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ABSTRACT

  Continuous stirred tank reactor (CSTR) which plays a key role in the 

chemical plants exhibits highly nonlinear behavior as well as time-varying 

characteristics during operation. So, CSTR process control over the whole 

operating range has been a challenging issue especially for control engineers. 

A variety of feedback control algorithms and their tuning methods have been 

developed to guarantee the satisfactory performance despite the varied 

dynamic characteristics of CSTRs. 

  This thesis presents a scheme of designing a nonlinear PID controller 

incorporating with a real-coded genetic algorithm (RCGA) for the temperature 

control of a CSTR process. The gains of the NPID controller are composed of 

easily implementable nonlinear functions based on the error and/or the error 

rate and its parameters are tuned using the RCGA by minimizing the integral 

of time-weighted absolute error (ITAE). 

  A set of simulation works for reference tracking and disturbance rejecting 

performances and robustness to parameter changes are carried out to 

compare with two other nonlinear controllers and show the feasibility of the 

proposed method.
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Chapter 1. Introduction

1.1. Background and Purpose

  Chemical reactors have been using to produce the reaction and playing a 

major role in the petrochemical industry. Chemical reactors can be divided 

into two categories, batch type and continuous type, according to their type 

and size. Continuous stirred tank reactors (CSTRs) can be considered as a 

representative of continuous type reactor. Since chemical reaction occurring in 

the CSTR is greatly affected by concentration of the reactants, temperature, 

pressure, catalyst and time, they show significant nonlinear and time-varying 

characteristics, that is, stability and instability depending on the operating 

point [1-5]. Therefore, it is one of the highly difficult processes for control.

  If a conventional controller with fixed parameters is operated on such a 

process over the whole operating points, it may not only become unstable but 

also does not provide good performance in some cases. Therefore, in order to 

design a controller with more precise and stable control performance, there 

have been a lot of efforts applying intelligent techniques such as evolutionary 

algorithms, neural networks, and fuzzy [6-12].

  Banu and Uma [6] proposed a gain scheduling method in the process of 

controlling the concentration of the CSTR, where high, medium and low 

density area are separated for the local model and proposed a method for 

tuning a PID controller with a GA. Nekoui et al. [10] proposed a method for 

optimizing the tuning parameters of a PID controller to control the CSTR 

concentration using a PSO (particle swarm optimization) algorithm.  Saoud et 

al. [12] proposed an embedded system based on a microcontroller with a 
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neural network, where the neural network is trained by back-propagation 

algorithm. Chen and Peng [11] proposed a method for learning control of the 

non-linear adaptive controller (bounded nonlinear controller) with a limit value 

in order to control the water outlet temperature of a CSTR, where the 

learning algorithm for a process of change is obtained based on Lyapunov 

stability theory.

  Recently, there has been a trend towards using nonlinear PID (NPID) control 

schemes for processes which have highly nonlinear and time-varying 

characteristics during operation [15-19]. To improve the control performance, 

Aydogdu and Korkmaz [15,16] proposed a dynamic NPID controller that 

changes parameters over time according to the error response. Li et al. [17] 

presented an NPID controller made of the combination of linear proportional 

and linear derivative terms was used with an integral term whose gai was 

tuned by a nonlinear Gaussian function. Chen et al. [18] proposed nonlinear 

PID control which combines a series of nonlinear functions for an 

electro-hydraulic servo system where three gains are adjusted according to 

the error. So et al. [19] also proposed a practical NPID controller whose three 

gains are adjusted by the error and error rate. The parameters of the three 

gains are tuned by a real-coded genetic algorithm.

  Each method presents its own satisfactory performance in different control 

scheme but it may leave room for further improvement.

1.2. Method and Organization

  This thesis presents a scheme of designing a nonlinear PID controller 

incorporating with a real-coded genetic algorithm (RCGA) for the temperature 

control of a CSTR process. The gains of the proposed NPID controller are 

expressed by easily implementable nonlinear functions based on the error 

and/or the error rate and the parameters of the NPID controller are tuned 

using the RCGA by minimizing the integral of time-weighted absolute error 
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(ITAE) as a objective function. A set of simulation works for reference 

tracking and disturbance rejecting performances and robustness to parameter 

changes are carried out to compare with two nonlinear controllers and show 

the feasibility of the proposed method. 

