

공학석사 학위논문

산적화물선의 에너지 저감 장치들의 성능 비교에 관한 연구

A Study on the Performance Comparison of Energy Saving Devices for Handy-size Bulk Carrier

2014년 8월

한국해양대학교 대학원

기관시스템공학과

김 억 규

본 논문을 김억규의 공학석사 학위논문으로 인준함.

한국해양대학교 대학원

List of Tables	i	V
List of Figures		V
Abstract	V	ii

친환경 선박과 CO2 규제 동향 4	륑 선박과 CO₂ -	2. 친
.1 친환경 선박의 개념 4	환경 선박의 개	2.1
.2 친환경 선박의 기술 동향	환경 선박의 기	2.2
.3 CO ₂ 의 영향 8) ₂ 의 영향	2.3
.4 IMO의 CO ₂ 규제 동향	O의 CO ₂ 규제	2.4

3.	추진 효율	향상 기술 현황 2	1
	· · 드 — 드 01 초 기 기		1
	3.1 주신기	개선 장시 2.	T
	3.2 추진기	전방의 에너지 저감 장치	3
	3.3 추진기	후방의 에너지 저감 장치 ~~~~~ 41	1

4.	주기관 최적화 방법 현황	51
	4.1 전자 제어 엔진 적용	51
	4.2 연료소모량 최적화	52
	4.3 고출력 저회전수 엔진 적용	53
	4.4 De-rating(정격조정) 적용	54

<u>n</u>	장치별 성능 비교
교······	장치별 성능 비교
	- 비교 79

6.	결	론	 83
참.	고문헌	••••	 85

List of Tables

Table 2.1 Classification of the green house gas	10
Table 2.2 CO_2 emission from ships	10
Table 2.3 Parameters for determination of reference values for	
the different ship types	14
Table 2.4 Reduction factors (in percentage) for the EEDI relative to	
the EEDI reference line	15
Table 2.5 MARPOL Annex VI Reg. 2.25 ~ 2.35 ·····	17
Table 2.6 CO_2 conversion factor for fuel	19
Table 4.1 SFOC optimized load ranges	52
Table 5.1 Principal dimensions of bulk carrier	56
Table 5.2 Specification of main engine	56
Table 5.3 Sea trial ballast condition	57
Table 5.4 Power for A1 ship and A2 ship	59
Table 5.5 Speed for A1 ship and A2 ship	59
Table 5.6 F.O. consumption for A1 ship	61
Table 5.7 F.O. consumption for A2 ship	62
Table 5.8 Power for A3 ship and A4 ship	64
Table 5.9 Speed for A3 ship and A4 ship	65
Table 5.10 F.O. consumption for A3 ship	67
Table 5.11 F.O. consumption for A4 ship	68
Table 5.12 Power for B1 ship and B2 ship	72
Table 5.13 Speed for B1 ship and B2 ship	72
Table 5.14 F.O. consumption for B1 ship	76
Table 5.15 F.O. consumption for B2 ship	77
Table 5.16 Comparison with 6S42MC7 and 5S50ME-B9.2	79
Table 5.17 Comparison of cost	81

List of Figures

Fig.	1 The analysis excludes inflation effects by GL research	2
Fig.	2.1 Air-bubble injection & air cavity system(DNV & Stena)	6
Fig.	2.2 Principle of the hybrid fuel cell propulsion system	6
Fig.	2.3 Greenhouse effect(IPCC) ·····	8
Fig.	2.4 CO_2 emissions by ship category	10
Fig.	2.5 IMO timeline	11
Fig.	2.6 Reference line	13
Fig.	2.7 EEDI reference line for different ship types	14
Fig.	2.8 EEDI and EEOI diagraming	18
Fig.	3.1 Conventional propeller / Tip rake propeller	22
Fig.	3.2 Tip vortex of conventional propeller and tip rake propeller	22
Fig.	3.3 Kappel propeller	24
Fig.	3.4 Tip vortex-conventional versus Kappel	24
Fig.	3.5 CLT (Contracted and Loaded Tip)	25
Fig.	3.6 Wide tip propeller	26
Fig.	3.7 PBCF	27
Fig.	3.8 Fluid force on propeller and PBCF	28
Fig.	3.9 Hub vortex-conventional versus PBCF	28
Fig.	3.10 Drive type of Contra-rotating propellers, IHI	30
Fig.	3.11 Contra Rotating Propeller Azipod system, ABB	31
Fig.	3.12 Ulstein Aquamaster Azimuthing CRP, Rolls-Royce	32
Fig.	3.13 Combi Drive Azimuth Thrusters, SCHOTTELR	32
Fig.	3.14 Duct propeller	35
Fig.	3.15 SCHNEEKLUTH duct	36
Fig.	3.16 Saver fin	37
Fig.	3.17 Pre-swirl stator	38
Fig.	3.18 Operational principle of Pre-swirl stator	39
Fig.	3.19 Mewis duct	40

