저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내야 합니다.
저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
다중경로 MIMO 채널 환경에서 시공간 부호화 방식기반의 복호 알고리즘 연구

A Study on Decoding Algorithm based on Space Time Coding Method in Multipath MIMO Channel Environments

指導教授 鄭 智 元

2014年 2月

韓國海洋大學校 大學院
電波工學科
朴 君 烈
本 論文을 朴君烈의 工學碩士 學位論文으로 認准함.

委員長 : 工學博士 金基萬 (인)
委 員 : 工學博士 尹 榮 (인)
委 員 : 工學博士 鄭智元 (인)

2014年 2月

韓國海洋大學校 大學院
목 차

그림 목차...iii

표 목차...iv

ABSTRACT..v

제 1 장 서론..1

제 2 장 다중경로 채널 환경에서의 최적 채널 부호화 기법.........................3
 제 2.1 절 반복 부호 기법...3
 제 2.2 절 다중경로 채널 환경에서 성능분석...14

제 3 장 MIMO 시스템을 위한 시공간 부호화 방식 및 동화기법..........16
 제 3.1 절 시공간 부호화 기법...16
 3.1.1 시공간 블록 부호화 기법...16
 3.1.2 시공간 격자 부호화 기법...19
 3.1.3 계층적 시공간 부호화 기법...21
 제 3.2 절 MIMO 시스템에서 동화기법..23

제 4 장 MIMO 시스템을 위한 최적의 복호 모델.................................28
 제 4.1 절 시공간 부호화 방식에 따른 성능분석..28
 제 4.2 절 최적의 복호 모델 제안...31
 제 4.3 절 수신위상오차 보상 알고리즘...35

제 5 장 결 론..40

참고문헌...42
그림 목차

그림 2.1 패리티 검사 행렬의 부 행렬...4
그림 2.2 LDPC 전체 복호 과정...5
그림 2.3 R=1/2, v=2인 RSC(Recursive Systematic Convolutional) 부호기........8
그림 2.4 α^m_k, β^m_k의 도식적 표현...10
그림 2.5 터보 Pi 부호화기 구조...11
그림 2.6 터보 Pi 트렐리스도...11
그림 2.7 부호화 열에 따른 성능..13
그림 2.8 블록 사이즈에 따른 터보 부호와 LDPC 부호의 성능비교.............15
그림 3.1 시공간 블록 부호화 기법..17
그림 3.2 시공간 블록 부호 시스템(Tx=2, Rx=2)...17
그림 3.3 32-상태의 시공간격자 부호화기 구조...20
그림 3.4 터보 Pi 부호와 결합된 시공간격자 부호구조.............................21
그림 3.5 시공간격자 부호의 성능 그래프..22
그림 3.6 LMS 알고리즘 블록도...23
그림 3.7 MIMO 시스템 구조...25
그림 4.1 채널 정보 수집 환경...28
그림 4.2 음속 Profile..29
그림 4.3 각각의 추정된 채널 정보..29
그림 4.4 시공간부호에 따른 BER 그래프...30
그림 4.5 ZF등화기법의 유무에 따른 성능비교..31
그림 4.6 제안하는 최적의 부호구조..32
그림 4.7 강/연관정에 의한 성능 비교...33
그림 4.8 제안된 방식의 성능 그래프...34
그림 4.9 DD-CPR의 구조...35
그림 4.10 DD 루프를 결합한 최종적인 부호 구조.....................................38
그림 4.11 DD 루프를 결합한 방식의 성능 그래프.....................................39
표 목차

표 2.1 터보 부호와 LDPC 부호 비교...15
표 3.1 효율적인 시공간 격자부호 방식..19
A Study on Decoding Algorithm based on Space Time Coding Method in Multipath MIMO Channel Environments

Park Gun Yeol

Department of Radio Communication Engineering
Graduate School of Korea Maritime University

The excessive multipath encountered in underwater communications channel and wireless communications channel is creating Inter-Symbol Interference (ISI), which degrades data rate and bit error rate performance. A various different method to cope with multipath situation has been developed to date. In addition to ISI, result from the use of multiple transmitters in underwater channel. It is challenging work to remove ISI in complicated channel conditional. The channel estimation is one of important roles. The way to cope with ISI, LMS algorithm and Zero-Forcing equalizer are used which is placed in front of receiver.

Based on iterative turbo code technique for Single-Input-Single-Output (SISO) channel, this thesis consider Multiple-Input-Multiple-Output (MIMO) channel for increasing data rates and capacity gains. MIMO technique is being studied in underwater communications because of increasing the data rates. MIMO communication system employs multiple transmitters and receivers. They can yield significantly increased data rates and improved link reliability without additional bandwidth. Representative method is Space Time Trellis Code (STTC).

This thesis investigated comprehensive performance of Space Time Codes (STC) techniques and receiver structure for underwater channel, in terms of BERs. This thesis present turbo combining equalizer for MIMO base STTC techniques and it show how much coding gain is improved by combining inner and outer codes. Thus, this thesis proposed two codes, which are inner and outer codes are concatenated in the serial fashion. The inner codes are turbo pi codes and outer codes are STTC codes.
with optimal generator polynomial proposed by Blum.

To increase data rate and diversity gain using MIMO technique in underwater channel environment, exact channel estimation is essential. After channel estimation and symbol detection has been done, significant performance improvement iterative turbo equalization Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm for STTC decoding, de-interleaving and turbo decoding are performed. In addition, the performance can be severely affected by phase mismatch between two sensors, this paper also proposed decision directed loop for compensating phase mismatch.
제 1 장 서 론

천해에서 다중경로 전달 특성을 갖는 경우 수중통신 시스템은 과거 군사적 목적을 위해 제한적으로 사용되었다. 수중 음원 탐지나 수중 운동체 추정, 잠수함등과의 통신을 위해 주로 연구되었으나 해양에 관한 관심이 고조되고, 해양 탐사나 해저 자원 탐사가 활발해지면서 그 활용분야가 확대되었다. 하지만 국내의 기술 수준은 해양산업기술의 수요 부족으로 인하여 수중통신 시스템의 개발은 미미한 수준이다.

수중에서 전파는 급격한 감쇠특성을 갖기 때문에 수중통신에는 음파를 이용하여 통신을 하게 된다[1]. 이러한 이유로 수중통신 시스템 연구는 수중음향학과 통신기술의 복합기술로 연구가 이루어지는 분야이다. 수중통신에서의 채널의 경우 전달 과정에서 잔향 및 다중경로 등에 의해 크게 왜곡되며, 수중에서 고속 데이터 전송을 위하여 수중통신 채널 특성을 결정하는 해면, 해저, 수심 등의 시공간 변화에 의한 다중경로 특성이나 도플러 확산이 시스템의 설계에 고려되어야 한다. 특히 천해에서의 다중경로는 해면의 시변 산란에 의해 도플러 확산과가 직접과에 혼입되어 통신 채널의 특성을 좌우하게 된다. 이러한 수중통신의 채널 특성의 시공간적인 변화는 디지털 수중 통신에서 송신하는 심벌간의 상호간섭이 (Inter-Symbol Interference : ISI) 야기하여 통신 시스템의 성능을 저하시키게 된다. 따라서 현재 열악한 채널 환경을 극복하고 전송율을 향상시키기 위하여 여러 가지 동화기 기법과 함께 MIMO시스템이 연구되고 있다. MIMO 시스템에서 시스템의 설계에 이의를 허용되며 채널 추정이 정확하게 이루어져야 신호를 복원할 수 있다[2][3].

무선통신 시스템 역시Scattering으로 인한 다중경로 채널이 존재하며 이러한 환경을 극복하면서 다양한 서비스, 높은 신뢰도와 함께 빠른 전송속도를 요구한다. 이러한 요구를 만족시키기 위해서는 스펙트럼의 효율성을 높이고 다이버시티 및 부호화 이득을 높일 수 있는 방법이 연구 중에 있다. 이러한 요구를 만족시키기 위해 MIMO(Multiple-Input-Multiple-Output) 시스템은 다이버시티 기술을 사용하여 다수의 송수신 안테나를 갖는 무선 통신
시스템에서 다이버시티 이득과 부호화 이득을 동시에 얻기 위해 제안 되었다. 이러한 다중경로 채널 환경에서 고려되는 부호화 기법으로 터보 부호화기는 그 성능이 Shannon이 제시하는 이론적 한계 값에 매우 근접하는 우수한 오류정정 능력을 보이고 있다. 터보 부호화기는 1993년 Berrou에 의해 성능이 입증되었고 [4], 현재는 각종 무선통신시스템에서 표준으로 채택되고 있다. 이러한 터보 부호는 높은 SNR에서는 오류 마루 현상이 존재하기 때문에 새로운 터보 부호화 방식인 터보 Pi 부호화기를 이용하여 오류 마루 현상을 극복할 수 있다. 다중경로 채널 환경에서 효율적인 전송을 위한 MIMO에서 적용되는 시공간 부호화 기법은 크게 전송 다이버시티와 부호화 이득을 동시에 가지는 시공간 격자부호와 부호화 이득은 없고 전송 다이버시티만 가지는 시공간 블록부호로 나눌 수 있다 [5].

