미꾸라지, *Misgurnus mizolepis*

간조직의 *expressed sequence tags* (ESTs) 분석

및 estradiol-17β 처리에 의한 발현 특징

Expressed sequence tags (ESTs) analysis of *mud loach*,

Misgurnus mizolepis liver and expression during

eperimental exposure to estradiol-17β

지도교수 박 인 석

2005년 2월

한국해양대학교 대학원

해양생명환경학과

이 수 진
미꾸라지, *Misgurnus mizolepis*
간조직의 *expressed sequence tags (ESTs)* 분석
및 estradiol-17β 처리에 의한 발현 특징

Expressed sequence tags (ESTs) analysis of mud loach, *Misgurnus mizolepis* liver and expression during experimental exposure to estradiol-17β

지도교수 박 인 석

2005년 2월

한국해양대학교 대학원
해양생명환경학과

이 수 진
본 논문을 이수진의 이학석사 학위논문으로 인준함.

2004년 12월

주 심 수산학박사 최철영

위원 수산학박사 남윤권

위원 수산학박사 박인석

한국해양대학교 대학원
목 자

Abstract ... v
List of Tables .. vii
List of Figures ... viii

I. 서 론 ... 1

Chapter I. 미꾸라지 간조직의 Expressed Sequence Tags 탐색 및 데이터베이스 구축

II. 재료 및 방법 ... 4
 1. 실험어 .. 4
 2. Total RNA 및 mRNA 분리 ... 4
 3. 미꾸라지 간조직의 cDNA library 제작 ... 5
 4. 미꾸라지 간조직의 ESTs 분석을 위한 cDNA 확보 ... 6
 5. 염기서열 분석 및 ESTs 데이터베이스 구축 ... 7

III. 결 과 ... 8
 1. cDNA library 제작 및 평가 ... 8
 2. 상동성에 의한 미꾸라지 ESTs 정보에 대한 평가 ... 8
 3. 미꾸라지 ESTs의 redundancy 평가 ... 11
 4. 생물종에 의한 미꾸라지 ESTs 평가 ... 14
 5. 미꾸라지 ESTs의 기능별 clustering 및 데이터베이스 구축 ... 14
Chapter II. Estradiol-17β에 노출된 수컷 미꾸라지 간조직 유전자들의 발현 양상

II. 재료 및 방법 .. 18
1. 실험어 .. 18
2. Estradiol-17β 처리 ... 18
3. 생존률, 성장률 및 비만도 분석 .. 19
4. 외형과 내부 장기 관찰 및 간과 생식소의 조직학적 조사 20
5. 간조직의 ESTs 클론을 이용한 cDNA microarray 제작 20
6. Total RNA 분리, probe 제작, hybridization 및 signal 분석 21

III. 결 과 ... 22
1. Estradiol-17β에 노출된 수컷 미꾸라지의 생존률, 성장률 및 비만도 22
2. Estradiol-17β에 노출된 수컷 미꾸라지의 외형과 내부 장기 및 간과 생
식소의 조직학적인 변화 ... 22
3. 미꾸라지 간조직의 cDNA microarray를 이용한 발현 특징 31

IV. 고 찰 .. 34
V. 국 문 요 약 ... 39
VI. 감 사의 글 .. 41
VII. 참고 문헌 ... 44
Expressed sequence tags (ESTs) analysis of mud loach, *Misgurnus mizolepis* liver and expression during experimental exposure to estradiol-17β

Soo Jin Lee

Department of Marine environment and bioscience, Graduate School of Korea Maritime University, Busan 606-791, Korea
(Supervised by professor In-Seok Park)

Abstract

Expressed sequence tags (ESTs) represent the transcribed fraction of complementary DNA from organism’s cDNA library. Randomly selected 910 clones were sequenced from mud loach, *Misgurnus mizolepis* Günther, 1888 cDNA library constructed using mRNA extracted from liver. Of 910 mud loach liver cDNA clones analyzed into similarity that 94.9% clones significant similarity with sequcees from GenBank (e-value<10⁻³) and 6.2% showed poor similarity (e-value≥10⁻³) or no matched any sequence in GenBank. The percentage of singleton (unique sequence) represented 38.6% in this ESTs database. Analysis of organisms were stand for the best hit in this ESTs showed that 82.6% matched with fish entries. Functional clustering of this ESTs based on gene expression. Functional groups consisted of 10 classes. In this libraries, the class V (immune function,
chaperones and defense mechanism) and class VIII (general metabolism) was the largest groups with an average of 18.5% and 18.9%, respectively. We selected 467 unigene clones from mud loach ESTs which was fundamental basis of this database.

Mud loach male were sex reversed using estradiol-17β(E₂). The survival of fish during treatment was dose and duration independent. But, growth performance were unaffected dose and duration. Acute symptoms showed that exposure to E₂ for short times and affected death. On the other hand, chronic symptoms revealed gall-bladder different in treatment groups that exposure to E₂ for long times. Morphologically, however, they were not changed liver and gonad.

cDNA microarray signal revealed relation to stress and physiological unbalance genes that highly increase expression than other genes. Conversely, relation to general metabolism genes were highly decrease expression than other genes.

Consequently, the objective of this study was to analysis of gene expression in mud loach liver, cDNA microarray using this EST database approach to survey of the effects of pollutant E₂ on an environmentally relevant, male mud loach observation of changed histology and morphology.
List of Tables

Table 1. General evaluation of mud loach, *Misgurnus mizolepis*
liver cDNA library ... 9

Table 2. Profiling of mud loach, *Misgurnus mizolepis* liver ESTs
based on similarity scores (E-value) .. 10

Table 3. Abundantly expressed genes in mud loach, *Misgurnus*
mizolepis liver .. 13

Table 4. Effects of estradiol-17β administration on body
weight, total length, body length, condition factor and
survival of male mud loach, *Misgurnus mizolepis* 23

Table 5. List of genes showing differential expression during
exposures to estradiol-17β based on microarray
analysis .. 33
List of Figures

Fig. 1. Distribution of contig size and redundancy of mud loach, *Misgurnus mizolepis* liver ESTs ... 12

Fig. 2. Clustering of mud loach, *Misgurnus mizolepis* ESTs based on putative function and best matched organisms 16

Fig. 3. External morphology of male mud loach, *Misgurnus mizolepis* ... 25

Fig. 4. External and internal morphology of male mud loach, *Misgurnus mizolepis* shows chronic symptoms 26

Fig. 5. Liver histology of 8-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β .. 27

Fig. 6. Gonad histology of 4-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β .. 28

Fig. 7. Gonad histology of 6-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β .. 29

Fig. 8. Gonad histology of 8-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β .. 30

Fig. 9. Hybridized signal from the microarray analysis showing the differential expressed genes during E2 exposure 32
Ⅰ 서 론

Expressed sequence tags (ESTs)는 1980년대 중반 소개되었으며 mRNA를 통해 만들어진 cDNA를 이용하여 생물의 genome 및 세포 내에서 발현되는 DNA의 부분적인 염기서열에 관한 정보를 대량 확보하는 기술로서, 생물 개체의 세포 조직 또는 발달 상태에서 발현되어지는 genome의 유전자 정보를 제공하는 ‘snapshot’이라고 할 수 있다 (Douglas et al., 1999).

또한, ESTs와 다른 유전자 간의 비교 분석을 통하여 유전자의 특정 부분이 어떤 형태로 나타나는가를 분석하고, 특정 유전자의 기능을 예측 또는 해석할 수 있어 ESTs는 비, Oryza sativa (Aliyeva et al., 1996), 예쁜 꼬마선충, Caenorhabditis elegans (Waterston et al., 1992) 및 인간(Adams et al., 1991)을 포함한 동물 및 식물 등 많은 종의 서로 다른 조직에서 수많은 novel gene의 발현을 확인하기 위한 유용한 기술 중의 하나로 간주 되어져 왔다. 어류의 경우 금세기 들어 모델 어종과 주요 양식어종을 중심으로 그 규모가 급속히 확대되어 송사리, Oryzias latipes (Hirono and Aoki, 1997), 넼치, Paralichthys olivaceus (Inoue et al., 1997), zebrafish, Danio rerio (Gong et al., 1997), channel catfish, Ictalurus punctatus (Liu et al., 1999), winter flounder, Pleuronectes americanus (Douglas et al., 1999), 대서양 연어, Salmo salar (Sarah et al., 2002)와 같은 어류에서 여러 ESTs 데이터베이스가 발표 되어졌으며, 현재까지 많은 어류를 대상으로 ESTs project가 진행되고 있거나, 이미 연구되어 있다.

이러한 점을 바탕으로 수집된 정보들을 ESTs 데이터베이스 즉, dbESTs 라 하며, ESTs 데이터베이스를 통해서 (1) 신규 유전자를 발굴 할 수 있고, (2) 서로 다른 조직 내에서 어떤 유전자가 발현되고 있는지를 이해하고, (3) 유전
자 표지(gene mapping) 분석에 필요한 정보를 제공할 수 있는 polymorphic marker의 개발을 가능하게 하고, 그리고 (4) 특정한 환경이나 생물학적인 상태에 노출된 생체 간의 서로 다른 전사조절을 측정할 수 있게 하여, 생물학적 조사의 다양성에 기인한 의문들에 관해서 보다 기조적인 정보들을 제공할 수 있을 것이라고 본다(Nam and Kim, 2001).

