creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

O|BHAIAL TS

Subset Selection in a Multiple Linear Regression Model:

An Improved Tabu Search

20163 2¥

gr=rafj e shnl ohsh

&l

o

EEEELE

A Ao

(<)

wl A

A

201541 119 24¢

Contents

List Of Tables ... 11
LiSt Of Figules .. 111
Abstract .. iV
1. IIItH)dllCﬁOIl ... 1
2. The Sllbset Selecﬁon Pmblem ... 3
3. PIEViOllS Metahurisﬁc MethOdS .. 4
3 1 TS .. 4
32 HybI'ld GS A ... 6
4. The PmPosed Meth()d ... 8
41 The neighborhood 0870 M4 TR T P P P PP PP PP PP P T PSP PEP P PP PTP P 8
42 Search strategies Of neighborhoods ... 9
43 Tabu liSt ... 10
44 StOppil’lg CI'itGI'iOl’l .. 10
5. Computational Results ... 11
51 The benchmark problem ... 11
52 The simulation data QLS *ovrrr e re s e ettt ettt st e e 1 2
6. Conclusions ... 1 6
Refemnces .. 17
Appendix .. 19

Table

Table
Table
Table
Table
Table
Table

List of Tables

1 All neighborhood of {z;, z,}

2 Experimental results of GSA, TS
results of GSA, TS
results of GSA, TS

results of GSA, TS

3 Experimental
4 Experimental
5 Experimental

6 Experimental results of GSA, TS

7 The computing time(sec.) of GSA, TS and ITS

.. 5
ANA TTS weovveereerreernemremseeieeneenreenneenee 11
and ITS(p=40, n=200) ----eeeeeeees 13
and ITS(p=60, n=300) ---eseeeeees 13
and ITS(p=80, n=400) -----esereeees 14
and ITS(p=100, n=500) -=---+--eees 14

................................... 14

Fig.
Fig.
Fig.
Fig.
Fig.

1 The
2 The
3 The
4 The
5 The

List of Figures

pseudocode Of TS ...
pseudocode Of GSA ...

pseudocode of the best move strategy

Phase_I and Phase_II

computing time of GSA, TS and ITS

Subset Selection in a Multiple Linear Regression Model:
An Improved Tabu Search

Kim, Jung Tae

Department of Data Information

Graduate School of Korea Maritime and Ocean University

Abstract

This thesis deals with the subset selection that is a vital combinatorial
optimization problem in multivariate statistics. It is the selection of the optimal
subset of variables in order to reliably construct a multiple linear regression
model. Since this problem has NP-complete nature, the larger the size of the
variables, the harder to find the optimal solution. In general, many
metaheuristic methods have been developed to tackle the problem. In the subset
selection problem, two typical metaheuristics, which are tabu search and hybrid
GSA (genetic and simulated annealing algorithm), was proposed. However, they
have some shortcomings, that is, the tabu search takes a lot of computing time
due to many neighborhood moves and GSA’s solution quality is less accurate.
This paper proposes an improved tabu search algorithm to reduce moves of the
neighborhood and adopt the appropriate move search strategy. To evaluate the
performance of the proposed method, a comparative study is performed on both
the literature data sets and simulation data sets. Computational results show that
the proposed method outperforms the previous metaheuristics in terms of the

computing time and solution quality.

KEY WORDS: metaheuristics, an improved tabu search, the subset selection problem

iv

1. Introduction

An important subset selection, which is a vital combinatorial optimization
problem in multivariate statistics, is considered in this paper. It is the selection
of the optimal subset of variables in order to reliably construct a multiple
linear regression model. The objective of the problem is to provide faster and
more cost-effective predictors for the purpose of improving the prediction
performance [1]. Its applications widely range from regression, machine

learning, and time-series prediction to multi-class classification.