Fig. 3.20 Promas of Rolls-Royce	43
Fig. 3.21 Energopac of Wartsila	43
Fig. 3.22 Mitsui Integrated Propeller Boss of MES	43
Fig. 3.23 Operational principle of Twist rudder, NAKASHIMA propeller	44
Fig. 3.24 Thrust fin of HHI	45
Fig. 3.25 Rudder fin type	47
Fig. 3.26 Vane wheel installed on propeller cap	48
Fig. 3.27 Vane wheel installed on rudder horn	49
Fig. 3.28 Operational principle of High lift rudder, Becker Marine Systems	50
Fig. 4.1 SFOC comparison between ME vs MC engine (MAN)	51
Fig. 4.2 SFOC curves for each optimization (MAN)	53
Fig. 4.3 SFOC comparison between G-type vs S-type engine (MAN)	54
Fig. 4.4 Engine layout diagram (MAN)	55
Fig. 5.1 PBCF for A2 ship	58
Fig. 5.2 Speed-Power for A1 ship and A2 ship	58
Fig. 5.3 RPM-Power for A1 ship and A2 ship	59
Fig. 5.4 SCHNEEKLUTH duct for A4 ship	63
Fig. 5.5 Speed-Power for A3 ship and A4 ship	64
Fig. 5.6 RPM-Power for A3 ship and A4 ship	65
Fig. 5.7 Deck house vibration for 34k bulk carriers	69
Fig. 5.8 Asymmetric rudder bulb for B1 ship	70
Fig. 5.9 Mewis duct for B2 ship	71
Fig. 5.10 Speed-Power for B1 ship and B2 ship	71
Fig. 5.11 RPM-Power for B1 ship and B2 ship	73
Fig. 5.12 Pressure distribution and streamlines	74
Fig. 5.13 Rotational energy by tangential flow	74
Fig. 5.14 Sensitivities on the surface of rudder bulb	75
Fig. 5.15 Deck house vibration for 35k bulk carriers	78
Fig. 5.16 T/V calculation for 35k bulk carrier	80
Fig. 5.17 Electric balancer for 35k bulk carrier	81

A Study on the Performance Comparison of Energy Saving Devices for Handy-size Bulk Carrier

Kim, Eok Kyu

Department of Marine System Engineering Graduate School of Korea Maritime University

Abstract

Recently, the environmental regulations have been developed in regards to CO_2 emissions for the ship and fuel oil price has been increased continuously. In order to overcome these circumstances, the eco-design is to be applied to the ship. Accordingly, Energy Saving Devices(ESDs) have been developed continuously to reduce the fuel oil consumption and improve the propulsive efficiency.

This paper deals with several kinds of energy saving devices and how to achieve the fuel oil saving by selection of the main engine.

And this paper also describes the trial performance of PBCF(Propeller Boss Cap Fins), SCHNEEKLUTH duct, Asymmetric rudder bulb and Mewis duct applied to handy-size bulk carriers.

As a result, SCHNEEKLUTH duct is more effective than other energy saving devices at the reducing the fuel oil consumption and the improvement of the propulsive efficiency. In addition, it is confirmed that SCHNEEKLUTH duct is really effective in the vibration of the deck house. And the fuel oil consumption can also be reduced through main engine de-rating.

If SCHNEEKLUTH duct and main engine de-rating are properly combined for handy-size bulk carriers, it will be expected to reduce more fuel oil consumption and CO_2 emissions.