미꾸라지, Misgurnus mizolepis Günther, 1888는 온수성 담수어로, 분류학적으로 잉어목(Cyprinida) 잉어과(Cyprinidae) 미꾸리아과(Cobitinae)에 속하고 우리나라 전 하천 및 연못 등 진흙이 갈린 살코기 물의 탁도가 낮은 곳에서 서식하며(Kim et al., 1995; 김, 1997), 아울러 감식성으로 아가미 호흡과 장호흡을 병행하고 용존산소가 낮은 수질에서 잘 건디고 급격한 온도 변화와 주변 생활환경의 변화에 대한 적응력도 뛰어난 종으로 알려져 있다.

본 연구는 이러한 점을 바탕으로 환경 변화에 적응력이 뛰어난 미꾸라지를 이용하여 간에서 발현되는 유전자들에 관한 ESTs 데이터베이스를 이용해 만들어진 cDNA microarray를 통해 인위적으로 estradiol-17β 처리시 어체에서 나타나는 side effect를 보이는 미꾸라지의 간조직에서 발현되는 유전자의 양상이 정상적인 환경에서 서식하는 미꾸라지의 간조직에서 발현되는 유전자들과 다를 것으로 판단하여, 이에 따른 유전자 발현의 양상을 알아보고자 한다.

어류의 성전환에 관한 연구는 Yamamoto (1953)가 송사리를 대상으로 estrone을 경구 투여하여 처음으로 성공한 이 후 현재까지 많은 연구가 진행되고 있으나, 이들 연구는 각 호르몬에 대한 그 민감도에 있어 큰 차이를 보이므로 어중간 대사과정의 차이로 인하여 여러 가지 성호르몬에 의한 다양한 처리방법이 요구되고 있다(Hunter et al., 1982).

성전환을 유도하기 위해 estradiol-17β를 처리했을 경우에 성전환과 더
불어 여러 효과가 나타나기도 하며, 이러한 효과는 급성 처리시 처리 대상어류에 있어서 비대화 되는 어체와 이에 따른 각 조직의 손상을 확인할 수 있다는 관점에서 Noh et al. (1997)이 나일릴라피아, Oreochromis niloticus를 대상으로 보고한 바 있으며, 본 실험에 사용되어진 미꾸라지에 있어서는 부경대학교 양식학과 내 어류유전육종 실험실에서 예비실험이 실시된 바 있다(Kim et al., 1997; 임, 2004). 또한 Gupta et al에 의하여 만성적으로 estradiol-17β에 노출되었을 경우에 포유류 및 가금류에서 암을 유발하는 것으로 조사된 바 있다.

1995년 미국 스탠포드 대학에서 분자생물학과 전자 제어공학기술과의 접목을 통해 다양한 유전자 및 DNA 절편을 유리등의 고형체에 고밀도로 고정화시켜 빠른 시간 내에 수백에서 수만개의 유전자를 동시에 검색할 수 있는 특성을 갖는 자동화 기술인 cDNA microarray를 개발하였다(Ramsay, 1998). 이러한 기술과 ESTs 기술간의 병행을 통해 인위적으로 설정된 특수 환경(스트레스, 질병 및 오염 등)에 놓인 어류가 발현하는 signal pathway 및 이에 관여하는 다양한 유전자의 동시 추적을 가능하게 할 수 있다(김, 2001). 또한, cDNA microarray기술은 생물학적인 조사의 많은 부분에 적용되어, 그 중 독성학 분야인 경우 transcript 분석의 진보는 변화된 유전자의 발현이 잠재적으로 stress에 대한 반응을 확인하기 위한 일환으로 초기에 빠르고 민감하게 작용한다는 것을 의미함을 검증할 수 있도록 해주었다(Williams et al., 2003).

따라서 본 연구의 목적은 미꾸라지의 간에서 발현되는 유전자들에 관한 정보의 분석과 이러한 분석으로 촉발된 ESTs 데이터베이스의 활용 방안으로, cDNA microarray 제작하여 이를 통해 수생환경에서 유입된 환경호르몬의 일종인 estradiol-17β에 노출된 수컷 미꾸라지 간에서 발현되는 유전자들의 발현 양상을 조사하고, 조직학적·형태학적인 변화를 조사하는데 있다.
Chapter I. 미꾸라지 간조직의 Expressed Sequence

Tags 탐색 및 데이터베이스 구축

II. 재료 및 방법

1. 실험어

경상남도 김해 인근에서 수집하여 부경대학교 양식학과 어류유전육종

2. Total RNA 및 mRNA 분리

미꾸라지 간조직으로부터 total RNA를 분리하였으며, total RNA 분리를
위해 간조직을 체취하여 조직 100 µg당 1 µl의 TriPure™ Isolation Reagent
(Roche Molecular Biochemicals, Germany)를 사용하여 조직을 완전히 분쇄한 후, 제조사에서 제시한 실험방법에 따라 total RNA를 분리하였다. 분쇄된 조
직을 실온에서 10분간 방치한 후, chloroform extraction한 후, 12,500 rpm에서
10분간 원심분리를 실시하였다. 원심분리 후, 상등액을 취하여 동일량의
isopropanol을 넣어 total RNA를 침전 시켰다.

mRNA를 분리하기 위해 간조직에서 분리한 total RNA를 DEPC treated
RNase-free water에 녹인 후, 260 nm와 280 nm에서 정량분광계
(GeneQuantPro, Biochrom Ltd., England)을 이용하여 정량하였다. DEPC
treated RNase-free water에 녹여져 있는 total RNA 250 µg를 취하여 mRNA
Isolation Kit (Roche Molecular Biochemicals, Germany)를 이용하여 mRNA를 분리하였다. 250 μg의 total RNA에 mRNA isolation lysis buffer를 넣어 전체 양이 200 μl가 되도록 한 후, 65℃에서 2분 동안 방치하였다. 100 pmole의 biotin-labeled oligo (dT)20 probe를 1.5 μl를 넣었으며, streptavidin magnetic particle 150 μl에 넣은 다음, 37℃에서 5분 동안 반응시켰다.

Magnetic particle separator (Roche)로 streptavidin magnetic particle을 분리시킨 후, supernatant를 제거하였다. mRNA isolation wash buffer 250 μl 를 넣어 3회 정도 washing 하였고, redist water 30 μl를 넣고, 65℃에서 2분 동안 반응시켰다. Magnetic particle을 제거한 다음, mRNA를 elusion 하였다.

3. 미꾸라지 간조직의 cDNA library 제작

mRNA 6 μg을 cDNA Synthesis Kit (Stratagen)와 ZAP-cDNA Gigapack III Gold Cloning kit (Stratagen)을 사용하여 cDNA library를 제작하였다.

mRNA에서 1st strand와 2nd strand를 합성한 후, phosphorylating 과정을 거쳐 vector 내에 잘 cloning 될 수 있도록 XhoI으로 cohesive end를 만들었다. 0.4 Kb 이상의 size를 얻기 위해서 CHROMA SPIN Columns CHROMA SPIN-400 (Clontech, USA)을 이용하여 size fraction 하였다. Uni-ZAP XR vector (1 μg/μl)에 cloning 한 다음 Gigapack III Gold Packaging extract를 이용하여 bacteriophage 내로 packaging 하였다. Titer를 확인하여 packaging의 효율을 조사한 후, XL1-Blue MRF로 amplifying하였다. Amplifying된 cDNA phage, XL1-Blue MRF, ExAssist helper phage를 각각 혼합하여 excision 시켰다. Excised된 phagemid를 E. coli SOLR cell에 넣어 X-gal/IPTG/ampicillin LB plate에 도말하여 37℃에서 12시간 정도 배양한 후, ampicillin에 내성을 가진 colony반을 선택적으로 얻었다.
4. 미꾸라지 간조직의 ESTs 분석을 위한 cDNA 확보

미꾸라지 간조직을 대상으로 제작한 cDNA library를 이용하여 유전자 정보 탐색을 위한 plasmid DNA를 분리하기 위해서 alkaline lysis 방법 (Sambrook et al., 1989)을 사용하였다.

Bacteria colony를 무작위로 선택하여 2 평의 LB-ampicillin 배지에 접종하여 37°C에서 overnight 배양한 후 원심분리하여 세포들을 회수하였다. 상층액을 버리고, 세포 덩어리들은 vortexing으로 풀어 준 후, 50 mM Glucose, 10 mM EDTA (pH 8.0), 25 mM Tris-Cl (pH 8.0) 용액을 100 µl 넣었다. 1% SDS, 0.2 N NaOH 용액 200 µl를 넣고, 약하게 혼들어 준 다음, Glacial acetic acid, 5 M KOAc 용액을 넣고 약간 세게 혼들어 준 후, 얼음에 5분간 방치하였다. 12,000 rpm으로 5분간 원심분리분을 실시한 후, 상층액 400 µl를 취하여 새로운 tube로 옮기고, 동량의 TE saturated phenol chloroform을 넣어 주고, 10초간 세게 혼들어 준 다음, 1분간 실온에서 방치하였다.

12,000 rpm에서 5분간 원심분리를 실시한 다음, 상층액 350 µl를 취하여 새로운 tube로 옮기고, 상층액과 동량의 isopropanol을 넣었다. 12,000 rpm에서 10분간 원심분리하여 plasmid DNA를 얻었다. 70% ethanol 800 µl로 washing 하고, 12,000 rpm에서 2분간 원심분리분을 실시한 후에 70% ethanol를 제거하였다. 최종적으로 30 µl의 TE/RNase 용액에 녹았다.

