 전류, 온도 3가지 요소에 대한 측정을 위한 회로와 OCV를 실험하기 위한 테스트 회로로 구성하였다.

Fig. 21과 같이 배터리 소비를 줄이기 위해 데이터를 측정하는 시간외에는 트랜지스터를 Off하여 배터리 소비를 줄이는 방법을 사용하였다.
Fig. 22는 OCV를 측정하기 위한 회로로 UPS에 충전된 배터리의 부분적인 에너지를 소모하여 현재 배터리 SOH 상태를 확인하기 위한 회로이다. 릴레이가 ON되면 전류가 저항으로 소모되며 소모된 전류에 따라 전압드롭 양과 드롭 시간을 연산하여 SOH를 연산하였다.
배터리의 전류와 전압을 측정하는 칩은 TI 사의 INA226를 사용하였으며 배터리 전류에 대한 정밀도 향상을 위해 이중으로 체크하였고 이중 체크를 위해서 배터리 전류량을 측정하는 전류센서(Allegromicro 사의 ACS712ELCTR-30A-T)를 추가 사용하였다. TI사의 INA226은 배터리의 상태 데이터를 통신으로 전송하는 기능을 가지며 해당 기능을 수행하기 위해서는 Shunt 저항이 필요하다. 회로 구성은 Low Side Shunt 방식으로 구성하였으며 계측된 신호는 I2C 통신을 이용하여 마이크로 프로세서와 PC에 전송된다.

해당 칩의 장점은 전압, 전류, 전력을 모두 계산하여 CPU로 전송하기 때문에 마이크로프로세서의 연산부하를 감소시켜 주는 역할을 하는 것이다. 하지만 Shunt 저항의 오차가 그대로 데이터에 반영되므로 정밀한 Shunt 저항을 사용해야 한다.
INA226의 전류 측정방식은 배터리의 High side나 Low side에 부착되는 Shunt 저항에서 출력되는 저항 양단의 전압을 IN+와 IN-로 입력받아 전압, 전류, 전력량을 연산하여 I2C 통신으로 송신하는 방식을 사용한다.

침 스펙 상 전압 범위는 0~36V이고 Shunt 저항 양단의 전압은 ±81.82mV 사이에 있어야 계측이 되므로 Shunt 저항의 저항 값 설정에 주의하여 장착하여야 한다. 본 논문에서는 12V 30A를 기준으로 하여 저항 값이 0.002Ω가 되도록 저항을 장착하였다.
3.2 소프트웨어

3.2.1 BMS 모니터링 소프트웨어 구성

BMS 모니터링 소프트웨어는 Labview를 통해 구성하였다. SOC와 SOH 그리고 이론수명 값으로 도출한 배터리의 예상 작동 시간을 표시하고 하단으로 배터리의 내부 전압, 전류, 온도를 표시할 수 있도록 하였으며 충전시 녹색등이 점등하고 방전시 적색등이 점등하도록 구성하였다. 그 외로 배터리에 문제가 생길 경우를 대비하여 알람 신호를 추가하였다.

BMS의 소프트웨어는 마이크로프로세서와 Labview 두가지 경우를 생각하여 소프트웨어 구성을 진행하였다. 마이크로프로세서는 연산량을 줄이기 위해 SOC와 SOH추정을 10% 단위대로 하도록 진행하였고 선박 제어실의 모니터링 장치로 사용될 Labview는 PC베이스의 프로그램으로 최대한 정확한 연산을 하도록 구성하였다.

모니터링 소프트웨어의 구성은 다음과 같이 3단계로 구성하였다.

