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요요요 약약약

실세계의 많은 문제들은 그래프와 그 그래프를 순회하는 트랜잭션으로 모델
링될 수 있다 . 예를 들면 , 웹 페이지의 연결구조는 그래프로 표현될 수 있고 , 

사용자의 웹 페이지 방문경로는 그 그래프를 순회하는 트랜잭션으로 모델링될
수 있다 . 이와 같이 그래프를 순회하는 트랜잭션으로부터 중요하고 가치 있는
패턴을 찾아내는 것은 의미 있는 일이다 . 이러한 패턴을 찾기 위한 지금까지의
연구에서는 순회나 그래프의 가중치를 고려하지 않고 단순히 빈발하는 패턴만
을 찾는 알고리즘을 제안하였다 . 이러한 알고리즘의 한계는 보다 신뢰성 있고
정확한 패턴을 탐사하는 데 어려움이 있다는 것이다 .

본 논문에서는 순회나 그래프의 정점에 부여된 가중치를 고려하여 패턴을 탐
사하는 두 가지 방법들을 제안한다 . 첫 번째 방법은 그래프를 순회하는 정보에
가중치가 존재하는 경우에 빈발 순회 패턴을 탐사하는 것이다 . 그래프 순회에
부여될 수 있는 가중치로는 두 도시간의 이동 시간이나 웹 사이트를 방문할 때
한 페이지에서 다른 페이지로 이동하는 시간 등이 될 수 있다 . 본 논문에서는
좀 더 정확한 순회 패턴을 마이닝하기 위해 통계학의 신뢰 구간을 이용한다 . 

즉 , 전체 순회의 각 간선에 부여된 가중치로부터 신뢰 구간을 구한 후 신뢰 구
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간의 내에 있는 순회만을 유효한 것으로 인정하는 방법이다 . 이러한 방법을 적
용함으로써 더욱 신뢰성 있는 순회 패턴을 마이닝할 수 있다 . 또한 이렇게 구
한 패턴과 그래프 정보를 이용하여 패턴 간의 우선순위를 결정할 수 있는 방법
과 성능 향상을 위한 알고리즘도 제시한다 .

두 번째 방법은 그래프의 정점에 가중치가 부여된 경우에 가중치가 고려된
빈발 순회 패턴을 탐사하는 방법이다 . 그래프의 정점에 부여될 수 있는 가중치
로는 웹 사이트 내의 각 문서의 정보량이나 중요도 등이 될 수 있다 . 이 문제
에서는 빈발 순회 패턴을 결정하기 위하여 패턴의 발생 빈도뿐만 아니라 방문
한 정점의 가중치를 동시에 고려하여야 한다 . 이를 위해 본 논문에서는 정점의
가중치를 이용하여 향후에 빈발 패턴이 될 가능성이 있는 후보 패턴은 각 마이
닝 단계에서 제거하지 않고 유지하는 알고리즘을 제안한다 . 또한 성능 향상을
위해 후보 패턴의 수를 감소시키는 알고리즘도 제안한다 .

본 논문에서 제안한 두 가지 방법에 대하여 다양한 실험을 통하여 수행 시간
및 생성되는 패턴의 수 등을 비교 분석하였다 .

본 논문에서는 순회에 가중치가 있는 경우와 그래프의 정점에 가중치가 있는
경우에 빈발 순회 패턴을 탐사하는 새로운 방법들을 제안하였다 . 제안한 방법
들을 웹 마이닝과 같은 분야에 적용함으로써 웹 구조의 효율적인 변경이나 웹
문서의 접근 속도 향상 , 사용자별 개인화된 웹 문서 구축 등이 가능할 것이다 .
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ABSTRACTABSTRACTABSTRACTABSTRACT

A lot of real world problems can be modeled as traversals on graph. 

Mining from such traversals has been found useful in several 

applications. However, previous works considered only unweighted 

traversals and graph.

This thesis generalizes this to the cases where traversals and vertices 

in a graph are given weights to reflect their importance. Two new 

methods are proposed to discover frequent patterns from the weighted 

traversals and vertices in a graph.

The first proposes the mining algorithm for discovering the frequent 

patterns from the weighted traversals on a unweighted graph. we adopts 

the notion of confidence interval to distinguish between confident 

traversals and outliers. By excluding the outliers, more reliable frequent 
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patterns can be obtained. Furthermore, we propose a performance 

enhancement by traversal split, and then verify through experiments. In 

addition, they are further ranked according to their priority.

The second proposes the mining problem to the discovery of weighted 

frequent patterns from the unweighted traversals on a weighted graph. 

Under such weight settings, traditional mining algorithms can not be 

adopted directly any more. To cope with the problem, this paper proposes 

new algorithms to discover weighted frequent patterns from the 

traversals. Specifically, we devise support bound paradigms for candidate 

generation and pruning during the mining process.

 The proposed methods can be applied to the practical applications such 

as Web mining.
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Chapter Chapter Chapter Chapter 1  1  1  1  IntroductionIntroductionIntroductionIntroduction

1.1  1.1  1.1  1.1  OverviewOverviewOverviewOverview

Data mining is the process of extracting valuable information or 

patterns from large information repositories such as relational database, 

data warehouses, XML repositories. It refers to the process of analyzing 

large databases to discover useful patterns. It is also known as one of 

the core processes of knowledge discovery in database [1-4].

Several data structures and mining algorithms have been proposed and 

successfully applied to many applications [4]. Recently, the data mining 

on the graph becomes a center of interest. The graph has been widely 

used to model several classes of real world problems, such as design of 

network, scheduling for operating system, bio-informatics, and GIS. The 

structure of Web site can be modeled as a graph, for example, in which 

vertices represent Web pages, and edges are for hyperlinks between the 

Web pages. User navigations on the Web site can be modeled as 

traversals on the graph. Each traversal can be represented as a sequence 

of vertices, or equivalently a sequence of edges.

Once the graph and its traversals are given, valuable information can 

be discovered. Most common form of the valuable information may be 

frequent patterns, i.e., the sub-traversals that is contained in a large 

ratio of traversals. In previous works, traversals on a graph are treated 

uniformly without considering their importances, such as mining patterns 

from traversals without weights and base graph [5-7].



- 2 -

Therefore, it is necessary to develop new data mining algorithms based 

on a graph with weights. This thesis focuses on the problem of finding 

weighted frequent patterns from a database of user traversals through a 

given graph structure. We propose two new methods for discovering 

frequent traversal patterns from weighted traversals and weighted graph 

respectively. The first method proposes an algorithm to find frequent 

patterns from the weighted traversals on a graph by excluding outliers of 

traversals, and then presents another algorithm to enhance the 

performance. The second method describes two algorithms for discovering 

weighted frequent traversal patterns from the weighted graph.

1.2  1.2  1.2  1.2  MotivationsMotivationsMotivationsMotivations

Graphs and traversals on them are widely used to model several 

classes of real world problems [8-12]. The structure of a Web site, for 

example, can be modeled as a graph in which vertices represent Web 

pages, and edges represent hyperlinks between the pages. Furthermore, 

user navigations on the Web site can be modeled as traversals on the 

graph. Once a graph and its traversals are given, valuable information 

can be discovered. Most common form of the information may be frequent 

patterns, i.e., the sub-traversals that are contained in a large ratio of 

traversals [5-7, 13-15]. However, a drawback of these approaches is to 

discover only frequent patterns without considering the weights in the 

traversals and graphs to reflect their importance. Therefore, it is required 

new approaches to discover frequent patterns from the weighted 

traversals and weighted graph.
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In this thesis, the weights are attached to the traversals and vertices 

in a graph to reflect their importance. For instance, when the users 

navigate a Web site, they may have different interest in each Web page, 

and therefore stay for different duration. Each edge, which represents a 

transition between Web pages, can be assigned with a weight standing 

for the user stay duration. In addition, each vertex can be also assigned 

with a weight according to the amount of information or the importance 

of each Web page.

This thesis generalizes the mining problem to the case where traversals 

and vertices in a graph are weighted. This problem can be directly 

applied to Web Usage Mining problem. In Web Usage Mining, because 

the number of web pages and the complexity of Web sites increase, Web 

service providers and online business want to track user browsing habits to 

improve their services better and get more profits. Therefore, the structure of 

Web sites has to be designed effectively for more efficient access between 

highly correlated Web pages, and better customer classification and 

behavior analysis.

In this thesis, we assign the weights to the edges of traversals and the 

vertices in a graph, and the distribution of weights follows the normal 

distribution.

1.3  1.3  1.3  1.3  ApproachApproachApproachApproach

This thesis addresses two new approaches to discover frequent traversal 

patterns from the traversals on a graph. One is to discover frequent 

traversal patterns from the weighted traversals on a graph, the other 
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from traversals on a weighted graph.

For mining patterns from the weighted traversals on a graph, we adopt 

the notion of confidence interval to classify the weights into confident 

ones and outliers. The confidence interval is defined statistically according 

to the distribution of values. If a weight lies within the confidence 

interval, then it is considered as a confident one, but if it lies outside the 

confidence interval, then it is considered as an outlier. On top of the 

notion, we propose a level-wise algorithm for the discovery of frequent 

patterns. In each pass, candidate patterns are tested on the traversals to 

count their supports, and then evaluated with respect to the supports to 

become frequent patterns. The frequent patterns are joined together to 

generate one-step larger candidates. It proceeds until no more candidates 

are generated. The frequent patterns are further ranked according to 

their priority. The priority reflects other aspects of the patterns beside 

the support, such as the connectivity and vertex weights.

For mining patterns from the weighted graph, we extend previous 

works by considering weights attached to the vertices of graph. Such 

vertex weight may reflect the importance of vertex. For example, each 

Web page may have different importance which reflects the value of its 

content. With the weight setting, the mining algorithm can not be relied 

on the well-known Apriori paradigm any more. The reason why Apriori 

paradigm works is due to the downward closure property, which says all 

the subsets of a frequent pattern must be frequent. With the weight 

setting, however, it is not necessarily true that all the subpatterns of a 

weighted frequent pattern are weighted frequent. Therefore, we adopt the 

notion of support bound. On top of the notion, we propose a new mining 
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algorithm for the discovery of weighed frequent patterns.

1.4  1.4  1.4  1.4  Organization Organization Organization Organization of of of of ThesisThesisThesisThesis

This thesis is organized as follows. In chapter 2, we review previous 

works on the itemset and traversal minings without and with weights, 

respectively. Chapter 3 proposes a method for the discovery of frequent 

patterns from weighted traversals on graph, and chapter 4 also proposes 

another method for the discovery of weighted frequent patterns from 

traversals on weighted graph. Chapter 3 and 4 also contain experiments 

and analyses of the algorithms on synthetic data, respectively. Finally, 

chapter 5 contains conclusions and further works.
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Chapter Chapter Chapter Chapter 2  2  2  2  Related Related Related Related WorksWorksWorksWorks

Data mining is the core of knowledge discovery process to extract 

useful information from large datasets or databases [16-18]. In other 

words, it looks for interesting patterns and trends that exist in large 

datasets. Traditionally, major data mining problems have been association 

rule [3, 19-21], sequential pattern [22, 23], classification [24-27], clustering 

[28, 29]. Many of them are based on the function of itemset mining. 

Recently, another main stream is the mining problems on the traversals 

and graphs. This chapter reviews previous works related with such 

itemset mining and traversal mining without and with weights, 

respectively.

2.1  2.1  2.1  2.1  Itemset Itemset Itemset Itemset MiningMiningMiningMining

The itemset is a set of the data items. On such itemset, the itemset 

mining is the core of several mining problems, such as association rule 

mining. The association rule mining is to find association among a large 

set of itemsets in transaction databases, relational databases, and data 

warehouses. It discovers any rule of the form ⇒, where  and  are 

sets of data items [1-4]. For example, "80% of customers who buy cheese 

and milk also buy bread, and 5% of customers buy all of them together".

In the mining, there are two important measures of interestingness, 

called support and confidence. Equation (2.1) and (2.2) describe the two 

measures [1-4].
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(2.1)

⇒
∪

. (2.2)

Typically, the frequent itemsets, traditionally called the large itemsets, 

are considered interesting if they satisfy the minimum support threshold. 

In the itemset mining, the Apriori algorithm is the most basic and 

well-known algorithm to find frequent itemsets in a transactional 

database. Fig. 2.1 describes the Apriori algorithm with pseudo-code [2].

Algorithm. Algorithm. Algorithm. Algorithm. AprioriAprioriAprioriApriori    

Input: candidate itemset of  size ,

minimum support threshold minsup,

transaction database 

Output: frequent itemset of  size 

begin

   ;

for  ≠  

// join and prune candidates

 _  ;

// scan   for counts

for each transaction ∈  

   ∈  is a subsets of ;

∀∈  ;



       ∈ ≥ ;


end;

Fig. 2.1 Apriori algorithm
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In the Apriori algorithm, there are the important property, called 

downward closure property, which is used for joining and pruning 

candidates. It describes that a pattern of length  is frequent only if its 

all subpatterns of length  are also frequent. Fig. 2.2 is an example of 

Apriori algorithm.