5. 염기서열 분석 및 ESTs 데이터베이스 구축

무작위로 선택된 1,032개의 미꾸라지 간조직의 cDNA를 sequencing primer SK (5' GCCGCTCTAGAATCTAGGATC 3')를 이용하여 ABI3730x 자동 염기서열 분석기를 통해 분석한 후, 그 데이터를 Sequencher 3.1.1 (Gene Code Co., USA) software를 이용해 vector부분을 포함한 염기서열 내에서 불
필요한 부분을 제거한 염기서열의 5’말단 쪽과 3’말단의 poly(A) signal이 잘 보존되어 있는지를 확인하였다. 각각의 염기서열 간의 공통부분이 있는지 확인하기 위하여 염기서열간의 contig를 작성하였다.

Ⅲ. 결 과

1. cDNA library 제작 및 평가

미꾸라지, *Misgurnus mizolepis*, Günther, 1888의 간조직으로부터 분리한 мRNA를 이용해서 제작한 cDNA library의 primary 크기는 2×10⁶ pfu/ml였고, 이를 이용해서 amplified cDNA library 내의 clone들을 무작위로 선별해서 크기를 조사한 결과 1.3 kb로 나타났다. 이를 통해 미꾸라지 간조직의 cDNA library의 제작과정이 잘 수행된 것으로 나타났다(Table 1).

2. 상동성에 의한 미꾸라지 ESTs 정보에 대한 평가

무작위로 선택된 1,032개의 미꾸라지 간의 cDNA 클론들을 BLASTx로 검색한 결과를 바탕으로 전체 클론들 중에서 부경대학교 어류유전육종학 실험실에서 예비 실험된 122개의 클론을 제외한 클론 910개를 대상으로 하여 각 클론들과 기존에 발표된 GenBank내의 ESTs 간의 상동성에 관해 조사하였다.

Table 2에 제시되어 있는 것과 같이 각 클론들을 대상으로 e-value 값을 기준으로 분류한 결과, 상동성이 아주 높은 경우(E<10^-100)는 전체 ESTs 클론 중 348개로 34.8%가 해당되며, 두 번째로 상동성이 높은 경우(10^-100 ≤ E<10^-50)는 355개로 38.8%, 중간 정도의 상동성(10^-50 ≤ E<10^-10)을 가진 클론들은 전체 ESTs 중 147개로 16.2%를 차지하였다. 그 보다 낮은 상동성을 가진 경우(10^-10 ≤ E<10^-3)는 전체 ESTs 클론들 중에서 15개로 1.6%, 아주 낮은 상동성(E≥10^-3)을 가진 클론들은 33개로 3.6%를 각각 차지하였으며, no match된 클론들(어느 것과도 상동성을 지니지 않는 클론)들은 14개로 1.5%를 차지하였다.
Table 1. General evaluation of mud loach, *Misgurnus mizolepis* liver cDNA library

<table>
<thead>
<tr>
<th>Primary library size (pfu/ml)</th>
<th>2×10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average length of insert (kb)</td>
<td>1.3</td>
</tr>
<tr>
<td>Number of clones filed</td>
<td>1,032</td>
</tr>
</tbody>
</table>

Organism match (%)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Match (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammal</td>
<td>13.0</td>
</tr>
<tr>
<td>Amphibia</td>
<td>2.9</td>
</tr>
<tr>
<td>Fish</td>
<td>82.6</td>
</tr>
<tr>
<td>Insect</td>
<td>0.1</td>
</tr>
<tr>
<td>Others</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Table 2. Profiling of mud loach, *Misgurnus mizolepis* liver ESTs based on similarity scores (E-value)

<table>
<thead>
<tr>
<th>E-value</th>
<th>Mud loach cDNA library</th>
</tr>
</thead>
<tbody>
<tr>
<td>E<10^{-100}</td>
<td>38.2</td>
</tr>
<tr>
<td>10^{-100} ≤ E<10^{-50}</td>
<td>38.8</td>
</tr>
<tr>
<td>10^{-50} ≤ E<10^{-10}</td>
<td>16.2</td>
</tr>
<tr>
<td>10^{-10} ≤ E<10^{-3}</td>
<td>1.6</td>
</tr>
<tr>
<td>E≥10^{-3}</td>
<td>3.6</td>
</tr>
<tr>
<td>No match</td>
<td>1.5</td>
</tr>
</tbody>
</table>
3. 미꾸라지 ESTs의 redundancy 평가

미꾸라지 간조직의 cDNA library 내 cDNA 클론들의 redundancy를 분석하기 위해서 염기서열분석기를 통해 분석된 정보들을 sequencher software 내의 contig assemble 프로그램을 이용하여 각 클론들 사이에 유사한 염기서열이 있는지에 관해 분석한 결과를 Fig. 1에 나타내었다. 대부분의 ESTs는 2-4범위 내에 존재하였고, 전체 library 내에서 singleton의 수는 351개로 38.6%를 차지하는 것으로 나타났다(Fig. 1). 또한, 각 contig들과 contig되지 않은 클론들인 singleton 수를 합한 전체 미꾸라지 간조직의 library 내의 unigene의 수는 502개 이었다.

미꾸라지 간조직의 library 내에 존재하는 ESTs 중에서 가장 많이 발현되는 유전자에 관하여 조사한 결과를 Table 3에 제시하였다. 가장 많은 ESTs를 가진 contig는 51개의 ESTs들이 속한 group으로 이 group에서 발현되는 유전자는 28 kDa apolipoprotein A로 전체 미꾸라지 간조직의 library 중에서 5.6%를 차지하며, 그 길이는 1,156 bp로 나타났다. 두 번째로 많은 ESTs를 가진 contig는 41개의 ESTs들이 속한 group으로 vitellogenin 유전자를 발현하며, 전체 library 내에서 4.5%를 차지하며, 2,818 bp의 길이를 가지는 것으로 나타났다. 그 다음으로는 20개의 ESTs를 가진 group으로 transferrin 유전자를 발현하고, 2,303 bp의 길이로 2.2% 비율을 차지한다. 2.0%의 비율을 차지하는 contig는 18개의 ESTs가 속해 있으며, 1,163 bp의 길이로 fibrinogen B-βsubunit 유전자를 발현한다. Inter-alpha-trypsin inhibitor 유전자를 발현시키는 클론들이 속한 group에는 14개의 ESTs가 있으며, 2,973 bp 길이로 전체 library 내에서 1.5%를 차지한다. 12개의 ESTs가 속한 group의 contig 2개로 전체의 1.3%를 차지하며, 각각 14 kDa apolipoprotein과 warm temperature acclimation protein 유전자를 발현시키며, 각 contig의 길이는 852 bp, 940 bp
Fig. 1. Distribution of contig size and redundancy of *mud loach, Misgurnus mizolepis* liver ESTs.
Table 3. Abundantly expressed genes in mud loach, *Misgurnus mizolepis* liver

<table>
<thead>
<tr>
<th>Putative function</th>
<th>Length of contig (bp)</th>
<th>Frequency (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 kDa apolipoprotein A</td>
<td>1,156</td>
<td>5.6</td>
</tr>
<tr>
<td>Vitellogenin</td>
<td>2,818</td>
<td>4.5</td>
</tr>
<tr>
<td>Transferrin</td>
<td>2,303</td>
<td>2.2</td>
</tr>
<tr>
<td>Fibrinogen B-β-subunit</td>
<td>1,163</td>
<td>2.0</td>
</tr>
<tr>
<td>Inter-alpha-trypsin inhibitor</td>
<td>2,973</td>
<td>1.5</td>
</tr>
<tr>
<td>14 kDa apolipoprotein</td>
<td>852</td>
<td>1.3</td>
</tr>
<tr>
<td>Warm temperature acclimation protein</td>
<td>940</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Percentage of total number of ESTs in mud loach liver library
로 나타났다.

4. 생물종에 의한 미꾸라지 ESTs 분석

미꾸라지 간조직의 전체 ESTs 중에서 E<10⁻³인 ESTs를 대상으로 발현되는 동일한 유전자를 가진 생물종에 따라 분류한 결과, 미꾸라지 간조직의 ESTs와 가장 적합하게 잘 맞는 종으로는 포유류 집단이 13%, 양서류 및 파충류 집단이 2.9%, 어류 집단이 82.6%, 곤충 집단이 0.1%, 마지막으로 박테리아를 포함한 그 외 집단들이 1.4%를 차지하는 것으로 나타났다(Table 1).

이 중에서 좀 더 세분화하여 가장 적합성이 높은 생물종을 기준으로 분석한 결과, 포유류 집단 내에서 사람과 적합성을 가지는 ESTs 클론들이 6.3%, 그 외 포유류 집단은 6.7%로 나타났다. 양서류 및 파충류 집단 중에서는 Xenopus가 2.7%를 차지하는 것으로 나타났으며, 어류 집단 중에서 ESTs와 관련하여 가장 많은 연구가 진행되어 있는 zebrafish의 경우 39.4%, 그 외 어류 집단은 43.2%로 나타났고, 곤충 집단과 그 외 생물종 집단은 각각 전체 library내에서 0.1%와 1.6%를 차지하는 것으로 나타났다(Fig. 2a).

