工學碩士 學位論文

InGaP/GaAs HBT Ku-band

downconverter MMIC

A Study on Highly Integrated **Ku-Band Downconverter MMIC** Employing InGaP/GaAs HBT

指導教授 尹 榮

2007年 2月

韓國海洋大學校 大學院

電波工學科

李 敬 湜

本 論文을 李 敬 湜의 工學碩士

學位論文으로 認准함

2007年2月

韓國海洋大學校 大學院

電波工學科

李敬湜

Abstract

		1
. InGaP/GaAs HBT		3
2.1 InGaP/GaAs HBT		3
2.2 InGaP/GaAs HBT		4
. Spiral inductor		7
3.1 Spiral inductor	가	7
3.2 Spiral inductor		9
3.2.1		9
DC		9
(skin eff	ect)	10
(proximi	ty effect)	11
3.2.2		13
3.2.3		14
3.2.4 Substrate Loss		15
Substrate		15
Substrate		16
Substrate	Eddy current	16
3.3 (self	resonance frequency)	17
3.4 Spiral inductor		18
3.4.1		18
3.4.2 LO	spiral inductor	22
. Mixer		24
4.1		24
4.2 downconver		25
. InGaP/GaAs HBT	Ku-band downconverter	28

5.1	InGaP/GaAs	HBT	Ku-band	downconverter	mixer	30
5.2	InGaP/GaAs	НВТ	IF		;	33
•					:	36
5.1					:	37
5.2	LO				:	38
5.3	IP3					40
					4	44
						46
					2	47

	_
[2-1]. InGaP/GaAs HBT	3
[2-2]. VBIC 가	4
[2-3]. InGaP/GaAs HBT	6
[3-1]. spiral inductor	7
[3-2]. Spiral inductor RLC 가	8
[3-3].	10
[3-4].	12
[3-5]. Spiral inductor	13
[3-6]. Spiral inductor	20
[3-7]. Spiral inductor	21
[3-8]. LO spiral inductor	22
[3-9]. LO 2 spiral inductor	23
[4-1]. RF	24
[4-2]. downconverter	25
[5-1]. downconverter MMIC	28
[5-2]. InGaP/GaAs HBT Ku-band downconverter mixer	30
[5-3]. Spiral inductor LO	31
[5-4]. InGaP/GaAs HBT Ku-band downconverter mixer	32

[5-5].	InGaP/GaAs HBT IF	34
[5-6].	InGaP/GaAs HBT IF	35
[6-1].		37
	InGaP/GaAs HBT Ku-band downconverter MMIC	
[6-2].	InGaP/GaAs HBT Ku-band	38
	downconverter	
[6-3].	InGaP/GaAs HBT Ku-band	40
	downconverter LO	
[6-4].	InGaP/GaAs HBT Ku-band	42
	downconverter IP3	

[3-1].	InGaP HBT	Knowledge*ON	device	5
[6-1].	InGaP/GaAs	HBT Ku-band do	wnconverter	43

A Study on Highly Integrated Ku-Band Downconverter

MMIC Employing InGaP/GaAs HBT

Kyung Sik, Lee

Dept. of Radio Science and Engineering,

Korea Maritime University

Abstract

In this work, using InGaP/GaAs HBT, we have developed highly integrated Ku-band downconverter including LO rejection filter, mixer and two stage amplifiers. Especially, spiral inductor was optimally designed for a rejection of LO leakage and second harmonic LO leakage signal.

According to measurement results, the downconverter MMIC showed a conversion gain of 9.5 dB and IIP3(Third order input intercept point) of -4.5 dBm. The downconverter MMIC showed a LO leakage suppress of -36 dBc and second harmonic LO leakage suppress of -55 dBc, respectively. The good LO and its second harmonic suppress characteristic was resulted from the optinally designed spiral inductors.

Above results indicate that Ku-band downconverter employing InGaP/GaAs HBT exhibited good RF performances, and the proposed Ku-band downconverter employing InGaP/GaAs HBT is a promising candidate for a realization of one chip transceiver.