Fig. 26 Configuration of monitoring software
하나의 소프트웨어를 3단계로 구성하고 프로그램을 작성한 이유는 수신된 데이터가 한 개씩 빠질 때마다 오차율이 증가 하므로 수신된 데이터는 오차가 없이 받기 위해 한 개의 프로세스를 할당하여 프로그램이 동작하도록 구성하였다.
또한 수신한 데이터 양이 많아 그래프 그리는 중 데이터 수신 및 저장에 오류가 날 가능성이 있어 데이터 수신 프로그램과 데이터 저장 프로그램, 데이터 연산 및 그래프를 그리는 프로그램은 따로 수행되도록 작성하였다.
3.2.2 BMS 소프트웨어 구성

대표적인 SOC와 SOH의 순서도는 Fig. 26와 27와 같이 구성되었다. SOC의 경우 프로그램이 시작되면 배터리의 상태를 확인하고 기존에 저장된 OCV 데이터를 이용하여 배터리 SOC를 판단한다. SOC가 판단되면 현재 상태를 충전/방전/대기 순으로 배터리의 상태를 확인하고 충전중일 경우는 기다리다가 방전이나 휴식중일 경우 SOC 연산을 시작한다. SOC는 전류적산법으로 측정을 하며 노이즈와 오차에 대한 누적 값 X_E를 따로 연산한다. X_E가 특정 값 이상의 오차가 될 경우 OCV 값을 기준으로 오차를 수정하고 수정된 전압에서 다시 SOC 연산을 측정하도록 구성하였다.

SOH측정은 배터리 대기 중에 수행하며 BMS에 내장된 OCV 측정회로를 ON 시켜OCV 회로가 가동되면 전압 드롭 양과 수행 시간을 측정하여 SOH를 추정한다. SOH의 경우 정밀한 측정값보다는 배터리의 상태를 측정하여 10%간격으로 수행되도록 구성하였다.
Fig. 27 SOC measurement flowchart
Fig. 28 SOH measurement flowchart
3.2.3 배터리의 이론적 수명 계산

배터리 팩에 설치된 사용 가능 시간은 보통 배터리를 이론적인 수식으로 계산하여 사용량을 표시한다. 그 이유는 배터리의 시간당 소모 전류 계산은 식 (8)과 같이 이론 배터리 용량을 시간당 평균 소모전류를 이용하여 연산하게 된다. 일정한 주기로 통신을 송신하는 장치나 UPS와 같이 특정 전력을 일정하게 출력하는 배터리의 경우 이론수명 값이 실제 수명과 유사한 값을 갖는다.

\[\text{배터리이론수명} = \frac{\text{배터리용량}}{\text{시간당평균소모전류}} \] \hspace{1cm} (8)

배터리가 충전중일 경우 기본적인 배터리 부하에 대한 사용시간을 표시하고 배터리 사용이 시작되면 BMS에 장착된 전류센서를 통해 수집되는 전력량을 이용하여 배터리 SOC를 계산하므로 배터리 방전이 시작되기 전 인디케이터의 표시를 위해 배터리 수명을 이론적으로 예측한다. 소모 전류에 대한 계산은 식 (8)과 같다.

시간당 평균 소모전류 = 배터리 시간당 평균소모전류 + BMS 시간당 평균 소모전류 \hspace{1cm} (1.4)

시간당 평균 소모전류는 UPS가 작동할 경우의 전력량을 계측하고 BMS의 경우에도 릴레이 작동 등 전류량이 순간적으로 들어가는 횟수를 정리하여 연산하면 배터리의 작동시간 연산이 가능하며 배터리의 평균 소모 전류의 경우 연결된 부하의 전류량을 가지고 부하 전력량의 계산이 가능하고 해당 전력량에 맞는 배터리 이론 수명 값이 계산되게 된다.
3.2.4 온도 회로 보정값

전압과 전류는 배터리 연산을 위한 점이 존재 하하 온도의 경우 직접 데이터를 수집하여 측정값을 표시해야 한다. 사용한 온도 센서는 ieadstudio사의 IM120628010이며 NTC 타입의 온도 센서를 이용하였다. NTC(Negative Temperature Coefficient-thermic resistor)는 온도와 저항 값이 반대의 특성을 갖는 센서로 온도가 낮을수록 저항값이 상승하고 온도가 높을수록 저항 값이 높아진다. 해당 데이터를 모두 넣어 Lookup Table로 처리하는 방법이 존재 하지만 MCU에서 사용하기에는 SOC 추정연산이나 SOH 추정연산에 영향을 줄 수 있어 공식을 이용한 온도 측정을 진행하였다.