  Chapter 2 gives a brief overview of a continuous stirred tank reactor as 

the controlled process in this thesis, Chapter 3 describes about the linear PID 

controller which lays foundation for nonlinear PID controllers and two 

nonlinear controllers for comparison. Chapter 4 proposes an NPID controller 

which improves the nonlinear gain function proposed by Korkmaz et al. and 

discusses how to optimize parameters of the NPID controller. Chapter 5 

applies the proposed NPID controller to control the temperature of the CSTR 

process and its performance is compared with those of both the Korkmaz’s 

NPID controller and Chen’s adaptive controller by computer simulation. 

Finally, Chapter 6 highlights the conclusion of this thesis.
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Chapter 2. Continuous Stirred Tank Reactor

  CSTR (Continuous Stirred Tank Reactor) is a key device, which has been 

widely used for pyrolytic reaction and catalyst-using polymer synthesis in 

petrochemical process as it has advantage in removing severe heat of 

reaction and facilitating rapid heating and cooling. This chapter gives a brief 

overview of CSTR which is used as a controlled process in this thesis.

2.1. Process Description

  As chemical reaction which occurs in a CSTR is exothermic or endothermic, 

it has to be cooled or heated by external media to maintain constant 

temperature in the reactor. Figure 2.1 shows the schematic diagram of a 

CSTR process, where exothermic reaction is assumed. In the Figure, , , 

 and , ,  denote concentration[mol/m3], temperature[K] and flow[m3/sec] 

at the inlet and outlet of fluid, respectively and ,  and ,  denote 

the temperature and flow at the inlet and outlet of cooling water, 

respectively.
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f f fC ,T ,F

c cT ,F

C,T,F

cf cfT ,F

Fig. 2.1 Nonisothermal CSTR process

  It is assumed to simplify the problem in this thesis that irreversible reaction 

(→) is exothermic, reaction is considered 1st-order to the reactant, fluid in 

the reactor is well stirred, input and output flow are identical and parameters 

are constant and independent of temperature, the following dimensionless form 

of equation is obtained by applying the law of conservation of matter and 

energy to CSTR [1,2,5,11]:

 exp


                          (2.1a)

 exp


            (2.1b)

                                                            (2.1c)

where,  and  are state variables which indicate concentration  and 

temperature , respectively and  and  indicate the outlet temperature of 

fluid and the temperature of cooling water as the output and input, 
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respectively.  and  denote disturbances. At this time, , ,  and  are 

nondimensionalized by Equation (2.2):

    


                                                   (2.2a)

  


                                                  (2.2b)




                                                  (2.2c)

  ′
                                                       (2.2d)

where  denotes Damökhler number,  heat of reaction,  heat transfer 

coefficient,  volume of CSTR[m3], ,  activation energy[cal/mol] 

and  gas constant[cal/mol-K]. 

  As the CSTR process discussed in this thesis controls the outlet temperature 

() of the cooling jacket as a control input, the flow-changing valve 

operation has physical limit. Therefore, it is assumed that there is a saturator 

represented by the following nonlinear equation between the controller and 

CSTR process

 











min  min
  min ≤≤max
max  max

                                  (2.3)

where min and max indicate the minimum and maximum values of the saturator, 
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respectively and  indicates the output of the saturator or input of the process. 

Therefore, the process is represented by Figure 2.2 through combining the saturator 

and CSTR process.

u
CSTRsatu y

Fig. 2.2 Block diagram of the CSTR process with a saturator

2.2. Analysis of the Process

  If the open-loop system represented by Equation (2.1) has values of = 

0.072, = 20, = 8 and = 0.3, it becomes a complex process which has 

three equilibrium points of = [0.144, 0.886]
T, = [0.447, 2.752]

T and = 

[0.765, 4.705]T.  and  are stable equilibrium points but  is an 

unstable equilibrium point. Figure 2.3 shows three equilibrium points on phase 

diagram.