,			
90			가
가	,		
		[1-2].	
			가
	, 가 가	가	
MMIC/RFIC	1	가	
LO	가 , LC) RF	
3	LO 가RF	IF	
		RF	IF
LO			. LO
IF		, IF	LO
		[3].	LO
IF	Low Pass Filter	, Band Stop Filter	

one chip

	,	MMIC	(module)	가	가
가					
		HBT	Γ(Heterojunction	Bipolar	Transistor),
HEMT(High Electron	Mobility	Transistor),	MESFET(Metal	Semicond	uctor Field-
Effect Transistor)			НВТ	MESFET	HEMT
가, ,					
,		Р	CS		
НВТ		InGaP/GaAs	НВТ		가
	가				
[4].		HEMT			
one chip					
					one chip
		InGaP/Ga	As HBT	Ku-ba	nd
downconverter					

. InGaP/GaAs HBT

2.1 InGaP/GaAs HBT

2-1 InGaP/GaAs HBT

.

2.2 InGaP/GaAs HBT

VBIC 가

Figure [2-2]. Equivalent circuit of VBIC model

InGaP	/GaAs HBT	Ku-Band downconve	erter *
(Knowledge*ON	I) HBT	*	InGaP/GaAs
HBT Device	2-1		
Device	HL_F2×2×20	. HL_F2×2×2	20
(figure) ,	(µ <i>m</i>),	(µ <i>m</i>) .	2-3
HL_F2×2×20			

[2-1]. InGaP/GaAs HBT Knowledge*ON device

Table [2-1]. Knowledge*ON device characteristic for InGaP/GaAs HBT

Parameter	Unit	High Power	High Linearity	High Speed	Remark
Test Device		F2 2 20	F2 2 20	F1 1 10	
β		96	115	130	Gummel Plot (J _c =25kA/cm ²)
f_{γ}	GHz	34*	50**	60***	
$f_{\rm max}$	GHz	84*	80**	105***	Unilateral Gain
BV _{ceo}	v	23.5	13.8	10.4	IC=100uA
BV_{cbo}	v	36.9	23.5	18.9	IC=100uA
BV_{ebo}	v	7.61	7.2	6.4	IE=100uA
V _{TurnOn}	v	1.20	1.20	1.21	Gummel Plot (J _c =25kA/cm ²)
V _{offset}	v	0.10	0.10	0.10	DCIV (J _c =25kA/cm ²)
η_{c^*}		1.02	1.07	1.05	Gummel Plot
$\eta_{_{b^*}}$		1.10	1.13	1.11	Gummel Plot

*VC=3.5 IC=25mA, **VC=1.5 IC=20mA, ***VC=1.5 IC=7mA

(a) InGaP/GaAs HBT ledge

- (b) InGaP/GaAs HBT
- [2-3]. InGaP/GaAs HBT

Figure [2-3]. Layout of InGaP/GaAs HBT

. Spiral inductor

[5]. ,	3-1(a)
--------	--------

,

 R_{Ga} :

Figure [3-2]. RLC equivalent circuit of spiral inductor

3.2 Spiral inductor

.

Spiral	inductor	,	, SiN
	, substrate loss		
3.2.1	(R _s)		
DC			
	DC		
		Q-factor	
		DC	
$R_{DC} =$	$\frac{l}{t \times W}$		(3-1)

 R_{DC} , , l , W , t

, via , DC

.

가 가 ,

가 가 (skin .

가 effect) .

х

가 (skin depth) $=\sqrt{\frac{1}{f\mu}}$ (3-2) (**J**)

 $J=J_0 \cdot e^{-x/2}$ (3-3)

> t W(W > t)

 $I=J_0\cdot W\cdot \cdot (1-e^{-x/})$ (3-4)

•

[3-3].