In this paper, we focus on the variable selection problem of multiple linear
regression models. There is no doubt that the all-possible regression approach,
called exact method, is the best because it examines every possible model
given for the p independent variables. However, since this problem has
NP-complete nature, the larger the size of the variables, the harder to find the
optimal solution by all-possible regression approach. Practically, when the
number of variable exceeds 40, it is very difficult to obtain the optimum by
exact methods. Exact methods are based on BNB (branch-and-bound) algorithm.
Furnival and Wilson [2] proposed the earliest BNB algorithm for this problem
of multiple linear regression model. Many authors have developed the efficient
BNB algorithms (Duarte Silva[3, 4], Gatu and Kontoghiorghes [5], Hofmann et
al. [6], Brusco et al. [7], and Pacheco et al. [8]).

Popularly, heuristic methods are applied for the large size of the subset
selection problem. They are usually classified into two categories. One is the

simple heuristic method and the other is metaheuristics. The former consists of

forward selection, backward elimination, and step-wise regression. Their
computing time is fast, but solution quality is not good. Metaheuristic methods
have been developed to provide better solution quality than simple heuristics.
In variable selection problem, two typical metaheuristics, which are TS (tabu
search) [9] and hybrid GSA (genetic and simulated annealing algorithm) [10],
was proposed. They have some shortcomings, respectively. That is, the tabu
search [9] takes a lot of computing time due to many neighborhood candidates

and GSA’s solution quality is less accurate.

To overcome their shortcomings, we propose an improved tabu search to
reduce moves of the neighborhood and to adopt the effective search strategy
for neighborhoods, that is, the first move strategy (see Section 4). To evaluate
the performance of the proposed method, a comparative analysis is performed
on both the literature data sets [9] and simulation data sets for larger size of
variables. From computational results, we notice that the proposed method
outperforms the previous metaheuristics in terms of the computing time and

solution quality.

The remainder of this paper is organized as follows. The model of subset
selection problem is introduced in Section 2. In Section 3, the previous two
metaheuristic methods, which are TS [9] and hybrid GSA [10] are briefly
described, and we propose an improved tabu search in Section 4. In Section 5,
the results of the computational experiments on both benchmark problem [10]
and simulation data sets are presented. Finally conclusions are offered in

Section 6.

2. The Subset Selection Problem

Finding an appropriate subset of regressor variables for the model is often
called the subset selection (or variable selection) problem. That is, it is the
selection of the optimal subset of variables in order to reliably construct a

multiple linear regression model.

Let p the number of independent variables in the full model and £ the
number of independent variables selected in the model. The subset selection

model is as follows.

Y=0,+38X, +56,X+ -+8X +e¢ (D

There are 2 _1possible subset models. When p > 40, computational burdens

to construct optimal subset model are increased exponentially.

For the subset selection problem, a number of measures with respect to the

selection criteria have been proposed such as adjusted R?, Mallow’s C,, and

Akaike’s AIC (see Draper and Smith [11] and Mongomery and Peck [12]).
In this paper, we focus on the following selection criterion of adjusted RZ.

The adjusted R? is given by

SSE,/ (n—)
2 4 k
By =1 557760 1) @

where SSE, is residual sum of squares for the k-variable model, SST is total

sum if squares, and n is the number of observations.

3. Previous Metaheuristic Methods

3.1 TS(Tabu search)

TS algorithm, originally proposed by Glover [12, 13], is a metaheuristic method
to expand its search beyond local optimality using adaptive memory. The adaptive
memory is a mechanism based on the tabu list of prohibited moves. The tabu list
is one of the mechanism to prevent cycling and guide the search towards
unexplored region of the solution space. The TS generally adopts the penalty

function to allow to explore the search towards the attractive infeasible region.

The TS has been successfully applied to many combinatorial optimization
problems such as vehicle routing problems, travelling salesman problems, time

tabling problems, and resource allocation problems, etc.

In the subset problem, Drezner [9] developed a tabu search for this problem. The

procedure of TS is described as the following pseudocode in Fig. 1.

The neighborhood is generated by three moves, which are adding a wvariable,
removing variable, and swapping variables. For example, consider a set of p = 5

independent variables: full-set = {z,, =,, z;, ,, =;} and a subset of k = 2
variables: {x,, x,}. The neighborhood of this subset consist of the following
neighborhood in Table 1.