고품질의 높은 신뢰도를 요구하는 무선 통신 시스템에서는 부호화 이득을 가지는 시공간 격자부호와 기술이 더 적합하다. 시공간 격자부호의 기술은 1998년 Tarokh에 의해 처음으로 발표되었고, 그 이후 Baro, Blum 등에 의해 성능이 좋은 부호화 구조가 연구 되어갔으며, 최근에는 시공간 블록 부호화 기법과 반복 부호를 결합하는 계층적인 시공간 부호화 기법이 대두되고 있다.

따라서 본 논문에서는 크게 세가지로 나눌 수 있다. 첫째로 높은 신뢰도와 함께 빠른 전송속도를 요구하는 차세대 무선통신을 위해서 부호화 이득을 높여 Shannon's limit에 근접하기 위해 강력한 오류정정 부호인 Turbo 부호, LDPC 부호 등의 알고리즘 분석을 통해 2장에서 수중통신 환경에 맞춰 시뮬레이션을 통해 도출하였다. 둘째로 오류정정 부호에 시공간 부호 기법을 연계하여 계층적 부호화 기법을 연구, 분석하여 최종적인 MIMO 시스템에서 반복기반의 최적의 채널 등화기법을 3장에서 하였다. 마지막으로 각각의 방식에 대한 성능분석 및 위상오차에 따른 성능분석을 4장에 제안한다. 그리고 제5장의 결론으로 본 논문의 끝을 맺는다.
제 2 장 다중경로 채널 환경에서 고려되는 최적의 채널 부호화 기법

무선통신 시스템은 무선채널의 특성으로 비트오류가 발생하기 쉬우며 이를 정정하기 위해 사용되는 채널부호는 무선통신시스템에서 매우 중요한 요소기술이다. 이러한 채널 부호화 기술 중에 터보 부호와 LDPC부호는 그 성능이 Shannon이 제시하는 이론적 한계 값에 매우 근접하는 우수한 오류 정정 능력을 보이고 있으며 모두 반복기반의 부호기법이다[6][7]. 본 장에서 는 터보 부호와 LDPC 부호와 같은 반복 부호에 대해 분석하고 다중경로 채널 환경에서 최적의 채널 부호화 기법을 제안하고자 한다.

제 2.1 절 반복 부호 기법

2.1.1 LDPC 부호화 기법

LDPC 부호의 길이는 \(N = 64800, N = 19200\)이다.

LDPC 코드의 패리티 검사 행렬이 저 밀도로 형성되어 있다 할 지라도 일반적인 생성 행렬은 부호화를 위하여 필요하다. 물론, 일반적인 선형 부호는 패리티 검사 행렬을 알고 있어 생성 행렬은 Gaussian elimination method(GEM)을 사용하여 간단하게 유도될 수 있다. 그러나 그 결과 생성 행렬의 밀도는 더 이상 낮지 않다. 이 것은 저장용량과 부호화의 복잡도 문제에 야기한다. 따라서 여기서는 패리티 검사 행렬을 다음의 형태로 적용시킨다.

\[
H_{(N-K)\times N} = [A_{(N-K)\times K}B_{(N-K)\times (N-K)}]
\]

여기서 \(B\)는 다음 그림 2.1에서 나타난 형태의 부 행렬로 표현할 수 있다.
행렬 A는 cycle-4를 피하고, cycle-6을 최소화 시키면서 저밀도 행렬을 구성하며, 각각의 초기치도 무작위적으로 분포시킨다. LDPC부호기는 코드크리스 크기 $n_{\text{BPC}}, c = (i_0, i_1, ..., i_{k_{\text{BPC}-1}}, p_0, p_1, ..., p_{n_{\text{BPC}}-k_{\text{BPC}-1}})$에 정보블록크기 $k_{\text{BPC}}, i = (i_0, i_1, ..., i_{k_{\text{BPC}-1}})$를 부호화한다. 코드워드의 전송은 i_0 와 $p_{n_{\text{BPC}}-k_{\text{BPC}-1}}$이 주어질 때 시작한다.

부호기는 k_{BPC} 정보비트의 모든 블록 $(i_0, i_1, ..., i_{k_{\text{BPC}-1}})$에 의해 $n_{\text{BPC}} - k_{\text{BPC}}$ 패리티비트 $(p_0, p_1, ..., p_{n_{\text{BPC}}-k_{\text{BPC}-1}})$을 결정한다.

복호 알고리즘은 기본의 복호 알고리즘과 거의 동일하나, LUT를 만드는 방법 및 Check Node 확률을 구하는 방법상에서 약간의 차이를 가진다. 전체적인 복호 과정을 표현하면 그림 2.2과 같다.
LDPC의 복호 과정을 나누어 보면 수신비트에다가 채널 추정 값을 구하는 초기화 과정, Check node 확률을 구하는 CNU(check Node Update), 비트 확률을 구하는 BNU(Bit Node Update)로 세가지 단계로 나눌 수 있다. $\nu_{m,n}$은 m번째 체크 노드에 대한 n번째에 대한 $\nu_{m,n}$ 이전 반복의 엣지값이며, $u_{m,n}$는 체크 노드 연산을 통해 얻어지는 m번째 체크 노드에 대한 n번째 엣지값이다.

단계 1: Initialization

첫번째 단계는 초기화 단계로, 식 (2.1)과 같이 수신데이터에 채널 추정 값을 $-\frac{2}{\sigma^2}$를 곱해준 δ_f을 각 비트 노드에 저장한다.
단계 2: Check Node Update(CNU)

하나의 체크 노드에서 \(d_c\)개의 row weight를 가진다고 가정할 때, 각각의 체크 노드로 들어오는 엣지 값을 아래 식으로 구할 수 있다.

\[
u(m, n) = \text{sgn}(m) \times \text{sgn}(n) \times m \cdot \hat{u}(|m|, |n|) - LUT_u(m, n)
\]

여기서,

\[
LUT_u(m, n) = \hat{u} \left(1 + e^{-|m+n|}\right) - \hat{u} \left(1 + e^{-|m-n|}\right)
\]

을 나타낸다.

따라서 \(LUT(x) = \hat{u} \left(1 + e^{-x}\right)\)의 look up table 하나만 있으면 위의 CNU를 계산할 수 있다.

예를 들어, 그림 2.2에서 \(u_{0,0}\)을 구하기 위해서는 이전 체크노드로 입력된 자신의 엣지 값인 \(v_{0,0}\)를 제외한 나머지 \(v_{0,2}, v_{0,3}\)의 값으로 식 (2.2)에 대입하여 구할 수 있다.

각각의 비트노드들은 각각 연결된 모든 엣지의 값을 더함으로서 복호 값인 log likelihood ratio(LLR) 값을 구할 수 있다. 이는 식 (2.4)로 나타낼 수 있다.

\[
L_n = \sum u_{m,n}
\]

단계 3: Bit Node Update(BNU)

CNU에서 각 체크 노드로 연결된 비트들에 대한 업데이트가 이루어지고 각 비트 노드의 LLR 값을 구한 후, 마지막 단계로 LLR 값과 비트 노드로
입력된 각 엣지 값들을 이용하여 다시 체크 노드로 보내는 엣지의 값을 구하기 위한 BNU 연산을 해야 한다. BNU 연산 역시 CNU와 마찬가지로 비CNU 연산 후, 비트 노드로 입력된 자신의 엣지 값을 제외한 다른 엣지 값으로만 연산을 행한다. 이러한 연산 방법은 식 (2.5)와 같이 간단히 행할 수 있다.

\[v'_{m,n} = L_n - u_{m,n} \] \hspace{1cm} (2.5)

2.1.2 터보 부호화 기법

1974년 Bahl등에 의해서 새롭게 인식된 MAP(Maximum-a-posteriori) 알고리즘은 이산 무기억 채널(Discrete memoryless channel)을 통하여 전송된 Markov source의 상태와 천이에 대한 APP(A Posteriori Probability)를 계산하여 복호 동작을 수행하는 것이다. 처음 Berrou 등의 논문에서는 변형된 MAP 알고리즘을 제시하여 터보부호의 복호동작으로 사용하였으나 복잡한 구조는 크게 개선되지 않았다[4]. 1994년 Pietrobon등에 의해서 복잡도를 줄이고 하드웨어 구현이 가능한 구조로 MAP 알고리즘을 간단화 한 논문이 제시되었다[8]. 이러한 MAP 알고리즘은 격자복호(trellis decoding)에 대하여 심볼의 에러율을 최소화하는 알고리즘이다. 따라서 전송된 신호가 수신된 후 복호기의 동작은 수신된 심볼에 대하여 likelihood ratio에 의한 복호비트 \(d_k \)를 결정하는 것이다.
그림 2.3 R=1/2, v=2인 RSC(Recursive Systematic Convolutional) 부호기

Fig 2.3 RSC(Recursive Systematic Convolutional) Encoder (R=1/2, v=2)

입력 정보비트열 \{d_k\}이 그림 2.3과 같은 RSC부호기에 의해 생성된 \(d_k\)와 \(y_k\)를 QPSK변조시키면, \(+1/-1\)의 값을 가지는 전송신호 \(a_k\)와 \(b_k\)는 다음과 같이 나타낼 수 있다.