Figure [3-3]. The relation between effective thickness and current density

.

$$t_{eff} = \cdot (1 - e^{-x/})$$
 (3-5)

가 *t*

.

$$R(f) = \frac{V}{I(f)} = \frac{V}{J(f) \cdot A} = \frac{V}{J_0 \cdot W \cdot \cdot (1 - e^{-t/})}$$
(3-6)

[9].

(proximity effect)

,

.

가 가	가	
[10].		가

가

가 . 가 가

[3-4].

.

Figure [3-4]. Current concentration by proximity effect

Spiral inductor

feed-through

.

.

.

가 가

[3-5]. Spiral inductor

Figure [3-5]. Series capacitor of spiral inductor

3.2.3

.

.

.

(C_{Si})

가

가 C_{si}가

.

가

GaAs

.

3.2.4 Substrate loss

Substrate Ic	oss Ga	aAs								GaAs
Substrate										
GaAs			12.9						가	
							. (GaAs		
							가			
가	. C _{Si}		가		가	가				
~	A									()
$C_{Ga} = 0_{s} \frac{1}{t}$	Ga									(3-9)
		가	가				가		가	
(A) 7	የት	C _{si}		가						

Substrate

	GaAs	가	GaAs		
			가 GaAs		
가	가	가	. C _{si}	가	
가 가		가	가		가
			가		

Substrate	Eddy current			
Eddy current				가
	GaAs	3		GaAs
eddy cur	rent		가	
Eddy current가	가	GaAs		가
, ohr	nic loss가			가
. GaA	S			,

GaAs

.

•

3.3

LC . SRF 가 spiral inductor • , 1/5 spiral , inductor 10GHz 1~5GHz . spiral inductor가 MMIC , spiral inductor 가 ,

가

.

3.4 Spiral inductor

Spiral inductor 3-2 RLC , LC spiral inductor 가 . spiral inductor

, Spiral Inductor (Turn)

.

3.4.1

Spiral inductor

C_{Si}

.

.

$$C_{Si} = C_{coil-Ga} + C_{feed-Ga} = \frac{0 \quad s^{A} \quad coil-Ga}{t_{coil-Ga}} + \frac{0 \quad s^{A} \quad feed-Ga}{t_{feed-Ga}}$$
(3-11)

.

, A 0 , s , t 가 가 Spiral inductor L_s Bryan [11]. L_{S} Byran , $L_{s} = 0.1555 a N^{-\frac{5}{3}} \ln[8(a/c)]$ (3-12) μH . 4 ст , а 2 , N , C 0.1 *ст*, 0.01 *cm*, 0.01 *cm*, , 가 1 , a = (0.01 + 0.008)/4 = 0.045 cm, c = (0.1 - 0.008)/2 = 0.01 cm, (3-12) , $L_{S} = (0.1555)(0.045)(1) \ln[8(0.045/0.01)] = 25.076 nH^{2}$ spiral inductor (Turn) spiral inductor spiral . inductor . $100 \times 100 \ \mu m^2$

- 19 -

 $0.1 \mu m$, $5 \mu m$, spiral inductor

3-6 spiral inductor

.

spiral inductor 가 가 가

.

.

[3-6]. Spiral inductor

turns

3-7 spiral inductor

[3-7]. Spiral inductor

3.4.2 LO

[3-8]. LO spiral inductor $(0.275 \times 0.22 \text{ mm}^2)$

Figure [3-8]. Spiral inductor for LO rejection

22GHz

,

(b) S21

[3-9]. LO

2

spiral inductor $(0.205 \times 0.15 mm^2)$

.

. Mixer

4.1

LO 가 [12].

[4-1]. RF

Figure [4-1]. RF block diagram

IMD,

•

,

.

4.2 Downconverter

,

,

[4-2]. Downconverter

Figure [4-2]. Operation theory of downconverter

$$v_{RF} = A\cos(a_{RF}t)$$

$$v_{LO} = B\cos(a_{LO}t)$$

$$v_{IF} = AB\cos(a_{RF}t)(a_{LO}t)$$

$$= \frac{AB}{2} [\cos(a_{RF}t) + a_{LO}t) + \cos(a_{RF}t) - a_{LO}t]$$
(4-1)

,

converter)가 .