하지만 MCU에서와 달리 PC에서는 충분한 연산 빚을 가질 수 있으므로 Fig. 30과 같이 MCU 버전은 3차 방정식으로 PC 버전의 공식을 5차 방정식으로 두어 PC버전은 정밀도를 높이고 단말기를 통해 이상여부만 확인할 필요가 있는 MCU에서는 대략적인 온도로 판단할 수 있도록
하였다.

Fig. 30은 MCU와 PC용 수식과 해당 그래프를 표시한다. 파란색 점은 제조사에서 공개하고 있는 온도 스펙별 좌표를 표시하고 검은색 선은 추세선 공식에 따라 나오는 값을 의미한다. 세로축은 저항 값을 의미하고 가로축이 온도축이다.

![그림](그림.jpg)

Fig. 30 BMS temperature value(MCU-A, PC-B)

BMS에는 온도센서가 2개 삽입되며 삽입된 온도센서는 상면과 하면에서 배터리 팩의 온도를 측정하고 해당 온도를 BMS에 송신한다. 배터리는 온도에 따라 많은 특성 변화와 용량 변화가 있기 때문에 배터리의 온도측정은 배터리 전압과 달리 연속으로 측정한다. 하지만 온도 데이터는 급격히 바뀌는 것이 아니기 때문에 저장은 1초에 한번씩 저장하여 전압이나 전류에 비해 저장빈도를 줄이고 저장되는 데이터를 줄이는 방향으로 수행하였다.
3.3 실험 및 결과 고찰

3.3.1 시험 구성

시험 구성은 Fig. 21과 같이 구성하였다. 실제 장비 사진으로 대체하면 Fig. 31와 같이 구성된다. 배터리에 전원 공급을 하는 전원공급기와 전원을 뽑아내 방전시키는 전자부하 그리고 모니터링 PC와 BMS 보드 그리고 NI USB-DAQ USB6001로 구성하였다. BMS 보드는 설계시부터 PC와 MCU를 동시에 사용할수 있도록 구성하여 설계를 했기 때문에 정확도는 MCU 연산량에 따라 변경이 가능한 장점이 있다. 하드웨어와 모니터링 및 제어 프로그램은 Fig. 32와 같이 NI사의 LABVIEW와 C언어로 구성하였다.

전원공급기의 끝단에는 브리더 저항으로 인한 배터리 전력 손실을 방지하기 위해 다이오드를 설치하였으며 전자부하의 경우 내부에 자체적으로 달려있는 태이치가 있어 추가적인 회로 구성은 하지 않았다.
태스트 베드의 시스템 구성은 표 4의 장비를 가지고 구성하였다. 각각의 장비는 18AWG의 와이어와 12AWG 와이어를 통해 연결하였다. Table 3은 Fig. 31의 테스트베드를 구성 장비의 스펙과 목록이다. 전자부하와 전원공급기 그리고 계측기의 사양과 장비명을 표시하였다.
Table 3 Testbed system integration

<table>
<thead>
<tr>
<th>구성</th>
<th>장비 스펙</th>
</tr>
</thead>
<tbody>
<tr>
<td>전원공급기</td>
<td>ODA Power Supply 0~200V 10A</td>
</tr>
<tr>
<td>전자 부하</td>
<td>ODA Electronic Load 0~60V 180A 900W</td>
</tr>
<tr>
<td>계측기</td>
<td>NI USB-DAQ 6001</td>
</tr>
<tr>
<td>BMS</td>
<td>자체 제작</td>
</tr>
<tr>
<td>모니터링 괴저</td>
<td>Laptop(Macbook pro)</td>
</tr>
</tbody>
</table>

Fig. 32: The monitor screen of battery monitoring system
Fig. 32의 ①은 온도와 전류의 추세를 확인하는 그래프이고 해당 값은 ②의 인디케이터에 표시 된다. ③은 배터리 전체 전압에 대한 그래프를 표시하며 ④는 배터리 셀별 전압 측정 그래프를 나타낸다. ⑤는 배터리 전체 전압에 대한 인디케이터로 구성하였다. 전압 그래프는 cell 별로 데이터로 저장이 되며 그래프 자체를 Fig. 30이나 Fig. 34과 같이 저장이 가능하다.

