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Subset Selection in a Multiple Linear Regression Model:

An Improved Tabu Search

Kim, Jung Tae

Department of Data Information

Graduate School of Korea Maritime and Ocean University

Abstract

This thesis deals with the subset selection that is a vital combinatorial

optimization problem in multivariate statistics. It is the selection of the optimal

subset of variables in order to reliably construct a multiple linear regression

model. Since this problem has NP-complete nature, the larger the size of the

variables, the harder to find the optimal solution. In general, many

metaheuristic methods have been developed to tackle the problem. In the subset

selection problem, two typical metaheuristics, which are tabu search and hybrid

GSA (genetic and simulated annealing algorithm), was proposed. However, they

have some shortcomings, that is, the tabu search takes a lot of computing time

due to many neighborhood moves and GSA’s solution quality is less accurate.

This paper proposes an improved tabu search algorithm to reduce moves of the

neighborhood and adopt the appropriate move search strategy. To evaluate the

performance of the proposed method, a comparative study is performed on both

the literature data sets and simulation data sets. Computational results show that

the proposed method outperforms the previous metaheuristics in terms of the

computing time and solution quality.

KEY WORDS: metaheuristics, an improved tabu search, the subset selection problem
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1. Introduction

An important subset selection, which is a vital combinatorial optimization

problem in multivariate statistics, is considered in this paper. It is the selection

of the optimal subset of variables in order to reliably construct a multiple

linear regression model. The objective of the problem is to provide faster and

more cost-effective predictors for the purpose of improving the prediction

performance [1]. Its applications widely range from regression, machine

learning, and time-series prediction to multi-class classification.

In this paper, we focus on the variable selection problem of multiple linear

regression models. There is no doubt that the all-possible regression approach,

called exact method, is the best because it examines every possible model

given for the p independent variables. However, since this problem has

NP-complete nature, the larger the size of the variables, the harder to find the

optimal solution by all-possible regression approach. Practically, when the

number of variable exceeds 40, it is very difficult to obtain the optimum by

exact methods. Exact methods are based on BNB (branch-and-bound) algorithm.

Furnival and Wilson [2] proposed the earliest BNB algorithm for this problem

of multiple linear regression model. Many authors have developed the efficient

BNB algorithms (Duarte Silva[3, 4], Gatu and Kontoghiorghes [5], Hofmann et

al. [6], Brusco et al. [7], and Pacheco et al. [8]).

Popularly, heuristic methods are applied for the large size of the subset

selection problem. They are usually classified into two categories. One is the

simple heuristic method and the other is metaheuristics. The former consists of
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forward selection, backward elimination, and step-wise regression. Their

computing time is fast, but solution quality is not good. Metaheuristic methods

have been developed to provide better solution quality than simple heuristics.

In variable selection problem, two typical metaheuristics, which are TS (tabu

search) [9] and hybrid GSA (genetic and simulated annealing algorithm) [10],

was proposed. They have some shortcomings, respectively. That is, the tabu

search [9] takes a lot of computing time due to many neighborhood candidates

and GSA’s solution quality is less accurate.

To overcome their shortcomings, we propose an improved tabu search to

reduce moves of the neighborhood and to adopt the effective search strategy

for neighborhoods, that is, the first move strategy (see Section 4). To evaluate

the performance of the proposed method, a comparative analysis is performed

on both the literature data sets [9] and simulation data sets for larger size of

variables. From computational results, we notice that the proposed method

outperforms the previous metaheuristics in terms of the computing time and

solution quality.

The remainder of this paper is organized as follows. The model of subset

selection problem is introduced in Section 2. In Section 3, the previous two

metaheuristic methods, which are TS [9] and hybrid GSA [10] are briefly

described, and we propose an improved tabu search in Section 4. In Section 5,

the results of the computational experiments on both benchmark problem [10]

and simulation data sets are presented. Finally conclusions are offered in

Section 6.
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2. The Subset Selection Problem

Finding an appropriate subset of regressor variables for the model is often

called the subset selection (or variable selection) problem. That is, it is the

selection of the optimal subset of variables in order to reliably construct a

multiple linear regression model.