  Figure 2.4 shows the open-loop response  of the CSTR  to step input 

changes of  where it can be shown that the response speed and 

steady-state gain obviously change according to the magnitude of . Due to 

this nonlinearity, it can be guessed that the conventional PID controller with 

fixed gain may have a difficulty in controlling the CSTR at the overall 

operating points.
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Fig. 2.3 Phase-portrait for three equilibrium points
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Fig. 2.4 Step responses of the CSTR
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Chapter 3. Existing Controllers

  This chapter gives a brief description about the linear PID controller which 

lays foundation for nonlinear PID controllers and two nonlinear controllers for 

comparison which will be discussed in Chapter 5.

3.1. Linear PID Controller

3.1.1. Structure of the linear PID controller

  The transfer function of the standard linear PID (LPID) controller is given 

by the following equation:




                  (3.1)

where  is the proportional gain,  the integral gain and  the derivative 

gain. 

  The LPID controller involves three separate control actions, that is, 

proportional action , integral action  and derivative action . It can be 

expressed as the block diagram shown in Figure 3.1.
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pK

s
K i

sKd

e u++
+







 Fig. 3.1 Structure of the standard LPID controller

  The LPID controller receives error signal and makes control input so that 

the output of the process follows the set-point with user-defined specific 

requirements. Generally, three gains of the LPID controller are fixed for use 

during operation, and if gain scheduling technique is used, it is possible to 

switch among gains tuned according to operation points.

3.1.2. Role of the LPID control action

  As shown in the previous Figure, LPID consists of parallel combination of 

three control actions. Among them, proportional action  which is performed 

in proportion to , speeds up the process response and reduces settling time, 

but if too big, it will make the closed-loop system unstable. Integral action  

is output in proportion to the integration value of  from the initial time to 

the present time, removes error in steady-state, but if too big, causes ziggling 

and enlarges overshoot. Derivative action  reduces vibration and overshoot 

to improve transient response. Figure 3.2 shows the example of three control 

actions of the LPID controller in a closed-loop control system in a graphical 

form.
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Fig. 3.2 Example of three control actions of the LPID controller

3.1.3. Ziegler-Nichols (Z-N) tuning rules

  We simply discuss the well-known existing tuning rules for the LPID 

controller. In 1942, Ziegler and Nichols proposed the two methods to 

determine the parameters of a PID controller from the form of transient 

response indicated by a process. The Z-N tuning methods [13] have advantage 

of requiring no knowledge of the underlying process and are widely used in 

PID controller design. Those tuning methods are roughly classified into the 
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open-loop method and closed-loop method. The former uses an open-loop 

response curve obtained offlinely and  the latter does only the P control term 

installed in the process. 

① Open-loop method

  This method uses the step response curve. First, a step input is applied to 

the given process to obtain s-curve. Steady-state gain K, time constant T and 

time delay L are obtained while viewing the output state of the process, and 

based on these, the parameters of PID controller are tuned. This method can 

only be applied to a stable system where integrators are not included in the 

process and main pole is not complex root. 

  Figure 3.3 shows obtaining K, T and L from the response curve when unit 

step input is given to the open-loop control system and Table 3.1 shows how 

to obtain the controller parameters by using these values.

 

y(t),u(t)

K

0 L

u(t)

Time
T

Fig. 3.3 Step response of a process
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       Parameter

 Controller
Kp Ti Td

P   


  -    -

PI 


 -

PID 


 

Table 3.1 PID tuning rules by the open-loop method

  The open-loop method is a simple tuning method where unit step input is 

given to the system and parameters of PID controller are obtained from 

characterization factors of the curve. However, as mentioned previously, this 

method can only be applied to a stable process which can be approximated to 

FOPTD (First-Order Plus Time Delay), it has disadvantage of very limited 

scope of application. The transfer function    of a FOPTD system is as 

follows:




 (3.2)

② Closed-loop method

  The closed-loop method is a method which can be used even when the 

process has a pole at origin and is unstable. Unlike the open-loop method, 

this method first constructs a closed-loop system with only a proportional gain 

as shown in Figure 3.4. 