시간 \(k\)에서 분산 \(\sigma^2\)을 가지는 채널잡음 \(p_k, q_k\)가 더해진 수신신호 \(x_k, y_k\)는
\[
x_k = a_k + p_k, \quad y_k = b_k + q_k
\]
(2.6)

으로 나타내지며, N개의 사이즈를 가지는 수신 심볼 \(R_k = (x_k, y_k)\)를 원소로 하는 수신신호열은 다음과 같다.
\[
R_1^N = (R_1, R_2, ... R_k, R_N)
\]
(2.7)

MAP 복호기는 다음 식(2.8)와 같이 정의되는 LLR(Log-Likelihood Ratio)를 이용하여 복호한다. 여기서, \(P_r(d_k = i|R_1^N) = \sum_{m}^{2^{v-1}} \lambda_k^i(m)\)이고, \(k\)시점에서 부호기의 메모리가 \(v\)이며, \(m\)은 부호기의 상태번호, 그리고 \(i\)는 입력비트 이다. \((m = 0, 1, ... 2^{v-1})\)
\[
L(d_k) = \log \frac{Pr(d_k = 1|observation)}{Pr(d_k = 0|observation)}
\]
\[
\begin{align*}
L_{d_k} &= P_r(d_k = 1, S_k = m| R_k^N) \\
&= P_r(d_k = 0, S_k = m| R_k^N) \\
&= \log \frac{\sum_{m} \Lambda_k^{i,m}}{\sum_{m} \Lambda_k^{i,m}} \\
&= (2.8)
\end{align*}
\]

이는 MAP복호기의 soft output이며, 아래와 같이 \(L(d_k) \) 를 임계값 0과 비교함으로써 복호기는 복호비트를 hard-decision 할 수 있다.

\[
\begin{align*}
\text{if } L(d_k) \geq 0, \text{ the decoded } \textbf{bt} & \text{ is 1} \\
\text{if } L(d_k) \leq 0, \text{ the decoded } \textbf{bt} & \text{ is 0}
\end{align*}
\]

식(2.8)에서와 같이 각자도 상의 입력의 한 \(m \) 상태와 \(k \)시점에서의 입력 비트의 사후확률 \(\Lambda_k^{i,m} \)은 수신신호열에 대한 입력 \(d_k \)와 상태변호 \(S_k \)의 조건부 확률로 정의 할 수 있으며, 이를 Bayes의 정리를 이용하여 분해하고 정

\[
\begin{align*}
\Lambda_k^{i,m} &= P_r(d_k = i, S_k = m| R_k^N) \\
&= P_r(d_k = i, S_k = m, R_k^N) / P_r(R_k^N) \\
&= P_r(d_k = i, S_k = m, R_k^{n-1}, R_k^N) / P_r(R_k^N) \\
&= P_r(R_k^{n-1}, d_k = i, S_k = m, R_k^N) / P_r(R_k^N) \\
&= P_r(R_k^{n-1} | d_k = i, S_k = m, R_k^N) P_r(d_k = i, S_k = m, R_k^N) / P_r(R_k^N) \\
&= P_r(R_k^{n-1} | d_k = i, S_k = m, R_k^N) P_r(R_k^N | d_k = i, S_k = m, R_k) P_r(d_k = i, S_k = m, R_k) / P_r(R_k^N) \\
&= P_r(R_k^{n-1} | d_k = i, S_k = m, R_k^N) P_r(R_k^N | d_k = i, S_k = m, R_k) P_r(d_k = i, S_k = m, R_k) / P_r(R_k^N) \\
&= P_r(R_k^{n-1} | d_k = i, S_k = m, R_k^N) P_r(R_k^N | d_k = i, S_k = m, R_k) P_r(d_k = i, S_k = m, R_k) / P_r(R_k^N)
\end{align*}
\]

각 확률상수는 다음과 같이 각각 확률함수로 정의한다.

\[
\begin{align*}
\alpha_k^{i,m} &= P_r(R_k^{n-1} | d_k = i, S_k = m, R_k^N) & (2.10) \\
\beta_k^{i,m} &= P_r(R_k^{n+1} | d_k = i, S_k = m, R_k^k) & (2.11) \\
\delta_k^{i,m} &= P_r(d_k = i, S_k = m, R_k) & (2.12)
\end{align*}
\]
각 성분의 함수명은 a^m_k 은 FSM(Forward State Metric), b^m_k 은 BSM(Backward State Metric) 그리고 δ^m_k 은 BM(Branch Metric)이다. 따라서 최종적인 LLR은 다음과 같다.

$$L(d_k) = \log \frac{\sum_m a^m_k b^{f(0,m)}_{k+1} \delta^m_{k+1}}{\sum_m a^m_k b^{f(1,m)}_{k} \delta^m_{k}}$$

(2.12)

FSM, BSM을 격자도상의 동작을 도식적인 표현을 하면 그림 2.4와 같이 나타낼 수 있다.

![그림 2.4 a^m_k, b^m_k의 도식적 표현](image)

Fig 2.4 Schematic representation of a^m_k, b^m_k

2.1.3 터보 Pi 부호화 기법

기존의 터보 부호화기는 3개의 S1, S2, S3 메모리를 가지며 8-상태로 구성되어 있다. 하지만 터보 Pi 부호화기는 4개의 메모리를 가지며 16개의 상태 를 이용하여 각각의 상태가 가지는 해밍거리차이를 더 크게 만들어 오류 마루 현상을 제거할 수 있는 구조이다. 부호기의 구조는 그림 2.5와 같다.
그림 2.5 터보 Pi 부호화기 구조

Fig 2.5 Encoder of Turbo pi with Memory \((v = 4)\)

메모리가 4개이므로 상태 수는 모두 16개이며 한 상태에서 다음 상태로의 가지 수는 총 4개이다. 그림 2.6은 그림 2.5의 부호화기에 대한 트렐리스 구조도이다.

그림 2.6 터보 Pi 트렐리스도

Fig 2.6 Trellis Diagram of Turbo Pi
메모리가 4개이므로 상태 수는 모두 16개이며 입력되는 비트가 네 가지 발생하므로 한 상태에서 다음 상태로의 가치 수는 총 4개이다. 터보 Pi의 부호기 전체 구조는 기존의 터보와 동일하다.

가장 간단한 인터리빙 방법은 데이터들을 가로 방향으로 쓰고 세로 방향으로 읽어 들이는 rectangular 행렬방식으로써 행해진다. 이런 rectangular 에러 패턴의 거리를 증가시켜주기 위해서 non-uniformity 한 방법이 있는데 이 방법은 에러 패턴의 특성을 잘 흩어지게 하는 효과를 가져 오면서, 각 부호의 code word를 분산시킴으로써 decoding weight를 증가시킨다. 따라서, 인터리버사이즈 즉, 인코딩 된 프레임의 크기가 증가할 수록 성능이 지속적으로 향상되는데, 이것은 인터리버로 인하여 얻어지는 “Interleaving gain” 이 프레임의 크기에 따라 지수함수적으로 증가하기 때문이다. 그림 2.8에서 보듯이 두 번째 인코딩을 하기전에 permutation 하며, 많은 에러 패턴을 피할 수 있다.

아래 그림 2.7은 \(N(블록 사이즈) = 752 \) 일 때, 각 부호화율에 따라서 DVB-RCS 터보 부호와 DVB-RCS/NG 터보 Pi부호의 성능을 비교하였다. 성능 비교 분석 결과 기존의 DVB-RCS와 성능이 거의 비슷하나, 부호화율이 커질수록 오류 마무리 효율이 기존 방식에는 발생하는 반면 터보 Pi 부호는 발생하지 않을음을 알 수 있다. 따라서 터보 Pi가 다중경로 채널 환경에서 가장 효율적인 채널 부호화 기법이다.
Fig 2.7 Performance by Error-rate
제 2.2 절 다중경로 채널 환경에서 성능 분석

터보 부호와 LDPC 부호 모두 성능 면에서는 최근의 통신 시스템에서 가장 성능이 우수하며, 복잡도는 터보부호가 복호기에 있는 반면 LDPC 부호는 부호기에 있다. 속도면에서 LDPC가 고속 통신시스템에 적응되는 반면 터보 부호는 저속 통신시스템에 적응된다. 부호화율의 가변성 측면에서 터보 부호는 친공 패턴을 이용하여 간단하게 가변시킬 수 있지만 LDPC 부호는 각 부호화율마다 H 메트릭이 다르므로 가변성 측면에서는 터보부호가 편리하다. 수중통신의 다중경로로 인한 신호 왜곡으로 인해 동화기의 작용이 필수 불가결하며, 최근의 수중통신에서는 터보 동화기의 작용이 우수함이 증명되어 있으며, 표 2.1에 나타내었다.