The stopping criterion of TS is the total number of 30 iterations without

improving the best so far solution, and the size of the tabu list is less than equal

to 10.

s = a random initial solution
best = s
tabulist = empty set
While(stopping criterion) do
s = the best solution in N(s) which is not in tabulist
If(f(best)<f(s)) then
best=s

End If

update tabulist

End While

Fig. 1 The pseudocode of TS

Table 1 All neighborhood of {z, z,}

Adding a variable :

Swapping variables

Removing a variable :

{zy, @y, 23}, {1y, Ty, x4}, {2y, Ty, T5}
1215, {2}
D Ty, T3, ATy, Tyf, Ty, Tsf,

{xy, 23}, {2y, a4, {2y, 5}

3.2 Hybrid GSA(A hybird of genetic and simulated annealing algorithms)

Initial temperature t=100, probility of crossover=0.8 and probability of mutation=0.1.
For i=1 to 1000 do
b= the best solution in population
If((best)<f(b) then
best=b
End If
new_population=null
For j=1 to 100 by=2 do
parentl=selection(population), parent2=selection(population)
If(random()<0.8) then
offspringl=crossover(p1,p2), offspring2=crossover(p2,pl)
Else then
offspringl=parentl, offspring2=parent2
End If
offspring1=Mutation(offspringl), offspring2=Mutation(offspringl)
A E,=f(offspring1)-f(parentl)
(A E>0 or random()<exp(A Ey/t)) then
new_population[j]=offspringl
Else then
new_population[j]=parentl
End If
A E,=f(offspring2)-f(parent2)
(A E,>0 or random()<exp(A E,/t)) then
new_population[j+1]=offspring2
Else then
new_population[j+1]=parent2
End If
End For
population=new_population
t=0.9t
End For

Fig. 2 The pseudocode of GSA

6

Hasan [10] proposed a hybrid GSA for the subset problem, in which GA
(genetic algorithm) [14] is combined with SA (simulated annealing) algorithm [15].
Lin etal [16] suggested the original version of GSA for solving some NP-hard
problems such as knapsack problem, travelling salesman problem, and set

partitioning problem.

The pseudocode of GSA is shown in Fig. 2. The SA operator is incorporated
into the generation of children produced by the genetic operators. It is applied to
decide which two of the parents and children remain. That is, if children are better
than parents, then the parents is replaced by the children. If parents are better, they

are repaced with the chosen probability as shown in Fig. 2.

4. The Proposed Method

The previous metaheuristics have some shortcomings, that is, the tabu search [10]
takes a lot of computing time due to many neighborhood moves and GSA’s
solution quality is less accurate. To overcome their shortcomings, we propose an
improved tabu search to reduce moves of the neighborhood and to adopt the

effective search strategy for neighborhoods, that is, the fisrt move strategy.

4.1 The neighborhood moves

The neighborhood of Drezner [9] is generated by three moves, which are adding
a variable, removing variable, and swapping variables. In Table 1 of Section 3.1,
however, most of neighborhoods of swapping variables can be tentatively explored
by the search engine with the neighborhood of only adding and removing a
variable. For example, if the swapping neighborhood {z,, x5} is optimum, it can
be also obtained by adding {x,, z,} to z; variable and removing a 1z, variable
from the resulting subset of {z,, x,, z;}. That is, it can be transitively searched
from {z,, w,} to {x,, ®,, w3} to {x,, x3}. This implies that the move of
swapping can be overlapped with two moves of adding and removing. Actually, the
number of neighborhood of swapping variables is totally k(p—k). As the number
of variable increases, the number of the neighborhood of swapping becomes more
or less large. Therefore, we suggest that the neighborhood of swapping variables
should be entirely excluded from the proposed tabu search to reduce the computing
time. Practically, from our computational results, we noticed that the search engine
with only two moves, adding or removing a variable, plays a sufficient role in

improving the best solution, and the neighborhood strategy without swapping

8

variables reduces computing time.

