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ABSTRACT

A lot of real world problems can be modeled as traversals on graph.
Mining from such traversals has been found wuseful in several
applications. However, previous works considered only unweighted
traversals and graph.

This thesis generalizes this to the cases where traversals and vertices
in a graph are given weights to reflect their importance. Two new
methods are proposed to discover frequent patterns from the weighted
traversals and vertices in a graph.

The first proposes the mining algorithm for discovering the frequent
patterns from the weighted traversals on a unweighted graph. we adopts
the notion of confidence interval to distinguish between confident

traversals and outliers. By excluding the outliers, more reliable frequent



patterns can be obtained. Furthermore, we propose a performance
enhancement by traversal split, and then verify through experiments. In
addition, they are further ranked according to their priority.

The second proposes the mining problem to the discovery of weighted
frequent patterns from the unweighted traversals on a weighted graph.
Under such weight settings, traditional mining algorithms can not be
adopted directly any more. To cope with the problem, this paper proposes
new algorithms to discover weighted frequent patterns from the
traversals. Specifically, we devise support bound paradigms for candidate
generation and pruning during the mining process.

The proposed methods can be applied to the practical applications such

as Web mining.



Chapter 1 Introduction

1.1 Overview

Data mining is the process of extracting valuable information or
patterns from large information repositories such as relational database,
data warehouses, XML repositories. It refers to the process of analyzing
large databases to discover useful patterns. It is also known as one of
the core processes of knowledge discovery in database [1-4].

Several data structures and mining algorithms have been proposed and
successfully applied to many applications [4]. Recently, the data mining
on the graph becomes a center of interest. The graph has been widely
used to model several classes of real world problems, such as design of
network, scheduling for operating system, bio-informatics, and GIS. The
structure of Web site can be modeled as a graph, for example, in which
vertices represent Web pages, and edges are for hyperlinks between the
Web pages. User navigations on the Web site can be modeled as
traversals on the graph. Each traversal can be represented as a sequence
of vertices, or equivalently a sequence of edges.

Once the graph and its traversals are given, valuable information can
be discovered. Most common form of the valuable information may be
frequent patterns, i.e., the sub-traversals that is contained in a large
ratio of traversals. In previous works, traversals on a graph are treated
uniformly without considering their importances, such as mining patterns

from traversals without weights and base graph [5-7].



Therefore, it is necessary to develop new data mining algorithms based
on a graph with weights. This thesis focuses on the problem of finding
weighted frequent patterns from a database of user traversals through a
given graph structure. We propose two new methods for discovering
frequent traversal patterns from weighted traversals and weighted graph
respectively. The first method proposes an algorithm to find frequent
patterns from the weighted traversals on a graph by excluding outliers of
traversals, and then presents another algorithm to enhance the
performance. The second method describes two algorithms for discovering

weighted frequent traversal patterns from the weighted graph.

1.2 Motivations

Graphs and traversals on them are widely used to model several
classes of real world problems [8-12]. The structure of a Web site, for
example, can be modeled as a graph in which vertices represent Web
pages, and edges represent hyperlinks between the pages. Furthermore,
user navigations on the Web site can be modeled as traversals on the
graph. Once a graph and its traversals are given, valuable information
can be discovered. Most common form of the information may be frequent
patterns, i.e., the sub-traversals that are contained in a large ratio of
traversals [5-7, 13-15]. However, a drawback of these approaches is to
discover only frequent patterns without considering the weights in the
traversals and graphs to reflect their importance. Therefore, it is required
new approaches to discover frequent patterns from the weighted

traversals and weighted graph.



In this thesis, the weights are attached to the traversals and vertices
in a graph to reflect their importance. For instance, when the users
navigate a Web site, they may have different interest in each Web page,
and therefore stay for different duration. Each edge, which represents a
transition between Web pages, can be assigned with a weight standing
for the user stay duration. In addition, each vertex can be also assigned
with a weight according to the amount of information or the importance
of each Web page.

This thesis generalizes the mining problem to the case where traversals
and vertices in a graph are weighted. This problem can be directly
applied to Web Usage Mining problem. In Web Usage Mining, because
the number of web pages and the complexity of Web sites increase, Web
service providers and online business want to track user browsing habits to
improve their services better and get more profits. Therefore, the structure of
Web sites has to be designed effectively for more efficient access between
highly correlated Web pages, and better customer classification and
behavior analysis.

In this thesis, we assign the weights to the edges of traversals and the
vertices in a graph, and the distribution of weights follows the normal

distribution.

1.3 Approach

This thesis addresses two new approaches to discover frequent traversal
patterns from the traversals on a graph. One i1s to discover frequent

traversal patterns from the weighted traversals on a graph, the other
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from traversals on a weighted graph.

For mining patterns from the weighted traversals on a graph, we adopt
the notion of confidence interval to classify the weights into confident
ones and outliers. The confidence interval is defined statistically according
to the distribution of wvalues. If a weight lies within the confidence
interval, then it is considered as a confident one, but if it lies outside the
confidence interval, then it is considered as an outlier. On top of the
notion, we propose a level-wise algorithm for the discovery of frequent
patterns. In each pass, candidate patterns are tested on the traversals to
count their supports, and then evaluated with respect to the supports to
become frequent patterns. The frequent patterns are joined together to
generate one-step larger candidates. It proceeds until no more candidates
are generated. The frequent patterns are further ranked according to
their priority. The priority reflects other aspects of the patterns beside
the support, such as the connectivity and vertex weights.

For mining patterns from the weighted graph, we extend previous
works by considering weights attached to the wvertices of graph. Such
vertex weight may reflect the importance of vertex. For example, each
Web page may have different importance which reflects the value of its
content. With the weight setting, the mining algorithm can not be relied
on the well-known Apriori paradigm any more. The reason why Apriori
paradigm works is due to the downward closure property, which says all
the subsets of a frequent pattern must be frequent. With the weight
setting, however, it is not necessarily true that all the subpatterns of a
weighted frequent pattern are weighted frequent. Therefore, we adopt the

notion of support bound. On top of the notion, we propose a new mining
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algorithm for the discovery of weighed frequent patterns.

1.4 Organization of Thesis

This thesis is organized as follows. In chapter 2, we review previous
works on the itemset and traversal minings without and with weights,
respectively. Chapter 3 proposes a method for the discovery of frequent
patterns from weighted traversals on graph, and chapter 4 also proposes
another method for the discovery of weighted frequent patterns from
traversals on weighted graph. Chapter 3 and 4 also contain experiments
and analyses of the algorithms on synthetic data, respectively. Finally,

chapter 5 contains conclusions and further works.



Chapter 2 Related Works

Data mining i1s the core of knowledge discovery process to extract
useful information from large datasets or databases [16-18]. In other
words, it looks for interesting patterns and trends that exist in large
datasets. Traditionally, major data mining problems have been association
rule [3, 19-21], sequential pattern [22, 23], classification [24-27], clustering
[28, 29]. Many of them are based on the function of itemset mining.
Recently, another main stream is the mining problems on the traversals
and graphs. This chapter reviews previous works related with such
itemset mining and traversal mining without and with weights,

respectively.

2.1 Itemset Mining

The itemset is a set of the data items. On such itemset, the itemset
mining is the core of several mining problems, such as association rule
mining. The association rule mining is to find association among a large
set of itemsets in transaction databases, relational databases, and data
warehouses. It discovers any rule of the form X=Y, where X and Y are
sets of data items [1-4]. For example, "80% of customers who buy cheese
and milk also buy bread, and 5% of customers buy all of them together".

In the mining, there are two important measures of interestingness,
called support and confidence. Equation (2.1) and (2.2) describe the two

measures [1-4].



(2.1)

Pr(AUB)

confidence (A= B)= ()

(2.2)

Typically, the frequent itemsets, traditionally called the large itemsets,
are considered interesting if they satisfy the minimum support threshold.
In the itemset mining, the Apriori algorithm is the most basic and
well-known algorithm to find frequent itemsets in a transactional

database. Fig. 2.1 describes the Apriori algorithm with pseudo-code [2].

Algorithm. Apriori

Input: candidate itemset of k size C,
minimum support threshold minsup,
transaction database D

Output: frequent itemset of k size L,

begin
L= {large 1—emsets };
for (k= 2;L,= 0;k++) {
/I join and prune candidates

C,= apriori_gen(L;,_,);

/I scan D for counts

for each transaction t= D {
C,={clcEe C, ¢ is a subsets of t};
Y ce G, c.count++;

}

L,= {clee C;,, c.count > minsup}§

}

end;

Fig. 2.1 Apriori algorithm



In the Apriori algorithm, there are the important property, called
downward closure property, which is used for joining and pruning
candidates. It describes that a pattern of length %k is frequent only if its
all subpatterns of length k—1 are also frequent. Fig. 2.2 is an example of

Apriori algorithm.

Database D @) L,
TID Items Itemset | support Itemset | support
100 134 scan D {1} 2 {1} 2
200 235 | —— | 5 | —| (9 s | —>
300 | 1235
400 | 25 {3} 3 {3} 3
{4} 1 {5} 3
{5} 3
G Ly
Itemset | support Itemset | support
alapee) 1 {1,3} 2
fy ey {23 | 2 |
{1,5} 1 {2,5} 3
2,8} 2 {3,5} 2
{2,5} 3
{3,5} 2
G Ly
Ttemset | support Ttemset | support
—>
{2,3,5}] 2 {2,3,5}] 2

Fig. 2.2 An example of Apriori algorithm

In the example of Fig. 2.2, itemsets, {1,2,3}, {1,2,5} and {1,3,5} is
not in candidates of length 3, called C;, because of downward closure

property. For instance, if {1,2,3} becomes a candidate in Cj, then the all



subsets of length 2 of itemsets {1,2,3} must be in L,, but itemsets,
{1,3} and {2,3} are included in Z, while not {1,2}.

In addition, there are some modified methods for the enhanced
performance of Apriori, such as AprioriTid, Apriori-Hybrid [2]. Although
AprioriTid uses the same candidate generation function as Apriori, it does
not use database for counting support after the first pass. And it only
encodes the candidate itemsets used in the previous pass, in order to
save reading effort of databases. Apriori-Hybrid uses Apriori in the initial
passes and switches to AprioriTid when it expects that the candidate
itemsets at the end of the pass will be in memory [2]. Other approaches
on the itemset mining are partition technique [20], sampling technique
[30], DHP algorithm based on hash technique [31] and multi-level or
generalized association [32, 33].

Recently, there are various algorithms based on Apriori algorithm as in
the itemset mining. One of them is sequential pattern mining, and it is
the algorithm for finding all frequent itemsets within a transactional
database, introduced in [33]. In general, A= B says that buying the item
A will be immediately followed by buying the item B with a certain
confidence. From a book store's transaction database history, we can find
the frequent sequential purchasing patterns, for example, 80% customers
who have bought the book "HTML" typically bought the book "Java Script
Handbook" and then bought the book "Web Programming" with certain
time gap. In this example, all those books need not to be bought at the
same time or consecutively, the most important thing is the order in
which those books are bought and they are bought by the same customer.