KEY WORDS: Energy Saving Device; SCHNEEKLUTH duct; De-rating.

제1장서 론

산업화에 따른 화석연료의 사용은 지구온난화, 오존층파괴, 산성비 및 호흡기 질환 등을 유발하며 인류에 심각한 위협으로 다가오고 있으며, 전 세계적으로 지구 환경 보호에 관한 문제가 국제적 관심사로 부각되고 있다.

국제해사기구(IMO)의 '제2차 국제해사기구 온실가스 연구 2009(Second IMO GHG Study 2009)'에 의하면 2007년 전 세계적으로 배출되고 있는 CO₂ 배출량 은 약 317억 톤으로 추정된다. 이 중 선박에 의한 CO₂ 배출량은 1,046 백만톤 으로 전 세계 배출량의 약 3.3%를 차지하고 있으며, 국제 항해 선박의 배출량 은 870 백만톤으로 약 2.7%를 차지하고 있다.

이러한 이유로 국제해사기구의 해양환경보호위원회(MEPC)에서는 선박에서 발생하는 각 종의 대기오염물질에 대한 단계적인 규제를 시행하고 있고, 전체 온실가스 배출량의 3%를 차지하는 해운분야에서도 적극적인 노력을 기울이고 있다.^{[11-[3]}

특히 2011년 7월 해양환경보호위원회 62차 회의에서 선박 에너지효율 향상을 위한 기술적·운항적 조치 방안으로 에너지효율설계지수(Attained Energy Efficiency Design Index, Attained EEDI)와 선박 에너지효율관리계획서(Ship Energy Efficiency Management Plan, SEEMP)를 채택하였다.

EEDI는 2013년 1월 1일부터 선박의 크기 및 종류에 따라 탄소배출 허용기준 의 감축율이 다소 상이하게 적용이 된다. 따라서 일부 선박은 건조계약되는 시 점에 계산된 EEDI 값의 30%까지 저감해야만 한다.

이처럼 지구 대기 오염으로부터 기인한 지구온난화에 대해 각 국의 인식이 확산되면서 선주들은 각종 배기가스 규제에 의한 친환경 부과금과 연료 가격의 상승으로 인해 초기 투자비가 상승하더라도 연료를 적게 소모하고, 중질유의 화석연료 사용에 의한 온실가스 배출을 줄이는 친환경 선박으로 관심이 증가하 고 있다.

Fig. 1은 GL에서 조사한 연료의 가격 변화를 예상한 그래프이며, 그래프에서

- 1 -

주황색으로 표시된 막대는 시장에서 통용되는 IFO 380의 가격을 나타내고, 노 란색으로 표시된 막대는 MGO(Marine Gas Oil)의 가격 상승분을 나타낸다. 하늘 색으로 표시된 막대는 CO₂ 배출에 의한 부과금을 나타낸다. 이 그래프를 살펴 보면 HFO의 가격은 연간 약 2.5%씩 상승한다고 예상하고 있고, 2020년부터 SOX에 대한 규제가 강화되어 MGO에 대한 수요가 증가하면서 MGO의 가격은 급격히 상승하게 된다. 여기에 2014년부터 CO₂ 배출에 대한 부과금 또한 더해 지게 된다. 이렇게 연료비의 상승과 친환경 부과금을 고려하면 2030년 연료의 가격은 2010년 대비 약 4배 수준까지 증가하고, 선주의 운항비 상승에 상당한 영향을 미치게 되므로 점점 연료를 절감하는 친환경 선박에 대한 중요성은 커 지게 될 것이다.