4.2 Search strategies of neighborhoods

Widmer & Hertz [18] and Tailard [19] proposed tabu search for the flow shop
scheduling problem. In this paper, we consider the following two strategies, that is,
the best move strategy and the first move strategy. The best move strategy is to
examine the entire neighborhood and take the best move that is not tabu. The
pseudocode of the best move is described in Fig. 3. In the meanwhile, the first
move strategy is to examine the neighbours and take the first move which
improves the current best solution. If there is no any first move that improves the
current best one, the first move strategy becomes the same way as the best move

strategy.

s=random initial solution
best=s
tabuList=empty set
While(stopping criterion) do
neighbor=sort(N(s))
For i=1 to size do
If((neighbor([i] & tabuList)) then
s=neighbor([i]
stop
End If
End For
update tabul.ist
If(f(best)<f(s)) then
best=s
End If
End While

Fig. 3 The pseudocode of the best move strategy

As depicted in Fig. 4, the procedure of improving the best solution can be
usually divided into two phases, i.e. Phase-I and Phase-II. In the Phase-I, the

procedure of improving the best solution is rapidly progressed. After the solution

9

reaches a local optimum through the tabu search, it is very difficult to improve the
local optimum. Accordingly, the procedure of improving the local optimum is very

slowly processed in the Phase-II.

In the improved tabu search, the first move strategy is adopted. In Phase-I, it
plays a role in rapidly improving the current best solution. If the solution reaches a

local optimum, then the first move strategy would become the same way as the

best move strategy in Phase-II.

4+—rhase]| — |4 - phase [L

Fig. 4 The Phase-I and Phase-II

4.3 Tabu list

In Drezner [9], the tabu list contains a list of moves. In our tabu list, moves
are entirely replaced by solutions. That is to say, we adopted the tabu list of
solutions. In our computational experiments, we noticed that our tabu list of

solutions is more efficient than that of moves for this problem.
4.4 Stopping criterion

Stopping criterion is the total number of 30 iterations without improving the best

so far solution.

‘IO

5. Computational Results

We performed two comparative analysis to compare the proposed method with
the previous metaheuristics. At first, we experimented the data sets in the literature
to evaluate their performance. These data sets [10] only consisted of the small size
of variables (less than 23). Secondly, to additionally evaluate the performance of
the proposed method for larger data sets, we randomly generated the data sets with
up to 100 variables. That is, the number of variable varies from 40, 60, 80 to
100. In the Section 5.1, we did experiment on the data set in the literature. Also
we performed computational experiments on the simulation data sets in the Section

5.2.

5.1 The benchmark problem

Table 2 Experimental results of GSA, TS(Drezner [9]) and ITS(Improved TS)

GSA TS ITS
Data set P n Best Freq Best Freq Best Freq.
Auto 11 | 65 | 0.543027 | 10/10 | 0.543027 | 8/10 | 0.543027 | 10/10
Bankbill IS | 71 | 0.994915 | 10/10 | 0.994915 | 7/10 | 0.994915 | 10/10
Belle 7 27 | 0.649502 | 10/10 | 0.649502 | 10/10 | 0.649502 | 10/10

Bodywomen | 23 | 260 | 0.546150 | 10/10 | 0.546150 | 7/10 | 0.546150 | 10/10
Horse 13 | 102 | 0.870527 | 10/10 | 0.870527 | 10/10 | 0.870527 | 10/10
Papir 15 | 29 | 0.972387 | 10/10 | 0.972387 | 10/10 | 0.972387 | 10/10

Physical 10 | 22 | 0.964580 | 10/10 | 0.964580 | 10/10 | 0.964580 | 10/10
US Crime | 15 | 47 | 0.597745 | 10/10 | 0.597745 | 9/10 | 0.597745 | 10/10

In table 2, p, n, Best, Freq. are defined as follows.

p: the total number of independent variables

‘l‘l

n: the number of sample data

Best: the maximum of adjusted R? for trials.
Freq.: the number of Best found by each method for 10 trials.

As the experimental results in Table 2 indicate, all methods find the optimal value of

adjusted R?. In the value of Freq., however, TS is not better than GSA and ITS.

5.2 The simulation data sets
we generated the simulation data sets as follows.

i) Independent variables are generated by normal distribution with a mean 0 and a

standard deviation 1.

ii) Error terms are generated by normal distribution with a mean 0 and a standard
deviation Ao where o is standard deviation of actual regression equation and A is a

constant.
iii) the number of sample data 1s five times the total number of independent variables.