Let  the number of independent variables in the full model and  the

number of independent variables selected in the model. The subset selection

model is as follows.

 ⋯ (1)

There are   possible subset models. When  > 40, computational burdens

to construct optimal subset model are increased exponentially.

For the subset selection problem, a number of measures with respect to the

selection criteria have been proposed such as adjusted  , Mallow’s , and

Akaike’s AIC (see Draper and Smith [11] and Mongomery and Peck [12] ).

In this paper, we focus on the following selection criterion of adjusted  .

The adjusted   is given by


  


(2)

where  is residual sum of squares for the -variable model,  is total

sum if squares, and  is the number of observations.
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3. Previous Metaheuristic Methods

3.1 TS(Tabu search)

TS algorithm, originally proposed by Glover [12, 13], is a metaheuristic method

to expand its search beyond local optimality using adaptive memory. The adaptive

memory is a mechanism based on the tabu list of prohibited moves. The tabu list

is one of the mechanism to prevent cycling and guide the search towards

unexplored region of the solution space. The TS generally adopts the penalty

function to allow to explore the search towards the attractive infeasible region.

The TS has been successfully applied to many combinatorial optimization

problems such as vehicle routing problems, travelling salesman problems, time

tabling problems, and resource allocation problems, etc.

In the subset problem, Drezner [9] developed a tabu search for this problem. The

procedure of TS is described as the following pseudocode in Fig. 1.

The neighborhood is generated by three moves, which are adding a variable,

removing variable, and swapping variables. For example, consider a set of  = 5

independent variables: full-set = {, , , , } and a subset of  = 2

variables: {, }. The neighborhood of this subset consist of the following

neighborhood in Table 1.

The stopping criterion of TS is the total number of 30 iterations without

improving the best so far solution, and the size of the tabu list is less than equal

to 10.
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s = a random initial solution

best = s

tabulist = empty set

While(stopping criterion) do

s = the best solution in N(s) which is not in tabulist

If(f(best)<f(s)) then

best=s

End If

update tabuList

End While

Fig. 1 The pseudocode of TS

Adding a variable : {, , }, {, , }, {, , }

Removing a variable : {}, {}

Swapping variables : {, }, {, }, {, },

{, }, {, }, {, }

Table 1 All neighborhood of {, }
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3.2 Hybrid GSA(A hybird of genetic and simulated annealing algorithms)

Initial temperature t=100, probility of crossover=0.8 and probability of mutation=0.1.

For i=1 to 1000 do

b= the best solution in population

If((best)<f(b) then

best=b

End If

new_population=null

For j=1 to 100 by=2 do

parent1=selection(population), parent2=selection(population)

If(random()<0.8) then

offspring1=crossover(p1,p2), offspring2=crossover(p2,p1)

Else then

offspring1=parent1, offspring2=parent2

End If

offspring1=Mutation(offspring1), offspring2=Mutation(offspring1)

∆=f(offspring1)-f(parent1)

If(∆>0 or random()<exp(∆)) then

new_population[j]=offspring1

Else then

new_population[j]=parent1

End If

∆=f(offspring2)-f(parent2)

If(∆>0 or random()<exp(∆)) then

new_population[j+1]=offspring2

Else then

new_population[j+1]=parent2

End If

End For

population=new_population

t=0.9t

End For

Fig. 2 The pseudocode of GSA



- 7 -

Hasan [10] proposed a hybrid GSA for the subset problem, in which GA

(genetic algorithm) [14] is combined with SA (simulated annealing) algorithm [15].

Lin et.al [16] suggested the original version of GSA for solving some NP-hard

problems such as knapsack problem, travelling salesman problem, and set

partitioning problem.

The pseudocode of GSA is shown in Fig. 2. The SA operator is incorporated

into the generation of children produced by the genetic operators. It is applied to

decide which two of the parents and children remain. That is, if children are better

than parents, then the parents is replaced by the children. If parents are better, they

are repaced with the chosen probability as shown in Fig. 2.
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4. The Proposed Method

The previous metaheuristics have some shortcomings, that is, the tabu search [10]

takes a lot of computing time due to many neighborhood moves and GSA’s

solution quality is less accurate. To overcome their shortcomings, we propose an

improved tabu search to reduce moves of the neighborhood and to adopt the

effective search strategy for neighborhoods, that is, the fisrt move strategy.