. InGaP/GaAs HBT Ku-band

downconverter

	IF	LO					one
chip	InGa	P/GaAs	HBT		Ku-ba	and	down
converter			AI	DS(Adva	anced [Design Syst	em)
,	12.8	5	95 µ	ım	가	GaAs,	6.8
0.1 µ <i>m</i>	가	SiN		, Mi	xer F	ower AMP	
	*		InGaP/Ga	aAs HB	T (HL	_F2×2×20)	
. 5-1	RF downcon	verte MI	NIC				
			downcon	verter	MMIC	, LO	
, IF			. RF	LO			가
, IF	LO						spiral
inductor	, IF			IF		가	
[13-14].							

(b) Downconverter MMIC

[5-1]. Downconverter MMIC

Figure [5-1]. Block diagram and circuit diagram for downconverter MMIC

5.1 InGaP/GaAs HBT downconverter mixer

5-2 InGaP/GaAs HBT downconverter mixer

•

*

ADS(Advanced Design Sy	vstem)	
	가	
	가 , IF	LO
6 spiral inductor	, LO	2
5 spiral inductor IF		
spiral inductor	MIM capacitor	

(a) InGaP/GaAs HBT downconverter mixer

(b) InGaP/GaAs HBT downconverter mixer

[5-2]. InGaP/GaAs HBT downconverter mixer

Figure [5-2]. Circuit diagram and simulation result for InGaP/GaAs HBT

downconverter mixer

5-3 spiral inductor LO

가.

(a) spiral inductor

(b) spiral inductor

5-3 InGaP/GaAs HBT downconverter mixer

.

InGaP/GaAs HBT downconverter mixer $1 \times 0.9 \ mm^2$

[5-4]. InGaP/GaAs/ HBT downconverter mixer $(1 \times 0.9 \text{ mm}^2)$

Figure [5-4]. A photograph of InGaP/GaAs/ HBT downconverter mixer

5.2 InGaP/GaAs HBT IF

InGaP/GaAs HBT downconverter	IF						
InGaP/GaAs HBT IF			5-5	InG	aP/ Ga/	As HBT	IF
					ADS	(Advano	ced
Design System)	•		1	IF	AMP		
17dB ,		가					
*		spiral	induc	tor	MIM	capacito	r
가							
IF 가 1GHz					기		
spiral inductor MIM capacito	r						

(a) InGaP/GaAs HBT IF

(b) InGaP/GaAs HBT IF

[5-5]. InGaP/GaAs HBT IF

Figure [5-5]. Circuit diagram for InGaP/GaAs HBT IF AMP

GaAs HBT IF

 $1.6 \times 0.9 \ mm^2$.

 $(1.6 \times 0.9 \ mm^2)$

Figure [5-6]. A photograph of InGaP/GaAs/ HBT IF AMP

	InGaP/GaAs H	HBT	Ku-bar	nd		down	conve	erter	
	6 - 1					InGaP	9/GaAs	s HBT	•
Ku-band downconverter .						2.6×0	.9 <i>mm</i>	n ²	
11.5GHz					,		1	RF	
, 3	LO		,	3	IF				,
4	50								
InGaP/GaAs +	IBT Ku-band do	ownconverter							

•

, DC DC	C 10pF
---------	--------

.

InGaP/GaAs HBT Ku-band downconverter MMIC(2.6×0.9 mm²)

Figure [6-1]. Downconverter MMIC mounted on teflon substrate for a

measurement of RF performances

, Vdc가 3.5 V , Power_RF -40 dBm,

9.5 dB

Power_LO 1 dBm 가

[6-2]. InGaP/GaAs HBT Ku-band downconverter

6.2 LO

.