80% here represents the percentage of customers who comply this

-9 -



purchasing habit. Based on this heuristic, a series of Apriorilike
algorithms have been proposed, such as AprioriAll, AprioriSome,
DynamicSome in [33], and GSP [23]. Later on another a series of data
projection based algorithms were proposed, which includes FreeSpan [4]
and PrefixSpan [34]. SPADE [35] is a lattice based algorithm, MEMISP
[36] is a memory indexing based approach, and SPIRIT [37] integrates

constraints by using regular expression.

2.2 Weighted Itemset Mining

For the weighted itemset mining, most of previous works are related to
the mining of association rules and its sub-problems. Such weighted
itemset mining is defined as the problem of finding itemsets which have
both sufficient support and weight. This problem may be more complex
than the simple itemset mining because there is not the downward
closure property, also known as the Apriorr property, between itemsets.
This 1s due to the fact that the weighted support of itemset may increase
or decrease as the itemset is extended by adding additional items.

To resolve this difficulty, Cai et al. [38] generalized the discovery of
frequent itemsets to the case where each item is given an associated
weight. They introduced new criteria to handle the weights in the process
of finding frequent itemsets, such as weighted support for the
measurement of support, and the support bound for pruning of
candidates. They also found that there is the downward closure property
between candidates. The weighted support of a rule X=1Y is calculated

by the multiplied sum of the weight and the support of itemsets X and
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Y. A candidate can be a solution, that is the weighted frequent pattern,
if its weighted support is greater than the user-defined threshold, called
weighted minimum support. Wang et al. [39] extended the problem by
allowing weights to be associated with items in each transaction. Their
approach ignores weights when finding frequent itemsets, but only
considers during the association rule generation. Tao et al. [40] proposed
an improved model of weighted support measurement and the weighted
downward closure property using average weight of items in each
transaction in the database. Yun et al. [41, 42] also considered the
weighted items in the process of finding frequent itemsets, and the
length-decreasing support constraints for the new measurement of
support. Yao et al. [43, 44] introduced a new weighted mining paradigm,
called utility mining, which finds all itemsets in a transaction database
with utility values higher than the minimum utility threshold. They
defined two types of utilities for items, transaction utility, such as the
quantity of an item sold in the transaction, and external utility, such as
the maximum profit for each item. Then, they proposed an algorithm for
discovering frequent itemsets using the utility bound property and the
support bound property. Although the above works take the notion of
weight into account, they can not be adapted directly to our work
because they only concerned on the mining from items, but not from

traversals.

2.3 Traversal Mining

Generally, the traversal i1s movement from one object to another

- 11 -



through a relationship between them, as in crossing between vertices in
graph theory. In the World Wide Web environment, for example, users
access information of interest and travel from one page to another via
the corresponding hyperlink provided. In this example, traversal pattern
1s a sequence of web pages to be visited commonly by users.

For the traversal pattern mining, there have been few works. Chen et
al. [5, 45] addressed the problem of traversal pattern mining, and then
proposed algorithms with hashing and pruning techniques. However, they
did not consider graph structure on which the traversals occur. Lee et al.
[15] proposed the efficient interactive web traversal pattern mining
algorithm to reduce the mining time and make the mining results to
satisfy the user' requirements. They especially used the extended lattice
structure, Iterative Update Lattice, and Interactive Generate Candidate
algorithms to solve this problem. Hung et al. [14] proposed a
projection-based sequential pattern-growth approach, called PrefixUnion,
for mining traversal patterns efficiently. It is a mining mechanism based
on Inter-pattern growth and Intra-pattern growth. These two pattern
growth criteria are used to minimize useless pattern growth by finding
projected-patterns. Mobasher et al. [46] proposed a framework for Web
mining, the applications of data mining and knowledge discovery
techniques to data collected in World Wide Web transactions. And they
presented a Web usage mining system, called WEBMINER. Its main
purpose is the revealing of usage patterns in the given Web site, based
on the application of several data mining techniques. Although they
discover association rule or sequential patterns from Web access logs,

Web structure is not considered. Ezeife et al. [47] proposed a more
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efficient approach by using the Web access pattern tree, called WAP-tree,
to mine frequent sequences. The WAP-tree is a sequential pattern mining
technique for Web log access sequences. It stores the original Web access
sequence database on a prefix tree, which is similar to the frequent

pattern tree, called FP-tree, for storing non-sequential data.

2.4 Graph Traversal Mining

Graphs are used to represent a collection of related objects such as
networks, biological system, electronic systems, and parallel computer
architectures. Graph traversal algorithms are important since graphs are
a common data structure in which information is distributed [12].

For mining the traversal patterns based on the graphs, there have been
few works. Nanopoulos et al. [6, 7] proposed the problem of mining
patterns from graph traversals. They defined new criteria for the support
and subpath containment, and then proposed algorithms with a trie
structure. They considered the graph, on which traversals occur, as well
as the traversal in the mining process. Jing et al. [13] presents an
approach based on suffix array for frequent reference path generation in
Web environment. Borges and Levene [48] addressed the extraction of
composite association rules from the structured data of World Wide Web.
In this work, the notion of confidence and support measures are
formalized in the context of directed graphs, and two algorithms are
proposed. The first is a modification of the Depth-First-Search algorithm
and the other uses an incremental approach for mining association rules.

Although the above works dealt with the mining of traversal patterns,
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to the best of our knowledge, there is no work which considers the notion

of weight as our work.
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Chapter 3 Mining Patterns from Weighted Traversals
on Unweighted Graph

This chapter presents a new method for mining patterns from weighted
traversals on a graph. The method proposed in this chapter is mainly
composed of three phases. The graph augmentation phase is a
pre-processing phase, in which each edge of the base graph is augmented
with average and standard deviation of traversal weights. The frequent
pattern discovery phase is the main phase, in which frequent patterns
are discovered from the augmented graph and traversal database. The
pattern priority phase is a post-processing phase, in which the frequent
patterns are ranked according to their importance to users. We first
define some related notations and concepts, formalize problem statement,

and then propose algorithms for these phases.

3.1 Definitions and Problem Statements

Definition 3.1. A simple directed graph is a finite set of vertices and
edges, in which each edge joins one ordered pair of vertices. The graph
contains no self loop which joins a vertex with itself. A base graph is a

simple directed graph, on which traversals occur.

For example, the base graph shown in Fig. 3.1 has 5 vertices and 9

edges, in which each vertex and edge have no weights.
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Fig. 3.1 An example of a base graph

Definition 3.2. A traversal is a sequence of consecutive edges of a base
graph. It can be represented with a sequence of the connecting vertices of

each edge, thus a traversal t= <w;,v,,...,v, >. A weighted traversal is a

traversal, in which each edge in a traversal has an associated weight.
Thus a traversal t with associated weights w 1is represented as
(t, w)= (< v}, Vg, ooy v, >, < Wy Wy, -, w, =), Where w; is the weight of edge

<w,v;,, >. A traversal database is a set of weighted traversals.

Fig. 3.2 depicts an example of traversal database. In this database,
there are 10 traversals which traverse the base graph shown in Fig. 3.1.
The first traversal (TID=1), for example, visits a base graph in the order
of vertices A, B and C through the edge < A, B> with the weight 2.2,
and < B, C> with the weight 2.0.
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TID Traversal Weight
1 <A, B, C> <2.2, 2.0>
2 <B, D, E, C, A> <3.0, 4.3, 3.5, 3.1>
3 <C, A, B, D> <2.9, 2.0, 4.0>
4 <D, C, A> <4.0, 3.0>
5 <B, C, A> <2.2, 2.9>
6 <A, B, E, C> <2.1, 3.4, 3.2>
7 <A, B, D, E, C> <1.4, 3.9, 4.4, 3.2>
8 <B, E, C> <2.3, 3.4>
9 <B, D, C> <3.8, 3.1>
10 <C, A, B, D> <2.5, 2.2, 4.1>

Fig. 3.2 An example of a traversal database

Definition 3.3. A subtraversal is any subsequence of consecutive vertices

in a traversal. If t= <wv;,v,,...,u, > 1is a traversal, then s= <s,s,,...,s,, >

7 m

1s a subtraversal of ¢ when there exists a k= 0 such that v, ;= s; for all
1< j<m, and j+k<n. If an arbitrary pattern is a subtraversal of a
traversal, then we say that the pattern is contained in the traversal, or

the traversal contains the pattern.

For Example, consider the traversals shown in Fig. 3.2. In the first
traversal (TID=1), < A4,B C>, we have two kinds of subtraversal,
< A,B> and < B, C> of length 2. If there is the pattern < A4, B>, then
we can say that a pattern < A4, B> is contained in the traversal (TID=1),

or the traversal (TID=1) contains the pattern < A, B>.

Definition 3.4. Let G=(V,E) be a base graph, and D be a traversal

database, then an augmented graph G, is defined as follows. Each node

w
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v; € V is assigned with a weight w,. Each edge, <wv,v;> €E, is labeled
with a pair of average weight and standard deviation, (,u,,;j, U,,;j), which are

obtained from the weights of the corresponding edges of traversals in D.

Definition 3.5. A confidence interval is an interval between two
numbers, within which a random variable X lies with a confidence level
In our problem, if a weight lies within the confidence interval, then it is
considered as a confident one, but if it lies outside the confidence

interval, it is considered as an outlier.

For example, in the Gaussian distribution, the 95% confidence level is
given by

Pr(p—1.960 <0 < X< p+ 1.960 Xa)= 0.95 (3.1

In Equation (3.1), p and o are average and standard deviation of

weights of edges in an augmented graph G, respectively. And the

constant value 1.960 is used to calculate confidence interval for the
confidence level 95%. Fig. 3.3 depicts the confidence interval for
confidence level 95% and Table 3.1 presents constant values multiplied by

standard deviation corresponding to various confidence levels.
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Fig. 3.3 The confidence interval for 95% confidence level

Table 3.1 Constant values for confidence levels

Confidence level Constant value
80% 1.282
90% 1.645
95% 1.960
98% 2.326
99% 2.576

Defining the support and the ratio as the problem in this chapter is
stated as follows. Given a base graph and weighted traversals on the
graph, find all patterns contained in the traversals whose ratio is larger
than minsup. The ratio is called support, and a pattern with the support
larger than minsup is also said to be frequent. When counting the
support, the weights of traversals should lie within a specified confidence
interval. In addition, we determine the priority of frequent patterns

according to their importance criteria besides the support.
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3.2 Mining Frequent Patterns

3.2.1 Augmentation of Base Graph

When a base graph and weighted traversals are given, first phase of
the algorithm is to augment the base graph with supplementary
information. The supplementary information includes average and
standard deviation of weights for each edge, and those for each vertex.