5. 미꾸라지 ESTs의 기능별 clustering 및 데이터베이스 구축

미꾸라지 간조직의 library 내에 존재하는 unigene 총 502개를 대상으로 NCBI homepage 상의 Clusters of orthologous groups와 Bioinformatic Harvester EMBL Heidelberg (http://harvester.embl.de/)를 참고하여 각 염기 서열이 transcript하고 있는 유전자들의 기능에 관해서 조사한 결과를 NCBI homepage 상의 clusters 부분의 functional annotation을 기준으로 다음과 같이 분류한 후 각 class에 해당하는 유전자들이 502개의 unigene 내에서 차지하는 비율을 Fig. 2b에 나타내었다. : Class (I) 다른 ESTs 데이터베이스와 맞
지 않거나 상동성이 낮은 경우 ($E \geq 10^3$), Class (II) 기능이 알려져 있지 않거나 일반적인 기능을 유추할 수 있는 경우, Class (III) DNA 복제, 전사, 번역에 관련된 기능을 하는 경우, Class (IV) RNA processing, modification에 관련된 기능을 하는 경우, Class (V) 면역 기능, chaperones, 항산성 및 방어기 작에 관련되는 기능을 하는 경우, Class (VI) 세포적인 signaling, secretion, communication에 관련된 기능을 하는 경우, Class (VII) 세포 구조, 세포분열, 세포의 이동에 관련되는 기능을 하는 경우, Class (VIII) 일반적인 대사과정에 관련되는 기능을 하는 경우, Class (IX) chromatin과 핵의 구조에 관련되는 기능을 하는 경우, Class (X) 분류할 수 없거나, 유전자의 기능이 둘 이상으로 분류되는 경우.

Figure 2b를 살펴보면, class (VIII)의 일반적인 대사과정에 관련되는 경우와 class (V)의 면역 기능, chaperones, 항산성 및 방어기작에 관련되는 경우에 해당하는 유전자들이 각각 18.9%와 18.5%로 많은 부분을 차지하고 있는 것으로 나타났으며, 다음으로는 class (VI)인 세포적인 signaling, secretion, communication에 관련된 기능을 수행하는 유전자들이 14.7%를 차지하는 것으로 나타났다. DNA 복제, 전사 및 번역에 관련한 class (III)와 세포 구조 및 분열, 이동에 관련된 class (VII), RNA processing, modification에 관련된 class (IV)는 각각 11.2%, 6.8%, 3.0%의 비율을 나타내었다. 다른 ESTs 데이터베이스와 맞지 않거나 library 내에서 상동성이 낮은 유전자들이 속한 class (I)과 기능을 알려져 있지 않거나 그 기능을 유추할 수만 있는 유전자들이 속한 class (II)와 분류할 수 없거나 두 가지 이상의 기능으로 분류되어지는 유전자들이 속한 class (X)은 각각 8.4%, 12.7%, 5.6%로 나타났다. 총 502개의 unigene을 기능별로 분류한 class 중에서 가장 낮은 비율을 차지한 class는 class (IX)로 chromatin과 핵의 구조와 관련된 기능을 하는 유전자들이 해당되
Fig. 2. Clustering of mud loach, Misgurnus mizolepis ESTs based on putative function and best matched organisms. a) proportion of best matched organisms and b) proportion of putative function.

(I) no hits or had poor similarity (E > 10^{-3}), (II) function unknown or general function prediction only, (III) DNA replication, transcription, translation, (IV) RNA processing and modification, (V) immune function, chaperones, homeostasis and defense mechanism, (VI) cell signaling, secretion and communication, (VII) cell structure, division and motility, (VIII) general metabolism, (IX) chromatin and nuclear structure and (X) unassigned class and multiple function.
며, 0.2%로 나타났다.

이러한 기능별 분류 및 상동성과 redundancy 등을 기준으로 본 실험에 사용된 미꾸라지 간조직의 library 내에서 unigene 502개를 확보할 수 있었으며, 미꾸라지 간조직 내의 ESTs에 관한 데이터베이스를 구축할 수 있었다.
Chapter II. Estradiol-17\(\beta\)에 노출된 수컷 미꾸라지
간조직 유전자들의 발현 양상

II. 재료 및 방법

1. 실험이

경상남도 김해 인근에서 수집하여 부경대학교 양식학과 어류유전육종 실험실에서 세대를 이어 현재까지 사육 중인 미꾸라지, *Misgurnus mizolepis Günther, 1888*를 본 연구의 실험 대상어로 삼았으며, 실험 시작시 어체의 체장은 평균 10.38±0.59 cm, 전장은 평균 11.99±0.72 cm, 어체중은 평균 7.10±0.99 g이었다.

2. Estradiol-17\(\beta\) 처리

인위적으로 오염된 환경에 노출시키기 위하여 미꾸라지 수컷을 대상으로 *estradiol-17\(\beta\)* (E\(\text{2}, \Sigma \text{igma, USA})를 처리하였다. E\(\text{2}\)처리 방법으로는 어체 근육으로의 삽입법(implantation method)과 사료에 호르몬을 첨가하여 처리하는 경구 투여법(feeding method) 및 사육수에 호르몬을 직접 용해, 희석하여 처리하는 침지법(immersion method) 등이 있으나, 본 실험에서는 가장 보편적으로 사용되어지는 경구 투여법을 이용하였다(Pandian and Sheela, 1995).

부화 후 8개월 된 미꾸라지 수컷만을 선택하여 수온이 25\(^\circ\)C가 되도록 유지된 사육수가 250마리씩 수용하였다. 공급된 사료로는 각 실험군의 경우 E\(\text{2}\)를 95% 에탄올(덕산, 한국)에
충분히 녹여 각각의 농도가 250 mg/kg diet, 125 mg/kg diet, 62.5 mg/kg diet 가 되도록 하여 현재 국내에 시판 중인 송어 사료(우성사료, 한국)에 참가하여 상온의 그늘에서 건조시킨 후 -20°C에 냉동 보관하였다. 그리고 실험 시작시 부터 4°C 냉장 보관 하면서 하루에 6회씩 각각의 실험군에 32주간에 걸쳐 충분히 급이 하였으며, 대조군에 경우에는 E2가 함유되어 있지 않은 사료를 실험군과 같은 조건으로 급이 하였다.

각 실험군에 급이하는 사료에 포함된 E2의 농도는 E2를 Cyprinidae의 성전환 실험에서 최적 농도가 200 mg/kg diet임을 제시한 Padian and Sheela (1995)의 논문을 참고로 하여, 앞서 부경대학교 어류유전육종 실험실에서 이루어진 예비실험 결과를 기준으로 정하였다.

3. 생존률, 성장률 및 비만도 분석

E2가 처리된 실험군과 대조군의 수컷 미꾸라지를 사료 급이 후 각 실험군에서 무작위로 선별하여 첫 2주에 표본하기 시작하여 4주, 8주, 12주, 16주, 24주, 32주에 각각 표본하여 생존률, 전장(Total length), 체장(Standard length), 체중(Body weight)을 측정하였다.

실험군과 대조군의 전장, 체장 및 체중을 측정하기 위해 김 등(1988)의 방법에 따라 400 ppm 염산리도카인(Lidocaine-HCl)/ 1000 ppm NaHCO3 마취제에 어체를 충분히 마취시킨 후, 전장과 체장은 0.01 cm 단위까지 버니어캘리스를 이용하여 계측하고, 체중은 전자저울(카스, 한국)을 사용하여 0.01 g 단위까지 측정하였다. 이를 통해 성장률을 조사하고, 비만도 (Condition factor)=(체중/전장^3)×10^3는 위와 같은 식을 이용하여 분석하였다.
4. 외형과 내부 장기의 관찰 및 간과 생식소의 조직학적 분석

각 실험군 중에서 2주와 32주간 E2에 노출시킨 실험이의 외형을 사진 접사대를 사용하여 사진 촬영용 유리수조 내에서 충분한 빛이 주어지는 조건 하에서 사진 촬영하였으며, 32주간 E2에 노출된 실험이 중 외형적인 변화를 보이는 것을 대상으로 하여 해부한 후, 내부 장기를 사진 접사대를 사용하여 사진 촬영하였다.

각 실험군과 대조군에서 채취한 표본들의 간과 생식소의 조직학적인 분석을 위하여 간의 경우 Bouin’s 용액(picro acid : formalin : acetic acid = 15 : 5 : 1)에 고정하고, 생식소의 경우 Carnoy’s 용액(alcohol : acetic acid : chloroform = 6 : 1 : 3)에 고정한 후, 100% 에탄올에 재고정하였다. 고정된 각 조직 표본들은 paraffin 상법에 따라 포매하였으며, 미세조직 절편기(Microm GmлоH, Type HM 315, Germany)를 이용하여 6 μm 두께로 절편 하였다. 절편된 각 조직의 표본들은 hematoxylin과 eosin으로 이중 염색한 후, 광학현미경(Nikon, Japan)으로 검경하였다.