Database D

TID Items
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1 3 4
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Fig. 2.2 An example of Apriori algorithm

In the example of Fig. 2.2, itemsets,   ,    and    is 

not in candidates of length 3, called , because of downward closure 

property. For instance, if    becomes a candidate in , then the all 
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subsets of length 2 of itemsets    must be in , but itemsets, 

  and   are included in  while not  .

In addition, there are some modified methods for the enhanced 

performance of Apriori, such as AprioriTid, Apriori-Hybrid [2]. Although 

AprioriTid uses the same candidate generation function as Apriori, it does 

not use database for counting support after the first pass. And it only 

encodes the candidate itemsets used in the previous pass, in order to 

save reading effort of databases. Apriori-Hybrid uses Apriori in the initial 

passes and switches to AprioriTid when it expects that the candidate 

itemsets at the end of the pass will be in memory [2]. Other approaches 

on the itemset mining are partition technique [20], sampling technique 

[30], DHP algorithm based on hash technique [31] and multi-level or 

generalized association [32, 33].

Recently, there are various algorithms based on Apriori algorithm as in 

the itemset mining. One of them is sequential pattern mining, and it is 

the algorithm for finding all frequent itemsets within a transactional 

database, introduced in [33]. In general, ⇒ says that buying the item 

A will be immediately followed by buying the item B with a certain 

confidence. From a book store's transaction database history, we can find 

the frequent sequential purchasing patterns, for example, 80% customers 

who have bought the book "HTML" typically bought the book "Java Script 

Handbook" and then bought the book "Web Programming" with certain 

time gap. In this example, all those books need not to be bought at the 

same time or consecutively, the most important thing is the order in 

which those books are bought and they are bought by the same customer. 

80% here represents the percentage of customers who comply this 
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purchasing habit. Based on this heuristic, a series of Apriori-like 

algorithms have been proposed, such as AprioriAll, AprioriSome, 

DynamicSome in [33], and GSP [23]. Later on another a series of data 

projection based algorithms were proposed, which includes FreeSpan [4] 

and PrefixSpan [34]. SPADE [35] is a lattice based algorithm, MEMISP 

[36] is a memory indexing based approach, and SPIRIT [37] integrates 

constraints by using regular expression.

2.2  2.2  2.2  2.2  Weighted Weighted Weighted Weighted Itemset Itemset Itemset Itemset MiningMiningMiningMining

For the weighted itemset mining, most of previous works are related to 

the mining of association rules and its sub-problems. Such weighted 

itemset mining is defined as the problem of finding itemsets which have 

both sufficient support and weight. This problem may be more complex 

than the simple itemset mining because there is not the downward 

closure property, also known as the Apriori property, between itemsets. 

This is due to the fact that the weighted support of itemset may increase 

or decrease as the itemset is extended by adding additional items.

To resolve this difficulty, Cai et al. [38] generalized the discovery of 

frequent itemsets to the case where each item is given an associated 

weight. They introduced new criteria to handle the weights in the process 

of finding frequent itemsets, such as weighted support for the 

measurement of support, and the support bound for pruning of 

candidates. They also found that there is the downward closure property 

between candidates. The weighted support of a rule ⇒ is calculated 

by the multiplied sum of the weight and the support of itemsets  and 
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. A candidate can be a solution, that is the weighted frequent pattern, 

if its weighted support is greater than the user-defined threshold, called 

weighted minimum support. Wang et al. [39] extended the problem by 

allowing weights to be associated with items in each transaction. Their 

approach ignores weights when finding frequent itemsets, but only 

considers during the association rule generation. Tao et al. [40] proposed 

an improved model of weighted support measurement and the weighted 

downward closure property using average weight of items in each 

transaction in the database. Yun et al. [41, 42] also considered the 

weighted items in the process of finding frequent itemsets, and the 

length-decreasing support constraints for the new measurement of 

support. Yao et al. [43, 44] introduced a new weighted mining paradigm, 

called utility mining, which finds all itemsets in a transaction database 

with utility values higher than the minimum utility threshold. They 

defined two types of utilities for items, transaction utility, such as the 

quantity of an item sold in the transaction, and external utility, such as 

the maximum profit for each item. Then, they proposed an algorithm for 

discovering frequent itemsets using the utility bound property and the 

support bound property. Although the above works take the notion of 

weight into account, they can not be adapted directly to our work 

because they only concerned on the mining from items, but not from 

traversals.

2.3  2.3  2.3  2.3  Traversal Traversal Traversal Traversal MiningMiningMiningMining

Generally, the traversal is movement from one object to another 
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through a relationship between them, as in crossing between vertices in 

graph theory. In the World Wide Web environment, for example, users 

access information of interest and travel from one page to another via 

the corresponding hyperlink provided. In this example, traversal pattern 

is a sequence of web pages to be visited commonly by users.

For the traversal pattern mining, there have been few works. Chen et 

al. [5, 45] addressed the problem of traversal pattern mining, and then 

proposed algorithms with hashing and pruning techniques. However, they 

did not consider graph structure on which the traversals occur. Lee et al. 

[15] proposed the efficient interactive web traversal pattern mining 

algorithm to reduce the mining time and make the mining results to 

satisfy the user' requirements. They especially used the extended lattice 

structure, Iterative_Update_Lattice, and Interactive_ Generate_Candidate 

algorithms to solve this problem. Hung et al. [14] proposed a 

projection-based sequential pattern-growth approach, called PrefixUnion, 

for mining traversal patterns efficiently. It is a mining mechanism based 

on inter-pattern growth and intra-pattern growth. These two pattern 

growth criteria are used to minimize useless pattern growth by finding 

projected-patterns. Mobasher et al. [46] proposed a framework for Web 

mining, the applications of data mining and knowledge discovery 

techniques to data collected in World Wide Web transactions. And they 

presented a Web usage mining system, called WEBMINER. Its main 

purpose is the revealing of usage patterns in the given Web site, based 

on the application of several data mining techniques. Although they 

discover association rule or sequential patterns from Web access logs, 

Web structure is not considered. Ezeife et al. [47] proposed a more 
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efficient approach by using the Web access pattern tree, called WAP-tree, 

to mine frequent sequences. The WAP-tree is a sequential pattern mining 

technique for Web log access sequences. It stores the original Web access 

sequence database on a prefix tree, which is similar to the frequent 

pattern tree, called FP-tree, for storing non-sequential data.

2.4  2.4  2.4  2.4  Graph Graph Graph Graph Traversal Traversal Traversal Traversal MiningMiningMiningMining

Graphs are used to represent a collection of related objects such as 

networks, biological system, electronic systems, and parallel computer 

architectures. Graph traversal algorithms are important since graphs are 

a common data structure in which information is distributed [12].

For mining the traversal patterns based on the graphs, there have been 

few works. Nanopoulos et al. [6, 7] proposed the problem of mining 

patterns from graph traversals. They defined new criteria for the support 

and subpath containment, and then proposed algorithms with a trie 

structure. They considered the graph, on which traversals occur, as well 

as the traversal in the mining process. Jing et al. [13] presents an 

approach based on suffix array for frequent reference path generation in 

Web environment. Borges and Levene [48] addressed the extraction of 

composite association rules from the structured data of World Wide Web. 

In this work, the notion of confidence and support measures are 

formalized in the context of directed graphs, and two algorithms are 

proposed. The first is a modification of the Depth-First-Search algorithm 

and the other uses an incremental approach for mining association rules.

Although the above works dealt with the mining of traversal patterns, 
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to the best of our knowledge, there is no work which considers the notion 

of weight as our work.
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Chapter Chapter Chapter Chapter 3  3  3  3  Mining Mining Mining Mining Patterns Patterns Patterns Patterns from from from from Weighted Weighted Weighted Weighted Traversals Traversals Traversals Traversals 

on on on on Unweighted Unweighted Unweighted Unweighted GraphGraphGraphGraph

This chapter presents a new method for mining patterns from weighted 

traversals on a graph. The method proposed in this chapter is mainly 

composed of three phases. The graph augmentation phase is a 

pre-processing phase, in which each edge of the base graph is augmented 

with average and standard deviation of traversal weights. The frequent 

pattern discovery phase is the main phase, in which frequent patterns 

are discovered from the augmented graph and traversal database. The 

pattern priority phase is a post-processing phase, in which the frequent 

patterns are ranked according to their importance to users. We first 

define some related notations and concepts, formalize problem statement, 

and then propose algorithms for these phases.

3.1  3.1  3.1  3.1  Definitions Definitions Definitions Definitions and and and and Problem Problem Problem Problem StatementsStatementsStatementsStatements

Definition Definition Definition Definition 3.13.13.13.1. A simple directed graph is a finite set of vertices and 

edges, in which each edge joins one ordered pair of vertices. The graph 

contains no self loop which joins a vertex with itself. A base graph is a 

simple directed graph, on which traversals occur.

For example, the base graph shown in Fig. 3.1 has 5 vertices and 9 

edges, in which each vertex and edge have no weights.
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Fig. 3.1 An example of a base graph

Definition Definition Definition Definition 3.23.23.23.2. A traversal is a sequence of consecutive edges of a base 

graph. It can be represented with a sequence of the connecting vertices of 

each edge, thus a traversal       . A weighted traversal is a 

traversal, in which each edge in a traversal has an associated weight. 

Thus a traversal  with associated weights  is represented as 

            , where  is the weight of edge 

   . A traversal database is a set of weighted traversals.

Fig. 3.2 depicts an example of traversal database. In this database, 

there are 10 traversals which traverse the base graph shown in Fig. 3.1. 

The first traversal (TID=1), for example, visits a base graph in the order 

of vertices A, B and C through the edge  with the weight 2.2, 

and  with the weight 2.0.
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TID Traversal Weight

1

2

3

4

5

6

7

8

9

10

<A, B, C>

<B, D, E, C, A>

<C, A, B, D>

<D, C, A>

<B, C, A>

<A, B, E, C>

<A, B, D, E, C>

<B, E, C>

<B, D, C>

<C, A, B, D>

<2.2, 2.0>

<3.0, 4.3, 3.5, 3.1>

<2.9, 2.0, 4.0>

<4.0, 3.0>

<2.2, 2.9>

<2.1, 3.4, 3.2>

<1.4, 3.9, 4.4, 3.2>

<2.3, 3.4>

<3.8, 3.1>

<2.5, 2.2, 4.1>

Fig. 3.2 An example of a traversal database

Definition Definition Definition Definition 3.33.33.33.3. A subtraversal is any subsequence of consecutive vertices 

in a traversal. If        is a traversal, then       

is a subtraversal of  when there exists a ≥  such that    for all 

≤ ≤ , and  ≤ . If an arbitrary pattern is a subtraversal of a 

traversal, then we say that the pattern is contained in the traversal, or 

the traversal contains the pattern.

For Example, consider the traversals shown in Fig. 3.2. In the first 

traversal (TID=1), , we have two kinds of subtraversal, 

 and  of length 2. If there is the pattern , then 

we can say that a pattern  is contained in the traversal (TID=1), 

or the traversal (TID=1) contains the pattern .

Definition Definition Definition Definition 3.43.43.43.4. Let    be a base graph, and  be a traversal 

database, then an augmented graph  is defined as follows. Each node 
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∈ is assigned with a weight . Each edge,   ∈, is labeled 

with a pair of average weight and standard deviation,  , which are 

obtained from the weights of the corresponding edges of traversals in .

Definition Definition Definition Definition 3.53.53.53.5. A confidence interval is an interval between two 

numbers, within which a random variable X lies with a confidence level. 

In our problem, if a weight lies within the confidence interval, then it is 

considered as a confident one, but if it lies outside the confidence 

interval, it is considered as an outlier.

For example, in the Gaussian distribution, the 95% confidence level is 

given by

 ×≤ ≤ ×  (3.1)

In Equation (3.1),  and  are average and standard deviation of 

weights of edges in an augmented graph , respectively. And the 

constant value 1.960 is used to calculate confidence interval for the 

confidence level 95%. Fig. 3.3 depicts the confidence interval for 

confidence level 95% and Table 3.1 presents constant values multiplied by 

standard deviation corresponding to various confidence levels.
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Fig. 3.3 The confidence interval for 95% confidence level

Confidence level Constant value

80% 1.282

90% 1.645

95% 1.960

98% 2.326

99% 2.576

Table 3.1 Constant values for confidence levels

Defining the support and the ratio as the problem in this chapter is 

stated as follows. Given a base graph and weighted traversals on the 

graph, find all patterns contained in the traversals whose ratio is larger 

than minsup. The ratio is called support, and a pattern with the support 

larger than minsup is also said to be frequent. When counting the 

support, the weights of traversals should lie within a specified confidence 

interval. In addition, we determine the priority of frequent patterns 

according to their importance criteria besides the support.
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3.2  3.2  3.2  3.2  Mining Mining Mining Mining Frequent Frequent Frequent Frequent PatternsPatternsPatternsPatterns

3.2.1  3.2.1  3.2.1  3.2.1  Augmentation Augmentation Augmentation Augmentation of of of of Base Base Base Base GraphGraphGraphGraph

When a base graph and weighted traversals are given, first phase of 

the algorithm is to augment the base graph with supplementary 

information. The supplementary information includes average and 

standard deviation of weights for each edge, and those for each vertex.