Fig. 3.1 and 3.2 depict an example of base graph and traversal
database. On the base graph, all the traversals traverse the vertices
through the edges. The traversal (TID=1), for example, traverses
consecutively the vertices 4, B and C through the edge < A, B> with the
weight 2.2, and < B, ('’> with 2.0.

Given the base graph and traversal database, the base graph can be
augmented as follows. For each edge of the base graph, we can collect
corresponding weights of the edge from the traversal database, and then
calculate average and standard deviation. For the edge < A, B> in Fig.
3.2 as an example, the collected weights are 2.2, 2.0, 2.1, 1.4 and 2.2.
Then average 2.0 and standard deviation 0.3 are calculated. Resulting
augmented graph is obtained as in Fig. 3.4. Each vertex are also
assigned with an arbitrary weight, which may reflect the importance of

the vertex.

- 20 -



Fig. 3.4 An example of an augmented graph

3.2.2 In-Mining Algorithm

Main phase of the algorithm is to find frequent patterns from given
traversal database and augmented graph. To derive the algorithm, we
first investigate an important property of patterns. Let the length of a
pattern be the number of vertices contained. On the augmented graph,
any pattern P= <p;,p,,....,p, > of length k& has exactly two subpatterns of
length k—1, ie., <p;,py D> and <p, D5 -, p, >. For example, a
pattern <A, B, D, E,C> in Fig. 3.2 has two subpatterns, <A, B, D, E>
and < B, D, F, C>. Therefore, a pattern of length &k is frequent only if its
two subpatterns of length £—1 are also frequent. Such downward closure
property allows us to develop a level-wise algorithm like the Apriors
algorithm [3].

Fig. 3.5 shows the In-Mining Traversal Patterns (IMTP) algorithm
proposed in this chapter, which performs in a level-wise manner. The
candidate patterns of length 1 are initialized with all vertices of the

augmented graph. In each pass of the algorithm, the traversal database
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1s scanned to count the supports of all candidates. The supports are then
adjusted according to the specified confidence interval. Next, frequent
patterns are determined from candidates whose supports are larger than
the specified minimum support. Finally, new candidates are obtained from
the frequent patterns for next pass. The procedure repeats until no more

candidates are generated.
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Algorithm. IMTP

Input: augmented graph G,
traversal database D,
minimum support minsup,
confidence level CL

Output: frequent patterns I,

begin
/I initialize candidate patterns of length 1
C; < set of all vertices;

k=1

/I while candidates exist
while (| C,| > 1) {
/I count supports for candidate patterns
for each traversal t< D {
P= {plpE C,, p is a subtraversal of t};
VpeE P, p.count++;
H

/I prune candidate patterns w.r.t confidence level
if (k > 2)
C,.<— Prune Candidates(C,, G, CL);

/I generate frequent patterns

L,= {plpE C,, p.count > minsup};

/I generate candidate patterns for next pass
Cy. 1< GenCandidates (L, G.,);
k++;

H

end;

Fig. 3.5 Algorithm to discover frequent traversal patterns (IMTP)
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In the algorithm, PruneCandidates() adjusts the supports of candidate

patterns as follows. Let a pattern P= <p,,p,, ...,p, > be a subtraversal of
a weighted traversal (t,w)= (<wvy, vy ...;v, >, <wj,wy, ..., w,_, >). If there
Is an edge <wv,v;,> in the part of the traversal coincided with the
pattern, whose weight w; lies outside the confidence interval, then the

traversal can not contribute for the support of the pattern. For example,
even though the pattern < A4, B, D> is contained in the traversal (TID=7),
(<A,B/D,E C>,<14,2.3,44,32>) in Fig. 3.2, the traversal can not
contribute for the support because its edge < A4, B> has the weight 1.4
which lies outside the confidence interval 1.41 ~ 2.59. For determination
of the confidence interval for each edge of the augmented graph, we
assume that the distribution of weight wvalues follows the normal
distribution. As in almost applied practices, if the confidence interval
corresponds to the 95% confidence level, then Pr(u—1.960x0c< X< u+
1.960 X o) = 0.95, where p is the average and o is the standard deviation.
In other words, 95% of weight values are considered to exist within the
confidence interval, (u— 1.960<¢0) ~(u+ 1.960<0), and the other 5% resides
outside the interval. For example, the edge < A4, B> in Fig. 3.2 has the
confidence interval, (2.0 — 1.960 X 0.3) ~ (2.0 + 1.960 X 0.3) = 1.41 ~
2.59. If a weight value lies outside this interval, then it can be
considered as an outlier. Therefore, traversals whose edges have such
weight values can not contribute for the support of patterns.

In the algorithm, GenCandidates() generates new candidate patterns for
next pass. By the downward closure property, new candidates of length

k+1 can be obtained by joining the frequent patterns of length k. If
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there are two frequent patterns of length k, <p;,p,,--,p, > and <p,, py .-y
Dryq >, @ new candidate pattern of length k+1, <p,py ..., P, > can be
obtained. For example, < A4,B, C> and < B, C,D> result in <A, B, C,D>.
Note that <A4,B C> and < CD,E> can not be joined to make
<A,B CD, E>.

An example of the algorithm is shown in Fig. 3.6, which is derived
from the traversal database D in Fig. 3.2, and the augmented graph in
Fig. 3.4. We assume the minimum support as 2, and the confidence level
as 95%. The algorithm initializes the candidates (; of length 1 with all
the vertices. By scanning the database, the support of each candidate is
determined as shown in (]. The candidates, whose support is larger than
2, become the frequent patterns of length 1 as in Z,. By joining the
frequent patterns, new candidates of length 2 are obtained as in (,, after
deleting non-existing edges in the augmented graph. The database is
scanned again to count the support of the candidates. The supports are
then adjusted by using the confidence interval. For example, the support
of the pattern < A, B> is 5 initially, and is decreased to 4. This is due
to the fact that the weighted traversal (TID=7), (<A, B D, E C>,
<1.4,2.3,4.4,3.2>) can not contribute for the support since the weight 1.4
of the edge < A4,B> lies outside the confidence interval 1.41 ~ 2.59.
From the adjusted candidates, the frequent patterns L, are obtained.
Again, the candidates of length 3, (), are obtained by joining the Z,. For

example, <A,B> and < B C> result in <A4,B C>. The algorithm

proceeds similarly up to the Z,, and then terminates as no candidate of

length 4 can be generated by joining Z,'s.
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G L
Candidate Pruned Frequent Pruned
Pattern Support Pattern Support
<A> 8 <A> 8
<B> 9 <B> 9
<C> 10 <C> 10
<D> 6 <D> 6
<E> 4 <E> 4
G Ly
Candidate Pruned Frequent Pruned
Pattern Support Pattern Support
<A, B> 4 <A, B> 4
<A, C> 0 <B, C> 2
<B, C> 2 <B, D> 4
<B, D> 4 <B, E> 2
<B, E> 2 <C, A> 4
<C, A> 4 <D, C> 2
<D, C> 2 <D, E> 2
<D, E> 2 <E, C> 4
<E, C> 4
G Ls
Candidate Pruned Frequent Pruned
Pattern Support Pattern Support
<A, B, C> 1 <A, B, D> 2
<A, B, D> 2 <B, E, C> 2
<A, B, E> 1 <D, E, C> 2
<B, C, A> 1
<B, D, C> 1
<B, D, E> 1
<B, E, C> 2
<C, A, B> 1
<D, C, A> 1
<D, E, C> 2
<E, C, A> 1

Fig. 3.6 An example of discovering frequent patterns
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3.2.3 Pre-Mining Algorithm

The algorithm IMTP described in the previous section examines the
confidence interval in all steps to generate candidate patterns (j , from
L. This causes the complexity of the algorithm to increase because the
algorithm applies the confidence interval over and over again. To cope
with this difficulty, we propose an algorithm, called Pre-Mining Traversal
Patterns (PMTP). PMTP divides a traversal including outlier into split
traversal over 2.
>)

Definition 38.6. If a traversal (t,w)= (<wvy, vy, ...;v, >, <wy, Wy, ..., w

n—1
includes an edge <wv;,v,., > outside the confidence interval, then it can
be split into 2 sub-traversals, (tw) = (<vy,vy, ..., v, >, <w, Wy, ooy w;_; >)
and (¢, w)" = (U4 1 V4 gp s Uy =5 <KW 4 s Wypgs s W, 1 >). A split traversal

database is defined as a set of split traversals thus obtained.

Fig. 3.7 is a split traversal database converted from traversal database
in Fig. 3.2 using augmented graph of Fig. 3.4, and Definition 3.6. For
instance, in traversal (TID=2), (< B, D, E, C, A>,<3.0,4.3,3.5,3.1>) in Fig.
3.2, the edge < B, D> lies outside the confidence interval 3.02 ~ 4.58
because the edge < B, D> has the weight 3.0. Therefore, traversal

(TID=2) is split into 2 sub-traversals as < B> and <D, E, C A>.
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TID Traversal Weight
1 <A, B, C> <2.2, 2.0>

27 <B> <0.0>

2" <D, E, C, A> <4.3, 3.5, 3.1>
3 <C, A, B, D> <2.9, 2.0, 4.0>
4 <D, C, A> <4.0, 3.0>

5 <B, C, A> <2.2, 2.9>

6 <A, B, E, C> <2.1, 3.4, 3.2>
7' <A> <0.0>

7" <B, D, E, C> <3.9, 4.4, 3.2>
8 <B, E, C> <2.3, 3.4>

9 <B, D, C> <3.8, 3.1>

10’ <C> <0.0>

10" <A, B, D> <2.2, 4.1>

Fig. 3.7 An example of split traversal database

Fig. 3.8 presents the algorithm PMPT which discovers the frequent
traversal patterns from the split traversal database, 2. In Fig. 3.8, the
function Split Traversals() splits traversal database D into I by Definition
3.6. In this example, each traversals of Fig. 3.2 is converted into split
traversal database IJ of Fig. 3.7 by applying Split Traversals(). Hence, we
can expect performance enhancement in discovering frequent traversal
patterns, because there are no outliers in the split traversals, and no
examinations in confidence interval of each mining step like /M7TP. But
there may be the incremental costs, such as pre-process for traversal
database, and size of traversal database. Therefore, totally enhanced

performance will be presented by experiments.
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Algorithm. PMTP

input: weighted base graph G,,
traversal database D,
minimum support minsup,
confidence level CL

output: frequent patterns I,

begin
/I split traversals into sub-traversals
D' = Split Traversals (Gu,, D, CL);

C, < set of all vertices;

k=1

/I while candidates exist
while (| C,| > 0) {
/I count supports for candidate patterns
for each traversal t'€ D" {
P={plpE C,, p is a sub-traversal of t'};
Vpe P, p.count++;
h

/I obtain frequent patterns

L= {p|p€ Cy,, p-count > minsup}§

/I generate candidate patterns for next step
C,. . 1< GenCandidates (L, G.,);
kE++;

H

end;

Fig. 3.8 Enhanced algorithm to discover frequent traversal patterns

(PMTP)
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3.2.4 Priority of Patterns

When mining a large database, the number of patterns discovered can
easily exceed the capabilities of a human user to identify interesting
results. To address this problem, various techniques have been suggested
to reduce or order the patterns prior to presenting them to the user.