Fig. 33의 좌측 그래프는 배터리 Cell간 측정된 전압 그래프이다. 배터리 Cell간의 전압차이로 배터리 밸런싱 회로의 필요 여부를 결정하고 배터리별 노화 시험을 통해 어떤 배터리가 더 노화되었는지 확인하는 용도로 사용되었다.

Fig. 32의 우측 그래프는 팩에서 출력되는 배터리의 그래프이다. 시간에 따라 어떻게 배터리가 방전되는지와 배터리 커프 곡선 등이 확인 가능하다.
3.3.2 배터리 이론 및 실험 수명 예측

전원공급기와 전자로드를 이용하여 충전과 방전을 반복하고 배터리의 충전량과 방전량을 BMS에서 체크하여 SOC를 측정하는 시험이다. 배터리의 충전과 방전에 따라 SOC 값을 구하고 SOC값이 전자로드에서 실제로 수집한 부하량과 오차를 계산하였다. 배터리의 이론적 수명 값은 SOC 연산 전 부하와 움소비 전력량을 가지고 계산한 결과 값으로 연산을 수행하였다. 배터리의 방전이 시작되면 BMS의 전류값을 이용하여 연산을 수행하게 된다. Fig. 34는 SOC 추정을 위해 배터리를 전자부하와 전원공급기를 이용하여 배터리 전압과 SOC를 측정한 자료이다. 전류 적산한 측정값을 가지고 10% 단위로 용량을 측정한 후 해당 데이터를 기준으로 SOC를 측정하였다. 소프트웨어 알고리즘에서 확인 했듯이 해당 SOC의 오차가 클 경우 OCV 전압을 이용한 SOC 보정 방법을 추가하였다.

![Fig. 34 OCV calculation](image_url)
Table 4 OCV reset value

<table>
<thead>
<tr>
<th>전압</th>
<th>100%</th>
<th>90%</th>
<th>80%</th>
<th>70%</th>
<th>60%</th>
<th>50%</th>
<th>40%</th>
<th>30%</th>
<th>20%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>12.91</td>
<td>12.83</td>
<td>12.80</td>
<td>12.77</td>
<td>12.74</td>
<td>12.71</td>
<td>12.68</td>
<td>12.68</td>
<td>12.62</td>
<td>12.56</td>
</tr>
</tbody>
</table>

Table 4는 OCV의 Reset 데이터로 전류 적산법의 오차가 커질 경우 OCV 리셋을 하기 위해 필요하여 계산하였다. 해당 자료를 기반으로 전류적산법을 수행하였다.

전류를 Ah단위로 연산하기 위하여 전류를 에너지 용량으로 바꾸어 연산을 수행하였으며 수행한 용량을 계산한 값은 식 (9)과 같으며 SOC 퍼센트로 나타내기 위해 식 (10)과 같이 연산하였다.

\[
\text{방전용량} \ [Ah] = \frac{\text{전류} \ [A]}{3600} \tag{9}
\]

\[
SOC[\%] = \frac{\text{방전용량} \ [Ah]}{\text{배터리 용량} \ [Ah]} \times 100 \tag{10}
\]

이 계산 값들은 을 C-rate 별로 진행하여 그래프를 그리면 Fig. 35과 같은 그래프가 출력된다. 데이터 측정은 3.2절의 장비구성에서 나온 BMS 모듈을 이용하여 계측하였다.

노이즈 제거를 위해 필터 등을 사용하지 않았기 때문에 부분적으로 노이즈가 깊어있는 그래프가 확인된다. 노이즈 이전과 이후 값을 비교하여 그래프로 나타내면 Fig. 35과 같은 C-rate별 방전 그래프가 출력된다. 노이즈의 원인은 전압 측정을 위해 ON/OFF 되는 트랜지스터와 캡 · 방전시 사용하는 릴레이로 추정된다.
온도에 따른 배터리 특성 변화도 큰 수정 포인트지만 온도 시험이 원활하게 진행되지 못하는 관계로 배터리 제조사의 특성 그래프를 이용하여 데이터 추정 하는 방법으로 진행 하였다.