5. 간조직의 ESTs 클론을 이용한 cDNA microarray 제작

미꾸라지 간조직의 ESTs 데이터베이스를 바탕으로 수집된 정보들을 이용하여 unigene 502개를 선별하여 미꾸라지 간조직의 cDNA microarray를 제작 및 수행하였다. 각 클론들의 plasmid DNA를 일정한 비율로 희석시킨 후 universal primer인 SK (5’GCCGCTCTAGAATCT TGGATC 3’)와 T7 (5’AATACGACTCTAGATAG 3’)으로 94°C에서 2분 동안 denaturation시킨 후, 94°C에서 45초, 60°C에서 45초, 72°C에서 1분씩 각각 30회 반복되는 조건으로 PCR을 수행하여 cDNA microarray를 제작하는데 이용하였다.
6. Total RNA 분리, probe 제작, hybridization 및 signal 분석

E_{2}에 노출된 각각의 실험군과 대조군의 미꾸라지 간조직을 대상으로 pooling하여 total RNA를 분리하였으며, total RNA 분리를 위해 liver 조직을 체취하여 조직 100 mg당 1 ml의 TriPure™ Isolation Reagent (Roche Molecular Biochemicals, Germany)를 사용하여 조직을 완전히 분쇄한 후, 제 조사에서 제시한 실험방법에 따라 total RNA를 분리하였다. 분쇄된 조직은 실온에서 10분간 방치한 후, chloroform extraction과 12,500 rpm에서 10분간 원심분리기를 실시하였다. 원심분리 후, 상등액을 취하여 동일량의 isopropanol을 넣어 total RNA를 침전 시켰다. 침전된 total RNA를 DEPC treated RNase-free water에 녹인 후, 260 nm과 280 nm에서 정량분광계 (GeneQuantPro, Biochrom Ltd., England)를 이용하여 정량하였다.

20-50 μg의 total RNA를 이용하여 cDNA microarray 제작사(Digital Genomics, 한국)에서 제시한 실험방법에 따라 probe를 제작하고, 형광물질인 Cy3, Cy5 dye (AmershamPharma, USA)를 표지한 후, 제작된 cDNA microarray와 42℃의 조건에서 hybridization시켰다. Hybridization 결과 나타나는 형광 signal을 이미지화하여 컴퓨터로 scanning한 후, GenePix software (Axon Instrument, USA)를 이용하여 각각의 signal들을 분석하였다.
III. 결과

1. Estradiol-17β에 노출된 수컷 미꾸라지의 생존률, 성장률 및 비만도

수컷 미꾸라지를 E₂에 노출시킨 후 각 실험군과 대조군의 생존률과 성장, 체장 증가량, 생존률을 Table 4에 나타내었다. 각 실험군과 대조군의 생존률에 관해 살펴보면, 각 실험군과 대조군은 실험이 진행되는 동안 생존률이 전반적으로 감소됨이 관찰되었다. 실험 시작 후 급격하게 생존률이 감소한 시기는 8주제로 250 mg/kg diet로 E₂를 급여한 실험군에서 나타났다. 또한, 250 mg/kg diet와 125 mg/kg diet로 E₂를 급여한 두 실험군에서 마지막 32주제 생존률이 79.6%로 가장 낮게 관찰되었다.

전장과 체장 및 체중 증가에 관해 조사한 결과, 대조군과 E₂가 처리된 사료를 급여한 실험군간에 큰 차이가 나타나지 않았으며, 대체적으로 일정 기간 동안 증가하다가 이후 감소되는 경향을 보이다 다시 증가와 감소하는 경향이 반복되어 나타났다(Table 4).

미꾸라지 수컷이 E₂에 노출되었을 때, E₂가 어체의 비만도에 미치는 영향에 대해 조사한 결과를 Table 4에 나타내었다. 모든 대조군과 실험군에서 비만도는 수컷 미꾸라지의 성장에서 보이는 것과 같은 양상이 관찰되었다.

2. Estradiol-17β에 노출된 수컷 미꾸라지의 외형과 내부 장기 및 간과 생식관의 조직학적 변화

E₂에 노출된 수컷 미꾸라지의 E₂의 급성독성 효과로 인해 나타나는 외형의 변화와 반성독성 효과로 인해 나타나는 외형 및 내부 장기조직의 변화를
Table 4. Effects of E2 administration on body weight, total length, standard length, condition factor, and survival of male mud loach, Misgurnus mizolepis*

<table>
<thead>
<tr>
<th>Experiment group</th>
<th>Treatment duration</th>
<th>Total length (㎝)</th>
<th>Standard length (㎝)</th>
<th>Weight (g)</th>
<th>Condition factor</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2 weeks</td>
<td>13.04±0.95</td>
<td>11.26±0.81</td>
<td>9.92±1.34</td>
<td>4.42±0.53</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td>4 weeks</td>
<td>13.27±0.97</td>
<td>11.37±0.97</td>
<td>10.11±0.91</td>
<td>4.59±0.65</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td>8 weeks</td>
<td>13.83±0.80</td>
<td>12.05±0.68</td>
<td>12.94±1.07</td>
<td>4.81±0.55</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>12 weeks</td>
<td>13.81±1.02</td>
<td>11.99±0.95</td>
<td>13.02±1.74</td>
<td>5.00±0.78</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>16 weeks</td>
<td>13.58±0.46</td>
<td>11.92±0.40</td>
<td>13.15±2.41</td>
<td>5.18±0.36</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>24 weeks</td>
<td>14.22±0.56</td>
<td>12.60±0.59</td>
<td>14.67±3.08</td>
<td>5.04±0.49</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>32 weeks</td>
<td>13.92±1.83</td>
<td>12.60±1.17</td>
<td>13.99±5.57</td>
<td>4.94±0.39</td>
<td>97.2</td>
</tr>
<tr>
<td>62.5 ppm**</td>
<td>2 weeks</td>
<td>12.55±0.89</td>
<td>10.80±0.79</td>
<td>9.82±1.72</td>
<td>4.84±1.08</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td>4 weeks</td>
<td>12.91±0.76</td>
<td>11.15±0.67</td>
<td>10.03±1.83</td>
<td>4.65±0.60</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>8 weeks</td>
<td>13.77±1.15</td>
<td>11.97±1.08</td>
<td>12.61±1.86</td>
<td>4.77±0.41</td>
<td>96.4</td>
</tr>
<tr>
<td></td>
<td>12 weeks</td>
<td>13.63±1.04</td>
<td>11.82±0.98</td>
<td>12.06±2.92</td>
<td>4.68±0.59</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>16 weeks</td>
<td>13.65±0.86</td>
<td>11.98±0.92</td>
<td>12.05±2.41</td>
<td>4.67±0.21</td>
<td>86.8</td>
</tr>
<tr>
<td></td>
<td>24 weeks</td>
<td>13.60±0.79</td>
<td>12.00±0.64</td>
<td>14.11±1.82</td>
<td>5.62±0.63</td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>32 weeks</td>
<td>14.77±0.69</td>
<td>12.78±0.63</td>
<td>14.57±2.14</td>
<td>4.51±0.38</td>
<td>84.0</td>
</tr>
<tr>
<td>125 ppm**</td>
<td>2 weeks</td>
<td>12.90±0.87</td>
<td>10.81±0.76</td>
<td>8.62±1.03</td>
<td>4.69±0.56</td>
<td>97.2</td>
</tr>
<tr>
<td></td>
<td>4 weeks</td>
<td>12.71±0.93</td>
<td>11.14±0.71</td>
<td>8.89±1.13</td>
<td>4.30±0.63</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td>8 weeks</td>
<td>13.05±1.04</td>
<td>11.32±0.90</td>
<td>10.82±1.70</td>
<td>4.81±0.63</td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>12 weeks</td>
<td>13.75±0.92</td>
<td>12.01±0.89</td>
<td>13.71±3.31</td>
<td>5.20±0.62</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td>16 weeks</td>
<td>14.27±0.52</td>
<td>12.53±0.47</td>
<td>14.38±2.72</td>
<td>4.96±0.88</td>
<td>80.8</td>
</tr>
<tr>
<td></td>
<td>24 weeks</td>
<td>13.25±1.01</td>
<td>11.67±1.03</td>
<td>14.32±2.69</td>
<td>6.16±1.03</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>32 weeks</td>
<td>13.87±2.05</td>
<td>13.62±1.31</td>
<td>13.56±4.44</td>
<td>5.27±1.07</td>
<td>79.6</td>
</tr>
<tr>
<td>250 ppm**</td>
<td>2 weeks</td>
<td>12.34±0.93</td>
<td>10.59±0.81</td>
<td>8.54±1.87</td>
<td>4.74±0.43</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>4 weeks</td>
<td>12.72±0.61</td>
<td>10.92±0.56</td>
<td>8.75±1.14</td>
<td>4.17±0.27</td>
<td>94.4</td>
</tr>
<tr>
<td></td>
<td>8 weeks</td>
<td>13.04±1.01</td>
<td>11.23±0.89</td>
<td>9.93±1.14</td>
<td>4.43±0.58</td>
<td>82.8</td>
</tr>
<tr>
<td></td>
<td>12 weeks</td>
<td>13.29±0.78</td>
<td>11.50±0.35</td>
<td>11.45±0.60</td>
<td>4.82±0.45</td>
<td>82.0</td>
</tr>
<tr>
<td></td>
<td>16 weeks</td>
<td>13.83±0.78</td>
<td>12.02±0.74</td>
<td>11.75±2.62</td>
<td>4.39±0.48</td>
<td>81.6</td>
</tr>
<tr>
<td></td>
<td>24 weeks</td>
<td>13.02±0.86</td>
<td>11.40±0.87</td>
<td>12.67±3.43</td>
<td>5.62±0.69</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td>32 weeks</td>
<td>14.09±0.82</td>
<td>12.21±0.72</td>
<td>13.79±2.53</td>
<td>4.93±0.70</td>
<td>79.6</td>
</tr>
</tbody>
</table>

*mean±S.D., **ppm = mg/kg diet
Fig. 3과 Fig. 4에 제시하였다. 2주 동안 E2에 노출된 수컷 미꾸라지에서 나타나는 급성독성효과로는 어체 표면에 전반적으로 출혈과 연관된 혼적들과 점액질들이 벗겨지고 묻히는 현상이 나타나고, 눈이 앞으로 돌출되면서 충혈되는 것이 관찰되었다(Fig. 3a).