The algorithm estimates the importance of each pattern, as in the
previous works, according to the number of their occurrences in the
traversals. Although such support is concerned as the primary criterion
for the most problems, variety of supplementary information can be
adopted as secondary criteria. This thesis proposes a possible criterion

shown in Equation (3.2).

sz' Z Wy,

I]pl A= v, EP

o +
|E| ij Ewl

eJEE yEV

pp(p)=rrtP) (3.2)

In Equation (3.2), P denotes a pattern, £ total edges, V total vertices,

I, the number of edges incident into P. The priority of any pattern 2,

called PP(P), is determined by combining support, ratio of incident edges,
ratio of edge weights, and ratio of vertex weights. The reason behind the
combination is that a pattern becomes more important as it occurs more
often, more referred from other vertices, and edges and vertices with
higher weights. Fig. 3.9 shows the pattern priority of the frequent
patterns from . Although the three patterns have the same support, they

can be further ranked according to their priority.
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Frequent Pruned Pattern Rank
Pattern Support Priority

<A, B, D> 2 2.93

<B, E, C> 2 3.28

<D, E, C> 2 3.42

Fig. 3.9 An example of pattern priority

3.3 Experimental Results

We conducted several experiments on the algorithms, specifically to
evaluate the effect of confidence interval. For the experiments, base
graphs are generated synthetically according to the parameters, i.e., the
number of vertices 1/ and the number of edges £ leaving from each
vertex, called the out-degree or fanout of vertex. And all vertices have at
least one fanout. We then generate traversals, each of which traverses on
the base graph. During the generation, weights are assigned to the edges
in the traversals, and have the normal distribution.

The goal of the experiments is to examine the usefulness of confidence
interval in the mining process. We will also verify that PM7TP algorithm
is faster than IMTP algorithm for the execution times in various
experimental environments. The experimental environments are shown in
Table 3.2. And Table 3.3 presents all the symbols used in the

experiments of this chapter.
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Table 3.2 Experimental environments

Resource Description
Operating System Windows XP Professional, SP 2
Database Microsoft SQL Server 2000
Programming Language Microsoft Visual C++ 6.0
PC machine Pentium IV 3 GHz with 1 GB main memory

Table 3.3 Symbols representing the parameters of synthetic data

Symbol Description
%4 the number of vertices in base graph
) the number of edges in base graph
D the average number of fanout per vertex
T the number of traversals
M the maximum length of traversals
S threshold (minimum support, %)
C confidence level (%)

For example, V=100, E=300, T=10K, M=50, S=5, and C=95 represent a
group of experimental data with 100 vertices, 300 edges, 10,000
traversals, the maximum length of traversals as 50, 5% minimum
support, and 95% confidence level, which means that roughly 95% of edge
weights are confident, and remaining 5% are outliers. In most
experiments, we could clearly see that the PMTP is much more efficient
than the IM7TP, because the IMTP needs more time to classify the

weights on traversals into confident ones and outliers.
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Experiment 1: Execution times for different numbers of traversals

The experiment compares the execution times of two algorithms, IMPT
and PMTP, for different numbers of traversals. For this experiment, the
dataset have V=100 - E=300 - S=5 - M=50 - C=95, and the number of
traversals vary from 10,000 to 50,000.

Table 3.4 Execution times for dataset at different numbers of

traversals
Runtime (in seconds) at different numbers of traversals
Algorithms 10,000 20,000 30,000 40,000 50,000
IMPT 28 41 63 82 101
PMTP 10 19 29 38 47

From Table 3.4 and Fig. 3.10, the gap between execution times of two
algorithms becomes larger as the number of traversals increases. We can
verify the IMTP algorithm is more time-consuming algorithm. This is because
the cost for testing outliers using confidence interval increases as the number

of traversals increases.
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Fig. 3.10 Execution times w.r.t the number of traversals
(V=100 - E=300 - S=5 - M=50 - C=95)

Experiment 2: Execution times for different numbers of vertices

The experiment compares the execution times of two algorithms for
different numbers of vertices. For this experiment, the dataset have
10,000 traversals, 5% minimum support, 95% confidence level, maximum
length of traversals as 50, and the number of vertices varies from 100 to
500. Table 3.5 and Fig. 3.11 show the performance of IMTP and PMTP
algorithms. As the experiment 1, the results of this experiment verifies

that PMTP is more good algorithm than IMTP.
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Table 3.5 Execution times for dataset at different numbers of

vertices
Runtime (in seconds) at different numbers of vertices
Algorithms 100 200 300 400 500
IMPT 28 39 43 46 47
PMTP 10 15 15 13 15

---¢-- IMTP —=—PMTP

Execution time in seconds

100 200 300 400 500

Number of vertices

Fig. 3.11 Execution times w.r.t the number of vertices
(T=10K - D=3 - S=5 - M=50 - C=95)

Experiment 3: Execution times for different numbers of edges

The experiment compares the execution times of two algorithms for
different numbers of edges. The difference of the number of edges in a
graph with fixed number of vertices means that the graph density is

different. The graph density is defined as D= |E|/(|V]x|V—1]), where
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|E| denotes the number of edges and |V| the number of vertices. For this
experiment, the dataset have V=100 - T=10K - S=5 - M=50 - C=95, and the
number of edges varies from 150 to 500. It means that graph density
changes from about 0.015 to 0.051. From Table 3.6 and Fig. 3.12, we can
know that PMTP is usually faster than IM7TP when the graph density

varies.

Table 3.6 Execution times for dataset at different numbers of

edges

Runtime (in seconds) at different numbers of edges

Algorithms 150 200 250 300 350 400 450 500
IMPT 52 23 26 20 22 26 28 29
PMTP 15 9 12 10 11 12 15 14

---¢-- IMTP —&—PMTP
60

B0 - e

40 F---- e

Execution time in seconds

150 200 250 300 350 400 450 500

Number of edges

Fig. 3.12 Execution times w.r.t the number of edges
(V=100 - T=10K - S=5 - M=50 - C=95)
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Experiment 4: Execution times for different minimum supports

The experiment compares the execution times of two algorithms, IMTP
and PMTP, for different minimum supports. For this experiment, the
dataset have V=100 - E=300 - T=50K - M=50 - C=95, and minimum supports
vary from 1% to 10%. From Table 3.7 and Fig. 3.13, we can see that the
execution times of all algorithms decrease as the minimum support

increases and the gap between the execution times of two algorithms

becomes smaller due to the decrease of target traversals.

Table 3.7 Execution times for dataset at different minimum supports

Algorithms

Runtime (in seconds) at different numbers of thresholds

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

IMPT

290 185 138 113 99 92 80 72 62 58

PMTP

141 8 60 51 45 41 35 34 30 26
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Fig. 3.13 Execution times w.r.t minimum supports
(V=100 - E=300 - T=50K - M=50 - C=95)

Experiment 5: Execution times for different average lengths of

traversals

The experiment compares the execution times of two algorithms for
different average lengths of traversals. For this experiment, the dataset
have V=100 - E=300 - S=5 - T=10K - C=95, and average lengths of traversals
varies from 8 to 45. From Table 3.8 and Fig. 3.14, we can see that when
the average length of traversals is shorter, the gap between execution
times of two algorithms becomes smaller, because the number of edges to

be tested by confidence interval becomes fewer.
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Table 3.8 Execution times for dataset at different average
lengths of traversals
Runtime (in seconds) at different average lengths of
traversals
Algorithms 8 14 17 22 26 31 35 39 45
IMPT 5 8 10 13 16 18 18 20 21
PMTP 4 5 6 7 9 9 9 10 10
---¢-- IMTP —a—PMTP
25
20 - ANAEEES Py, JPSEELIA S
TR .
15 b . 4 O oot YFe

Execution time in seconds

17 22 26 31 35 39 45

Average length of traversals

Fig. 3.14 Execution times w.r.t average length of traversals

Experiment 6:

The experiment compares the execution times of two algorithms for
different confidence levels. For this experiment, the dataset have V=100 -

E=300 - S=5 - M=50 - T=10K, and confidence levels varies from 80% to 99%.

(V=100 - E=300 - S=5 - T=10K - C=95)

Execution times for different confidence levels
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From Table 3.9 and Fig. 3.15, the gap between execution times of two
algorithms becomes larger, when the specified confidence level becomes
larger. This is because the number of edges to be tested by confidence

interval becomes larger.

Table 3.9 Execution times for dataset at different confidence

levels

Runtime (in seconds) at different confidence levels

Algorithms 80% 90% 95% 98% 99%
IMPT 86 94 99 101 102
PMTP 33 43 46 48 49

---¢-- IMTP —=—PMTP

120
100 _7777777777777777777_,_,_’-,k-_-):-,-,-:’::::':: '''' ®_

.....

80 |--——- - ARt (SR

Execution time in seconds

80% 90% 95% 98% 99%

Confidence level

Fig. 3.15 Execution times w.r.t confidence levels
(V=100 - E=300 - S=5 - M=50 - T=10K)
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Experiment 7: Execution times with different confidence levels and

without confidence level

The experiment compares the execution times of PMTP for different
confidence levels and without confidence level. For this experiment, the
dataset have V=100 - E=300 - T=10K - S=5 - M=50, confidence level varies
from 80% to 100%, where 100% confidence level means that the algorithm
don't consider confidence interval. From Table 3.10 and Fig. 3.16, the
runtime changes from 33 up to 52 in seconds as the confidence level
varies from 80% to 100%. We can see that the execution time becomes
larger, when the confidence level becomes larger. This is because the
number of traversals for testing outliers increases as the confidence level

increases.