3.3.3 배터리 OCV 및 SOH 측정에 의한 잔존용량 계산

배터리의 SOH를 측정하기 전에 배터리 노화를 시키기 위해 배터리를 셀별로 충전과 방전을 진행하였다. 충전과 방전은 빠른 충·방전을 위해 100% DOD로 설정 후 배터리의 최대 출력 용량인 3C 용량으로 충전과 방전을 진행하였다. 제조사의 데이터 시트 상에서 DOD 100%일 때 배터리 충·방전 사이클을 1000사이클까지 사용이 가능하다고 표시되어 있으나 이전에 진행한 시험과 용량 시험 등 충·방전 시험을 다
수 진행하였으므로 최소한의 수명을 보장하기 위해 200회 충·방전을 실시하였다.

그 후 노화된 배터리와 새 배터리 전체적인 배터리의 SOH를 측정하기 위해 OCV 회로 측정회로 시험과 해당 값을 이용한 SOH 추정시험을 함께 진행하였다.

OCV 회로에 대한 제어와 SOH 측정을 동시에 진행해야 하므로 Fig. 27, Fig. 28과 같은 간단한 순서도를 통해 제어 하였다.

SOH의 측정은 OCV를 이용한 배터리 내부의 임피던스를 측정하여 결정하였으며, 해당 부분의 경우 자세한 SOH 데이터 보다는 빠르게 현재 상태를 판단하는 수준의 장비 개발이 필요한 것으로 판단하여 배터리의 상태를 내부 저항 값을 이용하여 퍼센트(%)로 나타내도록 구성하였으며, 마이크로프로세서를 사용할 경우를 대비하여 프로세서의 연산량을 줄이기 위해 가장 측정이 빠른 내부 저항 값을 기준으로 판별하였다.

실험하고 있는 배터리의 노화를 촉진시키기 위해 셀 단위로 배터리를 연결하고 특정 셀에만 충·방전을 연속으로 실시하였다. Fig. 36은 배터리 셀별 방전시험이다.

가장 노화가 덜 진행된 Cell 1과 100회 이상 노화가 진행된 Cell 2, Cell 3 그리고 200회 이상 노화가 진행된 Cell 4순으로 그려지며 4개의 셀 중 노화가 가장 많이 진행된 Cell 4의 경우 배터리 용량 감소로 방전 곡선이 Cell 1, 2, 3과 달리 약간 변형됨을 확인할 수 있었다. 동일한 시간 방전이 진행되더라도 Cell 4의 전압이 떨어져 팩 전체의 전압이 떨어지게 되고 이것은 팩 차단 전압이 낮아져 배터리의 사용 용량이 전체적으로 감소하게 된다.
Fig. 36의 경우 내부저항과 임피던스를 계산해 보면 Fig. 37과 같이 요약이 가능하다.

Fig. 36 Battery discharge curve

Fig. 37 SOH estimation
배터리의 수명은 다음과 같이 정리 된다. 배터리의 수명은 내부 저항과 연관되며 내부저항이 올라갈수록 배터리의 R2과 R1저항이 상승한다. R2 저항이 더 높은 상승 폭을 보이며 내부 저항 값을 결정한다.

3.3.4 전력선 및 BLE 통신 실험

BMS의 데이터를 제어실이나 외부 단말로 전송하기 위해 내장된 BLE와 전력선 통신장치를 설치하여 신호를 송신하는 시험을 진행하였다. BLE 신호를 수신하는 수신부와 전력선 통신 모듈을 함께 사용하여 제작한 중계기를 통해 배터리 상태를 무선으로 전트를 룸에서 확인이 가능한지 여부를 확인하는 시험을 진행하였다.