The value of F is given by the following equation (3).

7 3)
D

k: the number of independent variable that is included in the actual regression equation.

p: the total number of independent variables

‘|2

Table 3 Experimental results of GSA, TS and ITS (p=40, n=200)

GSA TS ITS
E A Best Freq. Best Freq. Best Freq.
0.25 0.25 0.936571 10/10 0.936571 10/10 0.936571 10/10
0.65 0.743673 9/10 0.743673 8/10 0.743673 10/10
0.25 0.936571 10/10 0.936571 10/10 0.936571 10/10
0> 0.65 0.705421 10/10 0.705421 6/10 0.705421 10/10
0.25 0.943397 10/10 0.943397 7/10 0.943397 10/10
07> 0.65 0.760162 10/10 0.760162 7/10 0.760162 10/10
Table 4 Experimental results of GSA, TS and ITS (p=60, n=300)
GSA TS ITS
E A Best Freq. Best Freq. Best Freq.
0.25 0.948695 0/10 0.948737 9/10 0.948737 10/10
02> 0.65 0.689304 0/10 0.690549 7/10 0.690549 10/10
0.25 0.944630 0/10 0.944781 10/10 0.944781 10/10
0> 0.65 0.713936 0/10 0.714963 2/10 0.714963 10/10
0.25 0.940132 1/10 0.940132 8/10 0.940132 10/10
07> 0.65 0.720683 0/10 0.720867 6/10 0.720867 10/10

13

Table 5 Experimental results of GSA, TS and ITS (p=80, n=400)

GSA TS ITS

E A Best Freq. Best Freq. Best Freq.

0.25 0.25 0.944685 0/10 0.945054 7/10 0.945054 10/10

0.65 0.733602 0/10 0.736012 8/10 0.736012 10/10

0.25 0.942780 0/10 0.944055 7/10 0.944055 10/10

0> 0.65 0.696030 0/10 0.70374 10/10 0.70374 10/10

0.25 0.935835 0/10 0.939282 10/10 0.939282 10/10

07> 0.65 0.659400 0/10 0.674227 9/10 0.674227 10/10

Table 6 Experimental results of GSA, TS and ITS (p=100, n=500)
GSA TS ITS

E A Best Freq. Best Freq. Best Freq.

0.25 0.937582 0/10 0.938899 4/10 0.938899 10/10

02> 0.65 0.712726 0/10 0.719262 6/10 0.719262 10/10

0.25 0.942780 0/10 0.944055 7/10 0.944055 10/10

0> 0.65 0.696030 0/10 0.703740 10/10 0.703740 10/10

0.25 0.947111 0/10 0.947830 10/10 0.947830 10/10

07> 0.65 0.728375 0/10 0.732835 9/10 0.732835 10/10

Table 7 The computing time(sec.) of GSA, TS and ITS

D GSA TS ITS
40 32.641 3.109 0.447
60 72.442 22.984 1.593
80 140.028 08.874 3.546
100 233.830 267.518 8.058

14

300

250

200 P

150 P

sec

100 ~

50 ot

40 60 80 100
—LGSA/ /e TS == TS

Fig. 5 The computing time of GSA, TS and ITS

From the computational results, we noticed that the proposed ITS outperforms the
GSA and TS in terms of the computing time and solution quality. As shown in
Fig. 5, ITS is the fastest among them. Specifically, when p is 100, GSA and TS
take a considerable amount of computing time than the proposed ITS. As seen in
Table 7, the computing time(sec.) of GSA, TS, and ITS is 233.8, 267.5 and 8.058

, respectively.

15

6. Conclusions

In the subset selection problem, exact algorithms such as branch-and-bound
programming, obtain the global optimum, but their computational feasibility
tend to diminish for p > 40. Not surprisingly, simple heuristic methods are
usually used in SAS packages. They are forward selection, backward
elimination, and step-wise regression. Their computing time is fast, but solution

quality is not good.