4.1 The neighborhood moves

The neighborhood of Drezner [9] is generated by three moves, which are adding

a variable, removing variable, and swapping variables. In Table 1 of Section 3.1,

however, most of neighborhoods of swapping variables can be tentatively explored

by the search engine with the neighborhood of only adding and removing a

variable. For example, if the swapping neighborhood {, } is optimum, it can

be also obtained by adding {, } to  variable and removing a  variable

from the resulting subset of {, , }. That is, it can be transitively searched

from {, } to {, , } to {, }. This implies that the move of

swapping can be overlapped with two moves of adding and removing. Actually, the

number of neighborhood of swapping variables is totally . As the number

of variable increases, the number of the neighborhood of swapping becomes more

or less large. Therefore, we suggest that the neighborhood of swapping variables

should be entirely excluded from the proposed tabu search to reduce the computing

time. Practically, from our computational results, we noticed that the search engine

with only two moves, adding or removing a variable, plays a sufficient role in

improving the best solution, and the neighborhood strategy without swapping



- 9 -

variables reduces computing time.

4.2 Search strategies of neighborhoods

Widmer & Hertz [18] and Tailard [19] proposed tabu search for the flow shop

scheduling problem. In this paper, we consider the following two strategies, that is,

the best move strategy and the first move strategy. The best move strategy is to

examine the entire neighborhood and take the best move that is not tabu. The

pseudocode of the best move is described in Fig. 3. In the meanwhile, the first

move strategy is to examine the neighbours and take the first move which

improves the current best solution. If there is no any first move that improves the

current best one, the first move strategy becomes the same way as the best move

strategy.

s=random initial solution

best=s

tabuList=empty set

While(stopping criterion) do

neighbor=sort(N(s))

For i=1 to size do

If((neighbor[i] ∉ tabuList)) then

s=neighbor[i]

stop

End If

End For

update tabuList

If(f(best)<f(s)) then

best=s

End If

End While

Fig. 3 The pseudocode of the best move strategy

As depicted in Fig. 4, the procedure of improving the best solution can be

usually divided into two phases, i.e. Phase-I and Phase-II. In the Phase-I, the

procedure of improving the best solution is rapidly progressed. After the solution
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reaches a local optimum through the tabu search, it is very difficult to improve the

local optimum. Accordingly, the procedure of improving the local optimum is very

slowly processed in the Phase-II.

In the improved tabu search, the first move strategy is adopted. In Phase-I, it

plays a role in rapidly improving the current best solution. If the solution reaches a

local optimum, then the first move strategy would become the same way as the

best move strategy in Phase-II.

Fig. 4 The Phase-I and Phase-II

4.3 Tabu list

In Drezner [9], the tabu list contains a list of moves. In our tabu list, moves

are entirely replaced by solutions. That is to say, we adopted the tabu list of

solutions. In our computational experiments, we noticed that our tabu list of

solutions is more efficient than that of moves for this problem.

4.4 Stopping criterion

Stopping criterion is the total number of 30 iterations without improving the best

so far solution.
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5. Computational Results

We performed two comparative analysis to compare the proposed method with

the previous metaheuristics. At first, we experimented the data sets in the literature

to evaluate their performance. These data sets [10] only consisted of the small size

of variables (less than 23). Secondly, to additionally evaluate the performance of

the proposed method for larger data sets, we randomly generated the data sets with

up to 100 variables. That is, the number of variable varies from 40, 60, 80 to

100. In the Section 5.1, we did experiment on the data set in the literature. Also

we performed computational experiments on the simulation data sets in the Section

5.2.

5.1 The benchmark problem

GSA TS ITS

Data set   Best Freq Best Freq Best Freq.