Fig. 3.1 and 3.2 depict an example of base graph and traversal 

database. On the base graph, all the traversals traverse the vertices 

through the edges. The traversal (TID=1), for example, traverses 

consecutively the vertices A, B and C through the edge  with the 

weight 2.2, and  with 2.0.

Given the base graph and traversal database, the base graph can be 

augmented as follows. For each edge of the base graph, we can collect 

corresponding weights of the edge from the traversal database, and then 

calculate average and standard deviation. For the edge  in Fig. 

3.2 as an example, the collected weights are 2.2, 2.0, 2.1, 1.4 and 2.2. 

Then average 2.0 and standard deviation 0.3 are calculated. Resulting 

augmented graph is obtained as in Fig. 3.4. Each vertex are also 

assigned with an arbitrary weight, which may reflect the importance of 

the vertex.
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Fig. 3.4 An example of an augmented graph

3.2.2  3.2.2  3.2.2  3.2.2  In-Mining In-Mining In-Mining In-Mining AlgorithmAlgorithmAlgorithmAlgorithm

Main phase of the algorithm is to find frequent patterns from given 

traversal database and augmented graph. To derive the algorithm, we 

first investigate an important property of patterns. Let the length of a 

pattern be the number of vertices contained. On the augmented graph, 

any pattern       of length k has exactly two subpatterns of 

length , i.e.,       and     . For example, a 

pattern  in Fig. 3.2 has two subpatterns,  

and . Therefore, a pattern of length k is frequent only if its 

two subpatterns of length  are also frequent. Such downward closure 

property allows us to develop a level-wise algorithm like the Apriori 

algorithm [3]. 

Fig. 3.5 shows the In-Mining Traversal Patterns (IMTP) algorithm 

proposed in this chapter, which performs in a level-wise manner. The 

candidate patterns of length 1 are initialized with all vertices of the 

augmented graph. In each pass of the algorithm, the traversal database 
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is scanned to count the supports of all candidates. The supports are then 

adjusted according to the specified confidence interval. Next, frequent 

patterns are determined from candidates whose supports are larger than 

the specified minimum support. Finally, new candidates are obtained from 

the frequent patterns for next pass. The procedure repeats until no more 

candidates are generated.
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Algorithm. Algorithm. Algorithm. Algorithm. IMTPIMTPIMTPIMTP

Input: augmented graph  ,

traversal database  ,

minimum support minsup,

confidence level CL

Output: frequent patterns 

begin

  // initialize candidate patterns of length 1

  ← set of all vertices;

 = 1;

// while candidates exist

while (  > 1) {

   // count supports for candidate patterns

for each traversal ∈  {

   ∈,  is a subtraversal of ;

∀∈  ;

}

// prune candidate patterns w.r.t confidence level

if ( ≥ 2)

 ←;

// generate frequent patterns

   ∈ ≥ ;

// generate candidate patterns for next pass

 ← ;

 ;

}

end;

Fig. 3.5 Algorithm to discover frequent traversal patterns (IMTP)
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In the algorithm,  adjusts the supports of candidate 

patterns as follows. Let a pattern       be a subtraversal of 

a weighted traversal             . If there 

is an edge    in the part of the traversal coincided with the 

pattern, whose weight  lies outside the confidence interval, then the 

traversal can not contribute for the support of the pattern. For example, 

even though the pattern  is contained in the traversal (TID=7), 

    in Fig. 3.2, the traversal can not 

contribute for the support because its edge  has the weight 1.4 

which lies outside the confidence interval 1.41 ~ 2.59. For determination 

of the confidence interval for each edge of the augmented graph, we 

assume that the distribution of weight values follows the normal 

distribution. As in almost applied practices, if the confidence interval 

corresponds to the 95% confidence level, then  ×≤ ≤ 

× , where  is the average and  is the standard deviation. 

In other words, 95% of weight values are considered to exist within the 

confidence interval,  × ~ ×, and the other 5% resides 

outside the interval. For example, the edge  in Fig. 3.2 has the 

confidence interval, (2.0 − 1.960 ✕ 0.3) ~ (2.0 + 1.960 ✕ 0.3) ≡ 1.41 ~ 

2.59. If a weight value lies outside this interval, then it can be 

considered as an outlier. Therefore, traversals whose edges have such 

weight values can not contribute for the support of patterns.

In the algorithm,  generates new candidate patterns for 

next pass. By the downward closure property, new candidates of length 

 can be obtained by joining the frequent patterns of length . If 
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there are two frequent patterns of length ,      and   

  , a new candidate pattern of length ,      can be 

obtained. For example,  and  result in . 

Note that  and  can not be joined to make 

.

An example of the algorithm is shown in Fig. 3.6, which is derived 

from the traversal database  in Fig. 3.2, and the augmented graph in 

Fig. 3.4. We assume the minimum support as 2, and the confidence level 

as 95%. The algorithm initializes the candidates  of length 1 with all 

the vertices. By scanning the database, the support of each candidate is 

determined as shown in . The candidates, whose support is larger than 

2, become the frequent patterns of length 1 as in . By joining the 

frequent patterns, new candidates of length 2 are obtained as in , after 

deleting non-existing edges in the augmented graph. The database is 

scanned again to count the support of the candidates. The supports are 

then adjusted by using the confidence interval. For example, the support 

of the pattern  is 5 initially, and is decreased to 4. This is due 

to the fact that the weighted traversal (TID=7), 

    can not contribute for the support since the weight 1.4 

of the edge  lies outside the confidence interval 1.41 ~ 2.59. 

From the adjusted candidates, the frequent patterns  are obtained. 

Again, the candidates of length 3, , are obtained by joining the . For 

example,  and  result in . The algorithm 

proceeds similarly up to the , and then terminates as no candidate of 

length 4 can be generated by joining 's.
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Fig. 3.6 An example of discovering frequent patterns
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3.2.3  3.2.3  3.2.3  3.2.3  Pre-Mining Pre-Mining Pre-Mining Pre-Mining AlgorithmAlgorithmAlgorithmAlgorithm

The algorithm IMTP described in the previous section examines the 

confidence interval in all steps to generate candidate patterns  from 

. This causes the complexity of the algorithm to increase because the 

algorithm applies the confidence interval over and over again. To cope 

with this difficulty, we propose an algorithm, called Pre-Mining Traversal 

Patterns (PMTP). PMTP divides a traversal including outlier into split 

traversal over 2.

Definition Definition Definition Definition 3.63.63.63.6. If a traversal              

includes an edge     outside the confidence interval, then it can 

be split into 2 sub-traversals,  ′           
and  ″              . A split traversal 

database is defined as a set of split traversals thus obtained.

Fig. 3.7 is a split traversal database converted from traversal database 

in Fig. 3.2 using augmented graph of Fig. 3.4, and Definition 3.6. For 

instance, in traversal (TID=2),      in Fig. 

3.2, the edge  lies outside the confidence interval 3.02 ~ 4.58 

because the edge  has the weight 3.0. Therefore, traversal 

(TID=2) is split into 2 sub-traversals as  and .
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Fig. 3.7 An example of split traversal database

Fig. 3.8 presents the algorithm PMPT which discovers the frequent 

traversal patterns from the split traversal database, ′. In Fig. 3.8, the 

function  splits traversal database  into ′ by Definition 

3.6. In this example, each traversals of Fig. 3.2 is converted into split 

traversal database ′ of Fig. 3.7 by applying . Hence, we 

can expect performance enhancement in discovering frequent traversal 

patterns, because there are no outliers in the split traversals, and no 

examinations in confidence interval of each mining step like IMTP. But 

there may be the incremental costs, such as pre-process for traversal 

database, and size of traversal database. Therefore, totally enhanced 

performance will be presented by experiments.
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Algorithm. Algorithm. Algorithm. Algorithm. PMTPPMTPPMTPPMTP

input: weighted base graph  ,

traversal database  ,

minimum support minsup,

confidence level CL

output: frequent patterns 

begin

// split traversals into sub-traversals

′  ;

  ← set of all vertices;

 = 1;

// while candidates exist

while (  > 0) {

// count supports for candidate patterns

  for each traversal ′∈′  {
      ∈,  is a sub-traversal of ′;
   ∀∈  ;

}

  // obtain frequent patterns

     ∈ ≥ ;

  // generate candidate patterns for next step

   ← ;

   ;

}

end;

Fig. 3.8 Enhanced algorithm to discover frequent traversal patterns 

(PMTP)



- 30 -

3.2.4  3.2.4  3.2.4  3.2.4  Priority Priority Priority Priority of of of of PatternsPatternsPatternsPatterns

When mining a large database, the number of patterns discovered can 

easily exceed the capabilities of a human user to identify interesting 

results. To address this problem, various techniques have been suggested 

to reduce or order the patterns prior to presenting them to the user.

The algorithm estimates the importance of each pattern, as in the 

previous works, according to the number of their occurrences in the 

traversals. Although such support is concerned as the primary criterion 

for the most problems, variety of supplementary information can be 

adopted as secondary criteria. This thesis proposes a possible criterion 

shown in Equation (3.2).

  

 

∈



∈



∈



∈


(3.2)

In Equation (3.2),  denotes a pattern,  total edges,  total vertices, 

 the number of edges incident into . The priority of any pattern , 

called , is determined by combining support, ratio of incident edges, 

ratio of edge weights, and ratio of vertex weights. The reason behind the 

combination is that a pattern becomes more important as it occurs more 

often, more referred from other vertices, and edges and vertices with 

higher weights. Fig. 3.9 shows the pattern priority of the frequent 

patterns from . Although the three patterns have the same support, they 

can be further ranked according to their priority.
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Fig. 3.9 An example of pattern priority

3.3  3.3  3.3  3.3  Experimental Experimental Experimental Experimental ResultsResultsResultsResults

We conducted several experiments on the algorithms, specifically to 

evaluate the effect of confidence interval. For the experiments, base 

graphs are generated synthetically according to the parameters, i.e., the 

number of vertices  and the number of edges  leaving from each 

vertex, called the out-degree or fanout of vertex. And all vertices have at 

least one fanout. We then generate traversals, each of which traverses on 

the base graph. During the generation, weights are assigned to the edges 

in the traversals, and have the normal distribution.

The goal of the experiments is to examine the usefulness of confidence 

interval in the mining process. We will also verify that PMTP algorithm 

is faster than IMTP algorithm for the execution times in various 

experimental environments. The experimental environments are shown in 

Table 3.2. And Table 3.3 presents all the symbols used in the 

experiments of this chapter.
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Resource Description

Operating System Windows XP Professional, SP 2

Database Microsoft SQL Server 2000

Programming Language Microsoft Visual C++ 6.0

PC machine Pentium Ⅳ 3 GHz with 1 GB main memory

Table 3.2 Experimental environments

Symbol Description

V the number of vertices in base graph

E the number of edges in base graph

D the average number of fanout per vertex

T the number of traversals

M the maximum length of traversals

S threshold (minimum support, %)

C confidence level (%)

Table 3.3 Symbols representing the parameters of synthetic data

For example, V=100, E=300, T=10K, M=50, S=5, and C=95 represent a 

group of experimental data with 100 vertices, 300 edges, 10,000 

traversals, the maximum length of traversals as 50, 5% minimum 

support, and 95% confidence level, which means that roughly 95% of edge 

weights are confident, and remaining 5% are outliers. In most 

experiments, we could clearly see that the PMTP is much more efficient 

than the IMTP, because the IMTP needs more time to classify the 

weights on traversals into confident ones and outliers.
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Experiment Experiment Experiment Experiment 1: 1: 1: 1: Execution Execution Execution Execution times times times times for for for for different different different different numbers numbers numbers numbers of of of of traversalstraversalstraversalstraversals

The experiment compares the execution times of two algorithms, IMPT 

and PMTP, for different numbers of traversals. For this experiment, the 

dataset have V=100ㆍE=300ㆍS=5ㆍM=50ㆍC=95, and the number of 

traversals vary from 10,000 to 50,000.