In general, metaheuristic methods have been developed to provide better
solution quality than simple heuristics. In the variable selection problem, two
typical metaheuristics, which are tabu search [9] and hybrid GSA (genetic and
simulated annealing algorithm) [10], was proposed. However, they have some
shortcomings, that is, the tabu search [9] takes a lot of computing time due to

many neighborhood moves and GSA’s solution quality is less accurate.

To overcome their shortcomings, we proposed an improved tabu search to
reduce moves of the neighborhood and to exploite the effective search strategy
for the neighborhoods. To evaluate the performance of the proposed method, a
comparative analysis was performed on both the literature data sets [10] and
simulation data sets for larger size of variables. Computational results showed
that the proposed method outperforms the previous metaheuristics in terms of

the computing time and solution quality.

16

References

[1] Isabelle Guyon and Andre Elisseeff (2003), “An Introduction to Variable and
Feature Selection”, Journal of machine Leaning Research, Vol. 3, pp.

1157-1182.

[2] Furnival, G. M. and Wilson, R.W. (1974), “Regression by Leaps and Bounds”,
Technometrics, Vol. 16, No. 4, pp. 416-423.

[3] Duarte Silva, A.P.(2001), “Efficient Variable Screening for Multivariate
Analysis”, Journal of Multivariate Analysis, Vol.76, pp. 35-62.

[4] Duarte Silva, A.P. (2002), “Discarding variables in a principal component
analysis: algorithms for all-subsets comparisons”, Computational statistics, Vol.17

pp. 251-271.

[5] Gatu, C and Kontoghiorghes, E.J.(2000), “Branch-and-Bound Algorithms for
Computing the Best-Subset Regression Models”, Journal of Computational and

graphical Statistics, Vol.15 , pp.139-156

[6] Hofmann, M., Gatu, C and Kontoghiorghes, E.J.(2007), “Efficient algorithms for
computing the best subset regression models for large-scale problems”,

Computational statistics and data analysis, Vol. 52, pp. 16-29.

[7] Brusco, M.J., Steinley, D. and Cradit, J.D.(2009)“An exact algorithm for
hierarchically well-formulated subsets in second-order polynomial regression”,

Technometrics, Vol. 51, pp. 306-315.

[8] Pacheco, J., Casado, S. and Porras, S.(2013), “Exact methods for variable

selection in principal component analysis: guide functions and pre-selection”,

‘|7

Computational Statistics and data analysis, Vol. 57, pp. 95-111.

[9] Zvi Drezner and George A. Marcoulides(1999), “Tabu seach model selection in

multiple regression analysis”, commun. statistics.-simula, Vol. 28, pp. 349-367

[10] H.Hasan orkcu (2013), “Subset selection in multiple linear regression models:
A hybrid of genetic and simulated annealing algorithms”, Applied Mathematics
and Computation, Vol. 219, pp. 11018-11028

[11] Draper, N. R, and smith, H. (1998), “Applied regression analysis(3'" Edition)”,
NewYork: Wiley

[12] Montgomery, D. G., and Peck, E. A.(1992), “Introduction to linear regression
analysis(2ndEdition)”, NewYork: Wiley

[13] Glover, F. (1986), “Future Paths for Integer Programming and Links to
Artificial Intelligence.” Computers and Operations Research, Vol. 13, pp.
533-549

[14] Glover, F. (1990), “Tabu Search: A Tutorial”, Kluwer Academic publishers

[15] Holland, J. H. (1975), “Adaptaion in Natural and Artificial Systems.”,

University of Michigan Press

[16] Kirpatirck, S., Gelatt, C. D., and Vecchi, M. P. (1983), “Optimiztion by
Simulated Annealing”, Science, Vol.220, 671-680

[17] F.T. Lin, F.T., Kao, C.Y. and Hsu, C.C (1993), “Applying the genetic
approach to simulated annealing in solving some NP-hard problems”, IEEE

Trans. Syst. Man Cybern, Vol.23, pp.1752-1767

[18] Widmer, M. and Hertz, A. (1989), “A new heuristic method for the flow shop
sequencing problem”, European Journal of Operational Research., Vol.41, pp.