Auto 11 65 0.543027 10/10 0.543027 8/10 0.543027 10/10

Bankbill 15 71 0.994915 10/10 0.994915 7/10 0.994915 10/10

Belle 7 27 0.649502 10/10 0.649502 10/10 0.649502 10/10

Bodywomen 23 260 0.546150 10/10 0.546150 7/10 0.546150 10/10

Horse 13 102 0.870527 10/10 0.870527 10/10 0.870527 10/10

Papir 15 29 0.972387 10/10 0.972387 10/10 0.972387 10/10

Physical 10 22 0.964580 10/10 0.964580 10/10 0.964580 10/10

US Crime 15 47 0.597745 10/10 0.597745 9/10 0.597745 10/10

Table 2 Experimental results of GSA, TS(Drezner [9]) and ITS(Improved TS)

In table 2, , , Best, Freq. are defined as follows.

: the total number of independent variables
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: the number of sample data

Best: the maximum of adjusted   for trials.

Freq.: the number of Best found by each method for 10 trials.

As the experimental results in Table 2 indicate, all methods find the optimal value of

adjusted  . In the value of Freq., however, TS is not better than GSA and ITS.

5.2 The simulation data sets

we generated the simulation data sets as follows.

i) Independent variables are generated by normal distribution with a mean 0 and a

standard deviation 1.

ii) Error terms are generated by normal distribution with a mean 0 and a standard

deviation  where  is standard deviation of actual regression equation and  is a

constant.

iii) the number of sample data is five times the total number of independent variables.

The value of  is given by the following equation (3).

 


(3)

: the number of independent variable that is included in the actual regression equation.

: the total number of independent variables
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GSA TS ITS

  Best Freq. Best Freq. Best Freq.

0.25
0.25 0.936571 10/10 0.936571 10/10 0.936571 10/10

0.65 0.743673 9/10 0.743673 8/10 0.743673 10/10

0.5
0.25 0.936571 10/10 0.936571 10/10 0.936571 10/10

0.65 0.705421 10/10 0.705421 6/10 0.705421 10/10

0.75
0.25 0.943397 10/10 0.943397 7/10 0.943397 10/10

0.65 0.760162 10/10 0.760162 7/10 0.760162 10/10

Table 3 Experimental results of GSA, TS and ITS (=40, =200)

GSA TS ITS

  Best Freq. Best Freq. Best Freq.

0.25
0.25 0.948695 0/10 0.948737 9/10 0.948737 10/10

0.65 0.689304 0/10 0.690549 7/10 0.690549 10/10

0.5
0.25 0.944630 0/10 0.944781 10/10 0.944781 10/10

0.65 0.713936 0/10 0.714963 2/10 0.714963 10/10

0.75
0.25 0.940132 1/10 0.940132 8/10 0.940132 10/10

0.65 0.720683 0/10 0.720867 6/10 0.720867 10/10

Table 4 Experimental results of GSA, TS and ITS (=60, =300)
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GSA TS ITS

  Best Freq. Best Freq. Best Freq.

0.25
0.25 0.944685 0/10 0.945054 7/10 0.945054 10/10

0.65 0.733602 0/10 0.736012 8/10 0.736012 10/10

0.5
0.25 0.942780 0/10 0.944055 7/10 0.944055 10/10

0.65 0.696030 0/10 0.70374 10/10 0.70374 10/10

0.75
0.25 0.935835 0/10 0.939282 10/10 0.939282 10/10

0.65 0.659400 0/10 0.674227 9/10 0.674227 10/10

Table 5 Experimental results of GSA, TS and ITS (=80, =400)

GSA TS ITS

  Best Freq. Best Freq. Best Freq.

0.25
0.25 0.937582 0/10 0.938899 4/10 0.938899 10/10

0.65 0.712726 0/10 0.719262 6/10 0.719262 10/10

0.5
0.25 0.942780 0/10 0.944055 7/10 0.944055 10/10

0.65 0.696030 0/10 0.703740 10/10 0.703740 10/10

0.75
0.25 0.947111 0/10 0.947830 10/10 0.947830 10/10

0.65 0.728375 0/10 0.732835 9/10 0.732835 10/10

Table 6 Experimental results of GSA, TS and ITS (=100, =500)