Table 3.10 Execution times for dataset at different confidence
levels in PMTP

Runtime (in seconds) with different confidence levels
Algorithm 80% 90% 95% 98% 99% 100%
PMTP 33 43 46 48 49 52
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Fig. 3.16 Execution times w.r.t confidence levels in PMTP
(V=100 - E=300 - T=10K - S=5 - M=50)

Experiment 8: The number of patterns for different confidence

levels and different numbers of traversals

The experiment compares the number of patterns for different
confidence levels and different numbers of traversals. For this experiment,
the dataset have V=100 - E=300 - S=5 - M=50, and confidence levels vary
from 80% to 100% and the number of traversals varies from 10,000 to
50,000. Table 3.11 and Fig. 3.17 show the number of patterns according
to the confidence levels and the number of traversals. In this figure, the
number of patterns becomes fewer, when the confidence level becomes
smaller. This means that the detection of outliers by the confidence
interval allows us to discover more reliable patterns. Therefore, we need

to select the confidence level with intention.
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Table 3.11 The number of patterns for dataset at different

confidence levels and numbers of traversals

The number of patterns for different numbers of

Confidence traversals
levels 10,000 20,000 30,000 40,000 50,000
80% 250 187 189 187 188
90% 296 256 254 254 251
95% 318 297 297 297 297
98% 327 317 318 318 317
99% 330 326 324 324 324
100% 339 336 334 334 334
350
330
310
wn
£ 290
g
= 270
[oN
= 250
o)
2 230
g 210
Z
190
170
150 1 1 1 1
10K 20K 30K 40K 50K
Number of traversals

Fig. 3.17 The number of patterns w.r.t the number of

traversals and confidence levels
(V=100 - E=300 - S=5 - M=50)
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Experiment 9: The number of patterns for different confidence

levels and minimum supports

The experiment compares the number of patterns for different
confidence levels and minimum supports. For this experiment, the dataset
have V=100 - E=300 - S=5 - M=50, and the confidence level varies from 80%
to 100% and the minimum support varies from 1% to 10%.

From Table 3.12 and Fig. 3.18, the number of patterns becomes also
smaller as minimum support and confidence level increase. This is due to

decrease the number of target traversals

Table 3.12 The number of patterns for dataset at different minimum

supports and confidence levels

The number of patterns for different thresholds
E}i‘;ﬁdence 1% 2% 8% 4% 5% 6% 1% 8% 9% 10%
80% 619 377 294 235 187 162 145 117 99 88
90% 992 b42 377 312 256 208 186 158 137 111
95% 1,256 668 443 354 297 251 207 181 158 135
98% 1,493 789 526 389 317 279 229 197 173 152
99% 1,606 839 566 401 326 289 243 204 180 159
100% 1,733 889 590 420 336 294 257 208 183 164
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Fig. 3.18 The number of patterns w.r.t minimum supports
and confidence levels (V=100 - E=300 - S=5 - M=50)

Experiment 10: The maximum length of patterns for different

minimum supports and different confidence levels

The experiment compares the maximum length of patterns for different
minimum supports and confidence levels. For this experiment, the dataset
have V=100 - E=300 - T=10K - M=50, and the minimum support varies from
1% to 10% and the confidence level varies from 80% to 100%. Table 3.13 and
Fig. 3.19 show the effect of confidence level on the length of patterns. As
previous experiments, the maximum length of patterns decreases as
confidence level decreases. It is because the number of traversals containing

pattern decreases if confidence level decreases from 98% to 90%.
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Table 3.13 Maximum length of patterns for dataset at different

minimum supports and confidence levels

The maximum length of patterns for different minimum
Confidence supports
levels 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
80% 5 4 4 4 4 4 3 3 3 3
90% 7 6 5 5 5 4 4 4 4 4
95% 7 6 6 6 5 5 5 4 4 4
98% 8 7 6 6 6 5 5 5 5 4
99% 8 7 7 6 6 6 5 5 5 5
100% 8 8 7 6 6 6 6 5 5 5
9
8
7

Max length of patterns
o~

Minimum support (%)

Fig. 3.19 Maximum length of patterns w.r.t minimum
supports and confidence levels (V=100 - E=300 - S=5 - M=50)

In above experiments, we examined the execution times for the two

algorithms, IMTP, and PTMP, using synthetic datasets. In IM7TP, as
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stated above, it 1s necessary to examine confidence interval in each
mining step for frequent traversal patterns. On the contrary, PMTP
executes a preprocessing stage for split traversal database, but no
examination of confidence interval. In the most of experiments, the
processing time of PMTP is decreased about 46.8% when comparison

IMTP with PMTP.
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Chapter 4 Mining Patterns from Unweighted
Traversals on Weighted Graph

This chapter proposes a new mining method for the discovery of
weighted traversal patterns from unweighted traversals on weighted
graph. For the weighted graph, this thesis only focused on the weights

attached to the vertices.

4.1 Definitions and Problem Statements

Definition 4.1. A weighted directed graph is a finite set of vertices and
edges, in which each vertex is attached with a weight value, and each
edge joins an ordered pair of vertices. A weighted base graph is a

weighted directed graph, on which traversals occur.

For example, the following base graph has 6 vertices and 8 edges, in

which each vertex is associated with a weight in Fig. 4.1.

5.0 6.0

7.0 4.0

Fig. 4.1 An example of a weighted base graph
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Definition 4.2. A traversal is a sequence of consecutive vertices along a
sequence of edges on a weighted base graph. We assume that every
traversal is a path, which has no repeated vertices and edges. The /Jength
of a traversal is the number of vertices in the traversal. The weight of a
traversal is the sum of vertex weights in the traversal. A traversal

database is a set of traversals.

TID Traversal
1 <A, B>
2 <B, C, E, F>
3 <A, C>
4 <B, C, E>
5 <A>
6 <A, C, E, D>

Fig. 4.2 An example of a traversal database

Definition 4.3. A subtraversal is any subsequence of consecutive vertices
in a traversal. If a pattern P is a subtraversal of a traversal 7, then we

say that P is contained in 7T, and 7T contains P.

There is a well known property on such subtraversal [4, 5] as follows.

Property 4.1. Given a traversal of length k, there are only two

subtraversals of length £—1.

For example, given a traversal of length 4, < B, C} E, F’>, there are only

two subtraversals of length 3, <B CE> and <CE,F>. Note that

- 49 -



non-consecutive sequences, such as < B, C, F’>, are not subtraversals.

Definition 4.4. The support count of a pattern P, scount(P), is the
number of traversals containing the pattern. The support of a pattern P,
, 1s the fraction of traversals containing the pattern. Given a

traversal database D, let |D| be the number of traversals.

(4.1)

There is a well known property on such support count and support as

follows.

Property 4.2. The support count and the support of a pattern decrease
monotonically as the length of the pattern increases. In other word, given
a k-pattern P and any [-pattern containing 7, denoted by (Z1), where

[> k, then scount(P)=> scount(P,1) and

Given a weighted base graph with a set of vertices V= {v,,v,,...,v, }, in
which each vertex v; is assigned with a weight w; = 0, we will define the

weighted support of a pattern.

Definition 4.5. The weighted support of a pattern P, wsupport(P), is

(port (P)) (42)

wsupport (P)= ( Z w;

UJE P

Definition 4.6. A pattern P is said to be weightedly frequent when the
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weighted support is greater than or equal to a given minimum weighted

support (minwsup) threshold,

wsupport (P) = minwsup (4.3)

For example, given a weighted base graph and a traversal database of
Fig. 4.1 and 4.2, and minwsup of 5.0, then the pattern < B C EF> is
weightedly frequent since (5.0 + 7.0 + 4.0) X 2/6 = 5.3 > 5.0, but the
pattern < B, C> is not since (5.0 + 7.0) X 2/6 = 4.0 < 5.0.

From Equation (4.1), (4.2) and (4.3), a pattern P is weightedly frequent
when its support count satisfies:

minwsup X | D)

Mw, (4.4)

UjEP

scount(P) >

We can consider the right hand side of Equation (4.4) as the lower
bound of the support count for a pattern P to be weightedly frequent.

Such a lower bound, called a support bound, is given by

sbound(P) = (4.5)

by W;

minwsup X | D|
v, EP w

We take the ceiling of the value since the function sbound(P) is an
integer. From Equation (4.4) and (4.5), we can say a pattern P is
weighted frequently when the support count is greater than or equal to

the support bound.

scount (P) > sbound(P) (4.6)
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Note that sbound(P) can be calculated from the weighted base graph
without referring the traversal database. On the contrary, scount(P) can
be obtained by referring traversal database.

The problem concerned in this chapter is stated as follows. Given a
weighted directed graph, called a weighted base graph, and a set of path
traversals on the graph, called a traversal database, find all weighted

frequent patterns.

4.2 Mining Weighted Frequent Patterns

We propose a method for the mining of weighted frequent patterns. An
efficient algorithm for mining large itemsets has been the Apriori
algorithm [1, 4, 21, 33]. The reason why the Apriori algorithm works is
due to the downward closure property [49], which says all the subsets of
a large itemset must be also large. For the weighted setting, however, it
is not necessarily true for all subpatterns of a weighted frequent pattern
to be weighted frequent. For example, although a pattern <B, C> is a
subpattern of the weighted frequent pattern <B, C, E>, it is not weighted
frequent. Therefore, we can not directly adopt Apriori algorithm. Instead,
we will extend the notion of the support bound [38], which can be

applied to pruning and candidate generation in the mining process.

4.2.1 Pruning by Support Bounds

One of the cornerstones to improve the mining performance is to devise

a pruning method which can reduce the number of candidates as many
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as possible. We must prune such candidates that have no possibility to
become weighted frequent in the future. On the contrary, we must keep
such candidates that have a possibility to become weighted frequent in

the future. Main concern is how to decide such possibility.

Definition 4.7. A pattern P is said to be feasible when it has a
possibility to become weighted frequent in the future if extended to
longer patterns. In other words, when some future patterns containing P

will be possibly weighted frequent.

Now, the pruning problem is converted to the feasibility problem. For
the decision of such feasibility, we will first devise the weight bound of a
pattern. Let the maximum possible length of weighted frequent patterns
be u, which may be the length of the longest traversal in the traversal
database. Given a k-pattern P, suppose [-pattern containing P, denoted
by (P,1), where k<< u. For the additional (I—k) vertices, if we can

estimate upper bounds of the weights as W, 5 W, e W, then the upper

bound of the weight of the I-pattern (2 1) is given by
I—k

wbound(P, 1) = Ew + Ew (4.7)

v,EP j=1 i

We call this upper bound as [-weight bound of P. The first sum is the
sum of the weights for the k-pattern P and the second one is the sum of
the (I— k) estimated weights, which can be estimated in several ways. We
will propose three estimation methods in the following section.

From Equation (4.5) and (4.7), we can derive the lower bound of the
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support count for [-pattern containing P to be weighted frequent. Such

lower bound, called I-support bound of P, is given by

minwsup X< |D|
wbound (P, 1)

sbound (P, 1) = (4.8)

Lemma 4.1. A pattern P is feasible if scount(P)> sbound(P,l) for some

k< 1< u, but not feasible if scount(P)< sbound(P,1) for all k<< u.