다음 그림 2.8은 터보 부호와 LDPC부호의 블록 길이에 따른 성능을 분석한 그림이다. LDPC 부호는 작은 사이즈(802.11n 규격)부터 큰사이즈(DVB-S2규격)를 제공하고 있으며[9], 그림 2.8에서 알 수 있듯이, 큰 사이즈(19200 비트)에서는 LDPC 부호가 성능이 좋지만 작은 사이즈(1944 비트)에서는 오히려 터보 부호가 성능이 약간 좋은음을 알 수 있다. 따라서 수중통신의 패킷에서는 큰 사이즈의 블록길이를 요구하고 있지 않고 동화기와의 결합 편이성이 중요하기 때문에 터보 부호의 작용이 수중 통신에서는 효율적이라는 결론을 얻을 수 있다.
그림 2.8 블록 사이즈에 따른 터보 부호와 LDPC 부호의 성능비교

Fig 2.8 Performance of Turbo and LDPC code by Block Size

표 2.1 터보 부호와 LDPC 부호 비교

<table>
<thead>
<tr>
<th></th>
<th>터보 부호(터보 Pi)</th>
<th>LDPC 부호</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Complexity</td>
<td>Decoder</td>
<td>Encoder</td>
</tr>
<tr>
<td>Decoding Speed</td>
<td>Up to 20Mbps</td>
<td>Up to 200Mbps</td>
</tr>
<tr>
<td>Packet Size(bits)</td>
<td>Up to 2000</td>
<td>Up to 64800</td>
</tr>
<tr>
<td>Rate-Compatible</td>
<td>Easy</td>
<td>Difficult</td>
</tr>
<tr>
<td>Equalization</td>
<td>Combine Turbo Eq.</td>
<td>Independent Eq.</td>
</tr>
</tbody>
</table>
제 3 장 MIMO 시스템에서 시공간 부호화
방식 및 동화기법

제 3.1 절 시공간 부호화 기법

시공간 부호(Space-Time Codes)는 다수의 안테나로부터 수신된 신호를 복호하기 위해 채널 부호화 기법과 다이버시티 기법이 접목된 시스템이다. 시공간 부호는 송수신 양단에 다중 안테나를 적용하여 한정된 주파수 자원 및 송신전력을 이용하여 채널 용량을 증대시키는 높은 데이터 전송률을 제공할 수 있다. 대표적인 공간 다중화 기법인 시공간 블록 부호(Space-Time block Code) 방식은 시공간 부호화된 신호를 다중 안테나를 통해 전송함으로써 수신국에서 다이버시티 이득을 쉽게 얻을 수 있는 기술 중 하나이다. 그리고 다른 공간 다중화 기법인 시공간 격자 부호(Space-Time trellis code) 방식은 시공간 부호화 기법을 사용하여 시공간 블록 부호화는 다르게 송신하자 하는 데이터를 송신국의 다중 안테나 수만큼 분리하여 전송하는 기법으로써 시공간 블록 부호보다 높은 데이터 전송률을 제공한다.

3.1.1 시공간 블록 부호화 방식

시공간 부호화된 신호를 다중 안테나를 통해 전송함으로써 수신단에서 다이버시티 이득을 쉽게 얻을 수 있는 대표적인 다중 안테나 기술 중의 하나인 시공간 블록 부호방식은 송신하고자 하는 복소 심볼이 S_0, S_1일 때 그림 3.1과 같은 부호화 방식을 거친다[10].
이때 *는 공액 복소수를 나타내며, 행은 각각의 송신 안테나를 나타내고 열은 전송시간을 나타낸다. 전송시간 t에 따라 송신 안테나는 각각의 주어진 심볼을 전송하게 되고 t + T시간 동안 s_0, s_1의 심볼을 전송함으로 부호화율이나 전송효율에 따른 손실은 1:1통신과 같게 된다.

다음 그림 3.2는 2개의 송신 안테나와 2개의 수신 안테나에서의 신호의 복호화 과정을 나타낸다.

그림 3.1 시공간 블록 부호화 기법
Fig 3.1 Space-Time block code method

그림 3.2 시공간 블록 부호 시스템(Tx=2, Rx=2)
Fig 3.2 Space-Time block code System(Tx=2, Rx=2)
\(h \)는 두 송수신 안테나 사이의 다중경로 잡음을 나타내고, \(n \)은 시간 \(t \)와 \(t+T \)에서의 가우시안 잡음을 의미한다. 각각의 시간 \(t \)와 \(t+T \)에서 수신안테나 1, 2에서 받은 신호를 \(r_0, r_1, r_2, r_3 \)라고 하면 식 (3.1)로 나타낼 수 있다.

\[
\begin{align*}
 r_0 &= h_0s_0 + h_1s_1 + n_0 \\
 r_1 &= -h_0s_0^* + h_1s_0^* + n_1 \\
 r_2 &= h_2s_0 + h_3s_1 + n_2 \\
 r_3 &= -h_2s_0^* + h_3s_0^* + n_3
\end{align*}
\] (3.1)

식 (3.1)로부터 전송된 심볼 \(s_0 \)와 \(s_1 \)을 복호하기 위해 \(\hat{s}_0 \)과 \(\hat{s}_1 \)을 계산 하는 방법은 식 (3.2)와 같고

\[
\begin{align*}
 \hat{s}_0 &= h_0^*r_0 + h_1^*r_1^* + h_2^*r_2 + h_3^*r_3^* \\
 \hat{s}_1 &= h_1^*r_0 - h_0^*r_1^* + h_3^*r_2 - h_2^*r_3^*
\end{align*}
\] (3.2)

수신신호 \(r_0, r_1, r_2, r_3 \)를 식 (3.2)에 대입하면 각각의 \(\hat{s}_0 \)는 \(s_0 \)를 가지고 \(\hat{s}_1 \)는 \(s_1 \)가지는 최종적인 식 (3.3)을 구할 수 있다.

\[
\begin{align*}
 \hat{s}_0 &= (a_0^2 + a_1^2 + a_2^2 + a_3^2)s_0 + h_0^*n_0 + h_1n_1^* + h_2n_2^* + h_3n_3^* \\
 \hat{s}_1 &= (a_0^2 + a_1^2 + a_2^2 + a_3^2)s_1 - h_0n_0^* + h_1n_1 - h_2n_2^* + h_3n_3
\end{align*}
\] (3.3)

\(\alpha \)는 다중경로 채널에 대한 잡음의 계수값을 나타내고 이때 채널 추정이 완벽하다고 가정하면 구하고자 하는 복호 심볼 \(\hat{s}_0, \hat{s}_1 \)는 maximum likelihood detector를 통해 식 (3.4)로 구할 수가 있다.

\[
\begin{align*}
 (a_0^2 + a_1^2 + a_2^2 + a_3^2 - 1)|s_i|^2 - d^2(\hat{s}_0, s_i) &\leq (a_0^2 + a_1^2 + a_2^2 + a_3^2 - 1)|s_k|^2 - d^2(\hat{s}_0, s_k) \\
 (a_0^2 + a_1^2 + a_2^2 + a_3^2 - 1)|s_i|^2 - d^2(\hat{s}_1, s_i) &\leq (a_0^2 + a_1^2 + a_2^2 + a_3^2 - 1)|s_k|^2 - d^2(\hat{s}_1, s_k) \\
 d^2(\hat{s}_1, s_i) &\leq d^2(\hat{s}_1, s_k) \quad \forall i \neq k
\end{align*}
\] (3.4)
3.1.2 시공간 격자 부호화 방식

시공간 격자 부호(Space-Time trellis code)방식은 복호화 과정에서 격자도를 이용한다. 시공간 격자 부호는 시공간 블록 부호의 부호화 과정을 거치지 않고 전송하고자 하는 심볼을 각각의 안테나에서 전송함으로써 전송효율의 향상을 가져간다. 그러나 시공간 격자 부호에서의 부호 비트들은 각 송수신안테나의 채널에서 선형적으로 결합되어 수신되기 때문에 수신단에서 수신된 값을 분리하여 각 수신된 정보의 값을 log-likelihood 계산을 통하여 추정하여 복호기에 입력해야 한다.

다음 표 3.1은 Tarokh, Baro, Blum에 의해 제안된 시공간격자 부호 방식이다. 여기서 minimum distance가 가장 큰 Blum의 32상태를 방식을 제안하여 연구를 하였다.