Runtime (in seconds) at different numbers of traversals

Algorithms 10,000 20,000 30,000 40,000 50,000

IMPT 28 41 63 82 101

PMTP 10 19 29 38 47

Table 3.4 Execution times for dataset at different numbers of 

traversals

From Table 3.4 and Fig. 3.10, the gap between execution times of two 

algorithms becomes larger as the number of traversals increases. We can 

verify the IMTP algorithm is more time-consuming algorithm. This is because 

the cost for testing outliers using confidence interval increases as the number 

of traversals increases.
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Fig. 3.10 Execution times w.r.t the number of traversals

(V=100ㆍE=300ㆍS=5ㆍM=50ㆍC=95)

Experiment Experiment Experiment Experiment 2: 2: 2: 2: Execution Execution Execution Execution times times times times for for for for different different different different numbers numbers numbers numbers of of of of verticesverticesverticesvertices

The experiment compares the execution times of two algorithms for 

different numbers of vertices. For this experiment, the dataset have 

10,000 traversals, 5% minimum support, 95% confidence level, maximum 

length of traversals as 50, and the number of vertices varies from 100 to 

500. Table 3.5 and Fig. 3.11 show the performance of IMTP and PMTP 

algorithms. As the experiment 1, the results of this experiment verifies 

that PMTP is more good algorithm than IMTP.
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Runtime (in seconds) at different numbers of vertices

Algorithms 100 200 300 400 500

IMPT 28 39 43 46 47

PMTP 10 15 15 13 15

Table 3.5 Execution times for dataset at different numbers of 

vertices
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Fig. 3.11 Execution times w.r.t the number of vertices

(T=10KㆍD=3ㆍS=5ㆍM=50ㆍC=95)

Experiment Experiment Experiment Experiment 3: 3: 3: 3: Execution Execution Execution Execution times times times times for for for for different different different different numbers numbers numbers numbers of of of of edgesedgesedgesedges

The experiment compares the execution times of two algorithms for 

different numbers of edges. The difference of the number of edges in a 

graph with fixed number of vertices means that the graph density is 

different. The graph density is defined as     ×  , where 
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  denotes the number of edges and   the number of vertices. For this 

experiment, the dataset have V=100ㆍT=10KㆍS=5ㆍM=50ㆍC=95, and the 

number of edges varies from 150 to 500. It means that graph density 

changes from about 0.015 to 0.051. From Table 3.6 and Fig. 3.12, we can 

know that PMTP is usually faster than IMTP when the graph density 

varies.

Runtime (in seconds) at different numbers of edges

Algorithms 150 200 250 300 350 400 450 500

IMPT 52 23 26 20 22 26 28 29

PMTP 15 9 12 10 11 12 15 14

Table 3.6 Execution times for dataset at different numbers of 

edges
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Fig. 3.12 Execution times w.r.t the number of edges

(V=100ㆍT=10KㆍS=5ㆍM=50ㆍC=95)
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Experiment Experiment Experiment Experiment 4: 4: 4: 4: Execution Execution Execution Execution times times times times for for for for different different different different minimum minimum minimum minimum supportssupportssupportssupports

The experiment compares the execution times of two algorithms, IMTP 

and PMTP, for different minimum supports. For this experiment, the 

dataset have V=100ㆍE=300ㆍT=50KㆍM=50ㆍC=95, and minimum supports 

vary from 1% to 10%. From Table 3.7 and Fig. 3.13, we can see that the 

execution times of all algorithms decrease as the minimum support 

increases and the gap between the execution times of two algorithms 

becomes smaller due to the decrease of target traversals.

Runtime (in seconds) at different numbers of thresholds

Algorithms 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

IMPT 290 185 138 113 99 92 80 72 62 58

PMTP 141 85 60 51 45 41 35 34 30 26

Table 3.7 Execution times for dataset at different minimum supports
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Fig. 3.13 Execution times w.r.t minimum supports

(V=100ㆍE=300ㆍT=50KㆍM=50ㆍC=95)

Experiment Experiment Experiment Experiment 5: 5: 5: 5: Execution Execution Execution Execution times times times times for for for for different different different different average average average average lengths lengths lengths lengths of of of of 

traversalstraversalstraversalstraversals

The experiment compares the execution times of two algorithms for 

different average lengths of traversals. For this experiment, the dataset 

have V=100ㆍE=300ㆍS=5ㆍT=10KㆍC=95, and average lengths of traversals 

varies from 8 to 45. From Table 3.8 and Fig. 3.14, we can see that when 

the average length of traversals is shorter, the gap between execution 

times of two algorithms becomes smaller, because the number of edges to 

be tested by confidence interval becomes fewer.
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Runtime (in seconds) at different average lengths of 
traversals

Algorithms 8 14 17 22 26 31 35 39 45

IMPT 5 8 10 13 16 18 18 20 21

PMTP 4 5 6 7 9 9 9 10 10

Table 3.8 Execution times for dataset at different average 

lengths of traversals
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Fig. 3.14 Execution times w.r.t average length of traversals 

(V=100ㆍE=300ㆍS=5ㆍT=10KㆍC=95)

Experiment Experiment Experiment Experiment 6: 6: 6: 6: Execution Execution Execution Execution times times times times for for for for different different different different confidence confidence confidence confidence levelslevelslevelslevels

The experiment compares the execution times of two algorithms for 

different confidence levels. For this experiment, the dataset have V=100ㆍ
E=300ㆍS=5ㆍM=50ㆍT=10K, and confidence levels varies from 80% to 99%. 
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From Table 3.9 and Fig. 3.15, the gap between execution times of two 

algorithms becomes larger, when the specified confidence level becomes 

larger. This is because the number of edges to be tested by confidence 

interval becomes larger.

Runtime (in seconds) at different confidence levels

Algorithms 80% 90% 95% 98% 99%

IMPT 86 94 99 101 102

PMTP 33 43 46 48 49

Table 3.9 Execution times for dataset at different confidence 

levels
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Fig. 3.15 Execution times w.r.t confidence levels

(V=100ㆍE=300ㆍS=5ㆍM=50ㆍT=10K)
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Experiment Experiment Experiment Experiment 7: 7: 7: 7: Execution Execution Execution Execution times times times times with with with with different different different different confidence confidence confidence confidence levels levels levels levels and and and and 

without without without without confidence confidence confidence confidence levellevellevellevel

The experiment compares the execution times of PMTP for different 

confidence levels and without confidence level. For this experiment, the 

dataset have V=100ㆍE=300ㆍT=10KㆍS=5ㆍM=50, confidence level varies 

from 80% to 100%, where 100% confidence level means that the algorithm 

don't consider confidence interval. From Table 3.10 and Fig. 3.16, the 

runtime changes from 33 up to 52 in seconds as the confidence level 

varies from 80% to 100%. We can see that the execution time becomes 

larger, when the confidence level becomes larger. This is because the 

number of traversals for testing outliers increases as the confidence level 

increases.

Runtime (in seconds) with different confidence levels

Algorithm 80% 90% 95% 98% 99% 100%

PMTP 33 43 46 48 49 52

Table 3.10 Execution times for dataset at different confidence 

levels in PMTP
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Experiment Experiment Experiment Experiment 8: 8: 8: 8: The The The The number number number number of of of of patterns patterns patterns patterns for for for for different different different different confidence confidence confidence confidence 

levels levels levels levels and and and and different different different different numbers numbers numbers numbers of of of of traversalstraversalstraversalstraversals

The experiment compares the number of patterns for different 

confidence levels and different numbers of traversals. For this experiment, 

the dataset have V=100ㆍE=300ㆍS=5ㆍM=50, and confidence levels vary 

from 80% to 100% and the number of traversals varies from 10,000 to 

50,000. Table 3.11 and Fig. 3.17 show the number of patterns according 

to the confidence levels and the number of traversals. In this figure, the 

number of patterns becomes fewer, when the confidence level becomes 

smaller. This means that the detection of outliers by the confidence 

interval allows us to discover more reliable patterns. Therefore, we need 

to select the confidence level with intention.
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Confidence

The number of patterns for different numbers of 
traversals

levels 10,000 20,000 30,000 40,000 50,000

80% 250 187 189 187 188

90% 296 256 254 254 251

95% 318 297 297 297 297

98% 327 317 318 318 317

99% 330 326 324 324 324

100% 339 336 334 334 334

Table 3.11 The number of patterns for dataset at different 

confidence levels and numbers of traversals
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Experiment Experiment Experiment Experiment 9: 9: 9: 9: The The The The number number number number of of of of patterns patterns patterns patterns for for for for different different different different confidence confidence confidence confidence 

levels levels levels levels and and and and minimum minimum minimum minimum supportssupportssupportssupports

The experiment compares the number of patterns for different 

confidence levels and minimum supports. For this experiment, the dataset 

have V=100ㆍE=300ㆍS=5ㆍM=50, and the confidence level varies from 80% 

to 100% and the minimum support varies from 1% to 10%.

From Table 3.12 and Fig. 3.18, the number of patterns becomes also 

smaller as minimum support and confidence level increase. This is due to 

decrease the number of target traversals

The number of patterns for different thresholds

Confidence
levels

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

80% 619 377 294 235 187 162 145 117 99 88

90% 992 542 377 312 256 208 186 158 137 111

95% 1,256 668 443 354 297 251 207 181 158 135

98% 1,493 789 526 389 317 279 229 197 173 152

99% 1,606 839 566 401 326 289 243 204 180 159

100% 1,733 889 590 420 336 294 257 208 183 164

Table 3.12 The number of patterns for dataset at different minimum 

supports and confidence levels
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Fig. 3.18 The number of patterns w.r.t minimum supports 

and confidence levels (V=100ㆍE=300ㆍS=5ㆍM=50)

Experiment Experiment Experiment Experiment 10: 10: 10: 10: The The The The maximum maximum maximum maximum length length length length of of of of patterns patterns patterns patterns for for for for different different different different 

minimum minimum minimum minimum supports supports supports supports and and and and different different different different confidence confidence confidence confidence levelslevelslevelslevels

The experiment compares the maximum length of patterns for different 

minimum supports and confidence levels. For this experiment, the dataset 

have V=100ㆍE=300ㆍT=10KㆍM=50, and the minimum support varies from 

1% to 10% and the confidence level varies from 80% to 100%. Table 3.13 and 

Fig. 3.19 show the effect of confidence level on the length of patterns. As 

previous experiments, the maximum length of patterns decreases as 

confidence level decreases. It is because the number of traversals containing 

pattern decreases if confidence level decreases from 98% to 90%.
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Confidence

The maximum length of patterns for different minimum 
supports

levels 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

80% 5 4 4 4 4 4 3 3 3 3

90% 7 6 5 5 5 4 4 4 4 4

95% 7 6 6 6 5 5 5 4 4 4

98% 8 7 6 6 6 5 5 5 5 4

99% 8 7 7 6 6 6 5 5 5 5

100% 8 8 7 6 6 6 6 5 5 5

Table 3.13 Maximum length of patterns for dataset at different 

minimum supports and confidence levels
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Fig. 3.19 Maximum length of patterns w.r.t minimum 

supports and confidence levels (V=100ㆍE=300ㆍS=5ㆍM=50)

In above experiments, we examined the execution times for the two 

algorithms, IMTP, and PTMP, using synthetic datasets. In IMTP, as 
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stated above, it is necessary to examine confidence interval in each 

mining step for frequent traversal patterns. On the contrary, PMTP 

executes a preprocessing stage for split traversal database, but no 

examination of confidence interval. In the most of experiments, the 

processing time of PMTP is decreased about 46.8% when comparison 

IMTP with PMTP.
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Chapter Chapter Chapter Chapter 4  4  4  4  Mining Mining Mining Mining Patterns Patterns Patterns Patterns from from from from Unweighted Unweighted Unweighted Unweighted 

Traversals Traversals Traversals Traversals on on on on Weighted Weighted Weighted Weighted GraphGraphGraphGraph

This chapter proposes a new mining method for the discovery of 

weighted traversal patterns from unweighted traversals on weighted 

graph. For the weighted graph, this thesis only focused on the weights 

attached to the vertices.

4.1  4.1  4.1  4.1  Definitions Definitions Definitions Definitions and and and and Problem Problem Problem Problem StatementsStatementsStatementsStatements

Definition Definition Definition Definition 4.1.4.1.4.1.4.1. A weighted directed graph is a finite set of vertices and 

edges, in which each vertex is attached with a weight value, and each 

edge joins an ordered pair of vertices. A weighted base graph is a 

weighted directed graph, on which traversals occur.

For example, the following base graph has 6 vertices and 8 edges, in 

which each vertex is associated with a weight in Fig. 4.1.

Fig. 4.1 An example of a weighted base graph
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Definition Definition Definition Definition 4.2.4.2.4.2.4.2. A traversal is a sequence of consecutive vertices along a 

sequence of edges on a weighted base graph. We assume that every 

traversal is a path, which has no repeated vertices and edges. The length 

of a traversal is the number of vertices in the traversal. The weight of a 

traversal is the sum of vertex weights in the traversal. A traversal 

database is a set of traversals. 