또한, 어체의 항문부위와 어체 표면이 부어오르고, 전체적으로 체형이 둥둥해지는 모습이 관찰되기도 하였다(Fig. 3b). 반면에, 장기간 E2에 노출된 수컷 미꾸라지에서는 어체의 턱 아래 부분이 불록하게 둔어나와 흉과 같은 것이 있는 것으로 관찰되었다(Fig. 4a). 이러한 증상을 보이는 어체를 해부하여 본 결과 담낭(gall-bladder)이 비대화되고, 막막해지고 있으며, 비장(spleen)이 다른 정상 어체에 비해 비대화되어 있는 것이 관찰되었다(Fig. 4b와 c).

E2에 노출되는 기간에 따른 대조군과 실험군의 수컷 미꾸라지 간과 생식소의 조직학적인 변화를 Fig. 5, Fig. 6, Fig. 7, Fig. 8에 나타내었다. 32주 동안 E2에 노출된 각 실험군의 간에서는 정상 간조직에서와 같이 간세포들이 균일하게 분포되어 있는 양상을 보이는 것으로 보아 조직학적인 변화가 없는 것으로 관찰되었다(Fig. 5).

생식소에 있어서는 E2에 16주 동안 노출된 각 실험군의 수컷 미꾸라지에서는 대조군에서와 같은 생식소가 관찰되었으며(Fig. 6), 24주 동안 노출된 각 실험군의 생식소에서는 대조군의 수컷 미꾸라지 생식소에서 보이는 것과는 대조적으로 생식소 내에서 정자가 흡수되고, 조직이 피사되고 있는 상태가 250 mg/kg diet로 급히한 실험군에서 관찰되었다(Fig. 7). 이 후 32주 동안 E2에 노출된 각 실험군의 수컷 미꾸라지의 생식소의 경우에는 대조군의 수컷 미꾸라지 생식소에서와 같이 정상적인 수컷 생식소의 형태로 회복되어 정자, 정원세포 등이 존재하는 것으로 관찰되었다(Fig. 8).
Fig. 3. External morphology of male mud loach, *Misgurnus mizolepis*.

a) back of acute symptom of exposure to E₂ (Total length is approximately 11 cm) and b) abdominal acute symptoms of exposure to E₂ (Total length is approximately 11 cm). Arrows indicate symptoms of acute.
Fig. 4. External and internal morphology of male mud loach, *Misgurnus mizolepis* shows chronic symptoms.

a) external morphology (Total length is approximately 14 cm) and b), c) internal morphology. Arrows are external morphology (a) and gall-bladder (b, c).
Fig. 5. Liver histology of 8-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β. Bars are 50 μm.

a) 62.5 mg/kg diet E₂ treated male mud loach, b) 125 mg/kg diet E₂ treated male mud loach and c) 250 mg/kg diet E₂ treated male mud loach.
Fig. 6. Gonad histology of 4-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β. Bars are 50 μm.

a) gonad of control male mud loach, b) 62.5 mg/kg diet E2 treated male mud loach, c) 125 mg/kg diet E2 treated male mud loach and d) 250 mg/kg diet E2 treated male mud loach.
Fig. 7. Gonad histology of 6-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β. Bars are 50 μm.

a) control male mud loach, b) 62.5 mg/kg diet E₂ treated male mud loach, c) 125 mg/kg diet E₂ treated male mud loach and d) 250 mg/kg diet E₂ treated male mud loach.
Fig. 8. Gonad histology of 8-month-old male mud loach, *Misgurnus mizolepis* treated with estradiol-17β. Bars are 50 μm.

a) control male mud loach, b) 62.5 mg/kg diet E2 treated male mud loach, c) 125 mg/kg diet E2 treated male mud loach and d) 250 mg/kg diet E2 treated male mud loach.
3. 미꾸라지 간조직의 cDNA microarray를 이용한 발현 특징

미꾸라지 간조직 ESTs 데이터베이스를 바탕으로 제작된 cDNA microarray를 통해 E2에 노출된 수컷 미꾸라지 간조직으로부터 분리한 total RNA로 제작한 probe를 이용하여 cDNA microarray와 hybridization 하여 나타난 signal에 대한 이미지를 Fig.9에 나타내었다. E2에 노출된 환경에 영향을 많이 받는 유전자들에 경우에는(2배 이상 높은 경우)에는 빨간색의 signal을 나타내었으며, 영향을 보다 적게 받는 유전자들에 경우에는(2배 이상 낮은 경우)에는 초록색의 signal을 나타내었다. 이에 반해, E2에 아무런 영향을 받지 않는 유전자들은 노란색의 signal을 나타내었다.

이를 바탕으로 하여 E2에 노출된 수컷 미꾸라지 간조직 내에서 발현되는 유전자들에 대해 조사한 결과 Table 5에 제시되어 있듯이 cDNA microarray 내에서 다른 유전자들에 비해 2배 이상 높게 발현되는 유전자들로는 angiotensinogen, mitochondrial uncoupling protein, lactate dehydrogenase binding protein, toxin-1, complement regulatory protein, serine proteinase inhibitor, phospholipid hydroperoxide glutathione peroxidase, insulin-like growth factor binding protein, aldolase B, warm-temperature acclimation related protein, proforin, ferritin, NADH dehydorgenase, glutathione peroxidase, alpha macroglobulin, PHD finger protein, uncoupling protein, phosphofructokinase, oxidoreductase, 60S Ribosomal protein L10A, ribosomal protein L3, lectin 및 unknown or hypothetical proteins으로 나타났으며, 이에 비해 다른 유전자들보다 2배 이상 낮게 발현되는 유전자는 sterol-C4-methylxidoreductase, macrophage maturation-associated transcript, sortilin-related protein, Co A reductase, lanosterol synthetase, dehydrochoesterol reductase, tubulin alpha isotype, fibronectin, phytanoyl-CoA dioxygenase, carboxypediase A2, unknown or hypothetical proteins이 조사되었다.
Fig. 9. Hybridized signal from the microarray analysis showing the differential expressed genes during E2 exposure. (● up-regulation, ○ down-regulation, ○ steady-state).
Table 5. List of genes showing differential expression during exposures to estradiol-17β based on microarray analysis

<table>
<thead>
<tr>
<th>List of gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly up-regulated gene (>2 fold increase)</td>
</tr>
<tr>
<td>Angiotensinogen</td>
</tr>
<tr>
<td>Mitochondrial uncoupling protein</td>
</tr>
<tr>
<td>Lactate dehydrogenase binding protein</td>
</tr>
<tr>
<td>Toxin-1</td>
</tr>
<tr>
<td>Complement regulatory protein</td>
</tr>
<tr>
<td>Serine proteinase inhibitor</td>
</tr>
<tr>
<td>Phospholipid hydroperoxide glutathione peroxidase</td>
</tr>
<tr>
<td>Insulin-like growth factor binding protein</td>
</tr>
<tr>
<td>Aldolase B</td>
</tr>
<tr>
<td>Warm-temperature acclimation related protein</td>
</tr>
<tr>
<td>Protolin</td>
</tr>
<tr>
<td>Ferritin</td>
</tr>
<tr>
<td>NADH dehydrogenase</td>
</tr>
<tr>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>Alpha macroglobulin</td>
</tr>
<tr>
<td>PHD finger protein</td>
</tr>
<tr>
<td>Uncoupling protein</td>
</tr>
<tr>
<td>Phosphofructokinase</td>
</tr>
<tr>
<td>Oxidoreductase</td>
</tr>
<tr>
<td>60S Ribosomal protein L10A</td>
</tr>
<tr>
<td>Ribosomal protein L3</td>
</tr>
<tr>
<td>Lectin</td>
</tr>
<tr>
<td>Unknown or hypothetical proteins</td>
</tr>
<tr>
<td>Highly down-regulated gene (>2 fold decrease)</td>
</tr>
<tr>
<td>Sterol-C4-methyl oxidoreductase</td>
</tr>
<tr>
<td>Macrophage maturation-associated transcript</td>
</tr>
<tr>
<td>Sortilin-related protein</td>
</tr>
<tr>
<td>CoA reductase</td>
</tr>
<tr>
<td>Lanosterol synthetase</td>
</tr>
<tr>
<td>Dehydrocholesterol reductase</td>
</tr>
<tr>
<td>Tubulin alpha isotype</td>
</tr>
<tr>
<td>Fibronectin</td>
</tr>
<tr>
<td>Phytanoyl-CoA dioxygenase</td>
</tr>
<tr>
<td>Carboxypeptidase A2</td>
</tr>
<tr>
<td>Unknown or hypothetical proteins</td>
</tr>
</tbody>
</table>
IV. 고찰

Expressed sequence tags (ESTs) 기술은 cDNA library로부터 얻은 대량의 길이가 짧은 유전자 단편들의 DNA 염기서열 중에서 단백질로 발현되는 부분에 대한 정보를 모아 해당 개체가 가진 유전자에 관한 데이터베이스를 구축하는데 유용하게 사용되고 있는 기술이다. 이 기술은 또한, 발생 및 성장단계의 특정 시기에 개체에서 발현되는 유전자나 면역반응에 관계하거나 특정물 질에 개체가 노출되었을 때 발현되는 유전자에 관한 조사에 이용되어져 왔다 (Ton et al., 2002; Nam et al., 2003; Williams et al., 2003).