 GSA TS ITS

40 32.641 3.109 0.447

60 72.442 22.984 1.593

80 140.028 98.874 3.546

100 233.830 267.518 8.058

Table 7 The computing time(sec.) of GSA, TS and ITS
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Fig. 5 The computing time of GSA, TS and ITS

From the computational results, we noticed that the proposed ITS outperforms the

GSA and TS in terms of the computing time and solution quality. As shown in

Fig. 5, ITS is the fastest among them. Specifically, when p is 100, GSA and TS

take a considerable amount of computing time than the proposed ITS. As seen in

Table 7, the computing time(sec.) of GSA, TS, and ITS is 233.8, 267.5 and 8.058

, respectively.
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6. Conclusions

In the subset selection problem, exact algorithms such as branch-and-bound

programming, obtain the global optimum, but their computational feasibility

tend to diminish for p > 40. Not surprisingly, simple heuristic methods are

usually used in SAS packages. They are forward selection, backward

elimination, and step-wise regression. Their computing time is fast, but solution

quality is not good.

In general, metaheuristic methods have been developed to provide better

solution quality than simple heuristics. In the variable selection problem, two

typical metaheuristics, which are tabu search [9] and hybrid GSA (genetic and

simulated annealing algorithm) [10], was proposed. However, they have some

shortcomings, that is, the tabu search [9] takes a lot of computing time due to

many neighborhood moves and GSA’s solution quality is less accurate.

To overcome their shortcomings, we proposed an improved tabu search to

reduce moves of the neighborhood and to exploite the effective search strategy

for the neighborhoods. To evaluate the performance of the proposed method, a

comparative analysis was performed on both the literature data sets [10] and

simulation data sets for larger size of variables. Computational results showed

that the proposed method outperforms the previous metaheuristics in terms of

the computing time and solution quality.
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Appendix

A. The source code of Hybrid GSA

gsa<-function(size,popSize){

mutation<-function(offspring){

offspring<-ifelse(runif(size)<0.1,ifelse(offspring==1,0,1),offspring)

return(offspring)

}

crossover<-function(p1,p2){

n<-length(p1)

point<-sample(2:n,1)

offspring1<-c(p1[1:point-1],p2[(point):n])

offspring2<-c(p2[1:point-1],p1[(point):n])

return(rbind(offspring1,offspring2))

}

selection<-function(o,sumF){

point<-runif(1,0,sumF)

s<-0

for(i in seq(o)){

s<-s+o[i]
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if(point<s)break

}

return(i)

}

replacement<-function(parent,offspring){

diff<-offspring[size+1]-parent[size+1]

if(diff>0 || (runif(1)<exp(diff/t))){

return(offspring)

}else{

return(parent)

}

}

pop<-matrix(-1,ncol=size+1,nrow=popSize)

for(i in 1:(size*popSize)){pop[i]<-sample(0:1,1)}

pop[,size+1]<-apply(pop[,1:size],1,adjr)

best<-rep(0,size+1)

t<-100

for(iter in 1:1000){

b<-which.max(pop[,size+1])

if(best[size+1]<pop[b,size+1]){best<-pop[b,]}

sumF<-sum(pop[,size+1])

pop1<-matrix(-1,ncol=size+1,nrow=popSize)

for(i in seq(1,100,2)){
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parent1<-pop[selection(pop[,size+1],sumF),]

parent2<-pop[selection(pop[,size+1],sumF),]

if(runif(1)>0.8){

pop1[i,]<-parent1

pop1[i+1,]<-parent2

next

}

offsprings<-crossover(parent1[1:size],parent2[1:size])

offspring1<-offsprings[1,]

offspring2<-offsprings[2,]

offspring1<-mutation(offspring1)

offspring2<-mutation(offspring2)

offspring1<-c(offspring1,adjr(offspring1))

offspring2<-c(offspring2,adjr(offspring2))

pop1[i,]<-replacement(parent1,offspring1)

pop1[i+1,]<-replacement(parent2,offspring2)

}

pop<-pop1

t<-0.9*t

}

return(best)