표 3.1 효율적인 시공간 격자부호 방식
Table 3.1 Efficient Space-Time Trellis Code Design(Tarokh, Baro, Blum)

<table>
<thead>
<tr>
<th>q</th>
<th>generator matrix</th>
<th>minimum distance</th>
<th>generator matrix</th>
<th>minimum distance</th>
<th>generator matrix</th>
<th>minimum distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(2 1 0 0) 0 0 2 1</td>
<td>4</td>
<td>(1 0 2 2) 3 1 0 2</td>
<td>8</td>
<td>(2 0 1 2) 2 2 2 1</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>(2 2 1 0 0) 2 0 0 2 1</td>
<td>12</td>
<td>(2 2 1 2 0) 2 0 0 2 1</td>
<td>16</td>
<td>(2 1 0 2) 2 1 0 2</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>(2 2 2 1 0 0) 2 0 0 2 2 1</td>
<td>20</td>
<td>(2 2 1 0 2) 2 0 0 2 2 1</td>
<td>20</td>
<td>(2 1 0 2) 2 2 1 0 2</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>(2 3 2 2 1 0 0) 2 3 0 2 1 2 1</td>
<td>28</td>
<td>(2 3 1 2 0 2) 2 0 1 2 2 1</td>
<td>40</td>
<td>(2 3 1 2 0 2) 2 0 1 2 2</td>
<td>40</td>
</tr>
</tbody>
</table>

그림 3.3 32-상태의 시공간 격자 부호화기 구조

Fig 3.3 Structure of Space-Time trellis code based on 32-state

\[a_1, a_2 \text{ 는 전송하고자 하는 bit이고 } x_t^1, x_t^2 \text{ 는 시공간 격자 부호화 이후의 QPSK 변조 되어진 전송 심볼을 나타낸다. 채널 환경은 심볼 주기 } T \text{ 동안 서로 독립적인 분포를 가지는 다중경로 채널로써 주기 } T \text{ 동안 채널의 변화가 없고, 수신단에서는 채널 추정을 정확히 알고 있다고 가정하였다. 이때의 수신신호는 다음과 같이 나타낼 수 있다.} \]

\[r_{j,t} = \sum_{i=1}^{N} h_{i,j} x_t^i + \eta_t \] (3.5)

여기서 \(t = (t = 1, 2, \ldots, T) \text{ 는 송신신호에 대한 시간이며, } x_t^i \text{는 시간 } t \text{에서 } i = (i = 1, 2, \ldots, N) \text{ 번째 송신 안테나에서의 전송 심볼이다. 그리고 } h_{i,j} \text{는 } 1 \text{ 번째 송신 안테나와 } j \text{ 번째 수신 안테나에서의 다중경로 진폭을 나타내며, } \eta_t \text{는 가우시안 잡음을 나타낸다.} \]

시공간 부호화되어 전송되어온 수신 신호는 BCJR 복호기에 입력된다. BCJR 복호기에서는 BM(Branch Matrix), FSM(Forward State Matrix), BSM(Backward State Matrix)을 구하기 위하여 입력 값에 따른 출력 값과 함께 변화하는 상태를 나타내는 격자도를 이용하여 복호하게 되며 복호방식은 2장에서 설명한 터보 부호의 복호 방식과 동일하다[12].
3.1.3 계층적 시공간 부호화 방식

N개의 송신 안테나와 M개의 수신 안테나를 이용하여 다이버시티 이득을 가지는 시공간 부호화 및 함께 강력한 오류정제율을 보이는 채널 부호화 기법을 연합하여 전송하여야 한다. 이때 연접시키고자 하는 채널 부호화 기법과 함께 시공간 부호의 선택에 따라서 성능의 차이점을 보이게 된다. 따라서 채널 코딩 기법으로는 차세대 DVB-RCS 시스템에서 표준으로 채택되어 사용되어지고 있고 2장에서 설명되어진 터보 Pi 부호를 사용한다. 또한 터보 Pi 부호와 연접시키기 위한 시공간 부호화 기법으로는 MIMO 기술의 특성을 다이버시티 이득과 함께 부호화 이득을 동시에 가지는 시공간 격자 부호를 사용한다[13].

다음 그림 3.4는 이러한 터보 Pi 부호화와 함께 시공간 격자 부호를 연접시키는 기본적인 구조를 나타낸다.

그림 3.4 터보 Pi 부호와 결합된 시공간 격자 부호구조

Fig 3.4 Space-Time trellis code combined with Turbo pi code

그림 3.5는 2개의 송신안테나를 이용하는 32-상태 구조를 가지는 시공간 격자 부호화기를 이용하였을 때의 수신 안테나의 수에 따른 BER 성능과 함께 터보 Pi와 시공간 격자 부호를 결합하였을 때의 시뮬레이션 결과를 나타낸다. 시뮬레이션에서 사용한 터보 Pi 부호화기는 전송 bit의 크기 K = 984, 부호화율 R = 1/3을 사용하였다. 시뮬레이션 환경은 심볼 주기 T
동안 서로 독립적인 분포를 가지는 다중경로 채널로써 주기 T 동안 채널의 변화가 없고, 수신단에서는 채널 추정을 정확히 알고 있다고 가정하였다. 변조방식은 QPSK 변조방식을 적용하였다.

그림 3.5 시공간 격자 부호의 성능 그래프

Fig 3.5 Performance of Space-Time trellis code

시공간 격자 부호만을 이용하였을 때의 시뮬레이션 결과는 BER = 10^{-4} 에서 수신 안테나의 수가 1개일 때 보다 2개일 때 약 8dB의 성능이 향상됨을 알 수가 있다. 이러한 성능의 향상은 수신 안테나 수의 증가로 인한 다이버시티 이득으로 3dB의 성능이 향상되었고, 시공간 격자 부호화 이득으로 인하여 약 5dB의 성능이 향상됨을 알 수 있다.

시공간 부호와 터보 Pi 부호를 연합하였을 때의 시뮬레이션 결과는 2개의 수신안테나일 때 1개일 때 보다 약 4dB의 성능이 향상된다. 또한 시공간 격자 부호만을 이용하였을 때의 BER 성능과 비교를 통하여 터보 Pi 채널 부호화 이득을 가지는 것을 알 수 있다. 수신 안테나의 수가 1개일 때는 약 8.5dB, 2개일 때는 약 5dB의 성능이 향상되었다. 터보 Pi 부호와 시공간 격자 부호를 결합하였을 때 채널부호의 이득과 함께 시공간 격자 부호의 부호화 이득, 다이버시티 이득으로 인하여 성능이 향상됨을 알 수 있다.
제 3.2 절 MIMO 시스템에서 동화기법

MIMO 시스템은 다이버시티 기술을 사용하여 다수의 송수신 안테나를 갖는 무선 통신 시스템에서 다이버시티 이득과 부호화 이득을 동시에 얻기 위해 제안되었다. 열악한 채널 환경을 극복하고 전송율을 향상시키기 위하여 여러 가지 동화기 기법과 함께 MIMO 시스템에 대한 연구를 하였다[14]. MIMO 시스템에서는 수신신호로부터 송신신호를 분리하는데 사용한다. 서로 독립적인 채널 환경으로 수신되어야 하며 채널 추정이 정확하게 이루어져야 신호를 복원할 수 있다.

3.2.1 LMS 채널 추정 기법

LMS 채널 추정은 평균자승 오차를 최소화하도록 반복적인 연산을 통하여 해를 구하는 방식으로 시간에 따라 변화하는 값을 추적해서 수렴하는 특성이 갖는다[15].

그림 3.6 LMS 알고리즘 블록도

Fig 3.6 LMS Algorithm Block Diagram

위의 그림 3.6을 이용해서 간단히 설명을 하겠다. 일단 채널 h를 구하기 위해서는 위의 알고리즘에 맞게 순차적으로 계산을 이행 하여야 한다. y(n) 출력을 구하기 위해서는 신호 x와 임의의 채널 h와의 콘볼루션이
필요하다.
이에 관한 것은 다음 식 (3.1)과 같이 나타낸다.

\[y(n) = \sum_{i=0}^{N-1} h(n)x(n-k), n = 0, ... M \] \hspace{2cm} (3.6)

식 (3.6)은 출력 \(y(n) \)을 구하기 위한 식이다. 이때 \(N \)은 \(\text{Tap} \)의 개수이다. 그리고 \(n \)은 신호의 개수이다. 이렇게 위의 식 (3.6)처럼 \(y(n) \)을 구한 후에는 원래의 채널을 추정하기 위해 다음 식 (3.7)와 식 (3.8)과 같은 과정을 거쳐 준다.

\[e(n) = d(n) - y(n) \] \hspace{2cm} (3.7)

식 (3.7)을 이용하여 에러를 구해지며, 리얼 채널의 출력 \(d(n) \)과 임의의 채널 출력 \(y(n) \)과의 차를 이용해 지속적으로 에러를 구하여 에러가 0이 되는 지점까지 구하게 된다.

\[h(n+1) = h(n) + \mu \times e(n) \times x(n) \] \hspace{2cm} (3.8)

그리고 식 (3.8)을 보면 위 식 (3.7)에서 구한 에러값을 이용하여 채널을 계속 업데이트 해주게 된다. \(\mu \)는 \text{step} 사이즈이며 최적해로 수렴하는 속도를 결정한다. 그리고 에러가 0 가까이 되는 지점이 원래의 채널을 추정했다는 것이다. MIMO 시스템의 성능은 다중경로 채널 환경에 의해서 결정되며 LMS 알고리즘을 이용하여 채널 추정 후 채널을 모델링하여 MIMO시스템의 성능을 분석하였다.