- 14 -

u
_
+ yry

plantuK

Fig. 3.4 Closed-loop control system with a proportional gain

  Then, the proportional gain  is increased until it reaches to the ultimate 

gain  , at which the output of the control loop oscillates with a constant 

amplitude.  

y(t)

uT

Time

Fig. 3.5 Response curve and ultimate period

  After the ultimate period  is obtained from the response depicted in 

Figure 3.5, the PID controller parameters are tuned by applying the rules in 

Table 3.2.
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      Table 3.2 Tuning rules by the closed-loop method

       Parameter

 Controller
  

P    

    -    -

PI    

    


    -

PID    

    


    




  The closed-loop method requires much time as it generates the ultimate  

cycle by trial and error of many experimental values and has a difficulty in 

maintaining vibration within the stability limit of gain in actual processes. If 

the controller is replaced by a relay controller, there will be a stable 

oscillation in the output response. The amplitude of this oscillation together 

with the magnitude of the relay can be used to determine the ultimate gain 

 as

       


                                                  (3.3)

where  denotes the magnitude of the relay and  the amplitude of the 

response. 

3.2. Nonlinear PID Controller

  As the previously mentioned LPID controller is used with fixed gains in most 

cases, it may show unsatisfactory performance if parameters of the process 

change due to changes of operating point. To solve these problems, nonlinear 

PID (NPID) controllers take the method of changing three gains nonlinearly for 

control. Although several methods have been proposed in recent literatures, in 
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this thesis, we briefly review the NPID controller proposed by Korkmaz et al. 

[15] (simply referred to as Korkmaz’s NPID controller) and nonlinear adaptive 

controller proposed by Chen et al. [11] (simply referred to as Chen’s 

adaptive controller) as comparison purpose.

3.2.1. Korkmaz’s NPID controller

  The method proposed by Korkmaz et al. [15] takes the method of changing 

three gains of the existing LPID controller nonlinearly and the controller is 

given by Equation (3.4)

 


                                  (3.4)  

where ,  and  are nonlinear functions based on error e and 

Gaussian error function, and play the same roles as proportional, integral and 

derivative gains of the LPID controller.

                                        (3.5a)

                                           (3.5b)

                                         (3.5c)

where parameters , , ,  are all positive constants and properly tuned by 

the user.  is the Gaussian error function defined as

 

 


exp                                  (3.6)
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and has the shape as shown in Figure 3.6.
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Fig. 3.6 Gaussian error function

  Figure 3.7 shows the change of nonlinear gain values according to the 

change of error. From the Figure, it can be shown that proportional gain and 

derivative gain increase when the absolute value of error increases and 

integral gain increases to reduce steady-state deviation when the absolute 

value of error decreases.
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Fig. 3.7 Nonlinear gain functions proposed by Korkmaz et al.

  Korkmaz et al. used the absolute value of error  instead of error  to 

make PID gain a positive constant, and due to this, only the positive region of 

 function is used. Therefore, minimum and maximum values of 

proportional gain  are  and , respectively. The range of integral 

gain  is 0 and . Derivative gain  varies in the range of  and . 

3.2.2. Chen’s adaptive controller

  Recently, Chen and Peng[11] proposed a controller for the adaptive control 

of a system with the saturator size of min ≤≤max as shown in Figure 

3.8.
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Fig. 3.8 Adaptive control system proposed by Chen and Peng

The control input is given as the following equation:

 


maxmin                            (3.7)

where  is a hyperbolic tangent function given as follows:

exp
exp

                           (3.8)

where  denotes error between the set-point and output.  and t 
denote slope and bias, respectively. As  has a value between -1 and 1, 

 in Equation (3.7) is maintained within the limit value of the saturator. 

  As shown in Equation (3.8), as  has two adjusting parameters, and 

particularly, the size and sign of slope  are highly sensitive to the 

characteristics of the controller, Chen and Peng proposed an algorithm to 

adaptively control bias  with fixed  alone according to control problems. 

Figure 3.9 shows the slope of  when  is fixed to 0 and  is changed. 
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Fig. 3.9 Significance of  to the changes of  (= 0)

  

The tuning algorithm of  is given by

 


                  (3.9)

where (>0) is learning rate and 

 has a value of ±1 which is 

determined by the response direction of the system. 

 is obtained by 

step response test or physical characteristics of the process. In this way, the 

algorithm continuously adjusts parameters of the controller with the error 

between set-point and actual output. 