}
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B. The source code of TS

ts<-function(size,failsize,tabusize){

ts.move<-function(s){

o<-setdiff(which(s==1),tabulist)

z<-setdiff(which(s==0),tabulist)

ol<-length(o)

zl<-length(z)

ns<-(ol+zl)+(ol*zl)

neigh<-matrix(rep(s,ns),nrow=ns,byrow=T)

p<-1

for(i in o){

neigh[p,i]<-0;p<-p+1

}

for(i in z){

neigh[p,i]<-1;p<-p+1

}

for(i in o){

for(j in z){

neigh[p,i]<-0

neigh[p,j]<-1

p<-p+1

}
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}

cost<-apply(neigh,1,adjr)

w<-which.max(cost)

return(c(neigh[w,],cost[w]))

}

current<-vector(length=size)

for(i in 1:size){

current[i]<-sample(0:1,1)

}

current<-c(current,adjr(current))

best<-current

tabulist<-NULL

fn<-0

while(fn<failsize){

s<-ts.move(current[1:size])

dc<-which(c(current[1:size]!=s[1:size]))

current<-s

tabulist<-c(tabulist,dc)

if(length(tabulist)>tabusize){

if(length(tabulist)==tabusize+2){

tabulist<-tabulist[3:(tabusize+2)]

}else{

tabulist<-tabulist[2:(tabusize+1)]
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}

}

if(best[size+1]<current[size+1]){

best<-current

fn<-0

}else{

fn<-fn+1

}

}

return(best)

}
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C. The source code of ITS

its<-function(size,failsize){

its.move<-function(sol,i){

sol[i]<-ifelse(sol[i]==1,0,1)

return(c(sol,adjr(sol)))

}

tabu<-function(sol,tabuList){

l<-length(sol)

sl<-length(which(sol[-l]==1))

ob<-sol[l]

for(i in seq(tabuList)){

if(tabuList[[i]][1]==ob && tabuList[[i]][2]==sl)

return(TRUE)

}

return(FALSE)

}

fn<-0

tabuList<-matrix(-1,ncol=size+1,nrow=size)

current<-vector(length=size)

for(i in 1:size){

current[i]<-sample(0:1,1)

}
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best<-c(current,adjr(current))

tabuList<-list()

while(fn<failsize){

or<-sample(1:size,size)

nb<-rep(0,size+1)

for(i in or){

neigh<-its.move(current[1:size],i)

if(tabu(neigh,tabuList))

next

if(neigh[size+1]>best[size+1]){

nb<-neigh

break

}else if(neigh[size+1]>nb[size+1]){

nb<-neigh

}

}

current<-nb

tabuList[[length(tabuList)+1]]<-c(current[size+1],length(which(current[-(size+1)]==1)))

if(length(tabuList)>10){

tabuList[[1]]<-NULL

}

if(best[size+1]<current[size+1]){

best<-current
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}else{

fn<-fn+1

}

}

return(best)
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D. The source code of adjusted  

identity<-function(n)

{

I<-matrix(0,n,n)

for(i in 1:n)

I[i,i]<-1

return(I)

}

setSST<-function()

{

J<-(1/nr)*matrix(1,nr,nr)

sst<-t(Y)%*%(I-J)%*%Y

return(sst)

}

adjr2<-function(th)

{

if (sum(th) == 0)return(0)

x<-cbind(1,X[,th==1])

k<-ncol(x)

xt<-t(x)

nomal<-solve(xt%*%x)

b<-t((nomal%*%xt)%*%Y)
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yy<-t(Y)%*%Y

bxy<-(b%*%xt)%*%Y

SSE<-(yy-bxy)

r<-(SSE/SST)

c<-(nr-1)/(nr-k)

adjr1<- 1-(c*r)

return(adjr1)

}
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E. The source code of generating simulation data

generate<-function(p,n,r,a){

d<-matrix(0,nrow=n,ncol=p)

for(i in 1:p){d[,i]<-rnorm(n)}

s<-sample(1:p,r*p)

for(i in s){cat(i,",",sep="")}

cat("\n")

print(length(s))

y<-apply(d[,s],1,sum)

e<-rnorm(n,0,sd(y)*a)

y<-y-e

return(data.frame(y,d))

}
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