186-193

[19] Tailard, E. (1990), “Some efficient heuristic methods for the flow shop

sequencing problem”, Department of Mathematics, Vol.47, pp.65-74

‘|8

Appendix

A. The source code of Hybrid GSA
gsa<-function(size,popSize){
mutation<-function(offspring){
offspring<-ifelse(runif{size)<0.1,ifelse(offspring==1,0,1),offspring)
return(offspring)
}
crossover<-function(p1,p2){
n<-length(p1)
point<-sample(2:n,1)
offspring<-c(p1[1:point-1],p2[(point):n])
offspring2<-c(p2[1:point-1],p1[(point):n])
return(rbind(offspring1,offspring2))
}
selection<-function(o,sumF){
point<-runif(1,0,sumF)
$<-0
for(i in seq(0)){

s<-st+o[i]

19

if(point<s)break

}

return(i)
}
replacement<-function(parent,offspring){
diff<-offspring[size+1]-parent[size+1]
if(diff>0 || (runif(1)<exp(diff/t))){
return(offspring)
telse{

return(parent)

}
pop<-matrix(-1,ncol=size+1,nrow=popSize)
for(i in 1:(size*popSize)){pop[i]<-sample(0:1,1)}
popl[,size+1]<-apply(pop[,1:size],1,adjr)
best<-rep(0,size+1)

t<-100

for(iter in 1:1000){

b<-which.max(pop[,size+1])

if(best[size+1]<pop[b,size+1]){best<-pop[b,]}

sumF<-sum(pop[,size+1])

popl<-matrix(-1,ncol=size+1,nrow=popSize)

for(i in seq(1,100,2)){

20

parent]<-pop|[selection(pop[,size+1],sumF),]
parent2<-pop|[selection(pop[,size+1],sumF),]
if(runif(1)>0.8){
popl[i,]<-parentl
popl[i+1,]<-parent2
next
}
offsprings<-crossover(parentl[1:size],parent2[1:size])
offspring | <-offsprings|[1,]
offspring2<-offsprings[2,]
offspring | <-mutation(offspring1)
offspring2<-mutation(offspring?2)
offspring I<-c(offspringl,adjr(offspring1))
offspring2<-c(offspring2,adjr(offspring2))
popl[i,]<-replacement(parent],offspring1)
popl[i+1,]<-replacement(parent2,offspring2)
}
pop<-popl
t<-0.9%t

}

return(best)

2‘|

B. The source code of TS

ts<-function(size,failsize,tabusize){
ts.move<-function(s){
o<-setdiff(which(s==1),tabulist)
z<-setdiff(which(s==0),tabulist)
ol<-length(o)
zl<-length(z)
ns<-(ol+zl)+(ol*zl)
neigh<-matrix(rep(s,ns),nrow=ns,byrow=T)
p<-1
for(i in 0){
neigh{p,i]<-0;p<-p+1
}
for(i in z){
neigh([p,i]<-1;p<-p+1
}
for(i in 0){
for(j in z){
neigh[p,i]<-0
neigh[p,j]<-1

p<-pt+l

22

}
cost<-apply(neigh,1,adjr)
w<-which.max(cost)
return(c(neigh[w,],cost[w]))

}

current<-vector(length=size)

for(i in 1:size){
current[i]<-sample(0:1,1)

}

current<-c(current,adjr(current))

best<-current

tabulist<-NULL

fn<-0

while(fn<failsize){
s<-ts.move(current[1:size])
dc<-which(c(current[1:size]!=s[1:size]))
current<-s
tabulist<-c(tabulist,dc)
if(length(tabulist)>tabusize){

if(length(tabulist)==tabusize+2){
tabulist<-tabulist[3:(tabusize+2)]
telse{

tabulist<-tabulist[2:(tabusize+1)]

23

}

if(best[size+1]<current[size+1]){

best<-current

fn<-0
telse{
fn<-fn+1
}
}
return(best)

24

C. The source code of ITS

its<-function(size,failsize){

its.move<-function(sol,i){
sol[i]<-ifelse(sol[i]==1,0,1)
return(c(sol,adjr(sol)))