  As Chen and Peng used = 0.2 and = 5 when they applied to the 

temperature control problem of a CSTR and the CSTR process has positive 

gain by its characteristics, 


 becomes 1. 
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Chapter 4. Proposed NPID Controller

  This chapter presents an NPID controller which improves the nonlinear gain 

function proposed by Korkmaz et al. and discusses how to optimize 

parameters of the NPID controller.

4.1. Structure of the Proposed NPID Controller

  In this thesis, we use an NPID controller represented by Equation (4.1) for 

temperature control of the CSTR and improve set-point tracking performance. 

The transfer function  of the NPID controller consists of 

parallel combination of proportional, integral and derivative actions which have 

the same meanings as those of three actions in the LPID controller:

 






                  (4.1)  

where    and  are nonlinear functions of error  and 

the rate of change of error  and time-varying gains.  is 

the filter time constant. Maximum derivative gain  is an empirically 

determined constant between 8 and 20. As many literatures use = 10, we 

also adopt this value here. 

  The transfer function in Equation (4.1) can be expressed in a block diagram 

as shown in Figure 4.1.
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Fig. 4.1 Structure of the proposed NPID controller

4.2. Gains of the Proposed NPID Controller

4.2.1. Nonlinear proportional gain

  Since control action  increases in proportion to proportional gain or error, 

and to speed up response, proportional gain needs to be properly enlarged 

when error is large. However, if a large  proportional gain is maintained even 

for a small error when the response reaches around set-point, excessive 

control may cause overshoot and vibration. 

  By considering this fact, the proportional gain  of the NPID controller 

is properly adjusted according to the magnitude of  and defined by 

                                          (4.2)

where   are positive constants determined by the user.  is described 

by an exponential function as:

 

                                             (4.3)
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where  is a symmetrical nonlinear function centered upon = 0. It goes to 

zero as  goes to 0. As  increases, the value increases, converging to 1. 

Therefore,  in Equation (4.2) has the minimum value of  when = 0 

and the maximum value of  when →∞. 

  Figure 4.2 shows the shape of the proportional gain function  to 

changes of  with   and  . For comparison,  in Equation (3.5a) 

is also drawn. 
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Fig. 4.2  shapes to changes of  ( ,   )

  From the Figure, it can be seen that the proposed nonlinear function  has 

steeper slope around = 0 than that of Korkmaz responding more sensitively to 

small change.
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4.2.2. Nonlinear integral gain

  Integral action  increases as cumulative error value or integral gain 

increases. Equation (4.4) is used to ensure that integral gain is decreased to 

prepare for the occurrence of overshoot when the absolute value of error  

is large and the gain is enlarged to reduce steady-state error when the 

absolute value of error  is small. The nonlinear integral gain is expressed by

                                           (4.4)

where  is a positive constant and Equation (4.3) is used for function .

Figure 4.3 shows  to changes of  with = 1. As shown in the Figure, it 

has the maximum value when    and decreases as the absolute value of  

increases.
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4.2.3. Nonlinear derivative gain

  Derivative action  increases in proportion to the rate of change of error 

and derivative gain, and if  and  increase, damping is performed by 

predicting that the output will also increase. If damping is performed more 

than required level over the entire control cycle, response may be slowed 

down. If damping is only performed for a certain cycle,  and  can be 

utilized more drastically and overshoot can also be reduced. Therefore, a 

time-varying function described by Equation (4.5) is used to change the size 

of derivative gain to ensure that large damping is performed in the area 

where  . Therefore,  is given by

    
                              (4.5)

where   are positive constants and nonlinear gain  is  

when multiplication of error  and the rate of change of error  is larger 

than 0. At the time, as  has a value in the range of 0 and 1,  

becomes  when = 0 and has the value of  when →∞. For other 

cases, it becomes .