Fig. 1 The analysis excludes inflation effects by GL research^[5]

전 세계적으로 CO₂ 감축 기술 등의 환경영향기술에 대한 필요성의 지속적인 증대와 화석연료의 고갈로 인한 고유가의 문제로 인해 최근 수송 효율의 극대 화를 위하여 선박의 대형화 및 에너지 저감 장치에 대한 연구가 활발히 이루어 지고 있다. 그에 따른 추진 효율을 향상시키기 위한 에너지 저감 장치의 개발

에 대해 조선소와 연구소에서 많은 연구를 진행하고 있으며, 이의 실용화를 위 한 연구는 현재에도 지속적으로 수행되어 지고 있다.^{[2],[4]}

현재 추진 효율을 향상시키기 위한 에너지 저감 장치는 크게 추진기 개선 장 치, 추진기 전방(upstream)의 에너지 저감 장치, 추진기 후방(downstream)의 에 너지 저감 장치 3가지로 구분되어 질 수 있으며, 추진기 개선 장치에는 팁 레 이크 프로펠러(tip rake propeller), 카펠 프로펠러(Kappel propeller), CLT(Contracted and Loaded Tip), 와이드 팁 프로펠러(Wide tip propeller, STX 개발), PBCF(Propeller Boss Cap Fins), CRP(Contra Rotating Propeller), 유연 프로펠러(composite propeller) 등이 있고, 추진기 전방의 에너지 저감 장치에는 덕트 프로펠러(duct propeller), 반류 덕트(wake duct), 세이버 핀(Saver fin, 삼성중공업 개발), 전류 고정날개(pre-swirl stator), 뮤이스 덕트(Mewis duct) 등이 있으며, 추진기 후방 의 에너지 저감 장치에는 러더 벌브(rudder bulb), 트위스트 러더(twist rudder), 추력날개(Thrust fin, 현대중공업 개발), 러더 핀(rudder fin), 베인 휠(vane wheel), 고양력 타(high lift rudder) 등이 있다.

그리고 연료소모량을 절감하기 위한 주기관 최적화 방법에는 전자 제어 엔진 적용, 연료소모량 최적화(SFOC optimization), 고출력 저회전수 엔진 적용, 정격 조정(de-rating) 적용 등이 있다.

본 논문에서는 친환경 선박과 CO₂ 규제 동향에 대해 알아보고 상기에 언급된 추진 효율을 향상시키기 위한 에너지 저감 장치(energy saving device)들과 연 료 소모량을 절감하기 위한 주기관 최적화 방법들을 좀 더 자세히 알아 본 후 핸디형(handy-size) 벌크선인 34k 벌크선과 35k 벌크선에 에너지 저감 장치인 PBCF, SCHNEEKLUTH duct, 비대칭 러더 벌브(Asymmetric rudder bulb), Mewis duct를 실제로 적용하였을 경우, 선박 속도와 마력값 간의 그래프와 주기관 회 전수와 마력값 간의 그래프를 통해 어느 정도의 추진 성능이 개선되는지를 확 인하고, 연료소모량 계측값 데이터와 주기관의 최적화를 통해 얼마나 연료가 절감 되는지를 검토 및 평가하고자 한다. 그리고 에너지 저감 장치별로 거주구 의 진동 수준도 같이 검토해보고자 한다.

제 2 장 친환경 선박과 CO2 규제 동향

2.1 친환경 선박의 개념

선박은 산업 및 경제 발전에 있어 필수적인 운송수단이지만, 반면에 전 세계 CO₂ 배출량의 3.3%를 유발하며 대기 및 해양오염을 일으키는 주요 원인 중 하 나로 지목되고 있다. 따라서 최근의 해양 선박 시장은 CO₂ 감축에 대한 국제 적인 강화 규정과 연료비의 부담으로 인해 환경 친화적인 선박의 필요성이 주 요 이슈로 떠오르고 있다.

친환경 선박은 운항 및 주기관 최적화, 선형 개선, 에너지 회수 및 저감 장치 등을 적용하여 에너지 효율을 향상시키거나 후처리 기술을 통하여 대기오염물 질의 배출을 저감하는 신개념의 선박으로 IMO의 환경 규제 도입 및 유가 상승 에 따라 기술개발이 가속화되고 있는 분야이다.