3.2.2 Zero-Forcing 등화기법

LMS 알고리즘을 사용하여 추정한 채널 값을 이용하여 최종적인 송신신호를 복원하기 위해 ZF(Zero-Forcing) 등화기법을 적용시킨다[16].

24
MIMO 시스템에서는 N개의 송신 안테나와 M개의 수신안테나를 이용하여 통신을 하며 MIMO 시스템의 구조는 그림 3.7과 같다.

이때 수신된 신호는 식 (3.9)와 같다.

\[y_j(k) = \sum_{i=0}^{N-1} h_{ij}(k) \ast x_i(k) + n_j(k), j = 0, \ldots, M \]

(3.9)

\(y_j \)는 j번째 수신안테나의 수신신호, \(x_i \)는 i번째 송신안테나의 송신신호, \(n_j \)는 j번째 수신안테나의 가우시안 잡음이며, \(h_{ij} \)는 i번째 송신안테나에서 j번째의 수신안테나의 대한 채널 임펄스 응답이다. 송신신호는 각각의 독립된 채널 \(h_{ij} \)와 콘볼루션 되어 잡음이 더해지게 된다. 수신신호를 간략하게 \(y_j = h_{ij} x_i + n_j \)로 나타낼 수 있다. 이를 행렬로 다음과 같이 나타낸다.

\[
\begin{align*}
 y_j &= [y_j(0) \cdots y_j(N-1)]^T \\
 x_i &= [x_i(0) \cdots x_i(N-1)]^T \\
 n_j &= [n_j(0) \cdots n_j(N-1)]^T
\end{align*}
\]

(3.10)
여기서 \(N \)은 데이터 심볼이며, \(v \)의 길이를 가지는 채널 임펄스 응답 \(H \)는 항상 정방행렬로 다음과 같이 나타낸다.

\[
H_{ij} = \begin{bmatrix}
 h_{ij}(0) & 0 & \cdots & 0 & \cdots & 0 \\
 \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & h_{ij}(v) & \cdots & h_{ij}(0)
\end{bmatrix}
\] \hspace{1cm} (3.11)

최종적인 식은 다음과 같다.

\[
y = Hx + n
\] \hspace{1cm} (3.12)

\[
y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad n = \begin{bmatrix} n_1 \\ \vdots \\ n_m \end{bmatrix}
\] \hspace{1cm} (3.13)

\[
H = \begin{bmatrix}
 h_{11} & h_{21} & \cdots & h_{n1} \\
 h_{12} & h_{22} & \cdots & h_{n2} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{1m} & h_{2m} & \cdots & h_{nm}
\end{bmatrix}
\] \hspace{1cm} (3.14)

예를 들어 송수신 각각 두 개의 안테나의 MIMO 시스템에서의 수신신호는 식 (3.15)와 같다.

\[
y_1 = h_{11} x_1 + h_{21} x_2 + n_1 \\
y_2 = h_{12} x_1 + h_{22} x_2 + n_2
\] \hspace{1cm} (3.15)

이를 행렬형태로 나타내면

\[
\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{21} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}
\] \hspace{1cm} (3.16)
가 된다.
채널 임펄스 응답 \(H \) 를 제거하기 위해 ZF등화기법을 사용하며 ZF 계수 \(W \) 는 식 (3.17) 같다.

\[
WH = I \quad W = (H^H H)^{-1} H^H
\]
(3.17)

\[
\begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2
\end{bmatrix} = (H^H H)^{-1} H^H
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} \quad \begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2
\end{bmatrix} = \begin{bmatrix}
w_{11} & w_{21} \\
w_{12} & w_{22}
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
\]
(3.18)

수신신호에 등화기 계수 \(W \)를 곱하면 복원신호를 구할 수 있다. ZF등화기를 통해 복원된 신호를 가지고 ISI를 제거한다. 이는 두 개의 수신신호가 독립이 되도록 하며 식 (3.19)와 같다.

\[
\begin{bmatrix}
\hat{r}_1 \\
\hat{r}_2
\end{bmatrix} = \begin{bmatrix}
y_1 - h_{21} \times \hat{x}_2 \\
y_2 - h_{12} \times \hat{x}_1
\end{bmatrix} = \begin{bmatrix}
h_{11} \times \hat{x}_1 \\
h_{22} \times \hat{x}_2
\end{bmatrix}
\]
(3.19)

다음과정을 거쳐면 최종적으로 복원된 신호를 얻을 수 있다.

\[
\begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2
\end{bmatrix} = \begin{bmatrix}
w_{11} \times \hat{r}_1 \\
w_{22} \times \hat{r}_2
\end{bmatrix}
\]
(3.20)
제 4 장 MIMO 시스템에서 최적의 반복기반 복호 구조

제 4.1 절 MIMO 시스템에서 적합한 기법에 따른 성능분석

채널 추정 및 동화기법의 성능을 증명하기 위하여 실제 동해상에서 실험을 통하여 얻은 Sound Velocity Profile을 기초로 하여 채널을 생성한 후 시뮬레이션을 하였다.

SVP은 그림 4.1과 같다.

그림 4.1 음속 Profile
Fig 4.1 Sound Velocity Profile

 이를 바탕으로 각 채널의 Delay spread profile을 얻기 위해 Matlab을 기반으로 한 Bellhop 모델링 프로그램을 사용하였으며 이때 송신기의 깊이는 Tx1=110m, Tx2=117m이고 수신기의 깊이는 Rx1=110m, Rx2=117m에서 결과
를 도출하였으며 그림 4.2와 같다. 아래 그림 4.3은 LMS 방법을 이용한 실제 채널 정보이다.

그림 4.2 송수신기 Scheme
Fig 4.2 Tx-Rx Scheme

그림 4.3 각각의 추정된 채널 정보
Fig 4.3 Channel Information Estimation
모든 시뮬레이션은 그림 4.3의 채널 환경을 토대로 실시하였습니다.
다음 그림 4.4는 시공간 격자 부호와 시공간 블록 부호의 시뮬레이션 결과 성능 비교 그래프입니다. 시뮬레이션에서 사용한 터보 Pi 부호화기는 전송 bit의 크기 K = 984, 부호화율 R = 1/3을 사용하였다. 시뮬레이션 환경은 심볼 주기 T동안 서로 독립적인 분포를 가지는 다중경로 채널로써 주기 T 동안 채널의 변화가 없고, 수신단에서는 채널 추정을 정확히 알고 있다고 가정하였다. 변조방식은 QPSK 변조방식을 적용하였다.

그림 4.4 시공간 부호에 따른 BER 그래프

Fig 4.4 Performance by Space-Time trellis code and Space-Time block code

시뮬레이션 결과 $BER = 10^{-4}$에서 ZF 동화기법이 결합된 시공간 부호기법 중 시공간 격자 부호가 시공간 블록 부호보다 약 10dB 성능이 좋은 것을 알 수 있다. 이는 다중경로 채널에서 시공간 격자 부호의 시공간 기법이 더욱 적합하다고 할 수 있다.

또한 그림 4.5는 다중경로 채널 환경에서 ZF동화기법의 유무에 따른 성능을 비교한 그림이다. 성능비교에 사용된 구조는 송수신안테나 각각 2개
의 QPSK MIMO 시스템이며, 사용된 데이터는 약 100만개이고 터보 Pi 부호의 부호화율 1/3과의 비교를 위해 한 블록의 크기는 5904이다.

![Graph showing performance comparison between ZF and Non-ZF techniques.](image)

그림 4.5 ZF등화기법의 유무에 따른 성능비교

Fig 4.5 Comparison between ZF and Non-ZF

시뮬레이션 결과 다중경로 채널 환경에서 등화기법이 없을 때 오류마루 현상이 일어나며 성능개선이 되지 않으며, 등화기법을 사용했을 때 성능이 좋아지는 것을 알 수 있으며, 성능비교 결과 ZF의 유무에 따라 성능이 원 동하 차이가 나는 것을 알 수 있다. 따라서 다중경로 채널 환경에서 등화 기법의 사용이 반드시 필요하다.