  Figure 4.4 shows drawing of  while changing error  and the rate of 

change of error .
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Fig. 4.4  shapes to changes of  (  ) 

4.3. Tuning of the NPID Controller Parameters 

  As previously mentioned, the three nonlinear gains of the proposed NPID 

controller have total five parameters and these parameters should be properly 

adjusted to ensure that the entire control process including the saturator can 

maintain the desired set-point tracking performance.
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Fig. 4.5 Tuning of the proposed NPID controller with a saturator
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  This leads to a nonlinear multi-variable optimization problem and it will be 

solved by applying a Genetic Algorithm (GA). The Integral of Time-weighted 

Absolute Error (ITAE) is used as an evaluation function which measures the 

closed-loop system performance. 





                                           (4.6)

where        
∈ℝ5 is a vector which consists of parameters of 

NPID controller gains,  is error between the set-point   and output 

, and integral time  is a value sufficiently large enough to ignore 

integral afterwards. 

  The most basic decision in applying a GA to optimization problems under 

consideration is whether to use binary or real coding to represent the 

parameters to be optimized. If the search space of an optimization problem is 

continuous and wide, a Real-Coded GA (RCGA) is possibly more acceptable. 

Therefore, in this thesis real number encoding is adopted rather than 

traditional binary encoding. Each chromosome comprises of five parameters, 

    and with different value bounds. 
  Also, one of crucial steps is to construct the population. Some previous 

works recommend 20 to 100 chromosomes in a population. The more the 

chromosomes number, the better the chance to find the optimal results. 

However, as long as the execution time is considered, we keep 50 

chromosomes in each generation. 



- 28 -

Chapter 5. Simulation and Review

  In this chapter, the NPID controller designed in the previous chapter is 

applied to control the temperature of a CSTR process and its performance is 

compared with those of both the Korkmaz’s NPID controller and Chen’s 

adaptive controller through a set of computer simulation works.  

 

5.1. Parameters for Simulation and Controller Tuning

5.1.1. Parameters for simulation

  For the data of the CSTR used as process in simulation, = 0.072, = 20, 

H= 8 and = 0.3 were used. The upper and lower limits of the saturator were 

±5 and sampling interval was 0.01. 

5.1.2. NPID controller tuning

  Both the proposed NPID controller and Korkmaz’s NPID controller are 

tuned for good tracking performance and the same set-point in Figure 5.1 

was used for fairness in comparison. At t= 0, when the process stays at 

equilibrium point , the set-point is changed to = 2.752 to move to 

equilibrium point . And at t= 10, it is changed to = 4.705 to move to 

equilibrium point  for tuning.
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Fig. 5.1 Changing the set-point for parameter tuning

  For the control parameters of the RCGA used for tuning, population size 

= 40 and crossover probability = 0.9 were used. For the parameters of 

dynamic mutation, = 0.05 and = 5 were used [11] and the gain parameters 

of the two NPID controllers were searched from the range ≦, 

 ≦ and  ≦. 

  The results of RCGA-based tuning of the NPID controllers are shown in 

Table 5.1.  

Table 5.1 Tuned parameters of the proposed NPID controller and Korkmaz’s 

NPID controller

Method
Parameters

    

Proposed 59.73 8.48 57.26 8.88 15.51

Korkmaz 35.87 21.70 43.33 2.73 2.73

  

  As Chen used = 0.2 and = 5 for the algorithm in Equation (3.11) when 
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applying the adaptive controller to a CSTR process with the saturator and the 

CSTR process has positive gain by its characteristics, 

 becomes 1. 

5.2. Simulation and Performance Comparison

5.2.1. Set-point tracking performance

  First, set-point tracking test was performed by considering the control 

environment to change temperature at the CSTR cooling water outlet. For the 

test, the set-point was increased step-wisely to = 2.75 when the process 

stays at a stable equilibrium to move output  to an unstable equilibrium , 

and at = 10, it was increased step-wisely to = 4.705 to move to a stable 

equilibrium . Figure 5.2 shows the output  and saturator output  at 

the same time.
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Fig. 5.2 Set-point tracking responses when   is step-wisely increased from 

0.886 to 4.705

  From the Figure, it can be seen that responses of the two NPID controllers 

and adaptive controller reach the set-point without steady-state error over 

time, but the proposed method reaches with smaller overshoot and at a faster 

pace than other methods. Particularly, the reason why overshoot of response 

is larger when  changes to  than when  changes to  is thought 

to be the intrinsic nonlinearity of the CSTR.