![Fig. 38 Measurement portion of the wireless communication and power line communication](image)

측정 부분 1은 BLE를 이용한 무선 통신 신호의 출력신호를 측정한 파
형이며 측정 부분 2번은 전력선 통신의 출력 파형을 측정한 것이다. 무선 통신 실험은 다음과 같이 구성하여 시험하였다. BMS는 중계기와 BLE로 통신을 한다. 중계기는 제어실과 전력선 통신을 이용하여 구성된다. Fig. 38의 무선 통신 구성도에서 빨간 네모 실선 안의 무선 통신 마크는 BLE를 이용한 무선 신호, 파란색 점선과 화살표는 전력선 통신 신호를 의미한다. BLE 신호의 출력은 모니터링으로 확인이 가능하지만 신호의 세기나 신호의 상태는 스펙트럼 아날라이저로 확인이 가능하였다.

![Fig. 39 Measurement of the BLE output intensity](image)
Fig. 40 Measurement of the BLE output intensity for sample 1

Fig. 41 Measurement of the BLE output intensity for sample 2
Fig. 39는 스펙트럼 아날라이저에서 BLE의 출력신호를 측정한 그래프이다. BLE가 채널을 바꾸어가며 신호를 출력하여 신호의 위치가 여러 군데에서 표시가 된다. 측정시 사용한 TI 사의 BLE 칩의 발신 주파수는 2379MHz에서 2496MHz까지 RF frequency range를 갖는다.

Fig. 40은 BLE 시료 1번의 출력세기를 측정한 파형이며 Fig. 41은 BLE 시료 2번의 출력세기를 측정한 파형이다. 동일한 PCB여도 외부의 방해물에 따라 약 10db정도의 출력 오차가 발생하였다.

Fig. 42는 측정부분2의 전력선 통신 파형을 측정한 것이다. 해당 파형은 한국해양대학교의 한바다호에서 측정한 전력선 통신을 포함한 전력선의 통신 파형이다. 220Vac라인에 높은 주파수의 전력선 통신 신호를 추가하여 보면 Fig. 35-2번 Fig과 같은 통신 신호가 섞여 출력된다.
제 4 장 결론

선박에서 사용하는 리튬 배터리를 무선으로 감시하기 위하여 본 논문에서는 Bluetooth Low Energy를 이용한 무선 통신 기능이 포함된 BMS를 제작하여 배터리의 상태 점검 요소인 SOC와 SOH를 추정하고 검출된 값을 BLE와 선내에 매설된 전력선 통신을 이용하는 방법으로 컨트롤 로그 점검 단말기로 전송하는 장비를 개발하였다.

개발의 목표였던 기존의 유선 통신 방식보다 정확한 배터리의 잔존용량과 잔존수명의 파악 방법을 제시하였으며 추가로 배터리의 수명을 알 수 있기 때문에 배터리를 강제적으로 3년에 한번씩 교체하지 않고 교환주기에 맞는 배터리 교환으로 비용절감의 효과가 나는 방법에 대해 제시하였다.

본 논문에서 제안한 개발 장치의 적용 가능성을 확인하기 위하여 LiFePO4 배터리 팩에 대한 잔존 용량 시험과 잔존 수명 시험을 실시하여 분석한 결과 초기 목표로 하였던 기능에 대해 정상작동을 하는 것을 확인 할 수 있었다.

본 논문의 연구 결과를 요약하면 다음과 같다.

1) 단자 전압 측정으로 관리되던 선내 배터리 롤과 기타 배터리에 대해 BLE를 탑재한 BMS를 사용하여 배터리의 상태를 추정하는 방법을 제안하였다.
2) 기존의 SOH 측정에 비해 OCV 상태를 측정할 수 있는 부하 회로를 BMS에 탑재하여 정확한 OCV를 얻기 위한 방법을 제안하였다.

3) 배터리의 이론적 수명(사용가능 시간)을 제시하고 실험을 통해 시간의 오차가 얼마나 발생하는지에 대한 시험을 진행하여 SOC 측정 이전에도 배터리의 충전상태뿐만 아니라 예상 가능한 사용시간에 대한 값을 무선통신을 이용하여 추정하는 방법을 제시하였다.

4) 블루투스 로우 에너지(BLE)의 기능 중 하나인 Advertising과 CAN통신의 ID를 이용하는 방법을 응용하여 계측되는 다수의 데이터를 동시에 수집할 수 있는 방법에 대한 제안하였다.