Proof. Let I, be that out of [. If scount (P) > sbound(P, li), then because
scount(P) = scount(P,1;) by Property 4.2, there is a possibility to be
scount(P,1;) = sbound(P,l;). Tt means that (Z,l;) will possibly be weighted
frequent. On the contrary, if scount(P)< sbound(P, lz)’ then scount(P, lz)<
sbound(P, li) because scount(P) > scount (P, li) by Property 4.2. It means

that (21,) will definitely not be weighted frequent.

If a pattern P is feasible then some I[-patterns containing P will be
possibly weighted frequent. In other word, P has a possibility to be
subpatterns of some weighted frequent [-patterns. Therefore, P must be
kept to be extended to longer patterns for possible weighted frequent
patterns in the coming passes. On the contrary, if a pattern P is not
feasible, then all [-patterns containing P will not be weighted frequent.
In other word, P certainly has no possibility to be subpattern of any
weighted frequent [-patterns. Therefore, P must be pruned.

For example, referring to Fig. 4.1 and Fig. 4.2, given a 2-pattern

< B, C>, suppose 3-pattern < B, C;—>. For the additional vertex '—', we
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can estimate a possible upper bound of the weight as 12.0, which is the
greatest weight among the remaining vertices besides B and C. Therefore,
the 3-support bound of < B, C> 1is

5.0 6

sbound(< B, C>,3)= (5.04+ 7.0)+ (12.0)

=2

It means if the support count of < B, C> is greater than or equal to 2,
some 3-patterns will be possibly weighted frequent. In other word,
< B, C> has a possibility to be subpatterns of some weighted frequent
3-patterns. Because the support count of the pattern < B, C> is actually
2, the pattern must be extended to 3-patterns for possible weighted

frequent patterns.

Corollary 4.1. A pattern P is feasible if scount(P)=> sbound(P).

Proof. From Equation (4.5), (4.7) and (4.8), sbound(P)=> sbound(P,1) for
all k< [!< u. Therefore, scount(P)=> sbound(P,1) for all k< l< u, which

means P is feasible by Lemma 4.1.

In this case, we don’t need to estimate sbound(P,1) to decide the
feasibility of P. On the contrary, in case of scount(P)< sbound(P), we can
not decide the feasibility, and therefore we need to estimate sbound(P,1)
to decide the feasibility by Lemma 4.1.

According to Lemma 4.1 along with Corollary 4.1, we can devise a

pruning algorithm, called 'pruning by support bounds', as follows.

- B5 -



Algorithm. Pruning-SB

Input: Candidate pattern P,
Unpruned candidate patterns set C,
Maximum possible length of pattern I

Output: Pruned candidate patterns set C

begin
for each pattern P in candidates set O 1
if (scount(P) > sbound(P))
continue; /I P is feasible. keep
for each [ from k+1 to u {
estimate sbound(P,1);

if (scount(P) > sbound(P;1))

break; /I P 1s feasible. keep
¥
if (1> w)
C.= C.—{P}; /I P is not feasible. prune
H
end;

Fig. 4.3 Algorithm Pruning-SB pruning by support bounds

We can devise another pruning algorithm by using the minimum of !

-support bounds.

Definition 4.8. The maximum [-weight bound, wbound(P,+), and the
minimum l-support bound of a pattern P, sbound(P,+), are defined as
follows.

wbound (P, +) = maz (wbound (P, 1)),

sbound (P, +)= min(sbound(P,1)), k< | < u.
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Corollary 4.2. A pattern P is feasible if scount(P)=> sbound(P,+), but
not feasible if scount(P)< sbound(P,+).

Proof. If scount(P)> sbound(P,+), then there is at least one [, such that
scount (P) = sbound(P,1;), wheresbound(P,1,)= sbound(P,+). On the contrary,

if scount(P) < sbound(P,+), then scount(P)< sbound(P,1) for all k<< u.

According to Corollary 4.2 along with Corollary 4.1, we can devise
another pruning algorithm, called 'pruning by minimum support bound',

as follows.

Algorithm. Pruning-MSB
Input: Candidate pattern P,

Unpruned candidate patterns set C,

Output: Pruned candidate patterns set C

begin
for each pattern P in candidates set C {
if (scount(P) > sbound(P))
continue; /I P is feasible. keep
estimate sbound(P,+);
if (scount(P) > sbound(P,+))
continue; /I P is feasible. keep
C.= C,—{P}; /I P is not feasible. prune
H

end;

Fig. 4.4 Algorithm Pruning-MSB pruning by minimum support bound
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4.2.2 Candidate Generation

This thesis devises candidate generation algorithms by defining
downward closure properties between feasible patterns. If there is a
downward closure property between feasible patterns, new candidates can

be generated from current feasible patterns.

Definition 4.9. We say that there is partial downward closure property

when the (k—1)-subpattern <p,,py...,p,_; > of a feasible Fk-pattern
<Py Py P > 1s also feasible. We say that there is full downward
closure property when two (k—1)-subpatterns <p,,p,,...p._, > and

<Dy D55 --» 0, > of a feasible k-pattern <p,,p,, ...,p, > are also feasible.

Note that there are only two (k—1)-subpatterns of a k-pattern by
Property 4.1. When there is the partial downward closure property, we

can generate candidate (k+1)-patterns, C,.,, from feasible k-patterns, C,

as follows.
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Algorithm. Gen-PDC
Input: Candidate patterns set C,
Weighted base graph &

Output: Joined candidate patterns set C, .,

begin
Cpi1= 5
for each P= <p,,pys ..., p, > in C, 1
for each edge <pi, v> in G

if v is not already in P { /I not repeated vertex

P is extended to P = < P1yPas s Dips U >
Cii1= G U P

end;

Fig. 4.5 Algorithm Gen-PDC for candidate generation

When there is a full downward closure property, we can generate

in a similar way.
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Algorithm. Gen-FDC
Input: Candidate patterns set C,

Weighted base graph &
Output: Joined candidate patterns set C, .,

begin
Cpi1= 5
for each P= <p,,pys ..., p, > in C, 1
for each edge <p,,v> in G
if (v is not already in P) and (Q= < py,...,p,,v> is in C}) 1
P is extended to P = < py,py, s Py 0 >
Cii1= G 1 UPS

end;

Fig. 4.6 Algorithm Gen-FDC for candidate generation

This algorithm will generate less number of candidates than algorithm
Gen-PDC.

When there is the full downward closure property, (.., can be
alternatively obtained by self-joining (.. That 1is, two k-patterns
P= <p|,pys-p, > and Q= < qy; ¢y, -, q, > will be joined if p,= q;, p;= ¢,
D= q,—;, and p;# q. This results in a new candidate pattern
<Dy Dys s s @, >. For example, the join of <A, B C> and <B CD>

results in < 4, B, C; D>. This method need not refer to the weighted base

graph G, besides for C, generation. For C, generation, each generated

2-pattern must be excluded if there is no corresponding edge in G.
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Algorithm. Gen-S@L
Input: Candidate patterns set C,
Output: Joined candidate patterns set Cj,

begin
Cri1= 9
CSet = select  P.py, P.py, ..., P.py, Q-q;
from C. P, C. Q
where P.p, = @Q.q; and P.p; = Q.qy ...
and P.p, = Q.q._, and P.p; # Q.q;
while (CSet = @) {
P = CSet{< P.p,, P.py, ..., P.p;, Q.q;, >}
Cis1= G UP

end;

Fig. 4.7 Algorithm Gen-SQL for candidate generation

In Fig. 4.7, algorithm Gen-SGL need not refer to the weighted base

graph G, besides for C, generation. For C, generation, each generated

2-pattern must be excluded if there is no corresponding edge in G.

4.2.3 Mining Algorithm

By combining the pruning and candidate generation algorithms as a
whole, we can devise an algorithm for mining weighted frequent patterns.
Fig. 4.8 shows the algorithm proposed in this thesis, which performs in a

level-wise manner.
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Algorithm. Mining weighted frequent patterns
Inputs:  Weighted base graph G,

Traversal database D,

Minimum weighted support minwsup

Output: Set of weighted frequent patterns I,

begin
/I 1. maximum length of weighted frequent patterns
U= max (length(t)), te D;
/I 2. initialize candidate patterns of length 1
C = V(@);

for (k=1; k< v and C.# @; k++) {

/[ 3. obtain support counts
for each traversal t = D {

for each pattern p& C,

if p is contained in t, then p.scount—+-+;

}
/I 4. determine weighted frequent patterns
L,= {plp € C, pweightedSupport = minwsup };

1 equivalently, p.scount = p.sbound

if (k<wu) {
/I 5. prune candidates
C,= Prune Candidates(C, G, u);
/I 6. generate new candidates for next pass
G+ 1= GenCandidates (G, @);

}

end;

Fig. 4.8 Algorithm for mining weighted frequent patterns
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In the algorithm as shown in the Fig. 4.8, each step is outlined as
follows. Step 1 is to find out the maximum possible length of weighted
frequent patterns, which is limited by the maximum length of traversals.
Step 2 initializes candidate patterns of length 1 with the vertices of
weighted base graph. In Step 3, traversal database is scanned to obtain
the support counts of candidate patterns. Step 4 is to determine weighted
frequent patterns if the weighted support is greater than or equal to the
specified minimum weighted support. Equivalently, if the support count is
greater or equal to the support bound. In Step 5, the subroutine
PruneCandidates() is to prune candidate patterns by checking their
feasibility. The algorithm Pruning-SB or Pruning-MSB can be used
according to their efficiency. The remaining patterns are feasible patterns.
In Step 6, the subroutine GenCandidates() generates new candidate
patterns of length k+1 from the feasible patterns of length k£ for the
next pass. The algorithm Gen-PDC, Gen-FDC or Gen-SGQL can be used

according to its applicability and efficiency.

4.3 Estimations of Support Bounds

In this section, we propose two methods for the estimation of weight

and support bound.

4.3.1 Estimation by All Vertices

Given a k-pattern P, suppose [-pattern containing P, where k< [< u.

Let V be set of all vertices in the weighted base graph. Among
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remaining vertices (V— P), let the vertices with the (I—k) greatest

weights be v, ,v,,...v, . Then, the l-weight bound, wbound (P, 1), and the I

-support bound, sbound(P,1), of P are defined same as Equation (4.7) and

(4.8), respectively.

For example, refer to Fig. 4.1 and Fig. 4.2, the 3-support bound for the
pattern < A> is

5.0 6
(2.0)+ (12.0+ 7.0)

sbound(< A >,3)= =2

Corollary 4.3. wbound(P,1) increases monotonically, and accordingly

sbound(P,1) decreases monotonically as ! increases.