TID Traversal

1

2

3

4

5

6

<A, B>

<B, C, E, F>

<A, C>

<B, C, E>

<A>

<A, C, E, D>

Fig. 4.2 An example of a traversal database

Definition Definition Definition Definition 4.3.4.3.4.3.4.3. A subtraversal is any subsequence of consecutive vertices 

in a traversal. If a pattern  is a subtraversal of a traversal , then we 

say that  is contained in , and  contains .

There is a well known property on such subtraversal [4, 5] as follows.

Property Property Property Property 4.1.4.1.4.1.4.1. Given a traversal of length , there are only two 

subtraversals of length .

For example, given a traversal of length 4, , there are only 

two subtraversals of length 3,  and . Note that 
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non-consecutive sequences, such as , are not subtraversals. 

Definition Definition Definition Definition 4.4.4.4.4.4.4.4. The support count of a pattern , , is the 

number of traversals containing the pattern. The support of a pattern , 

, is the fraction of traversals containing the pattern. Given a 

traversal database , let   be the number of traversals.

(4.1)

There is a well known property on such support count and support as 

follows.

Property Property Property Property 4.2.4.2.4.2.4.2. The support count and the support of a pattern decrease 

monotonically as the length of the pattern increases. In other word, given 

a -pattern  and any -pattern containing , denoted by  , where 

 , then ≥   and .

Given a weighted base graph with a set of vertices     , in 

which each vertex  is assigned with a weight ≥ , we will define the 

weighted support of a pattern.

Definition Definition Definition Definition 4.5.4.5.4.5.4.5. The weighted support of a pattern , , is

 ∈
 (4.2)

Definition Definition Definition Definition 4.6.4.6.4.6.4.6. A pattern  is said to be weightedly frequent when the 
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weighted support is greater than or equal to a given minimum weighted 

support (minwsup) threshold,

≥  (4.3)

For example, given a weighted base graph and a traversal database of 

Fig. 4.1 and 4.2, and minwsup of 5.0, then the pattern  is 

weightedly frequent since (5.0 + 7.0 + 4.0) ✕ 2/6 = 5.3 ≥ 5.0, but the 

pattern  is not since (5.0 + 7.0) ✕ 2/6 = 4.0 < 5.0.

From Equation (4.1), (4.2) and (4.3), a pattern  is weightedly frequent 

when its support count satisfies:

≥
∈


×  
(4.4)

We can consider the right hand side of Equation (4.4) as the lower 

bound of the support count for a pattern  to be weightedly frequent. 

Such a lower bound, called a support bound, is given by

⌈∈×  ⌉ (4.5)

We take the ceiling of the value since the function  is an 

integer. From Equation (4.4) and (4.5), we can say a pattern  is 

weighted frequently when the support count is greater than or equal to 

the support bound.

≥  (4.6)
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Note that  can be calculated from the weighted base graph 

without referring the traversal database. On the contrary,  can 

be obtained by referring traversal database.

The problem concerned in this chapter is stated as follows. Given a 

weighted directed graph, called a weighted base graph, and a set of path 

traversals on the graph, called a traversal database, find all weighted 

frequent patterns.

4.2  4.2  4.2  4.2  Mining Mining Mining Mining Weighted Weighted Weighted Weighted Frequent Frequent Frequent Frequent PatternsPatternsPatternsPatterns

We propose a method for the mining of weighted frequent patterns. An 

efficient algorithm for mining large itemsets has been the Apriori 

algorithm [1, 4, 21, 33]. The reason why the Apriori algorithm works is 

due to the downward closure property [49], which says all the subsets of 

a large itemset must be also large. For the weighted setting, however, it 

is not necessarily true for all subpatterns of a weighted frequent pattern 

to be weighted frequent. For example, although a pattern <B, C> is a 

subpattern of the weighted frequent pattern <B, C, E>, it is not weighted 

frequent. Therefore, we can not directly adopt Apriori algorithm. Instead, 

we will extend the notion of the support bound [38], which can be 

applied to pruning and candidate generation in the mining process.

4.2.1  4.2.1  4.2.1  4.2.1  Pruning Pruning Pruning Pruning by by by by Support Support Support Support BoundsBoundsBoundsBounds

One of the cornerstones to improve the mining performance is to devise 

a pruning method which can reduce the number of candidates as many 
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as possible. We must prune such candidates that have no possibility to 

become weighted frequent in the future. On the contrary, we must keep 

such candidates that have a possibility to become weighted frequent in 

the future. Main concern is how to decide such possibility.

Definition Definition Definition Definition 4.7.4.7.4.7.4.7. A pattern  is said to be feasible when it has a 

possibility to become weighted frequent in the future if extended to 

longer patterns. In other words, when some future patterns containing P 

will be possibly weighted frequent.

Now, the pruning problem is converted to the feasibility problem. For 

the decision of such feasibility, we will first devise the weight bound of a 

pattern. Let the maximum possible length of weighted frequent patterns 

be u, which may be the length of the longest traversal in the traversal 

database. Given a -pattern , suppose -pattern containing , denoted 

by  , where  ≤ . For the additional   vertices, if we can 

estimate upper bounds of the weights as    , then the upper 

bound of the weight of the -pattern   is given by

  
∈


  

 

 (4.7)

We call this upper bound as -weight bound of . The first sum is the 

sum of the weights for the -pattern  and the second one is the sum of 

the   estimated weights, which can be estimated in several ways. We 

will propose three estimation methods in the following section.

From Equation (4.5) and (4.7), we can derive the lower bound of the 
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support count for -pattern containing  to be weighted frequent. Such 

lower bound, called -support bound of , is given by

 ⌈ ×  ⌉ (4.8)

Lemma Lemma Lemma Lemma 4.1.4.1.4.1.4.1. A pattern  is feasible if ≥   for some 

 ≤ , but not feasible if    for all  ≤ .

Proof.Proof.Proof.Proof. Let  be that out of . If ≥  , then because 

≥   by Property 4.2, there is a possibility to be 

 ≥  . It means that   will possibly be weighted 

frequent. On the contrary, if   , then  

  because ≥   by Property 4.2. It means 

that   will definitely not be weighted frequent.

If a pattern  is feasible then some -patterns containing  will be 

possibly weighted frequent. In other word,  has a possibility to be 

subpatterns of some weighted frequent -patterns. Therefore,  must be 

kept to be extended to longer patterns for possible weighted frequent 

patterns in the coming passes. On the contrary, if a pattern  is not 

feasible, then all -patterns containing  will not be weighted frequent. 

In other word,  certainly has no possibility to be subpattern of any 

weighted frequent -patterns. Therefore,  must be pruned.

For example, referring to Fig. 4.1 and Fig. 4.2, given a 2-pattern 

, suppose 3-pattern  . For the additional vertex '－ ', we 



- 55 -

can estimate a possible upper bound of the weight as 12.0, which is the 

greatest weight among the remaining vertices besides B and C. Therefore, 

the 3-support bound of  is

 ⌈  ×  ⌉ 
It means if the support count of  is greater than or equal to 2, 

some 3-patterns will be possibly weighted frequent. In other word, 

 has a possibility to be subpatterns of some weighted frequent 

3-patterns. Because the support count of the pattern  is actually 

2, the pattern must be extended to 3-patterns for possible weighted 

frequent patterns.

Corollary Corollary Corollary Corollary 4.1.4.1.4.1.4.1. A pattern  is feasible if ≥ .

Proof.Proof.Proof.Proof.  From Equation (4.5), (4.7) and (4.8), ≥   for 

all  ≤ . Therefore, ≥   for all  ≤ , which 

means  is feasible by Lemma 4.1.

In this case, we don’t need to estimate   to decide the 

feasibility of . On the contrary, in case of  , we can 

not decide the feasibility, and therefore we need to estimate   

to decide the feasibility by Lemma 4.1.

According to Lemma 4.1 along with Corollary 4.1, we can devise a 

pruning algorithm, called 'pruning by support bounds', as follows.
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Algorithm. Algorithm. Algorithm. Algorithm. Pruning-SBPruning-SBPruning-SBPruning-SB

Input: Candidate pattern P,

Unpruned candidate patterns set ,

Maximum possible length of pattern 

Output: Pruned candidate patterns set 

begin

for each pattern P in candidates set  {

if ≥ 

continue;    // P is feasible. keep

for each  from    to  {

estimate  ;

if ≥  

break;    // P is feasible. keep

}

if   

  ; // P is not feasible. prune

}

end;

Fig. 4.3 Algorithm Pruning-SB pruning by support bounds

We can devise another pruning algorithm by using the minimum of 

-support bounds.

Definition Definition Definition Definition 4.8.4.8.4.8.4.8. The maximum -weight bound,  , and the 

minimum -support bound of a pattern ,  , are defined as 

follows.

   

     ≤ 
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Corollary Corollary Corollary Corollary 4.2.4.2.4.2.4.2. A pattern  is feasible if ≥  , but 

not feasible if   .

Proof.Proof.Proof.Proof. If ≥  , then there is at least one  such that 

≥  , where   . On the contrary, 

if   , then    for all  ≤ .

According to Corollary 4.2 along with Corollary 4.1, we can devise 

another pruning algorithm, called 'pruning by minimum support bound', 

as follows.

Algorithm. Algorithm. Algorithm. Algorithm. Pruning-MSBPruning-MSBPruning-MSBPruning-MSB    

Input: Candidate pattern  ,

Unpruned candidate patterns set 

Output: Pruned candidate patterns set 

begin

for each pattern   in candidates set  {

if ≥ 

continue;    //   is feasible. keep

estimate  ;

if ≥  

continue;    //   is feasible. keep

   ;    //   is not feasible. prune

}

end;

Fig. 4.4 Algorithm Pruning-MSB pruning by minimum support bound
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4.2.2  4.2.2  4.2.2  4.2.2  Candidate Candidate Candidate Candidate GenerationGenerationGenerationGeneration

This thesis devises candidate generation algorithms by defining 

downward closure properties between feasible patterns. If there is a 

downward closure property between feasible patterns, new candidates can 

be generated from current feasible patterns.

Definition Definition Definition Definition 4.94.94.94.9. We say that there is partial downward closure property 

when the -subpattern       of a feasible -pattern 

     is also feasible. We say that there is full downward 

closure property when two -subpatterns       and 

     of a feasible -pattern      are also feasible.

Note that there are only two -subpatterns of a -pattern by 

Property 4.1. When there is the partial downward closure property, we 

can generate candidate -patterns, , from feasible -patterns, , 

as follows.
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Algorithm.Algorithm.Algorithm.Algorithm. Gen-PDCGen-PDCGen-PDCGen-PDC

Input: Candidate patterns set ,

Weighted base graph G

Output: Joined candidate patterns set  

begin

  ∅ ;

for each         in  {

for each edge <pk, v> in G

if   is not already in   { // not repeated vertex

  is extended to ′        ;

   ∪′ ;
}

}

end;

Fig. 4.5 Algorithm Gen-PDC for candidate generation

When there is a full downward closure property, we can generate   

in a similar way.
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Algorithm. Algorithm. Algorithm. Algorithm. Gen-FDCGen-FDCGen-FDCGen-FDC

Input: Candidate patterns set ,

Weighted base graph G

Output: Joined candidate patterns set  

begin

  ∅ ;

for each         in  {

for each edge      in G

if (  is not already in  ) and (        is in ) {

  is extended to ′        ;

   ∪′ ;
}

}

end;

Fig. 4.6 Algorithm Gen-FDC for candidate generation

This algorithm will generate less number of candidates than algorithm 

Gen-PDC.

When there is the full downward closure property,  can be 

alternatively obtained by self-joining . That is, two -patterns 

      and       will be joined if  ,  , 

…,   , and ≠. This results in a new candidate pattern 

     . For example, the join of  and  

results in . This method need not refer to the weighted base 

graph , besides for  generation. For  generation, each generated 

2-pattern must be excluded if there is no corresponding edge in .
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Algorithm. Algorithm. Algorithm. Algorithm. Gen-SQLGen-SQLGen-SQLGen-SQL

Input: Candidate patterns set ,

Output: Joined candidate patterns set  

begin

  ∅

 = select    

from   

where        

      ≠ 

while ≠ ∅ {

′      
   ∪′

}

end;

Fig. 4.7 Algorithm Gen-SQL for candidate generation

In Fig. 4.7, algorithm Gen-SQL need not refer to the weighted base 

graph , besides for  generation. For  generation, each generated 

2-pattern must be excluded if there is no corresponding edge in .

4.2.3  4.2.3  4.2.3  4.2.3  Mining Mining Mining Mining AlgorithmAlgorithmAlgorithmAlgorithm

By combining the pruning and candidate generation algorithms as a 

whole, we can devise an algorithm for mining weighted frequent patterns. 