컨테이너 선박의 경우, 지금까지는 경쟁의 지표로 대형화 및 고속화만 추구 되었고, 친환경성은 추구되지 않았다. 안전사고에 의한 해양오염만이 주 관심사 였다. 그러나 최근에 운항사고 없이 정상적으로 운항하는 과정에서 배출되는 대기오염물질과 온실가스를 규제하는 국제협약과 기준이 마련됨으로써 선박운 항의 안전성만 감시하는 소극적 환경 규제가 안전운항의 오염마저 감시하는 적 극적 환경 규제로 전환되고 있다.^[6]

- 4 -

2.2 친환경 선박의 기술 동향

2.2.1 해외 기술 동향^[7]

현재 EU, 일본 및 중국 등에서 개발되고 있는 친환경 선박 기술은 다양한 형 태가 있으며, 일반적으로 아래의 단계와 같이 발전해 나갈 것으로 예상된다.

(1) 에너지 저감 선박(energy saving ship) : 기존 선박 에너지 효율 극대화 및 대체연료(예, LNG 등) 등의 활용.

(2) CO₂ 포집 선박(CCS, Carbon Capture Ship) : 현재 IMO에서 정한 CO₂ 배출 량 30% 감축은 에너지 효율 극대화 및 대체연료의 도입만으로는 달성하기가 어려운 목표이며, 연료 전지, 원자력 등 대체 동력원이 도입되기 이전의 중간단 계로서, 선박에서 배출되는 CO₂를 포집하여 CO₂ 배출량을 저감하는 기술의 도 입이 예상된다.

(3) 연료 전지 선박(fuel cell ship) : 현재 사용되는 디젤엔진을 대체할 수 있으며, CO₂ 배출량을 최대 90%까지 저감할 수 있을 것으로 예상되는 연료 전지를 선박의 동력원으로 적용할 것으로 예상된다.

(4) 미래형 선박(future ship) : 연료 전지의 기술적 단점을 보완하기 위한 기 술적 진보가 늦어질 경우, 이를 대체할 수 있는 고효율 동력원(원자력 등)을 적 용한 선박이 출현할 것으로 예상된다.

EU 및 일본에서는 친환경 선박 시장의 선점을 추구하기 위하여 폐열회수 장 치, 축발전기 등의 기술을 개발하고 있으며, 이 외에도 다양한 친환경 선박 기 술 개발이 2000년대 초반부터 착수되어 진행 중에 있다. 이중 일부 기술은 이 미 개발에 성공하여 성능검증을 위한 실선시험 단계에 있다.

2010년 3월 미쯔비시 중공업의 나가사키 조선소는 Fig. 2.1과 같은 방식의 공 기윤활 시스템을 탑재한 중량물 운반선을 선보였는데, 이는 선박 아래 부분에 공기 거품을 만들어 해수와의 마찰저항을 줄여 연비를 높이는 기술로, 이를 통

해 약 10%의 온실가스 배출량을 줄이는 효과가 있을 것이라고 발표하였다.

Fig. 2.1 Air-bubble injection & air cavity system(DNV & Stena)

독일에서는 Fig. 2.2와 같이 연료 전지를 동력원으로 하는 100명이 승선할 수 있는 관광용 선박인 ZEMship(Zero Emission Ship, 독일 프로젝트 이름)을 개발 하여 2008년부터 시범 운항중에 있으며, 출력 48kW의 연료 전지 3개와 배터리 의 하이브리드형으로 구성한 특징을 지니고 있다.

Principle of the hybrid fuel cell propulsion system

Fig. 2.2 Principle of the hybrid fuel cell propulsion system

2.2.2 국내 기술 동향^[7]

현재 국내 조선소에서는 친환경 선박 기술 개발에 막대한 자금을 투자하고 있는 상황이다. 공개된 기술로는 추력날개, 전류고정날개, 세이버 핀 등이 있다. 또한, 천연가스(CH₄)를 연료로 운항할 수 있는 이중연료 엔진(dual fuel engine) 을 도입한 초대형 컨테이너 선박(13,000 TEU급)에 대한 활발한 연구가 진행되 어 성과를 내고 있는 것으로 알려져 있다.

해운선사의 경우에는, 온실가스 규제 뿐만 아니라, 연료유 가격의 급등으로 인해, 연료유를 체계적으로 관리하기 위한 별도의 조직을 운영하는 경우도 있 으며, 저속운항, 연료 절감형 도료, 연료유 첨가제를 비롯한 다양한 기술들을 운용 선박에 적용하여 유효성을 검증하고 있는 것으로 알려져 있다.