제 4.2 절 시공간 부호화 방식에 따른 최적의 구조 및 성능분석

통신 시스템에서 채널의 특성상 오류가 연속으로 발생하는 경우가 있다. 오류가 한곳에 집중적으로 발생할 경우 터보 Pi 부호기의 성능이 열화되어
오류 정정율이 감소하게 된다. 따라서 터보 Pi 부호화 시공간 격자 부호를 효율적으로 연결하는 방법이 연구되어져야한다. 본 논문에서는 오류가 집중되어 발생할 경우 오류를 분산시키는 기능을 하는 인터리버를 터보 Pi 부호화 시공간 격자 부호 사이에 삽입하여 그림 3.4에서의 구조보다 효율적인 송신 구조를 제안한다. 또한 인터리버를 가지는 구조는 터보 부호의 오류마루 현상을 방지하는 효과도 가지고 있다.

무선통신에서 고품질, 고속전송을 만족시키기 위한 방안으로 다중경로 채널에서 터보 Pi 부호와 시공간 격자부호를 효율적으로 결합시킨 구조에 동화기를 사용하여 다음 그림 4.6과 같은 구조를 제안한다.

![Proposed Optimum Structure](image.png)
송신 구조는 터보 Pi와 시공간 격자 부호 사이에 인터리버를 접목시키는 구조이다. 터보 Pi 부호화를 거친 비트 스트림은 인터리버 후에 시공간 격자 부호에 입력되게 되는 구조이다.

송신된 신호는 다중경로 채널을 통과하여 수신 되어진다. 수신 신호는 채널 추정과 동화기를 통하여 복원된 송신신호가 합쳐져서 BCJR 복호기로 입력 되어진다. 시공간 격자 복호단에서 BCJR 복호기를 통하여 수신 비트 스트림 크기만큼의 LLR 값이 출력된다. BCJR의 복호 방식은 터보 Pi 부호의 복호 방식과 동일하며, 각 상태에서 ‘0’의 확률과 ‘1’의 확률을 계산하여 FSM, BSM을 계산하여 최종적으로 \(LLR = \log \frac{p(x=1)}{p(x=0)} \) 값을 계산한다. 추정되어진 LLR 값은 역-인터리버를 통하여 송신단에서의 인터리버 이전의 주소로 재배치하여 터보 Pi 복호기에 입력된다. 이러한 구조를 제안함으로써 다중경로 채널 환경에서 전송율을 높일 수 있다.

일반적인 시공간 격자 복호기에서 사용 되어지는 비터비 복호기는 강판정된 값을 출력하기 때문에 연판정된 입력 값을 필요로 하는 터보 Pi 복호기에 사용할 수 없다. 다음 그림 4.7은 강판정된 값과 연판정된 값을 터보 Pi 복호기에 입력되었을때의 성능 비교 그래프이다.

그림 4.7 강/연판정에 의한 성능 비교

Fig 4.7 Comparison between Hard-Decision and Soft-Decision
그림과 같이 연관정된 값을 복호기에 입력했을때가 약 3dB 정도 성능이 좋은다는 것을 알 수 있으며, 따라서 연관정된 출력 값을 가지는 BCJR 복호기를 사용하여야한다. 연관정된 BCJR 복호기의 값이 터보 Pi 복호기로 입력되어져 터보 Pi 복호기에서의 반복 복호를 통하여 데이터를 복호하게 된다.

다음 그림 4.8은 제안된 방식에 대한 시뮬레이션 결과 성능 비교 그래프이다. 시뮬레이션에서 사용한 터보 Pi 복호기는 전송 bit의 크기 K = 984, 부호화율 R = 1/3을 사용하였다. 시뮬레이션 환경은 심볼 주기 T동안 서로 독립적인 분포를 가지는 다중경로 채널로써 주기 T동안 채널의 변화가 없고, 수신단에서는 채널 추정을 정확히 알고 있다고 가정하였다. 변조방식은 QPSK 변조방식을 적용하였다. 송수신 안테나가 각 2개인 MIMO시스템이다.

그림 4.8 제안된 방식의 성능 그래프
Fig 4.8 Performance of Proposed Method

시뮬레이션 결과 동화기를 사용한 계층적 시공간 방식의 부호는 ZF방식과 동화기를 사용한 시공간 격자 부호보다 각각 15dB, 3dB 정도의 성능이 향상되었다. 이는 본 논문에서 제안하는 효율적인 연접방법과 함께 동화기
를 사용하여 복호하는 방법은 높은 신뢰도를 요구하는 최근의 무선통신 시스템에 적합한 것으로 사료된다.

제 4.3 절 위상 오차에 따른 성능분석

수신단에서는 송신단의 역 과정으로 QPSK 변조된 신호가 수중 채널에서 다중 경로로 반사되어 들어오는 과정에서 위상 및 주파수 오프셋이 발생한다.

수신측에서는 저차 대역 신호를 복원하기 위해서 반송파 신호를 제거할 필요가 있다. 따라서 동기 회로에서는 수신된 반송파의 위상과 자체 국부 발전기에서 재생된 신호와의 위상의 차이인 위상 지터(jitter)를 최소화하는 것을 목표로 한다. 전송 효율을 극대화하기 위해서는 반송파 복원을 지원하는 프리amble 데이터의 수를 가능한 한 적게 유지해야 하므로 빠르게 반송파를 포착할 수 있는 알고리즘이 요구된다. 그래서 본 절에서는 반송파 포착 성능 및 추적 성능을 개선함으로써 데이터 전송효율을 증가시킬 수 있는 DD (Decision-Directed) 방식을 제안하였다[17], 이의 구조는 그림 4.9에 나타내었다.

![그림 4.9 DD-CPR의 구조](image_url)

Fig 4.9 Structure of DD-CPR
QPSK 수신신호는 아래의 식(4.1)과 같이 표현할 수 있다.

\[r(n) = (a_n + j b_n) \times e^{-\beta} + \eta(n) \tag{4.1} \]

여기서 \(a_n, b_n \) 는 각각 I 채널, Q 채널에 대한 프리앰블 데이터열이고, \(e^{-\beta} \) 는 채널상에서 부가된 잡음이고, \(\eta(n) \) 은 가우시안 잡음이다. 채널상에서 부가된 잡음을 제거하기 위하여 LPF(Low Pass Filter)에서 출력되는 보정된 위상 잡음 신호를 Normalize하고 conjugate하여, 그 신호를 곱하면 식(4.2)과 같다.

\[d(n) = \{(a_n + j b_n) \times e^{-\beta} + \eta(n)\} \times e^{j\beta} \tag{4.2} \]

식(4.2)의 신호를 decision이 항상 정확하다고 가정하면, \(e(n) \) 은 식(4.3)과 같다.

\[e(n) = \{(a_n + j b_n) \times e^{-\beta} + \eta(n)\} \times (a_n - b_n) \tag{4.3} \]

\(Eb/No \)를 높게 주면 가우시안 잡음은 거의 무시할 수 있으므로, 해석을 용이하게 할 수 있다. 그러므로 용이한 해석을 위해서 \(\eta(n) \) 을 무시하면, 식(4.3)은 아래의 식(4.4)과 같이 나타낼 수 있다.

\[e(n) = \sqrt{a_n^2 + b_n^2} \times e^{-\beta} \tag{4.4} \]

식(4.4)에서 얻은 잡음 신호의 진폭을 무시하고 AR(Auto-Regressive) LPF에 입력하면 식(4.5)를 만족한다.

\[y(n) = \beta \times y(n-1) + (1 - \beta) \times e^{-\beta} \tag{4.5} \]

여기서 \(\beta \) 는 LPF의 파라미터이고 1보다 작은 값을 가진다. 식(4.5)를 전
개하면 아래와 같이 일반화 시킬 수 있다.

\[y(1) = \beta \times y(0) + (1 - \beta) \times e^{-B} \]
\[y(2) = \beta \times y(1) + (1 - \beta) \times e^{-B} \]
\[= \beta^2 \times y(0) + \beta(1 - \beta)e^{-\beta} + (1 - \beta)e^{-B} \]
\[\vdots \]
\[y(k) = \beta \times y(k-1) + (1 - \beta) \times e^{-\beta} \]
\[= \beta^n \times y(0) + \beta^{n-1}(1 - \beta)e^{-\beta} \]
\[+ \beta^{n-2}(1 - \beta)e^{-\beta} \]
\[+ \cdots + (1 - \beta)e^{-\beta} \]
\[= (1 - \beta)e^{-\beta} (1 + \beta + \beta^2 + \beta^3 + \cdots + \beta^{n-1}) \]
\[= (1 - \beta)e^{-\beta} \times \frac{1 - \beta^n}{1 - \beta} \]
\[= e^{-\beta} (1 - \beta^n) \quad (4.6) \]

식(4.6)이 정상 상태에 도달하면 결과적으로 식(4.7)와 같이 표현할 수 있고, 정확히 위상 에러를 포착할 수 있다.

\[y(n) = e^{-\beta} (1 - \beta^n) \quad (4.7) \]

다중경로 채널 환경에서 위상오차에 대한 영향을 최소화 할 수 있는 DD 루프 방식을 결합한 전체적인 구조는 그림 4.10과 같다.
그림 4.10 DD 루프를 결합한 최종적인 부호 구조