5) 본 논문에서 제안한 배터리 무선 측정 방법은 배터리에 장착하는 장비 비용이 상승되는 단점을 존재하나 이로 인해 비상시 사용가능한 배터리의 상태와 정보를 확인할 수 있을 뿐만 아니라 주기적 배터리 교환 비용을 절약할 수 있는 큰 이점이 존재한다. 뿐만 아니라 대형 육상/해상 플랜트 속 나누어 배치된 배터리실의 전체적인 상태 확인 및 배터리 생산 공장에서 배터리 초기 불량률 확인 등 다양한 분야에 적용이 가능하다고 기대된다.

본 논문에서 수행한 설계와 실험을 통해 장비를 제작하였지만 다수의 노이즈로 인해 오차율이 발생하고 있다. 이는 릴레이 및 스위칭 소자, 그리고 전력선의 노이즈가 장비에 영향을 끼치는 것으로 계측 시 노이즈 제거로 인한 오차율 저감에 대한 추가적인 연구와 정확한 계측을 위한 전기화학적 분석(EIS) 방법에 대한 연구가 필요할 것으로 사료 된다.
감사의 글

석사 학위과정 동안 도움을 주신 많은 분께 글로 나마 감사의 마음을 전합니다.

학부 및 석사과정까지 많은 가르침을 주신 전기전자 공학부 교수님들께 감사의 마음을 전합니다. 본 논문을 지도해 주시고 학부 및 석사과정 동안 연구실에 자리를 내어 주시고 많은 시행착오 속에서 실험의 성공을 위한 조언을 아끼지 않았던 지도 교수 이성근 교수님께 깊이 감사드립니다. 본 논문의 심사위원장을 맡아주시고 많은 지원과 기회를 주신 김윤식 교수님과 논문의 심사를 해주시 서동환 교수님께도 감사드립니다. 전기전진 및 석박에 관해 가르침을 주신 해사대학의 김종수 교수님과 이영찬 교수님께도 감사드립니다.

회사 생활 중 석사 진학을 고민할 때 조언을 아끼지 않았던 권준철, 반태원 형님들과 부서에서 제 대신 일을 하셨던 심유진 부장님, 박윤종 사원에게 미안한 마음을 전합니다.

입학하기 전부터 졸업까지 함께한 전기제어 연구실의 학우 및 후배 여러분께도 감사의 말씀을 드립니다. 어려울 때마다 도움을 주신 양현
숙 박사과정님은 꼭 졸업하시길 바랍니다. 자주 들러 후배들을 도와주신 백영진, 최준길, 이수현 선배님들께도 감사의 말씀을 드립니다. 또한 개인적인 욕심에 다양한 주제를 가지고 진행한 실험계획과 제작 등 다양한 업무를 함께 해준 구봉규, 김민권, 김진수, 최정렬, 황선남, 김선윤, 송태현 후배들에게 감사드리며 지도 교수님께 배운 학문의 길과 연구자로서의 자세를 마음속 깊이 배우고 가는 저와 같은 것을 얻어나 가기를 소망합니다.

힘들 때 도와주신 HKT의 박정환 연구소장님과 박경도 사원, 태성이엘 이씨의 이재성 사장님과 팬타텍의 권영괄 사장님 금호전자 김진양 전무님께도 감사의 말씀을 드립니다. 기술뿐만 아니라 인간적인 면모까지 많이 배울 수 있었습니다.

힘든 상황에서도 대학원을 가겠다고 할 때 적극적으로 지원해 주신 아버지 어머니께 항상 감사드리며 받은 사랑을 꼭 다른 사람에게도 가르쳐 주는 사람이 되겠습니다.
참고문헌

[5] 정용민, xEV용 리튬 폴리머 배터리의 전류적산법 향상을 위한 개선된 OCV 리셋 알고리즘. 석사학위 논문. 서울:성균관대학교
[7] 양우주, 2010 Lithium-ion 배터리 모델링 및 SOC 추정 알고리즘에 관한 연구. 석사학위 논문. 광주:전남대학교
pp.1019-1030.