어류 dbESTs의 경우 아직 포유류 및 미생물에 비해 연구되기 시작한 역사가 짧으며, 현재 전체 NCBI GenBank내의 dbESTs의 약 20%정도 수준에 그치고 있는 실정이나 신세기에 들어 일부 모델 어종과 주요 양식어종을 중심으로 ESTs에 관련된 연구가 확대되고 있으며, 갑각류와 폐류까지 그 연구 범위가 확대되고 있다 (Gong et al., 1997; Kono et al., 2000; Lehnert et al., 1999; Jenny et al., 2002).

본 연구에서는 이루어진 미꾸라지, Misgurnus mizolepis, Günther, 1888 간조직에 대한 ESTs 데이터베이스의 경우 무작위로 선택된 910개의 클론들의 상동성에 있어서 전체 ESTs 내에서 Ex<10^-3인 클론들이 94.9%를 차지하는 것으로 나타났으며(Table 2), 이는 대서양 연어, Salmo salar의 성어의 간조직에 대한 ESTs에서 상당히 높은 상동성을 가지는 클론들이 전체 ESTs에서 48%를 차지한 Sarah et al. (2002)의 연구에서 보다 높은 것을 알 수 있다. 또한, no match된 클론의 비율이 본 실험의 경우 1.5%였으나, 이전의 연구에서는 전체 ESTs 데이터베이스 내에서 50%이상을 차지한다는 것으로 보아(Hirono and Aoki, 1997; Inoue et al., 1997) 그동안 어류에 관한 ESTs 데이터베이스에 대
한 연구가 많이 이루어졌음을 짐작할 수 있다.

본 실험에서 미꾸라지 간조직의 ESTs 데이터베이스 내에서 반복적으로 나타나는 유전자 염기서열을 제외한 singletons의 비율은 38.6%로 이 ESTs 내에 존재하는 unigene의 수는 467개로 조사되었다(Fig. 1). 대서양 연어의 간조직을 이용한 ESTs 분석에서는 733개의 클론 중에서 118개의 singletons가 존재하며, unigene의 수가 246개 존재하는 것으로 조사된 바 있다(Sarah et al., 2002).

High density lipoprotein (HDL)의 주요 단백질 성분이며, 혈청 내에 존재하며, 생체 방어 경로의 활성을 결정짓는 단백질인 apolipoprotein A가 발현되는 클론이 본 연구에서 재제된 미꾸라지 간조직의 ESTs 내에서 51개의 클론이 이에 해당하는 것으로 조사되었으며, 가장 많은 빈도수(5.6%)를 가지는 것으로 나타났다(Table 3). Inoue et al. (1997)에 의해 이루어진 넥치, Paralichthys olivaceus의 ESTs에서는 8개의 클론이 Apo A를 발현하는 것으로 나타났다.

미꾸라지 간조직의 전체 ESTs 중에서 E<10^-3의 상동성을 가지는 클론들에 대해 해당 클론들에서 발현되는 유전자와 동일한 종류의 유전자가 발현되는 클론을 가진 생물종의 종류에 따라 분류한 Table 1과 Fig. 2a를 살펴보면, 가장 많은 부분을 차지하는 생물종은 어류로 나타났으며(82.6%), 그 중에서 가장 척추동물의 발생에 관한 연구에 적합한 모델 어종으로 어류 중에서 가장 많은 연구가 진행되었으며, 현재 많은 염기서열이 밝혀진 zebrafish, Danio rerio (Ton et al., 2002)가 39.4%를 차지하는 것으로 나타났다.

생체 내에서 물질대사의 중심이 되는 생합성 기능, 복잡한 분해과정을 통한 여러 물질에 대한 해독작용, 조절 및 혈액응고 작용 등에 관한 생물학적인 기능을 담당하는 간에서 발현되는 유전자의 기능에 관해 제시한 Fig. 2b
에서 일반적인 대사과정에 관련된 기능을 수행하는 유전자들이 속한 class (Ⅷ)와 면역기능에 관여하는 유전자들이 속한 class (V)가 각각 18.9%와 18.5%로 나타난 것으로 보아 미꾸라지 간조직의 ESTs 내에서 발현되는 유전자들이 이러한 간의 기능들을 잘 나타내고 있음을 알 수 있다.

Sarah et al. (2002)에 의해 이루어진 대서양 연어의 간조직에 관한 ESTs 내에서 발현되는 유전자들의 기능에 관한 분류에서도 이러한 간의 생물학적인 기능과 연관된 유전자들이 발현되고 있음을 제시한 바 있다. 따라서 미꾸라지 간조직의 ESTs 데이터베이스를 바탕으로 어떤 특정 환경이나 생물학적인 상태에 노출된 개체의 간에서 발현되는 유전자에 관한 조사가 용이할 것으로 생각된다.

어류에 있어서 성전환을 유도하기 위해 가장 대표적으로 사용되는 암컷 호르몬인 estradiol-17β (E2)를 대상으로 8개월 된 수컷 미꾸라지에 끼치는 효과와 그에 따른 유전자 발현의 양상을 본 연구를 통해 조사하고자 하였다.

본 연구에서 나타난 E2에 노출된 미꾸라지의 생존률은 이전에 보고된 치어를 대상으로 한 Noh et al. (1997)의 나일릴라피아, Dreochromis niloticus의 E2를 이용한 성전환 유도와 Kim et al. (1997)에 의해 미꾸라지에 관한 E2 침지법을 이용한 성전환 유도에서와 같이 농도와 기간에 영향을 받는 것으로 나타났다(Table 4). 전장과 체장 및 체중 증가에 있어서는 대조군과 E2가 처리된 사료를 급여한 실험군간에 큰 차이가 나타나지 않는 것으로 나타났으며(Table 4), 이는 E2가 미꾸라지의 성전환 유도시 E2에 노출 되었을 때, 성장에는 크게 영향을 끼치지 않는 것으로 생각된다. 반면에 치어를 대상으로 한 미꾸라지에 대한 다른 연구(Kim et al., 1997)와 chinook salmon (Hunter et al., 1986), channel catfish (Gannam and Lovell, 1991)에서 이루어진 성전환 실험에서 호르몬에 따라 성장이 감소된다고 보고된 바 있다.
E2 호르몬 처리에 따른 외형, 내부 장기 및 조직학적인 변화에 있어서 Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8에 제시된 것과 같이 단기간 호르몬에 노출된 경우 출혈 및 눈의 충혈 등과 같은 외형적인 변화가 일어난 반면에 장기간 노출될 경우 내부 장기 조직에 있어서 조직학적인 변화가 없는 것으로 보아 간조직에서는 손상을 입지 않은 것으로 판단되며, 담낭의 경우 비대화되고 막막해지는 변화가 관찰되었다.

또한 생식소의 경우 24주간 노출되었을 때, 고농도(250 mg/kg diet)로 노출된 실험군의 생식소에서 일부 정자의 흡수와 일부 조직에 있어서 피사가 일어나는 것이 관찰되어 성전환이 유도되는 것으로 판단되었으나, 이후 32주간 E2 호르몬에 노출되었을 때 일반 정상 미꾸라지 수컷과 같은 생식소의 형태를 가지고 있는 것이 관찰되었다. 이는 성전환 유도를 위한 호르몬 처리에 있어서 생물이 인공적으로 노출된 호르몬 농도에 적응하여 성전환이 유도되지 않은 것으로 판단되며, 담낭이 비대화되고 막막해진 경우에도 이러한 증상이 생존과 성장에 영향을 미치지 않음(데이터로 제시하지 않음) 것으로 판단된다. 이는 여(2004)의 연구에서 형질전환 고성장 미꾸라지 치어를 대상으로 한 성전환 실험에서 호르몬 처리 시간의 증가에 따라 기형적인 척추 만곡 현상과 특별히 긴 꼬리지느러미의 외형과 신장 및 간조직의 심한 손상이 관찰된 것과 상이한 것으로 보아 치어와 성어 간의 외부 자극에 대한 반응에 차이가 있는 것으로 판단된다.

인공적으로 처리된 E2 호르몬에 의한 성전환 유도에서 이러한 호르몬이 어체의 조직학적-생리학적 변화에 큰 영향을 미치지 않는 것으로 생각되며, 외형적인 변화에 있어서 단기간 노출되었을 경우 출혈 등과 복부가 평대해지는 등의 영향으로 사망에 이르게 하는 독성을 나타내지만(Fig. 3), 장기간 노출되었을 경우에도 외형적으로 어체의 턱 아래 부분에 흉이 생기고, 내부 장기에 있
어서는 담낭과 비장의 비대화 및 담낭이 막막하게 변하는 증상을 제외한 별다른 독성효과는 나타나지 않았다(Fig. 4). 따라서 미꾸라지는 환경적인 변화에 적응력이 뛰어난 종으로 알려진 바와 같이 다른 종들과 달리 인공적인 호르몬 처리에 있어서 독성에 대해 생체 내에 강한 방어 기작을 가진 것으로 생각된 다.