Fig. 4.8 shows the algorithm proposed in this thesis, which performs in a 

level-wise manner. 
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Algorithm. Algorithm. Algorithm. Algorithm. Mining Mining Mining Mining weighted weighted weighted weighted frequent frequent frequent frequent patternspatternspatternspatterns

Inputs: Weighted base graph  ,

Traversal database  ,

Minimum weighted support 

Output: Set of weighted frequent patterns  

begin

// 1. maximum length of weighted frequent patterns

  ∈ ;

// 2. initialize candidate patterns of length 1

  ;

for ( ; ≤   and ≠ ∅ ;  ) {

// 3. obtain support counts

for each traversal ∈  {

for each pattern ∈
if  is contained in , then  ;

}

// 4. determine weighted frequent patterns 

   ∈ ≥ ;
//  equivalently, ≥ 

if   {

// 5. prune candidates

  ;

        // 6. generate new candidates for next pass

  ;

}

}

end;

Fig. 4.8 Algorithm for mining weighted frequent patterns
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In the algorithm as shown in the Fig. 4.8, each step is outlined as 

follows. Step 1 is to find out the maximum possible length of weighted 

frequent patterns, which is limited by the maximum length of traversals. 

Step 2 initializes candidate patterns of length 1 with the vertices of 

weighted base graph. In Step 3, traversal database is scanned to obtain 

the support counts of candidate patterns. Step 4 is to determine weighted 

frequent patterns if the weighted support is greater than or equal to the 

specified minimum weighted support. Equivalently, if the support count is 

greater or equal to the support bound. In Step 5, the subroutine 

 is to prune candidate patterns by checking their 

feasibility. The algorithm Pruning-SB or Pruning-MSB can be used 

according to their efficiency. The remaining patterns are feasible patterns. 

In Step 6, the subroutine  generates new candidate 

patterns of length  from the feasible patterns of length  for the 

next pass. The algorithm Gen-PDC, Gen-FDC or Gen-SQL can be used 

according to its applicability and efficiency.

4.3  4.3  4.3  4.3  Estimations Estimations Estimations Estimations of of of of Support Support Support Support BoundsBoundsBoundsBounds

In this section, we propose two methods for the estimation of weight 

and support bound.

4.3.1  4.3.1  4.3.1  4.3.1  Estimation Estimation Estimation Estimation by by by by All All All All VerticesVerticesVerticesVertices

Given a -pattern , suppose -pattern containing , where  ≤ . 

Let  be set of all vertices in the weighted base graph. Among 
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remaining vertices  , let the vertices with the   greatest 

weights be     . Then, the -weight bound,  , and the 

-support bound,  , of  are defined same as Equation (4.7) and 

(4.8), respectively.

For example, refer to Fig. 4.1 and Fig. 4.2, the 3-support bound for the 

pattern  is 

 ⌈  ×  ⌉ 
Corollary Corollary Corollary Corollary 4.34.34.34.3.   increases monotonically, and accordingly 

  decreases monotonically as  increases. 

Let the upper limit of the length of possible weighted frequent patterns 

be known as . By Corollary 4.3, the minimum support bound of  is 

the -support bound of ,

    (4.9)

By Equation (4.9) along with Corollary 4.2, if ≥  , 

then  is feasible. On the contrary, if   , then  is 

not feasible. This means that we do not need to calculate -support 

bounds of  for  ≤ . Therefore, the pruning algorithm Pruning-MSB 

is more efficient than Pruning-SB.

Corollary Corollary Corollary Corollary 4.4.4.4.4.4.4.4. For any  in      ,  ≥
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 , and accordingly  ≤  .

Proof.Proof.Proof.Proof.   is the sum of the vertex weights of  

excluding  and    greatest vertex weights among the vertices 

including . This sum is always greater than or equal to the sum of the 

vertex weights of  and   greatest vertex weights.

Lemma Lemma Lemma Lemma 4.2.4.2.4.2.4.2. There is the full downward closure property among feasible 

patterns. That is, if a -pattern       is feasible, then the 

two  -subpatterns          and       are 

also feasible. 

Proof.Proof.Proof.Proof. The if condition means ≥  . For , 

≥  by Property 4.2, and  ≤   by 

Corollary 4.4. Therefore ≥  , which implies  is 

feasible. This is similar for .

Therefore, the candidate generation algorithm Gen-FDC or Gen-SQL can be 

applied.

Consider an example.

From the Fig. 4.1 and 4.2, we will show how the weighted frequent 

patterns are generated from the traversal database. Suppose that the 

minwsup (minimum weighted support) is 5.0.

1. In the  subroutine, the algorithm will scan the length of 
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traversals, and returns the maximum length, which is 4 in this example. 

The maximum length is the upper limit of the length of weighted 

frequent patterns.

2. During the initialization step, the candidate patterns of length 1 are 

generated with all vertices of the weighted base graph.

 

3. The algorithm repeats as followings.

Pattern
(P)

scount(P) sbound(P)
wbound(P, 4)
/ sbound(P, 4)

Weightedly
frequent

Feasible

<A> 4 15 27 / 2 ✓
<B> 3 6 30 / 1 ✓
<C> 4 5 30 / 1 ✓
<D> 1 5 30 / 1 ✓
<E> 3 8 29 / 2 ✓
<F> 1 3 30 / 1 ✓

Candidates for next pass are generated by Gen-FDC or Gen-SQL.

Pattern
(P)

scount(P) sbound(P)
wbound(P, 4)
/ sbound(P, 4)

Weightedly
frequent

Feasible

<A, B> 1 5 26 / 2

<A, C> 2 4 27 / 2 ✓
<B, C> 2 3 30 / 1 ✓
<B, D> 0 － －

<C, E> 3 3 － ✓ ✓
<D, F> 0 － －

<E, D> 1 3 29 / 2

<E, F> 1 2 29 / 2

Pattern

(P)
scount(P) sbound(P)

wbound(P, 4)
/ sbound(P, 4)

Weightedly

frequent
Feasible

<A, C, E> 1 3 25 / 2

<B, C, E> 2 2 － ✓ ✓
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In the above example, '－' denotes 'not need'.

The weighted frequent patterns are .

4.3.2  4.3.2  4.3.2  4.3.2  Estimation Estimation Estimation Estimation by by by by Reachable Reachable Reachable Reachable Vertices Vertices Vertices Vertices 

To prune unnecessary candidates as many as possible, support bounds 

need to be estimated as high as possible. It means that we must 

estimate weight bounds as low as possible. The previous method, 

however, has a tendency to over-estimate the weight bounds. This is why 

the topology of a weighted base graph is not considered. Specifically, the 

vertices with greatest weights are chosen one after one, even though they 

can not be reached from the corresponding pattern.

 

Definition Definition Definition Definition 4.10.4.10.4.10.4.10. Given a weighted base graph , -reachable vertices 

from a vertex  is all the vertices reachable from  within the distance 

.

-reachable vertices can be regarded as the vertices within the radius  

from . Therefore, -reachable vertices include all the  -reachable 

vertices. 

Given a -pattern , let  ,  ≤ , be the -reachable 

vertices from the head vertex of , but not in  and not through the 

vertices in . They can be obtained by a level wise manner.



- 68 -

Algorithm. Algorithm. Algorithm. Algorithm. Reachable, Reachable, Reachable, Reachable,  

Inputs: Weighted base graph  ,

Candidate pattern  ,

The number of vertices appended for extending pattern 

Output: Set of weighted frequent patterns  

begin

  = {head vertex of  } if (  ), otherwise  ;

  = ∅ ;

for each vertex   in 

for each edge      in 

if   is not in   and    and  , then append   to  ;

    ∪ ;

end;

Fig. 4.9 Algorithm Reachable for searching reachable vertices from 

candidate pattern

For example, from Fig. 4.1,   is , and   is 

.

Among the vertices in  , let the vertices with the   greatest 

weights be 
 
  . Then, the -weight bound,  , and the 

-support bound,  , of  are obtained by Equation (4.7) and 

(4.8), respectively. For example, refer to Fig. 4.1 and Fig. 4.2, the 

3-support bound for the pattern  is

 ⌈  ×  ⌉ 
Corollary Corollary Corollary Corollary 4.3'.4.3'.4.3'.4.3'.   increases monotonically, and accordingly 

  decreases monotonically as  increases.
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By Corollary 4.3', the minimum support bound of  is the -support 

bound of ,

    (4.9')

In spite of Equation (4.9'), however, the pruning algorithm Pruning-SB 

may be more efficient than Pruning-MSB because the pruning can be 

decided before  due to the level wise characteristic of the algorithm 

 .

Corollary Corollary Corollary Corollary 4.4'.4.4'.4.4'.4.4'. For any  in      ,  ≥

 , and accordingly  ≤  .

Proof.Proof.Proof.Proof.   is the sum of the vertex weights of  

excluding  and    greatest vertex weights among the vertices of 

   which includes all the vertices of   and . This 

sum is always greater than or equal to the sum of the vertex weights of 

 and   greatest vertex weights among the vertices of  .

Lemma Lemma Lemma Lemma 4.2'.4.2'.4.2'.4.2'. There is the partial downward closure property among 

feasible patterns. That is, if a -pattern       is feasible, 

then the -subpattern        is also feasible.

Proof.Proof.Proof.Proof. The necessary condition means ≥  . For , 

≥  by Property 4.2, and  ≤   by 
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Corollary 4.4'. Therefore ≥   which implies  is 

feasible.

Therefore, the candidate generation algorithm Gen-PDC can be only 

applied.

Consider an example.

Pattern
(P)

scount(P) sbound(P)

wbound(P, )
/ sbound(P, ) Weightedly

frequent
Feasible

 = 2  = 3  = 4

<A> 4 15 9 / 4 － － ✓
<B> 3 6 12 / 3 － － ✓
<C> 4 5 11 / 3 － － ✓
<D> 1 5 18 / 2 ✕ ✕
<E> 3 8 16 / 2 － － ✓
<F> 1 3 ✕ ✕ ✕

In the above example, '✕' denotes 'not applicable'.

Candidates for next pass are generated by Gen-PDC.

Pattern
(P)

scount(P) sbound(P)

wbound(P, )
/ sbound(P, ) Weightedly

frequent
Feasible

 = 3  = 4

<A, B> 1 5 14 / 3 26 / 2

<A, C> 2 4 13 / 3 27 / 2 ✓
<B, C> 2 3 16 / 2 － ✓
<B, D> 0 － － －

<C, E> 3 3 － － ✓ ✓
<E, D> 1 3 22 / 2 ✕
<E, F> 1 2 ✕ ✕
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Pattern

(P)
scount(P) sbound(P)

wbound(P, )
/ sbound(P, ) Weightedly

frequent
Feasible

 = 4

<A, C, E> 1 3 26 / 2

<B, C, E> 2 2 － ✓ ✓
<C, E, D> 1 2 29 / 2

<C, E, F> 1 2 ✕

Pattern
(P)

scount(P) sbound(P)
Weightedly
frequent

Feasible

<B, C, E, D> 0 －

<B, C, E, F> 1 2

The weighted frequent patterns are .

4.4  4.4  4.4  4.4  Experimental Experimental Experimental Experimental ResultsResultsResultsResults

This section describes experimental results of the mining algorithms, 

and compares two estimation algorithms, All vertices and Reachable 

vertices, by using synthetic dataset. For the experiments, a weighted base 

graph is generated synthetically according to the parameters, i.e., number 

of vertices and average number of edges per vertex. And then, we 

assigned distinctive weight to each vertex in the weighted base graph. 

Traversal datasets are also generated randomly according to the 

parameters, i.e., number of traversals and maximum length of traversals.

By these experiments, we compare the running times of two algorithms, 

All Estimation Algorithm and Reachable Estimation Algorithm. And then, 

we examine the number of feasible patterns generated during the mining 

process. The experimental environments are shown in Table 4.1.
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Type Description

Operating System Windows XP Professional, SP 2

Database Microsoft SQL Server 2000

Programming Language Microsoft Visual C++ 6.0

PC Machine Pentium Ⅳ 3 GHz with 1 GB main memory

Table 4.1 Experimental environments

Table 4.2 presents all the symbols used in the experiments of this 

chapter. In the experiments, for example, V=100, E=300, T=10K, M=10, 

D=3, and S=5 mean a group of data with 100 vertices, 300 edges, 10,000 

traversals in the database, the maximum length of traversal as 10, the 

average number of fanout as 3, and the minimum weighted support as 

threshold as 5.

Symbol Descriptions

V the number of vertices in weighted base graph

E the number of edges in base graph

D the average number of fanout per vertex

T the number of traversals

M the maximum length of traversals ()

S threshold (minimum weighted support)

Table 4.2 Symbols representing the parameters of synthetic data

Experiment Experiment Experiment Experiment 1: 1: 1: 1: Execution Execution Execution Execution times times times times for for for for different different different different numbers numbers numbers numbers of of of of traversalstraversalstraversalstraversals

This experiment compares the execution times of two algorithms for 

different numbers of traversals. This experiment uses the different 
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number of traversals to compare the running times of two estimation 

algorithms, All and Reachable. The dataset have V=1,000ㆍE=3,000ㆍS=5

ㆍM=10, and the number of traversals varies from 10,000 to 50,000.