  To measure the quantitative performance of three methods, both swiftness 
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of response and closeness to the set-point were obtained. For swiftness, 

reaching time() and peak time() indexes were used. For closeness, 

overshoot(), 2% settling time() and IAE (Integral of Absolute Error) were 

used. Table 5.2 summarizes simulation results.  

Table 5.2 Comparison of set-point tracking performances when  is step-wisely  

increased from 0.886 to 4.705

Method
= 0.886 → 2.75 = 2.75 → 4.705

         

Proposed 0.89 1.50 4.47 2.08 1.19 0.54 0.95 6.04 1.35 0.85

Korkmaz 0.89 1.43 9.96 2.39 1.27 0.52 0.97 14.60 1.40 0.92

Chen 0.93 1.61 13.19 3.39 1.38 0.53 1.03 32.80 2.32 1.22

  From the Table, it can be seen that the proposed method has superior 

performance to the other methods in both swiftness and closeness and 

particularly the adaptive controller results in the worst control performance.

  Due to intrinsic nonlinearity of the CSTR, response characteristics may 

differ from those when  is increased and decreased. To examine this, a 

response test was performed to decrease  with the previously tuned 

parameters as shown in Figure 5.3. The Figure shows the response while 

decreasing  to 2.75 stepwise when the process stays at equilibrium , and 

again = 10, decreasing to 0.886 stepwise when it stays at .

  It can be found that all responses reach set-point without steady-state error 

over time, but the Korkmaz’s method shows a severe chattering phenomenon 

at  . The too high proportional gain of the LPID controller with the ideal 

derivative action might cause such a chattering phenomenon.
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Fig. 5.3 Set-point tracking responses when  is step-wisely  decreased from 4.705 

to 0.886

  For this case too, previously used indexes were obtained to measure 

quantitative performance of three methods and the results are summarized in 

Table 5.3. 
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Table 5.3 Comparison of set-point tracking performances when  is decreased 

from 4.705 to 0.886

Method
= 4.705 → 2.75 = 2.75 → 0.886

         

Proposed 0.68 1.32 4.48 2.02 0.99 0.76 1.46 4.77 2.51 1.05

Korkmaz 0.67 1.24 8.38 2.40 1.06 0.76 1.44 8.69 3.06 1.14

Chen 0.70 1.33 9.38 2.98 1.10 0.83 1.60 4.13 2.32 1.05

  From the Table, it can be seen that  of compared methods have been 

much reduced than in the previous response test, but the proposed method 

has overall performance superior to other methods.

5.2.2. Disturbance rejection performance

  Next, to examine disturbance rejection performance of the proposed method 

when unmeasured disturbances are applied to the process due to a variety of 

factors, two simulation were performed to input disturbance when the process 

stays at an unstable equilibrium . For this, the set-point was fixed to = 

2.75 and two different step-wise disturbances  and  were applied to the 

right side of Equation (2.1). For first simulation, step-wise disturbance = 0.2 

and = 0.2 were applied after = 5 when the process stays at an unstable 

equilibrium . For second simulation, = 0.2 and = -0.2 were applied. 

  Figure 5.4 and 5.5 show each simulation result, that is, output  and 

saturator output  . Figures demonstrate that process disturbances can be  

effectively attenuated by the proposed method but the other methods require 

more time to recover from disturbance. Particularly, it can be found that the 

Chen's adaptive controller has relatively inferior performance to other 

methods in disturbance rejection performance.
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Fig. 5.4 Disturbance rejection responses when  and  are step-wisely changed 

while = 2.75 (== 0.2)
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Fig. 5.5 Disturbance rejection responses when  and  are step-wisely changed 

while = 2.75 (  ,   )

  Again, perturbance peak  and peak time , recovery time required 

to remove the effect of disturbance and return to the set-point , and IAE 

were obtained in order to measure the performance of three methods 

quantitatively, where =｜max｜ or ｜min｜ and  indicates time 

required for recovering output  to less than 2% of set-point  .
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Table 5.4 Comparison of disturbance rejection performances when  and  

are step-wisely changed

Method
= 0→0.2, = 0→0.2 = 0→-0.2, = 0→0.2

       

Proposed 1.07 0.02 5.39 0.03 0.77 0.03 4.98 0.05

Korkmaz 1.00 0.02 4.65 0.04 0.71 0.05 4.28 0.07

Chen 1.21 0.08 5.86 0.16 1.29 0.22 6.35 0.48

  It can be confirmed from Table 5.4 that the proposed method and 

Korkmaz’s method have good overall performance. Particularly, the Chen's 

method shows larger  as well as longer . 