}

tabu<-function(sol,tabuList){
1<-length(sol)
sl<-length(which(sol[-1]==1))
ob<-sol[l]
for(i in seq(tabuList)){

if(tabuList[[1]][1]==ob && tabuList[[i]][2]==s])
return(TRUE)

}

return(FALSE)
}
fn<-0
tabuList<-matrix(-1,ncol=size+1,nrow=size)
current<-vector(length=size)
for(i in 1:size){

current[i]<-sample(0:1,1)

}

25

best<-c(current,adjr(current))
tabuList<-list()
while(fn<failsize){
or<-sample(1:size,size)
nb<-rep(0,size+1)
for(i in or){
neigh<-its.move(current| 1:size],1)
if(tabu(neigh,tabuList))
next
if(neigh[size+1]>best[size+1]){
nb<-neigh
break
telse if(neigh[size+1]>nb[size+1]){

nb<-neigh

}

current<-nb
tabuList[[length(tabuList)+1]]<-c(current[size+1],length(which(current[-(size+1)]==1)))
if(length(tabuList)>10){
tabuList[[1]]<-NULL
}
if(best[size+1]<current[size+1]){

best<-current

26

telse{

fn<-fn+1

}

return(best)

27

&)Collection |

D. The source code of adjusted R*

identity<-function(n)

{

}

[<-matrix(0,n,n)
for(i in l:n)
I[1,i]<-1

return()

setSST<-function()

{

}

J<-(1/nr)*matrix(1,nr,nr)
sst<-t(Y)%*%(I-1)%*%Y

return(sst)

adjr2<-function(th)

{

if (sum(th) == 0)return(0)
x<-cbind(1,X[,th==1])
k<-ncol(x)

xt<-t(x)
nomal<-solve(xt%*%x)

b<-t((nomal%*%xt)%*%Y)

28

yy<-t(Y)%*%Y
bxy<-(b%*%xt)%*%Y
SSE<-(yy-bxy)
1<-(SSE/SST)
c<-(nr-1)/(nr-k)
adjri<- 1-(c*r)

return(adjrl)

29

E. The source code of generating simulation data
generate<-function(p,n,r,a){
d<-matrix(0,nrow=n,ncol=p)
for(i in 1:p){d[,i]<-rnorm(n)}
s<-sample(1:p,r*p)
for(i in s){cat(i,",",sep="")}
cat("\n")
print(length(s))
y<-apply(d[.s],1,sum)
e<-rnorm(n,0,sd(y)*a)
y<-y-¢

return(data.frame(y,d))

30

AME Al oAl Z2H, o= A} 239 b}

T

G

0
;o?

Wjp

< Ay

1

U

Ao]

~

N
il

h
N
el

1

ol
e

J-

~
o]

Ho
|

—_
0

el

E47 2

. =
iy

AL WL
= =

7

e dAY A48t

ArE G

j

AT

HEEAL o}Fo = A

o

el

Nd

o

~

;Ow_
BK

=
4

s

8o g

=gyrh

ol
=

A7 HTENAE 2

1

/S
= <

At @ao A195A ofruA A% 2 2Ake] vk Aok

el
Dl

)

3‘|

	List of
	List of
	Abstract
	1.Introduction
	2.The subset selection problem
	3.The previous metahuristic methods
	3.1TS
	3.2Hybrid GSA

	4.The proposed method
	4.1The neighborhood moves
	4.2Search strategies of neighborhoods
	4.3Tabu list
	4.4Stopping criterion

	5.Computational results
	5.1The benchmark problem
	5.2The simulation data sets

	6.Conclusions
	References
	Appendix

<startpage>8
List of Tables
List of Figures
Abstract
1.Introduction 1
2.The subset selection problem 3
3.The previous metahuristic methods 4
 3.1TS 4
 3.2Hybrid GSA 6
4.The proposed method 8
 4.1The neighborhood moves 8
 4.2Search strategies of neighborhoods 9
 4.3Tabu list 10
 4.4Stopping criterion 10
5.Computational results 11
 5.1The benchmark problem 11
 5.2The simulation data sets 12
6.Conclusions 16
References 17
Appendix 19
</body>