Let the upper limit of the length of possible weighted frequent patterns
be known as wu. By Corollary 4.3, the minimum support bound of P is

the w-support bound of P,

sbound (P, +) = sbound(P, u) (4.9)

By Equation (4.9) along with Corollary 4.2, if scount(P)=> sbound(P,u),
then P is feasible. On the contrary, if scount(P)< sbound(P,u), then P is
not feasible. This means that we do not need to calculate [-support
bounds of P for k< !< u. Therefore, the pruning algorithm Pruning-MSB

is more efficient than Pruning-SB.

Corollary 4.4. For any p, in P= <p,,py...,p, >, wbound(P—{p,},1)=
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wbound(P, 1), and accordingly sbound(P— {pi},l) < sbound(P,1).

Proof. wbound(P—{p,},1) is the sum of the vertex weights of P
excluding p, and (I—k+ 1) greatest vertex weights among the vertices
including p,. This sum is always greater than or equal to the sum of the

vertex weights of P and (I— k) greatest vertex weights.

Lemma 4.2. There i1s the full downward closure property among feasible

patterns. That is, if a k-pattern P= <p,p,,...,p, > 1is feasible, then the
two (k— 1)-subpatterns P, = <pysPy Dy > and Py= <p,, s ..., p, > are

also feasible.

Proof. The if condition means scount(P)=> sbound(P,u). For P,
scount(Pa)Z sbound(P) by Property 4.2, and sbound(Pa,u)S sbound(P,u) by
Corollary 4.4. Therefore scount(Pa)z sbound(Pa,u), which implies P, 1is

a

feasible. This is similar for 7.

Therefore, the candidate generation algorithm Gen-FDC or Gen-SGL can be
applied.

Consider an example.

From the Fig. 4.1 and 4.2, we will show how the weighted frequent
patterns are generated from the traversal database. Suppose that the
minwsup (minimum weighted support) is 5.0.

1. In the wupperLimit() subroutine, the algorithm will scan the length of
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traversals, and returns the maximum length, which is 4 in this example.
The maximum length is the upper limit of the length of weighted
frequent patterns.

2. During the initialization step, the candidate patterns of length 1 are

generated with all vertices of the weighted base graph.
C=1{<A><B><C><D><E><F>}

3. The algorithm repeats as followings.

Pattern wbound(P, 4) Weightedly .
) scount(P) | sbound(P) / shound(P. 4) frequent Feasible
<A> 4 15 27 1 2 v
<B> 3 6 30 /1 v
<C> 4 5 30 /1 v
<D> 1 5 30 /1 v
<E> 3 8 29 / 2 v
<F> 1 3 30 /1 v

Candidates for next pass are generated by Gen-FDC or Gen-SQL.

Pat(;;rn scount(P) | sbound(P) /WZ;OOLZIIZZ;Z 44)) V\;i:ei}::frftly Feasible
<A, B> 1 5 26 / 2
<A, C> 2 4 27 1 2 v
<B, C> 2 3 30/ 1 v
<B, D> 0 - -
<C, E> 3 3 - v v
<D, F> 0 - -
<E, D> 1 3 29 / 2
<E, F> 1 2 29 / 2
Pa‘;;rn scount(P) | shound(P) /WZ;OOLZZZ;Z 44)) V\;i;i};?ftly Feasible
<A, C, E> 1 3 25/ 2
<B, C, E> 2 2 - v v
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'

In the above example, '—' denotes 'not need'.

The weighted frequent patterns are {< C E>,< B, C E>}.

4.3.2 Estimation by Reachable Vertices

To prune unnecessary candidates as many as possible, support bounds
need to be estimated as high as possible. It means that we must
estimate weight bounds as low as possible. The previous method,
however, has a tendency to over-estimate the weight bounds. This is why
the topology of a weighted base graph is not considered. Specifically, the
vertices with greatest weights are chosen one after one, even though they

can not be reached from the corresponding pattern.

Definition 4.10. Given a weighted base graph G, k-reachable vertices
from a vertex v is all the vertices reachable from v within the distance

k.

k-reachable vertices can be regarded as the vertices within the radius k
from wv. Therefore, k-reachable vertices include all the (k— 1)-reachable
vertices.

Given a k-pattern P, let R(P1), k<l<u, be the (I—k)-reachable
vertices from the head vertex of P, but not in P and not through the

vertices in P. They can be obtained by a level wise manner.
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Algorithm. Reachable, R(P,1)
Inputs:  Weighted base graph G,
Candidate pattern P,
The number of vertices appended for extending pattern I

Output: Set of weighted frequent patterns I,

begin
7 = {head vertex of P} if (I= k+ 1), otherwise N;
N = J;

for each vertex v in T
for each edge <v,w> in G
if w is not in P and R(P,l1— 1) and N, then append w to V;
R(P,1)= R(P,l1— 1)U N;

end;

Fig. 4.9 Algorithm Reachable for searching reachable vertices from

candidate pattern

For example, from Fig. 4.1, R(<A>,2) is {B C}, and R(<A>,3) is
{B, G D E}.
Among the vertices in R(P, 1), let the vertices with the (I— k) greatest

weights be v, ,v, ..., v

Lt Then, the [-weight bound, wbound(P,1), and the [
-support bound, sbound(P,l), of P are obtained by Equation (4.7) and
(4.8), respectively. For example, refer to Fig. 4.1 and Fig. 4.2, the
3-support bound for the pattern < A4 > 1is

5.0 6
(2.0)+ (7.0+ 6.0)

sbound(< A>,3)= =2

Corollary 4.3'. wbound(P,l) increases monotonically, and accordingly

sbound(P,1) decreases monotonically as ! increases.
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By Corollary 4.3', the minimum support bound of P is the wu-support
bound of P,

sbound (P, +)= sbound(P, u) (4.9)

In spite of Equation (4.9), however, the pruning algorithm Pruning-SB
may be more efficient than Pruning-MSB because the pruning can be
decided before u due to the level wise characteristic of the algorithm

R(P1).

Corollary 4.4'. For any p, in P= <p,py -, p. >, wbound(P—{p,},1)=>

wbound(P, 1), and accordingly sbound(P— {pk},l)S sbound (P, 1).

Proof. wbound(P—{p,},1) is the sum of the vertex weights of P
excluding p, and (I—k+ 1) greatest vertex weights among the vertices of
R_,.,(P—{p.}) which includes all the vertices of & _,(P) and p,. This

sum is always greater than or equal to the sum of the vertex weights of

P and (I— k) greatest vertex weights among the vertices of & _,(P).

Lemma 4.2'. There is the partial downward closure property among

feasible patterns. That is, if a k-pattern P= <p,,p,,...,p, > 1is feasible,

then the (k—1)-subpattern P,= < p,,py....,p,_, > is also feasible.

Proof. The necessary condition means scount(P)> sbound(P,1). For P

a’

scount(Pa)Z sbound(P) by Property 4.2, and scount(Pa,u)é sbound(P,u) by
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Corollary 4.4'. Therefore scount(P,)> sbound(P,u) which implies P, is

feasible.

a

Therefore, the candidate generation algorithm Gen-PDC can be only

applied.

Consider an example.

Pattern 2Tl ) Weightedly .
) scount(P) | sbound(P) / shound(P, 1) frequent Feasible
[ =2 |1=3]1¢=
<A> 4 15 9/ 4 5 - v
<B> 3 6 12 / 3 < - v
<C> 4 5 11/ 3 — - v
<D> 1 5 18/ 2 X X
<E> 3 8 16 / 2 = - v
<F> 1 3 X X X
In the above example, 'X' denotes 'mot applicable'.
Candidates for next pass are generated by Gen-PDC.
Pattern whound(®, 1) Weightedly .
®) scount(P) | shound(P) / shound(P, 1) frequent Feasible
Il =3 [l =4
<A, B> 1 5 14/ 3 26 / 2
<A, C> 2 4 13/ 3 27 1 2 v
<B, C> 2 3 16/ 2 - v
<B, D> 0 - - -
<C, B> 3 3 - - v v
<E, D> 1 3 22 / 2 X
<E, F> 1 2 X X
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- whound(P, 1) Weichted]
atiern scount(P) | sbound(P) / shound(P, 1) CIEALEAY | Peasible
P i frequent
<A, C, E> 1 3 26 / 2
<B, C, E> 2 2 - v v
<C, E, D> 1 2 29 / 2
<C, E, F> 1 2 X
Legire scount(P) shound(P) Weightedly Feasible
@) frequent
<B, C, E, D> 0 -
<B, C, E, F> 1 2

The weighted frequent patterns are {< C E>,< B C E>}.

4.4 Experimental Results

This section describes experimental results of the mining algorithms,
and compares two estimation algorithms, Al/ vertices and Keachable
vertices, by using synthetic dataset. For the experiments, a weighted base
graph is generated synthetically according to the parameters, i.e., number
of vertices and average number of edges per vertex. And then, we
assigned distinctive weight to each vertex in the weighted base graph.
Traversal datasets are also generated randomly according to the
parameters, i.e., number of traversals and maximum length of traversals.

By these experiments, we compare the running times of two algorithms,
All Estimation Algorithm and Reachable Estimation Algorithm. And then,
we examine the number of feasible patterns generated during the mining

process. The experimental environments are shown in Table 4.1.

- 71 -



Table 4.1 Experimental environments

Type Description
Operating System Windows XP Professional, SP 2
Database Microsoft SQL Server 2000
Programming Language Microsoft Visual C++ 6.0
PC Machine Pentium IV 3 GHz with 1 GB main memory

Table 4.2 presents all the symbols used in the experiments of this
chapter. In the experiments, for example, V=100, E=300, T=10K, M=10,
D=3, and S=5 mean a group of data with 100 vertices, 300 edges, 10,000
traversals in the database, the maximum length of traversal as 10, the
average number of fanout as 3, and the minimum weighted support as

threshold as 5.

Table 4.2 Symbols representing the parameters of synthetic data

Symbol Descriptions

the number of vertices in weighted base graph

the number of edges in base graph

the average number of fanout per vertex

the number of traversals

the maximum length of traversals (u)

NNV &<

threshold (minimum weighted support)

Experiment 1: Execution times for different numbers of traversals

This experiment compares the execution times of two algorithms for

different numbers of traversals. This experiment uses the different
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number of traversals to compare the running times of two estimation
algorithms, A/l and Reachable. The dataset have V=1,000 - E=3,000 - S=5
- M=10, and the number of traversals varies from 10,000 to 50,000.

Table 4.3 Execution times for dataset at different numbers of

traversals
Runtime (in seconds) at different number of traversals
Algorithms 10,000 20,000 30,000 40,000 50,000
All 41 81 165 270 408
Reachable 744 1,051 1,272 1,484 1,691

From Table 4.3 and Fig. 4.10, it can be seen that the gap between the
execution times of two algorithms becomes larger as the number of traversals
increases. We can find that the Reachable algorithm is more time-consuming.