Runtime (in seconds) at different number of traversals

Algorithms 10,000 20,000 30,000 40,000 50,000

All 41 81 165 270 408

Reachable 744 1,051 1,272 1,484 1,691

Table 4.3 Execution times for dataset at different numbers of 

traversals

From Table 4.3 and Fig. 4.10, it can be seen that the gap between the 

execution times of two algorithms becomes larger as the number of traversals 

increases. We can find that the Reachable algorithm is more time-consuming. 

This is because the cost of finding reachable vertices increases when the 

number of traversals increases.
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Fig. 4.10 Execution times w.r.t the number of traversals

(V=1,000ㆍE=3,000ㆍS=5ㆍM=10)

Experiment Experiment Experiment Experiment 2: 2: 2: 2: Execution Execution Execution Execution times times times times for for for for different different different different number number number number of of of of edgesedgesedgesedges

This experiment compares the execution times of two algorithms for 

different number of edges. The difference of the number of edges in a 

graph with fixed number of vertices means that the graph density is 

different. The density of a directed graph is defined as 

    × , where   denotes the number of edges and   the 

number of vertices. In generally, there is an inverse relationship between 

the density and the radius of a graph, then the graph radius becomes 

smaller as the graph density becomes larger. This experiment compares 

the running times of two algorithms when the graph density varies.
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Runtime (in seconds) at different numbers of edges

Algorithms 150 200 250 300 350 400 450 500

All 12 12 14 13 13 14 13 14

Reachable 11 13 15 16 16 18 17 19

Table 4.4 Execution times for dataset at different numbers of 

edges

For this experiment, the dataset have 100 vertices, 10,000 traversals, 

minimum weighted support as 5, the maximum length of traversals as 5, 

and the number of edges varies from 150 to 500. This experiment tests 

performance of two estimation algorithms when the graph density varies 

from 0.015 to 0.051. We can verify that if graph density becomes smaller, 

i.e, 0.015, Reachable Estimation Algorithm becomes more fast than All 

Estimation Algorithm. This is because Reachable Estimation Algorithm is 

less time-consuming for searching reachable vertices from terminal vertex 

in a pattern, when the number of edges in a graph becomes smaller.
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Fig. 4.11 Execution times w.r.t the number of edges

(V=100ㆍT=10KㆍS=5ㆍM=5)

Experiment Experiment Experiment Experiment 3: 3: 3: 3: Execution Execution Execution Execution times times times times for for for for different different different different minimum minimum minimum minimum weighted weighted weighted weighted 

supportssupportssupportssupports

This experiment compares the execution times of the two algorithms for 

varying minimum weighted supports. For this experiment, the dataset 

have V=100ㆍE=300ㆍT=10KㆍM=10, and the minimum weighted supports 

varies from 1 to 10. Table 4.5 and Fig. 4.12 show the performance of two 

estimation algorithms for mining weighted frequent patterns. As shown in 

Fig 4.12, we observe that the difference of execution times between two 

estimation algorithms becomes smaller when the specified minimum 

weighted support becomes larger. This is because the number of target 

traversals in traversal database becomes relatively smaller, when the 

specified minimum weighted support used for finding weighted frequent 
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patterns becomes larger.

Runtime (in seconds) at different minimum weighted supports

Algorithms 1 2 3 4 5 6 7 8 9 10

All 163 91 65 51 41 35 31 27 24 21

Reachable 1,451 1,270 1,137 1,061 988 896 848 831 775 744

Table 4.5 Execution times for dataset at different minimum weighted 

supports
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Fig. 4.12 Execution times w.r.t minimum weighted supports

(V=100ㆍE=300ㆍT=10KㆍM=10)

Experiment Experiment Experiment Experiment 4: 4: 4: 4: Execution Execution Execution Execution times times times times for for for for different different different different maximum maximum maximum maximum lengths lengths lengths lengths of of of of 

traversalstraversalstraversalstraversals

The experiment compares the execution times of two algorithms for 
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different maximum lengths of traversals. The maximum length of 

traversals is an important parameter used for detecting vertices to have 

possibility to be patterns later. It becomes longer, the consuming time to 

search reachable vertices in especially Reachable becomes much more 

than that of All. For this experiment, the dataset have V=100ㆍE=300ㆍ
S=5ㆍT=10K, and the maximum length of traversals varies from 4 to 10.

From Table 4.6 and Fig. 4.13, when the maximum length of traversals 

becomes shorter, i.e., 4, Reachable is more efficient than All. On the 

other hand, when the maximum length of traversals becomes longer, 

Reachable is less efficient. This is because Reachable spends more time to 

find reachable vertices as the maximum length of traversals increases.

Runtime (in seconds) at different maximum lengths of 
traversals

Algorithms 4 5 6 7 8 9 10

All 11 12 15 17 19 23 26

Reachable 10 12 15 19 22 29 32

Table 4.6 Execution times for dataset at different maximum 

lengths of traversals
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Fig. 4.13 Execution times w.r.t maximum length of traversals

(V=100ㆍE=300ㆍS=5ㆍT=10K)

Experiment Experiment Experiment Experiment 5: 5: 5: 5: The The The The number number number number of of of of feasible feasible feasible feasible patterns patterns patterns patterns for for for for different different different different 

numbers numbers numbers numbers of of of of traversalstraversalstraversalstraversals

The experiment illustrates the impact of Reachable Estimation 

Algorithm on mining weighted frequent patterns for varying number of 

traversals. This experiment uses different number of traversals to 

compare the number of feasible patterns of two estimation algorithms. 

The dataset have V=1,000ㆍE=2,000ㆍS=5ㆍM=10, and the number of 

traversals varies from 10,000 to 50,000. As mentioned before, All Estimation 

Algorithm leads to the over-estimated weight bounds for the feasible 

patterns, due to the non-consideration of the topology of a weighted base 

graph. Therefore, Reachable is usually more good estimation algorithm 

than All for the number of feasible patterns.
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Different changed traversal size

Algorithms 10,000 20,000 30,000 40,000 50,000

All 1,273 1,305 2,001 2,582 3,307

Reachable 1,170 1,199 1,909 2,523 3,200

Table 4.7 The number of feasible patterns for dataset at 

different numbers of traversals
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Fig. 4.14 The number of feasible patterns w.r.t the number 

of traversals (V=1,000ㆍE=2,000ㆍS=5ㆍM=10)

Experiment Experiment Experiment Experiment 6: 6: 6: 6: The The The The number number number number of of of of feasible feasible feasible feasible patterns patterns patterns patterns for for for for different different different different 

numbers numbers numbers numbers of of of of edgesedgesedgesedges

In Experiment 2, we discussed the effect of graph density. This 

experiment tests the trend for the number of feasible patterns with two 

estimation algorithms when the graph density varies. For this experiment, 
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the dataset have 10,000 traversals, a weighted minimum support as 5, 

and the maximum length of traversals as 10, and the graph density 

varies as the total number of edges from 150 to 500 with the fixed 

number of vertices as 100.

Table 4.8 and Fig. 4.15 test the number of feasible patterns with 

respect to different graph densities. In the figure, we observe that graph 

density becomes larger, the number of feasible patterns between two 

estimation algorithms is analogously. It means that when estimating 

weight bounds, the number of vertices included for estimation is similar, 

because the radius of weighted base graph becomes shorter.

Different changed numbers of edges

Algorithms 150 200 250 300 350 400 450 500

All 325 285 292 261 248 250 216 219

Reachable 270 262 272 252 238 241 212 219

Table 4.8 The number of feasible patterns for dataset at 

different numbers of edges
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Fig. 4.15 The number of feasible patterns w.r.t the number 

of edges (V=100ㆍT=10KㆍS=5ㆍM=10)

Experiment Experiment Experiment Experiment 7: 7: 7: 7: The The The The number number number number of of of of feasible feasible feasible feasible patterns patterns patterns patterns for for for for different different different different 

minimum minimum minimum minimum weighted weighted weighted weighted supportssupportssupportssupports

The experiment compares the number of feasible patterns with two 

estimation algorithms for different minimum weighted supports. For this 

experiment, the dataset have V=100ㆍE=300ㆍT=10KㆍM=10, and the 

minimum weighted support varies from 1 to 10. As previous experiment, 

Reachable generates less number of feasible patterns than that of All.
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Different changed minimum weighted supports

Algorithms 1 2 3 4 5 6 7 8 9 10

All 699 504 401 340 285 259 236 211 188 170

Reachable 652 460 362 296 262 238 207 173 158 143

Table 4.9 The number of feasible patterns for dataset at 

different minimum weighted supports
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Fig. 4.16 The number of feasible patterns w.r.t minimum 

weighted supports (V=100ㆍE=300ㆍT=10KㆍM=10)

Experiment Experiment Experiment Experiment 8: 8: 8: 8: The The The The number number number number of of of of feasible feasible feasible feasible patterns patterns patterns patterns for for for for different different different different 

maximum maximum maximum maximum lengths lengths lengths lengths of of of of traversalstraversalstraversalstraversals

The experiment shows the trend of the number of feasible patterns 

with respect to the maximum lengths of traversals. For this experiment, 

the dataset have V=100ㆍE=300ㆍS=5ㆍT=10K, and the maximum length of 
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traversals varies from 4 to 10. In this experiment, we measured the total 

number of feasible patterns for all mining stages. As shown in the figure, 

the number of feasible patterns for Reachable is smaller than that of All. 

The difference of the number of feasible patterns between two estimation 

algorithms becomes larger as the maximum length of traversals increases.

Different changed maximum length of traversals

Algorithms 4 5 6 7 8 9 10

All 215 285 391 509 637 781 952

Reachable 176 258 353 463 595 738 869

Table 4.10 The number of feasible patterns for dataset at 

different maximum lengths of traversals
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Fig. 4.17 The number of feasible patterns w.r.t maximum 

length of traversals (V=100ㆍE=300ㆍS=5ㆍT=10K)
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Experiment Experiment Experiment Experiment 9: 9: 9: 9: The The The The number number number number of of of of feasible feasible feasible feasible patterns patterns patterns patterns for for for for each each each each mining mining mining mining 

stage stage stage stage 

The experiment compares the number of feasible patterns with two 

estimation algorithms for each mining stage. For this experiment, the 

dataset have V=100ㆍE=300ㆍS=5ㆍM=10ㆍT=10K. From Table 4.11 and 

Fig. 4.18, we can see that the gap between the number of feasible patterns of 

Reachable and All becomes larger when the mining stage is 2, 3 or 4. This is 

because the feasible patterns are more generated in 2, 3 or 4 stage of mining 

process.

Mining stage

Algorithms 1 2 3 4 5 6 7

All 100 172 238 243 136 52 11

Reachable 100 139 197 201 114 46 9

Table 4.11 The number of feasible patterns for each mining stage
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Fig. 4.18 The number of feasible patterns w.r.t each mining 

stage (V=100ㆍE=300ㆍS=5ㆍM=10ㆍT=10K)

In above experiments, we investigated the execution time and the number of 

feasible patterns between the two estimation algorithms, called All and 

Reachable Estimation Algorithm. For the execution time, All is more or less 

good algorithm than Reachable, but All leads to the over-estimated weight 

bounds for the feasible patterns, due to the non-consideration of the 

topology of a weighted base graph. For the performance for the number 

feasible patterns, therefore, Reachable is generally more efficient in the 

mining of weighted frequent patterns.
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Chapter Chapter Chapter Chapter 5  5  5  5  Conclusions Conclusions Conclusions Conclusions and and and and Further Further Further Further WorksWorksWorksWorks

This thesis examined the mining problems of discovering valuable 

patterns from the weighted traversals and graph. Differently from 

previous approaches, the traversals and vertices of a graph are attached 

with the weights that reflect their importance. Such weights may depend 

on the problem domains. For example, the weight of a graph vertex may 

be the size of a Web page, and the weight of a traversal may be the 

navigation time between Web pages. On these weight setting, we 

presented two approaches which take the weights into account in the 

miming process.

First, we presented the mining algorithm for discovering the frequent 

patterns from the weighted traversals on a unweighted graph. In the 

algorithm, the traversals whose weights are outside the confidence 

interval are treated as outliers, and do not contribute to the support 

count. Through this approach, more reliable frequent patterns can be 

discovered. Furthermore, we also proposed the enhanced algorithm to 

improve the performance of this approach. The discovered patterns are 

further ranked according to their priority which reflects several criteria 

beside the support.

Second, we extended the mining problem to the discovery of weighted 

frequent patterns from the unweighted traversals on a weighted graph. 

This algorithm considers the weighted support instead of the traditional 

support, which requires the estimation of support bound. We presented 

two approaches for the estimation of the support bound. Through several 

experiments, the algorithms were evaluated and analyzed.
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In the future, we will further extend the mining problems to the 

discovery of valuable patterns from other weight settings and criteria. We 

will also apply the algorithms to the practical applications such as Web 

mining.