Fig 4.10 Final Structure combined with DD Loop

그림 4.11은 2개 송수신 안테나를 이용하여 위상 오차에 따른 BER성능과 DD 방식을 결합했을 때의 시뮬레이션 결과이다. 제 4.1 절과 동일한 채널환경과 터보 Pi 부호화율로 시뮬레이션 하였으며, 변조방식은 QPSK 방식을 적용하였다.
그림 4.11 DD 루프를 결합한 방식의 성능 그래프

Fig 4.11 Performance of combined Method with DD Loop

시뮬레이션 결과 BER $= 10^{-4}$에서 위상동기 알고리즘을 적용하였을 때가 적용하지 않았을 때 보다 약 3dB의 성능이 향상됨을 알 수 있다. 따라서 복조부에서 어느 정도 위상 추적을 하면 오류를 정정 할 수 있음을 알 수 있으며, 위상동기 알고리즘이 다중경로 채널 환경에서 성능 향상을 위해 필요한 요소임을 알 수 있다.
제 5 장 결론

차세대 무선통신에서는 다양한 서비스, 높은 신뢰도와 함께 빠른 전송속도를 요구한다. 이러한 요구를 만족시키기 위해서는 스펙트럼의 효율성을 높이고 디바이시티 및 부호화 이득을 높을 수 있는 방법이 연구 중에 있다. 이러한 요구를 만족시키기 위해 MIMO시스템은 디바이시티 기술을 사용하여 다수의 송수신 안테나를 갖는 무선 통신 시스템에서 디바이시티 이득과 부호화 이득을 동시에 얻기 위해 제안되었다.

다중경로 채널 환경에서 고려 되어지는 반복 기반의 부호화 기법 중 최적의 부호화 기법을 선정하였다. LDPC 부호는 작은 사이즈(802.11n 규격)부터 큰 사이즈(DVBS-2규격)를 제공하고 있으며, 큰 블록 사이즈에서는 LDPC 부호가 성능이 좋지만 작은 사이즈에서는 오히려 터보 부호가 성능이 약간 좋음을 알 수 있다. 따라서 수중통신과 같은 다중경로 채널에서 이 폐킷에서는 큰 사이즈의 블록길이를 요구하고 있지 않고 동화기와의 결합 편이성이 중요하기 때문에 터보 부호의 적용이 수중 통신에서는 효율적이라는 결론을 얻을 수 있다.

DVB-RCS를 기반으로 하는 터보 부호는 반복 복호 기법을 이용하여 Shannon이 제시하는 이론적 한계값에 매우 근접하는 우수한 오류정정 능력을 보이고 있다. 높은 SNR에서는 오류 마루 현상이 존재하여 이를 극복하기 위해 DVB-RCS/NG 부호화 방식인 터보 Pi 부호화기 구조를 사용하였다. 터보 Pi 부호화기는 기존의 이중 바이너리 구조를 이용하는 터보 구조와 동일하며, 단지 16상태를 이용하는 구조이며, 각각의 상태가 가지는 해밍거리 차이를 더 크게 만들어 오류 마루 현상을 제거 할 수 있었다.

다중경로 채널 환경을 갖는 채널에서의 원활한 통신과 전송을 높이기 위해 MIMO시스템에서의 채널 추정 기법과 동화기법에 대해 연구 하였다. 실제 동해에서의 다중경로 채널 환경의 정보를 수집하여 LMS 알고리즘을 통하여 채널 추정을 추정값을 가지고 다중경로 채널 환경에서 동화기 성능을 확인하였다. 그 결과 동화기법이 없을 때는 오류마루현상이 일어나며
성능개선이 되지 않으며, 등화기법을 사용했을 때 성능이 좋아지는 것을 알 수 있으며, 성능비교 결과 ZF의 유무에 따라 성능이 원통히 차이가 나는 것을 알 수 있다. 따라서 MIMO 시스템에서는 등화기법의 사용이 반드시 필요하다. 여기에 다이버시티 이득과 함께 부호화 이득을 동시에 가지는 시공간 부호를 사용하였다. 시공간 부호는 다수의 안테나로부터 수신된 신호를 복호하기 위해 채널 부호화 기법과 다이버시티 기법이 결합된 시스템이다. 시뮬레이션을 통해 시공간 블록 부호보다 시공간 격자 부호가 성능이 좋음을 알 수 있었으며, 차세대 무선통신에서 고품질, 고속전송을 만족시키기 위한 방안으로 현재 여러 시스템에서 사용되고 있는 터보 Pi 부호와 시공간 격자부호를 효율적으로 결합시킨 구조에 등화기를 다중경로 채널 환경에서 사용하였다. 또한 인터리버의 사용과 함께 수신단에서의 반복복호 방법을 제안하여 시뮬레이션을 통하여 성능을 검증하였다. 2개의 수신 안테나에서의 시뮬레이션 결과를 BER = 10^{-4}을 기준으로 각각 비교하면, 시공간 격자 부호에서는 Es/No가 약 7.5dB일 때 만족하며, 터보 Pi 부호와 시공간 격자 부호를 연접하였을 때는 약 5.8dB에서 성능이 정점하였다. 또한 다중경로로 인한 위상 왜곡을 보상하기 위상 오프셋을 보상하기 위해 데이터를 삽입하였다. 위상 오차가 따른 시뮬레이션 결과를 비교한 결과 DD 방식을 적용하여 복조부에서 어느 정도 위상 추적을 하면 오류를 정정 할 수 있음을 알 수 있으며, 위상동기 알고리즘이 역시 수중 통신에서 성능 향상을 위해 필요한 요소 기술임을 알 수 있다.

이는 본 논문에서 제시한 구조가 수중통신과 같은 다중경로 채널 환경의 무선통신 시스템에 적합하다고 사료되며 향후 본 논문에서 연구한 내용에서 제시한 알고리즘을 가지고 실제 해역에서 실험을 통해 성능을 분석 할것이며 또한 수중통신의 시변하는 특성상 다양한 Equalizer의 분석을 통해 시변하는 채널환경에 관한 알고리즘을 필요하다고 사료된다.
참 고 문 헌

감사의 글

대학교에 입학하여 학과, 석사과정 총 6년이라는 긴 대학생활을 하면서 지식뿐만이 아니라 모든 면에서 성장할 수 있었습니다. 제가 이렇게 성장함으로써 어디서든 무엇이든 할 수 있다는 자신감을 가질 수 있었으며, 이렇게 저는 성장시켜주신 주위 모든 분들에게 감사 드립니다.

부족한 저를 사랑과 격려로 지도해주신 정지원 교수님 덕분에 제가 이렇게까지 성장했다고 생각합니다. 교수님과 같이 생활하고 지내면서 정말 많은 것을 배웠습니다. 영원히 석사과정에서의 생활을 잊지 못할 것입니다. 차후 사회생활에서도 정말 많은 도움이 될 것이라 생각되며, 다시 한번 여러분께 감사 드립니다. 그리고 졸업논문을 작성함에 있어 내용의 완성도를 위해 꼼꼼히 신경을 써서 논문심사를 받아주신 김기만 교수님, 윤영 교수님께 감사드립니다. 또한 학과운영에 최선을 다하는 조교 누나 고마워요.

처음 연구실에 들어왔을 때 많이 부족한 저에게 모든 것을 가르쳐 주신 민혁이형, 태두형 고맙습니다. 형님들 덕분에 너무나 많은 것을 배웠습니다. 대학생활 내내 귀찮게 했던 연구실 선배 병수야 고맙다. 혜란이랑 태훈이는 태두형이랑 내가 혼입하더라도 들면서 열심히 해서 연구실 잘 이끌어 나가고 내가 많이 못 쟁거쳐서 미안하고 고맙다. 또한 입학하면서부터 대학생활을 같이한 우리동기 재욱이, 광곤이, 현구, 현호, 현호 등이 저를 가르쳐 주신 것임을 정중히 말씀드립니다. 그리고 학과회장을 하면서 언제나 잘 따라왔던 자랑이, 미성 이, 대군이 저를 위해 힘들었을 때도 웃으면서 할 수 있었고, 모두들 고맙고 언제나 건강하고 행복하며 더할 수 없이도 하지 말아야 한다는 생각을 합니다.

마지막으로 언제나 저를 응원해 주시고 저의 의견을 적극적으로 들어주신 아버지, 어머니 감사합니다. 평생 효도하며 부모님의 은혜에 보답하며 살겠습니다. 아버지, 어머니 사랑합니다. 그리고 언제나 저를 친 아들처럼 대해주신 아버님, 어머니 감사하며 앞으로도 제가 친 아들처럼 잘해주겠습니다. 언제나 나의 걱정이 되어주고 사랑해주신 수진이에게도 감사에 마음을 전합니다.

많은 분들의 격려와 응원 속에서 저는 이제 사회로 나가려 합니다. 언제나 모든 분들을 생각하며 뛰든지 열심히 하고 최선을 다하는 박군열이 되겠습니다.