This is because the cost of finding reachable vertices increases when the

number of traversals increases.
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Number of traversals

Fig. 4.10 Execution times w.r.t the number of traversals
(V=1,000 - E=3,000 - S=5 - M=10)

Experiment 2: Execution times for different number of edges

This experiment compares the execution times of two algorithms for
different number of edges. The difference of the number of edges in a
graph with fixed number of vertices means that the graph density is
different. The density of a  directed graph is defined as
D=1|FE|/(VIx|V—1|), where |F| denotes the number of edges and |V the
number of vertices. In generally, there is an inverse relationship between
the density and the radius of a graph, then the graph radius becomes
smaller as the graph density becomes larger. This experiment compares

the running times of two algorithms when the graph density varies.
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Table 4.4 Execution times for dataset at different numbers of

edges

Runtime (in seconds) at different numbers of edges

Algorithms 150 200 250 300 350 400 450 500
All 12 12 14 13 13 14 13 14
Reachable 11 13 15 16 16 18 17 19

For this experiment, the dataset have 100 vertices, 10,000 traversals,
minimum weighted support as 5, the maximum length of traversals as 5,
and the number of edges varies from 150 to 500. This experiment tests
performance of two estimation algorithms when the graph density varies
from 0.015 to 0.051. We can verify that if graph density becomes smaller,
i.e, 0.015, Reachable Estimation Algorithm becomes more fast than Al/
FEstimation Algorithm. This is because FKeachable FEstimation Algorithm is
less time-consuming for searching reachable vertices from terminal vertex

in a pattern, when the number of edges in a graph becomes smaller.
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Fig. 4.11 Execution times w.r.t the number of edges
(V=100 - T=10K - S=5 - M=5)

Experiment 3: Execution times for different minimum weighted

supports

This experiment compares the execution times of the two algorithms for
varying minimum weighted supports. For this experiment, the dataset
have V=100 - E=300 - T=10K - M=10, and the minimum weighted supports
varies from 1 to 10. Table 4.5 and Fig. 4.12 show the performance of two
estimation algorithms for mining weighted frequent patterns. As shown in
Fig 4.12, we observe that the difference of execution times between two
estimation algorithms becomes smaller when the specified minimum
weighted support becomes larger. This is because the number of target
traversals in traversal database becomes relatively smaller, when the

specified minimum weighted support used for finding weighted frequent
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patterns becomes larger.

Table 4.5 Execution times for dataset at different minimum weighted

supports

Runtime (in seconds) at different minimum weighted supports
Algorithms 1 2 3 4 5 6 7 8 9 10
All 163 91 65 51 41 35 31 27 24 21
Reachable |1,451 1,270 1,137 1,061 988 896 848 831 775 744

---#--- All —8— Reachable
1600

1400
1200
1000

800

600
400 |----- SR am. N

Execution time in seconds

L e

Minimum weighted support

Fig. 4.12 Execution times w.r.t minimum weighted supports
(V=100 - E=300 - T=10K - M=10)

Experiment 4: Execution times for different maximum lengths of

traversals

The experiment compares the execution times of two algorithms for
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different maximum lengths of traversals. The maximum length of
traversals 1s an important parameter used for detecting vertices to have
possibility to be patterns later. It becomes longer, the consuming time to
search reachable vertices in especially Keachable becomes much more
than that of A/l For this experiment, the dataset have V=100 - E=300 -
S=5 - T=10K, and the maximum length of traversals varies from 4 to 10.

From Table 4.6 and Fig. 4.13, when the maximum length of traversals
becomes shorter, i.e., 4, Reachable is more efficient than A/l On the
other hand, when the maximum length of traversals becomes longer,
Reachable is less efficient. This is because Reachable spends more time to

find reachable vertices as the maximum length of traversals increases.

Table 4.6 Execution times for dataset at different maximum

lengths of traversals

Runtime (in seconds) at different maximum lengths of

traversals
Algorithms 4 5 6 7 8 9 10
All 11 12 15 17 19 23 26
Reachable 10 12 15 19 22 29 32
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Execution time in seconds
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Fig. 4.13 Execution times w.r.t maximum length of traversals
(V=100 - E=300 - S=5 - T=10K)

Experiment 5: The number of feasible patterns for different

numbers of traversals

The experiment illustrates the 1impact of Reachable FEstimation
Algorithm on mining weighted frequent patterns for varying number of
traversals. This experiment wuses different number of traversals to
compare the number of feasible patterns of two estimation algorithms.
The dataset have V=1,000 - E=2,000 - S=5 - M=10, and the number of
traversals varies from 10,000 to 50,000. As mentioned before, A/l Estimation
Algorithm leads to the over-estimated weight bounds for the feasible
patterns, due to the non-consideration of the topology of a weighted base
graph. Therefore, Reachable is usually more good estimation algorithm

than A/l for the number of feasible patterns.
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Table 4.7 The number of feasible patterns for dataset at

different numbers of traversals

Different changed traversal size
Algorithms 10,000 20,000 30,000 40,000 50,000
All 1,273 1,305 2,001 2,582 3,307
Reachable 1,170 1,199 1,909 2,523 3,200

---¢ -+ All —8— Reachable

3500

K4

3000

2500

2000

1500

Number of feasible patterns

1000 L L L L
10K 20K 30K 40K 50K

Number of traversals

Fig. 4.14 The number of feasible patterns w.r.t the number
of traversals (V=1,000 - E=2,000 - S=5 - M=10)

Experiment 6: The number of feasible patterns for different

numbers of edges

In Experiment 2, we discussed the effect of graph density. This
experiment tests the trend for the number of feasible patterns with two

estimation algorithms when the graph density varies. For this experiment,
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the dataset have 10,000 traversals, a weighted minimum support as 5,
and the maximum length of traversals as 10, and the graph density
varies as the total number of edges from 150 to 500 with the fixed
number of vertices as 100.

Table 4.8 and Fig. 4.15 test the number of feasible patterns with
respect to different graph densities. In the figure, we observe that graph
density becomes larger, the number of feasible patterns between two
estimation algorithms 1is analogously. It means that when estimating
weight bounds, the number of vertices included for estimation is similar,

because the radius of weighted base graph becomes shorter.

Table 4.8 The number of feasible patterns for dataset at

different numbers of edges

Different changed numbers of edges

Algorithms 150 200 250 300 350 400 450 500
All 325 285 292 261 248 250 216 219
Reachable 270 262 272 252 238 241 212 219
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Fig. 4.15 The number of feasible patterns w.r.t the number
of edges (V=100 - T=10K - S=5 - M=10)

Experiment 7: The number of feasible patterns for different

minimum weighted supports

The experiment compares the number of feasible patterns with two
estimation algorithms for different minimum weighted supports. For this
experiment, the dataset have V=100 - E=300 - T=10K - M=10, and the
minimum weighted support varies from 1 to 10. As previous experiment,

Reachable generates less number of feasible patterns than that of AlL
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Table 4.9 The number of feasible patterns for dataset at

different minimum weighted supports

Different changed minimum weighted supports

Algorithms 1 2 3 4 5 6 7 8 9 10
All 699 504 401 340 285 259 236 211 188 170
Reachable 652 460 362 296 262 238 207 173 158 143

---4--- All —=— Reachable
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400
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Number of feasible patterns
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Minimum weighted support

Fig. 4.16 The number of feasible patterns w.r.t minimum
weighted supports (V=100 - E=300 - T=10K - M=10)

Experiment 8: The number of feasible patterns for different

maximum lengths of traversals

The experiment shows the trend of the number of feasible patterns
with respect to the maximum lengths of traversals. For this experiment,

the dataset have V=100 - E=300 - S=5 - T=10K, and the maximum length of
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traversals varies from 4 to 10. In this experiment, we measured the total
number of feasible patterns for all mining stages. As shown in the figure,
the number of feasible patterns for Reachable is smaller than that of Al
The difference of the number of feasible patterns between two estimation

algorithms becomes larger as the maximum length of traversals increases.

Table 4.10 The number of feasible patterns for dataset at

different maximum lengths of traversals

Different changed maximum length of traversals
Algorithms 4 5 6 7 8 9 10
All 215 285 391 509 637 781 952
Reachable 176 258 353 463 595 738 869
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Fig. 4.17 The number of feasible patterns w.r.t maximum
length of traversals (V=100 - E=300 - S=5 - T=10K)
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Experiment 9: The number of feasible patterns for each mining

stage

The experiment compares the number of feasible patterns with two
estimation algorithms for each mining stage. For this experiment, the
dataset have V=100 - E=300 - S=5 - M=10 - T=10K. From Table 4.11 and
Fig. 4.18, we can see that the gap between the number of feasible patterns of
Reachable and All becomes larger when the mining stage is 2, 3 or 4. This is
because the feasible patterns are more generated in 2, 3 or 4 stage of mining

process.

Table 4.11 The number of feasible patterns for each mining stage

Mining stage

Algorithms 1 2 3 4 5 6 7
All 100 172 238 243 136 52 11
Reachable 100 139 197 201 114 46 9
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Fig. 4.18 The number of feasible patterns w.r.t each mining
stage (V=100 - E=300 - S=5 - M=10 - T=10K)

In above experiments, we investigated the execution time and the number of
feasible patterns between the two estimation algorithms, called A/ and
Reachable Estimation Algorithm. For the execution time, Al/ is more or less
good algorithm than Reachable, but All leads to the over-estimated weight
bounds for the feasible patterns, due to the non-consideration of the
topology of a weighted base graph. For the performance for the number
feasible patterns, therefore, Reachable is generally more efficient in the

mining of weighted frequent patterns.
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Chapter 5 Conclusions and Further Works

This thesis examined the mining problems of discovering valuable
patterns from the weighted traversals and graph. Differently from
previous approaches, the traversals and vertices of a graph are attached
with the weights that reflect their importance. Such weights may depend
on the problem domains. For example, the weight of a graph vertex may
be the size of a Web page, and the weight of a traversal may be the
navigation time between Web pages. On these weight setting, we
presented two approaches which take the weights into account in the
miming process.

First, we presented the mining algorithm for discovering the frequent
patterns from the weighted traversals on a unweighted graph. In the
algorithm, the traversals whose weights are outside the confidence
interval are treated as outliers, and do not contribute to the support
count. Through this approach, more reliable frequent patterns can be
discovered. Furthermore, we also proposed the enhanced algorithm to
improve the performance of this approach. The discovered patterns are
further ranked according to their priority which reflects several criteria
beside the support.

Second, we extended the mining problem to the discovery of weighted
frequent patterns from the unweighted traversals on a weighted graph.
This algorithm considers the weighted support instead of the traditional
support, which requires the estimation of support bound. We presented
two approaches for the estimation of the support bound. Through several

experiments, the algorithms were evaluated and analyzed.
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In the future, we will further extend the mining problems to the
discovery of valuable patterns from other weight settings and criteria. We
will also apply the algorithms to the practical applications such as Web

mining.
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