5.2.3. Robustness to parameter change

  As the CSTR is a time-varying process where chemical reaction takes 

happen and may cause parameter changes during operation, four sets of 

simulation works were performed to examine the robustness of the proposed 

method to parameter changes. Figure 5.6 and 5.7 show the results obtained 

while changing parameter  from 0.072 to 0.09 and from 0.072 to 0.05, 

respectively after = 5 when the control process stays at an unstable 

equilibrium . Figure 5.8 shows the response obtained while increasing  

from 0.072 to 0.09 with raising H simultaneously from 8 to 9 after = 5, and 

Figure 5.9 shows the response obtained while decreasing  from 0.072 to 

0.05 with lowering H simultaneously from 8 to 7.
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Fig. 5.6 Response comparison to parameter changes (  → )
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Fig. 5.7 Response comparison to parameter changes (  → )
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Fig. 5.8 Response comparison to parameter changes ( , )
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Fig. 5.9 Response comparison to parameter changes ( , )

  From these four simulation works, it can be found that the proposed 

controller and Korkmaz’s controller are less sensitive to parameter changes, 

but the Chen’s controller has unsatisfactory overall performance due to 

bigger peak value and longer recovery time if compared with the other 

methods. This can also be confirmed in Table 5.5 which shows quantitative 

results.
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Table 5.5 Comparison of robustness to step-wisely parameter changes

Method
= 0.072→0.09 = 0.072→0.09, = 8→9

       

Proposed 0.30 0.03 1.79 0.03 0.32 0.06 2.86 0.06

Korkmaz 0.30 0.06 2.28 0.04 0.32 0.10 1.91 0.08

Chen 0.51 0.20 3.68 0.20 1.71 0.97 6.64 2.36

Table 5.6 Comparison of robustness to step-wisely parameter changes

Method
= 0.072→0.05  = 0.072→0.05, = 8→7

       

Proposed 0.33 0.04 2.43 0.04 0.35 0.06 3.15 0.06

Korkmaz 0.32 0.07 1.86 0.06 0.34 0.09 2.45 0.09

Chen 0.59 0.23 2.58 0.31 0.80 0.33 7.69 0.81

5.2.4. Comparison of computing time

  As shown in Chapter 3, the Korkmaz’s NPID controller has disadvantage of 

performing integral continuously at each control loop due to the use of the 

Gaussian error function as a nonlinear function. Integration can be performed 

by the trapezoidal method or the Simpson method, but the use of the NPID 

controller may be impossible due to the limit of computing time if it is 

implemented in a microprocessor. 

  Therefore, in this work, we has proposed a nonlinear gain function with 

better simplicity and performance in order to enhance the Korkmaz's NPID 

controller. To compare simple computing time between these two methods, 

programming was performed by using MATLAB and 500 times of repetitive 

executions were performed and averaged. It can be seen in Table 5.7 that 

the proposed method can save more time than the Korkmaz’s method.
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Table 5.7 Comparison of computation time

Methods Computation time[msec] Remarks

Proposed 0.3463 Intel(R) Core(TM)2 Duo CPU 
3.00GHz 

 Windows 7(32bits)Korkmaz 34.4842
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Chapter 6. Conclusion

  

  This thesis has presented a scheme of designing a nonlinear PID controller 

incorporating with a real-coded genetic algorithm (RCGA) for the temperature 

control of a CSTR process. The gains of the NPID controller were composed 

of easily implementable nonlinear functions based on the error and/or the 

error rate and its parameters were tuned using a RCGA by minimizing the 

integral of time-weighted absolute error (ITAE). 

  A set of simulation works for reference tracking and disturbance rejecting 

performances and robustness to parameter changes and comparison with two 

nonlinear controllers showed the feasibility of the proposed method.
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