E2 호르몬에 노출된 수컷 미꾸라지의 간조직을 대상으로 한 cDNA microarray를 통한 유전자 발현 분석에 있어서는 산화적인 스트레스와 생리학 적인 불균형이 초래했을 때 관여하는 유전자들이 다른 유전자들에 비해 높은 signal을 나타내고 있었으나, 이에 비해 다른 유전자들에 비해 일반적인 대사와 관련된 유전자들은 낮은 signal을 나타내고 있는 것이 조사되었다. 따라서 DNA chip을 통해 대량 클론들에 관한 differential expression에 관한 분석이 가능하며, E2에 노출된 생체 내에서 up-regulation 및 down-regulation되는 유전자들을 발굴할 수 있다.

본 실험을 통해 미꾸라지는 오염된 환경에 노출되었을 경우 해당 환경에 대한 적응력이 뛰어난 점을 바탕으로 간조직에 관한 ESTs 데이터베이스 구축으로 인해 오염된 환경에 노출시 유전자 발현에 있어서의 발현 양상에 관한 조사를 용이하게 하고, 이러한 환경 조건에서 생체 방어기작의 작동을 위해 발현되는 유전자의 종류를 조사할 수 있게 함으로써 오염된 환경에서 특이적으로 발현되는 각 유전자의 발현 기작과 그 경로에 관한 연구에 도움을 줄 수 있을 것이며, 앞으로의 연구에 있어서는 E2 노출에 대한 time course별 유전자 발현에 관한 양상을 조사하고, DNA chip을 이용한 biomarker, 생체 지표로서의 활용 가능성을 제시하여야 할 것이다.
Ⅴ. 국 문 요 약

Expressed sequence tags (ESTs)는 cDNA library로부터 얻은 대량의 길이가 짧은 유전자 단편들의 DNA 염기서열에서 발현되는 유전자들에 관한 정보를 대량 확보하는 기술로서 이를 통해 본 연구에서는 미꾸라지, *Misgurnus mizolepis*, Günther, 1888 간조직으로부터 분리한 mRNA로 만들어진 cDNA를 이용하여 제작된 cDNA library 내에서 무작위로 선택된 1,032개의 클론에 대한 ESTs 데이터베이스를 구축하였다.

미꾸라지 간조직의 ESTs 내에서 GenBank 내에 등록된 유전자들과 상당한 상동성을 보인 클론(*e*-value<10⁻³)들의 경우 94.9%였으며, 상동이 아주 낮거나(*e*-value ≥ 10⁻³) GenBank 내에 등록된 유전자들과 맞는 것이 없는 클론들의 경우 6.2%로 나타났으며, ESTs 내에 존재하는 singletons의 비율은 38.6%였다. 생물종에 따른 분석에서 가장 잘 맞는 종은 어류로 82.6%를 차지한다. 기능별로 분류된 10개의 class 중에서 가장 많은 클론들이 속한 group은 18.5%의 Class (Ⅴ) 면역 기능, chaperones, 방어기작에 관련되는 기능을 하는 경우, 18.9%의 Class (ⅤⅢ) 일반적인 대사과정에 관련되는 기능을 하는 경우가 있다. 이러한 점을 바탕으로 미꾸라지 간조직의 ESTs에서 unigene 502개를 선별할 수 있었다.

Estradiol-17β (*E₂*)를 이용한 미꾸라지 수컷의 성전환 유도에 있어서 호르몬 처리로 인한 생존율에 있어서 처리 농도와 기간에 영향을 받았으며, 성장에 있어서는 영향을 받지 않았다. *E₂* 호르몬에 단기간 노출시 외형의 변화로 인해 사망이 이르렀으며, 장기간 노출시 담낭의 조직적인 변화가 일어났으나, 간 및 생식소에 있어서는 조직학적인 변화가 나타나지 않았다.

E₂ 호르몬에 노출된 수컷 미꾸라지의 간조직을 대상으로 한 cDNA
microarray를 통한 유전자 발현 분석에 있어서는 산화적인 스트레스와 생리학적인 불균형이 초래했을 때 관여하는 유전자들이 다른 유전자들에 비해 높은 signal을 나타내고 있었으나, 이에 비해 다른 유전자들에 비해 일반적인 대사와 관련된 유전자들은 낮은 signal을 나타내고 있는 것이 조사되었다.

따라서 본 연구의 목적은 미꾸라지의 간에서 발현되는 유전자들에 관한 정보의 분석과 이를 통해 축적된 데이터베이스를 활용한 cDNA microarray를 통해 수생환경에서 환경호르몬의 일종인 estradiol-17β에 노출된 수컷 미꾸라지 간에서 발현되는 유전자들의 발현양상을 조사하고, 조직학적·형태학적인 변화를 조사 분석하는데 있다.
VI. 감사의 글

그저 실험이 세미있고, 공부하는 것이 좋아 시작했던 학위이지만, 부족한 점도 많고, 실험에 서둘러서 좋은 결과를 얻지 못할 때는 후회도 했었는 데 이렇게 학위를 마칠 때가 되니 아쉬움이 많이 남습니. 학위과정을 마무리하는 시점에서 너무나 많은 분들께 도움을 받아 이 작은 페이지 속에 조금이나마 감사의 마음을 전하고자 합니다.

먼저 항상 곁에서 저의 부족한 점을 채워 주시고, 널으신 마음으로 모자란 저를 이끌어 주시고, 학문의 의미를 다시 한번 일깨워 주신 부경대학교 김동수 교수님께 존경의 마음과 함께 감사를 드립니다. 공부의 끝을 돌 수 있도록 이 길로 인도하여 주시고, 많은 관심과 지도를 아끼시지 않으신 지도교수 박인석 교수님께 감사를 드립니다. 열의와 성의를 다하여 부족한 저를 이끌어 주시고, 학문하는 사람으로서의 본보기가 되어 주시고, 이 논문을 다듬어 주시고 지도해 주신 부경대학교 남윤권 교수님께 진심으로 감사를 드립니다. 부족한 점이 많은 제게 따끔한 충고와 많은 관심을 가져주시고, 바쁘신 와중에도 학위 논문 심사에 열의를 보여 주신 최철영 교수님께 감사를 드립니다.

학부에 갓 입학한 모자람이 많은 저를 따뜻하게 대해 주신 강효진 교수님, 노일 교수님, 끝없는 아랑을 베풀어 주시고 아낌없는 지도와 칭찬과 충고를 해주신 조성환 교수님, 또한, 항상 저를 지켜주신 서영완 교수님, 이호진 교수님, 안종웅 교수님, 임선영 교수님 그리고 이경은 교수님께 감사를 드립니다.

학위를 실험을 부경대학교 어류유전육종실험실에서하느라 행정적인 면에서 미흡한 점이 많을 때 본인의 일처럼 많은 도움을 준 최미리님, 논문이 나오기까지 많은 도움을 준 한국해양대학교 수산유전육종실험실원들께 감사를
드리며, 부경대학교 어류유전육종 실험실원들과 유전자원공학 실험실원들께도 감사를 드립니다. 같이 학위과정 중이면서도 늘 서로의 힘이 되어주고 고민을 드러 준 친구들 김유야님, 정지혜님, 박기의님, 조진희님, 부경대학교의 최별님께 감사를 드리며, 힘든 와중에도 서로를 격려하고, 앞으로 나아갈 수 있도록 힘을 북돋워 준 부경대학교의 최별님께도 감사를 드립니다. 논문에 관해 도움을 청하면 업무로 인해 바쁘신 와중에도 시간을 내어 조언을 해 주신 부경대학교의 이상은 박사님, 임재현 박사님, 항상 언니처럼 따뜻하게 대해 주신 최윤희 박사님께 감사를 드립니다. 실험실 생활을 시작하면서 부족한 점이 많은 저를 잘 가르쳐 주시고, 이끌어 주신 박지은 선배님께도 감사를 드립니다.

사랑하는 우리 가족들, 고생하시는 힘이 되어드리지 못하는 만한을 보듬어 주신 엄마, 병원으로 고생하시면서도 못난 이 딸을 사랑으로 믿어주시고 힘이 되어 주신 아빠, 친구처럼 고민을 드러 주고 버림목이 되어준 동생 경진이, 그리고 항상 어린이 같지만 향상 자극을 줄리며 어느 사이에가 훈련 커버린 막내 수현이에게도 고마움을 표현합니다. 보이지 않게 지친 몸과 마음을 쉴 수 있도록 휴식처가 되어주는 것이 가족이라는 이름의 온타라라는 것을 학위를 하면서 새삼 다시 한번 느끼게 되었습니다. 다시 한번 우리 가족 모두에게 감사를 드리며, 이 논문을 바칩니다.

끝으로 학위를 하면서 힘이 들 때 항상 간에서 힘이 되어주고 짜증내고 화를 내도 싫은 내색 없이 사랑으로 모든 것을 받아 주고, 부족한 제게 많은 사랑을 베풀어 준 김성룡님께도 감사를 드립니다.