-55 dBc

(a) LO

Figure [6-3]. LO rejection characteristic of the InGaP/GaAs HBT Ku-band

downconverter

6.3 IP3

IP3

Figure [6-4]. IP3 of the InGaP/GaAs HBT Ku-band downconverter

InGaP/GaAs HBT Ku-band downconverter , IF

.

IP3

[6-1]. InGaP/GaAs HBT Ku-band downconverter

Table [6-1]. Characteristic of InGaP/GaAs HBT Ku-band downconverter

RF 입력전압	LO 입력전맙	V _{DC}	변환이득	LO 누설신호 제거 특성	2차 하모닉 제거 특성	IP3
-40 dBm	1 dBm	3.5 V	9.5 dB	-36 dBc	-55 dBc	-4.5 dBm

	, 가 가	가	
MMIC/RFIC	,	가	
	InGaP/GaAs HBT	Ku-band downco	nverter
	LO	IF	가
	spiral inductor		LO
	spiral inductor		3
mixer	MESFET HE	MT InGaP/GaAs HBT	
가	IF one c	hip .	*
	InGaP/GaAs HBT	Ku-band downconverter	Vdc가 3.5
V , RF	-40 dBm, LO	1 dBm 가	9.5 dB
	, IF	LO	
-36 dBc	, LO	2	-55 dBc
	. IP3 IIP3	-4.5 dBm , OIP3	5 dBm

•

가

. InGaP/GaAs HBT Ku-band RF downconverter

 $2.6 \times 0.9 \ mm^2$.

		InGaP/GaAs HBT	Ku	ı-band	downconverter	
가	IF	one chip	가	Ku	-band one chip	

.

- [1] , pp. 63-74, vol.24, No.1, 1997.
- [2] , pp. 68-73, vol.25, No.1, 1998.
- [3] S. F. Wei, I. H. Lin, and H. Wang, "A monolithic K-band MMIC receiver," Asian-Pacific Microwave Conf, pp.299-302, 2001.
- [4] B. Bayraktaroglu, "GaAs HBT's for Microwave Integrated Circuit," Proceedings of the IEEE, vol.81,pp.1762-1770, Dec. 1993.
- [5] , On-chip

, 2005.

- [6] L. R. Ronald, and G. A. Burdick, "Spiral inductors for hybrid and microwave applications," 24th Electronic Components Conference Proceedings, pp.152-161, Washington, DC, May 1974.
- [7] R. Robert, et al., "Modeling of two-dimensional spiral inductors," IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. CHMT-3, No. 4, pp.535-541, Dec 1980.
- [8] I. Wolff, and H. Kapusta, "Modeling of circular spiral inductors for MMICs," 1987 IEEE MTT Symposium Digest, pp.123-126, 1987, Las Vegas.
- [9] C. Patrick Yue, and S. Simon Wong, "Physical Modeling of Spiral inductors on Silicon," IEEE Transactions on Electron Devices, vol.47, No.3, pp. 560-568, March 2000.
- [10] J. A. Tegopoulos and E. E. Kriezis, Eddy Currents in Linear Conducting Media, NY:Elsevier, 1985.
- [11] H. E. Bryan, "Printed Inductors and Capacitors," Tele-Tech & Electronic Industries 68, Dec 1955.
- [12] Y. Yun, "RF ," , 2005.
- [13] Y. Yun, F. Takeshi, K.Taketo, and I.Kunihisa, "A High Performance Down converter MMIC for DBS Applications," IEICE Transactions on Electronics, vol.E84-C, No.11, pp. 1679-1688, 2001.
- [14] Y. Yun, F. Takeshi, K.Taketo, T.Tsuyoshi, and I.Osamu, "A Low Noise and Low Power Dissipation Downconverter MMIC for DBS Applications," Proceeding of APMC, pp. 295-298, 2001, Taiwan.