- 89 -

ReferencesReferencesReferencesReferences

[1] M. S. Chen, J. Han, and P. S. Yu, "Data mining: an overview from a 

database perspective," IEEE Transactions on Knowledge and Data 

Engineering, Volume 8, No. 6, pp. 866-883, December, 1996.

[2] R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules 

between sets of items in large databases," In Proceedings of the ACM 

SIGMOD International Conference on Management of Data, pp. 

207-216, May, 1993.

[3] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association 

Rules," In Proceedings of International Conference on Very Large 

Databases (VLDB), September, 1994.

[4] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 

Morgan Kaufman, 2000.

[5] M. S. Chen, J. S. Park, and P. S. Yu, "Efficient Data Mining for Path 

Traversal Patterns", IEEE Transactions on Knowledge and Data 

Engineering, Volume 10, No. 2, pp. 209-221, March, 1998.

[6] A. Nanopoulos and Y. Manolopoulos, "Finding Generalized Path 

Patterns for Web Log Data Mining", In Proceedings of East-European 

Conference on Advanced Databases and Information Systems (ADBIS), 

pp. 215-228, September, 2000.

[7] A. Nanopoulos and Y. Manolopoulos, "Mining Patterns from Graph 

Traversals", Data and Knowledge Engineering, Volume 37, No. 3, pp. 

243-266, June, 2001.

[8] J. L. Gross and J. Yellen, Graph Theory and its Applications, CRC 

Press LLC, 1998.



- 90 -

[9] R. Diestel, Graph Theory, Springer-Verlag, 1997.

[10] D. B. West, Introduction to Graph Theory, Prentice Hall, 1996.

[11] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 

Academic Press, New York, 1980.

[12] J. J. Holdsworth, "Graph Traversal & Graph Transformation," 

International Journal of Theoretical Computer Science, Elsevier 

Science Publishers, Volume 321, Issue 2-3, pp. 215-231, August, 2004.

[13] T. Jing, W. L. Zuo, and B. Z. Zhang, "An efficient Web traversal 

pattern mining algorithm based on suffix array," In Proceedings of 

2004 International Conference on Machine Learning and Cybernetics, 

Volume 3, pp. 1535-1539, August, 2004.

[14] S. S. Hung, T. C. Kuo, and D. S. M. Liu, "PrefixUnion: Mining 

Traversal Patterns Efficiently in Virtual Environments," International 

Conference on Computational Science (ICCS 2005), Lecture Notes in 

Computer Science (LNCS), Springer-Verlag, Volume 3516, pp. 830-833, 

May, 2005.

[15] Y. S. Lee, M. C. Hsieh, and S. J. Yen, "Efficient Approach for 

Interactively Mining Web Traversal Patterns," International 

Conference on Computational Science and Its Application (ICCSA 

2005), Lecture Notes in Computer Science (LNCS), Springer-Verlag, 

Volume 3481, pp. 1055-1065, May, 2005.

[16] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus, "Knowledge 

Discovery in Databases: An Overview," International Journal of 

Knowledge Discovery in Databases, AI Magazine, Volume 13, Number 

3, pp. 57-70, 1992. 

[17] C. Matheus, P. Chan, and G. Piatetsky-Shapiro, "Systems for 



- 91 -

knowledge discovery in databases," IEEE Transactions on Knowledge 

and Data Engineering, Volume 5, pp. 903-913, 1993.

[18] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smith, "From Data 

Mining to Knowledge Discovery: An Overview," Advanced in 

Knowledge Discovery and Data Mining, AAAI/MIT Press, pp. 1-34, 

1996.

[19] M. A. W. Houtsma and A. N Swami, "Set-Oriented Mining for 

Association Rules in Relational Databases," In Proceedings of the 11th 

International Conference on Data Engineering, pp. 25-33, March, 

1995.

[20] A. Savasere, E. Omiecinski, and S. Navathe, "An Efficient Algorithm 

for Mining Association Rules in Large Databases," In Proceedings of 

the 21st International Conference on Very Large Data Bases, pp. 

432-444, September, 1995.

[21] R. Srikant and R. Agrawal, "Mining Generalized Association Rules," 

In Proceedings of the 21st International Conference on Very Large 

Data Bases, pp. 407-419, September, 1995.

[22] M. Mannila, H. Toivonen, and A. I. Verkamo, "Discovering Frequent 

Episodes in Sequences," In Proceedings of the 1st International 

Conference on Knowledge Discovery and Data Mining (KDD'95), pp. 

210-215, August, 1995.

[23] R. Srikant and R. Agrawal, "Mining Sequential Patterns: 

Generalizations and Performance Improvements," In Proceedings of 

International Conference on Extending Database Technology, Volume 

1057, Springer-Verlag, pp. 3-17, 1996.

[24] E. H. Han, V. Kumar, S. Shekhar, M. Ganesh, and J. Srivastava, 



- 92 -

"Search Framework for Mining Classification Decision Trees," Technical 

Report TR-96-023, Department of Computer Science, University of 

Minnesota, 1996.

[25] M. Mehta, R. Agrawal, and J. Rissanen, "SLIQ: A Fast Scalable 

Classifier for Data Mining," In Proceedings of the 5th International 

Conference on Extending Database Technology, pp. 18-32, March, 1996.

[26] P. Cheeseman and J. Stutz, "Baysian Classification (Autoclass): 

Theory and Results," Advances in Knowledge Discovery and Data 

Mining, AAAI/MIT Press, pp. 153-180, 1996.

[27] J. Han, Y. Cai, and N. Cercone, "Data-Driven Discovery of 

Quantitative Rules in Relational Databases," IEEE Transactions on 

Knowledge and Data Mining, AAAI/MIT Press, pp. 1-34, 1996.

[28] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An 

Introduction to Cluster Analysis, John Wiley & Sons, 1990.

[29] D. Fisher, "Optimization and Simplification of Hierarchical 

Clusterings," In Proceedings of the 1st International Conference on 

Knowledge Discovery and Data Mining (KDD'95), pp. 118-123, August, 

1995.

[30] H. Toivonen, "Sampling Large Databases for Association Rules," In 

Proceedings of the 22nd International Conference on Very Large 

Data Bases, pp. 134-145, September, 1996.

[31] J. S. Park, M-S. Chen, and P. S. Yu, "An Effective Hash-based 

Algorithm for Mining Association Rules," In Proceedings of ACM 

SIGMOD International Conference on Management of Data, pp. 

175-186, May, 1995.

[32] J. Han and Y. Fu. "Discovery of multiple-level association rules from 



- 93 -

large databases," In Proceedings of the 21st International Conference 

on Very Large Data Bases, pp. 420-431, September, 1995.

[33] R. Agrawal and R. Srikant, "Mining Sequential Patterns," In 

Proceedings of the 11th International Conference on Data Engineering, 

pp. 3-14, March, 1995.

[34] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and 

M. C. Hsu, "PrefixSpan: Mining Sequential Patterns Efficiently by 

PrefixProjected Pattern Growth," In Proceedings of 2001 International 

Conference on Data Engineering (ICDE'01), pp. 215-224, April, 2001.

[35] M. J. Zaki, "SPADE: An Efficient Algorithm for Mining Frequent 

Sequences," Journal of Machine Learning, Springer Netherlands, 

Volume 42, No. 1-2, pp. 31-60, January, 2001.

[36] M. Y. Lin and S. Y. Lee, "Fast Discovery of Sequential Patterns 

through Memory Indexing and Database Partitioning," Journal of 

Information Science and Engineering, Volume 21, No. 1, pp. 109-128, 

2005.

[37] M. Garofalakis, R. Rastogi, and K. Shim, "Spirit: Sequential Pattern 

Mining with Regular Expression Constraints," In Proceedings of 

International Conference on the Very Large Data Bases, pp. 223-234, 

September, 1999.

[38] C. H. Cai, A. W. C. Fu, C. H. Cheng, and W. W. Kwong, "Mining 

Association Rules with Weighted Items", In Proceedings of 

International Database Engineering and Applications Symposium 

(IDEAS), pp. 68-77, July, 1998.

[39] W. Wang, J. Yang, and P. S. Yu, "Efficient Mining of Weighted 

Association Rules (WAR)", In Proceedings of the 6th ACM SIGKDD 



- 94 -

International Conference on Knowledge Discovery and Data Mining 

(ACM SIGKDD 2000), pp. 270-274, August, 2000.

[40] F. Tao, F. Murtagh, and M. Farid, "Weighted Association Rule 

Mining using Weighted Support and Significance Framework", In Proc. 

of the 9th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining (ACM SIGKDD 2003), pp. 661-666, 

August, 2003.

[41] U. Yun and J. J. Leggett, "WLPMiner: Weighted Frequent Pattern 

Mining with Length-Decreasing Support Constraints", In Proceedings 

of Pacific-Asia International Conference on Knowledge Discovery and 

Data Mining (PAKDD), pp. 555-567, May, 2005.

[42] U. Yun and J. J. Leggett, "WIP: mining Weighted Interesting 

Patterns with a strong weight and/or support affinity," In Proceedings 

of the 6th SIAM International Conference on Data Mining (SDM 

2006), pp. 623-627, April, 2006.

[43] H. Yao, H. J. Hamilton, and C. J. Butz, "A Foundational Approach 

to Mining Itemset Utilities from Databases," In Proc. of the 5th SIAM 

International Conference on Data Mining (SIAM 2004), pp. 482-486, 

April, 2004.

[44] H. Yao and H. J. Hamilton, "Mining itemset utilities from 

transaction databases," International Journal of Data & Knowledge 

Engineering, Volume 59, Issue 3, pp. 603-626, December, 2006.

[45] M. S. Chen, J. S. Park, and P. S. Yu, "Data Mining for Path 

Traversal Patterns in a Web Environment," In Proceedings of 16th 

International Conference on Distributed Computing Systems, pp. 

385-392, May, 1996.



- 95 -

[46] B. Mobasher, N. Jain, E. Han, and J. Srivastava. Web Mining: 

Pattern Discovery from World Wide Web transactions. Technical 

Report 96-050, Department of Computer Science, University of 

Minnesota, 1996.

[47] C. I. Ezeife and Y.Lu, "Mining Web Log Sequential Patterns with 

Position Coded Pre-Order Linked WAP-Tree," International Journal of 

Data Mining and Knowledge Discovery, Kluwer Academic Publishers, 

Volume 10, Issue 1, pp. 5-38, June, 2005.

[48] J. Borges and M. Levene, "Mining Association Rules in Hypertext 

Databases," In Proceedings of the 4th International Conference on 

Knowledge Discovery and Data Mining (KDD'98), pp. 149-153, August, 

1998.

[49] S. Brin, R. Motwani, and C. Silverstein, "Beyond Market Baskets: 

Generalizing Association Rules to Correlations," In Proceedings of 

ACM SIGMOD International Conference on Management of Data, 

Volume 26, Issue 2, pp. 265-276, June, 1997. 

[50] S. D. Lee and H. C. Park, "Mining Frequent Patterns from Weighted 

Traversals on Graph using Confidence Interval and Pattern Priority," 

International Journal of Computer Science and Network Security, 

Volume 6, No. 5A, pp. 136-141, May, 2006.

[51] S. D. Lee and H. C. Park, "Discovery of Frequent Patterns from 

Weighted Traversals and Performance Enhancement by Traversal 

Split," Journal of Korean Institute of Maritime Information & 

Communication Sciences, Volume 11, No. 5, pp. 940-948, May, 2007.

[52] S. D. Lee and H. C. Park, "Mining Weighted Frequent Patterns from 

Path Traversals on Weighted Graph," International Journal of 



- 96 -

Computer Science and Network Security, Volume 7, No. 4, pp. 

140-148, April, 2007.


	Chapter 1  Introduction
	1.1 Overview
	1.2 Motivations
	1.3 Approach
	1.4 Organization of Thesis

	Chapter 2  Related Works
	2.1 Itemset Mining
	2.2 Weighted Itemset Mining
	2.3 Traversal Mining
	2.4 Graph Traversal Mining

	Chapter 3  Mining Patterns from Weighted Traversals on Unweighted Graph
	3.1 Definitions and Problem Statements
	3.2 Mining Frequent Patterns
	3.2.1 Augmentation of Base Graph
	3.2.2 In-Mining Algorithm
	3.2.3 Pre-Mining Algorithm
	3.2.4 Priority of Patterns

	3.3 Experimental Results

	Chapter 4  Mining Patterns from Unweighted Traversals on Weighted Graph
	4.1 Definitions and Problem Statements
	4.2 Mining Weighted Frequent Patterns
	4.2.1 Pruning by Support Bounds
	4.2.2 Candidate Generation
	4.2.3 Mining Algorithm

	4.3 Estimation of Support Bounds
	4.3.1 Estimation by All Vertices
	4.3.2 Estimation by Reachable Vertices

	4.4 Experimental Results

	Chapter 5  Conclusions and Further Works
	References