- [1] Y. Yun, and K. S. Lee, and C. Y. Kim, "Baisic RF Characteristics of the Microstrip Line Employing Periodically Perforated Ground Metal and Its Application to Highly Miniaturized On-Chip Passive Components on GaAs MMIC", IEEE Transactions on Microwave Theory and Techniques, Vol.54, pp.3805-3817, October, 2006.
- [2] Y. Yun, and K. S. Lee, "Highly Miniaturized On-Chip Passive Components Fabricated by Microstrip Lines with Periodically Perforated Ground Metal on GaAs MMIC", Proceeding of Asia Pacific Microwave Conference, Suzhou, China, Vol. 1, pp.485-488, 2005.
- [3] Y. Yun, and K. S. Lee, and C. Y. Kim, "A highly miniaturized broadband on-chip impedance transformer employing PPGM on GaAs MMIC", Proceeding of Progress In Electromagnetics Research Symposium, Tokyo, Japan, pp.152-156, 2006.
- [4] Y. Yun, and K. S. Lee, and C. Y. Kim, "A highly miniaturized on-chip impedance transformer employing PPGM for application to GaAs MMIC", Proceeding of Mediterranean Microwave Symposium, Genova, Italy, pp.149-152, 2006.
- [5] Y. Yun, C. Y. Kim and K. S. Lee, "Highly miniaturized on-chip impedance transformer employing PPGM with single-sided via holes for application to GaAs MMIC", Proceeding of Asia Pacific Microwave Conference, Tokyo, Japan, Vol.2, pp.1329-1332, 2006.

- [6] °, , " RFIC/MMIC ", 2005 , 1 , 1 , pp.344-347, 6 2005. ()
- [7] °, , " RFIC/MMIC ", 2005 , 28 , 2 , pp.199-202, 9 2005. ()
- [8] °, ," , , , , , "RFIC/MMIC
 ", IT SoC Conference 2005, 2 , pp.603-606, 11 2005.
 (COEX)
- [9] [°], ," , , , , " 가 RFIC/MMIC /4 ", IT SoC Conference 2005, 2 , pp.599-602, 11 2005. (COEX)
- [10] °, , , , , , , "
 ", IT SoC Conference 2005, 2 , pp.595-598, 11 2005. (
 COEX)
- [11] °, , , , , , , , , , "2.4GHz RFIC/MMIC 90° ", IT SoC Conference 2005, 2 , pp.502-505, 11 2005. (COEX)

- [12] °, , , , , , , " RF ", 2005 2 , pp.595-598, 11 2005. ()
- [13] °, , , , (2006. 5. 26) "T PBG cell Band-Stop Filter ", ^r 2006 J, Vol. 29, No. 1, pp. 501-504, 5 2006. ()

- [14] °, , , , , , , , , , , , , PPGM RFIC/MMIC ", 2006 , Vol. 29, No. 1, pp. 493-496, 5 2006. ()
- [15] °, , , , , , , " ", 2006 , Vol. 29, No. 1, pp. 497-500, 5 2006. ()
- [16] °, , , , , , "InGaP/GaAs/GaAs HBT Ku-band downconverter MMIC ", 2006 , Vol. 16, No. 1, pp. 271-274, 11 2006. ()
- [17] °, , , , , , , , , [" ", 2006 , Vol. 16, No. 1, pp. 25-28, 11 2006. ()
- [18] °, , , , , , , , , , "2.4GHz RFIC/MMIC 90° ", 2006 Vol. 16, No. 1, pp. 45-48, 11 2006. ()
- [19] °, , " T PBG cell Band-stop filter ", ^r2006 」, 1 , 1 , pp.193-194, 11

- 2006. ()
- [20] °, , , , , , , " ", 2006 , 1, , 1, 1 , pp.199-200, 11 2006. ()
- [21] °, , , , , , , , " 2.4GHz RFIC/MMIC 90° ", 2006 , 1 , 1 , pp.205-206, 11 2006. ()

가

가 ,

,

·

,

7ŀ ,

.

98

,

,

,

3 3 3 3

.

,

,

,

,

,

, , , .

,

, , , .

,

가

•