아래의 열거된 내용은 현재 해운업계에서 연료유 절감 및 온실가스 감축을 위해 선박에 실제로 적용하고 있는 기술에 대한 내용과 조선업계에서 개발 중 인 미래 기술에 대한 내용을 열거한 것이다.

- (1) 선체저항 감소개선 설비 : 연료 절감형 도료(실리콘), Hull cleaning /
Blasting, Propeller polishing
- (2) 추진장치 효율개선 설비 : PBCF 설치, Twisted leading edge rudder
- (3) 엔진효율 개선설비 : Slide valve, VID(Variable Ignition Distributor),

주기관 T/C cut-off 장치

- (4) 슬러지/연료 절감 설비 : 연료유 첨가제, homogenizer
- (5) 기기운전/운항관리 : 에너지절감운전/기술지침제공, 저속운항/정속운항/ Weather routing

2.3 CO₂의 영향^[1]

기후변화에 관한 정부간 패널기구(IPCC, International Panel on Climate Change) 2차 보고서에서는 지구 온난화를 일으키는 주요 온실가스(GHG)로 여 섯 가지 물질, 즉 CO₂, CH₄(메탄), N₂O(아산화질소), HFC_s(수소불화탄소), PFC_s (과불화탄소), SF₆(육불화항)이 있으며, 이중 CO₂는 온난화 지수가 가장 낮지만 산업발전에 따른 화석 연료의 사용량 증가로 인해 인위적으로 발생되는 CO₂의 양이 증가됨에 따라 현재 온실효과 기여도가 가장 높은 물질로 지목되고 있다. 참고로 HFC_s, PFC_s, SF₆는 자연계에 존재하지 않으며 인간이 합성한 가스이다. Fig. 2.3과 같이 온실 가스는 지구에 들어오는 단파장의 태양 복사에너지를 통 과시키는 반면 지구로부터 방출되는 장파장의 복사에너지는 흡수함으로써 지표 면의 온도를 높이는 역할을 한다.

Fig. 2.3 Greenhouse effect(IPCC)^[7]

CO₂는 인위적으로 배출되는 전체 온실가스 양의 약 60%를 차지하는데 산업 활동 곳곳에 사용되는 석탄, 석유 및 천연가스 등의 화석연료 연소 및 추출, 처 리, 수송과정에서 주로 발생되지만, 산림의 벌채 및 가공과정에서 산림에 흡수 저장된 것이 대기 중으로 방출되기도 한다. 인위적 CO₂ 배출량의 80%~85%는 화석연료의 사용, 15%~20%는 삼림훼손 등 토지이용의 변화가 차지하는 것으로 알려져 있다.

CH₄는 인위적으로 배출되는 전체 온실가스 양의 약 15%~20%를 차지하며 주 로 농업, 축산, 폐기물 매립 및 처리, 석탄채굴 및 석유 시추, 가스파이프의 누 출 등이 주 배출원이다.

N₂O는 농업의 비료사용 및 산업 활동에서 배출되며 전체 배출량 중 인간 활 동에 의한 것은 약 15% 정도에 달한다.

HFC_s와 PFC_s는 프레온가스의 대체물질로 개발되어 냉매, 소화기 및 폭발방지 물, 분무액, 솔벤트용제, 발포제 등에 사용되며, SF₆는 가스차단기, 소화기 및 폭발 방지물 등에 쓰이고 그 사용량은 세계적으로 증가하고 있다. 이 세가지 물질은 온실효과에 미치는 영향은 다른 기체에 비하여 매우 큰 특징이 있어 기 후변화 측면에서 적극적인 감축이 필요하다.

온실가스는 화합물이 가지고 있는 구조상 종류별로 열축적 능력에 차이가 있 고 이로 인해 온실효과를 일으키는 잠재력이 달라진다. 이를 지구온난화지수 (Global Warming Potential : GWP)라 하며 CO₂를 1로 기준할 때 CH₄는 21, N₂O 는 310, HFC₅는 1,300, PFC₅는 7,000, SF₆는 23,900으로 각각 산출된다. 즉, CH₄ 는 온실효과를 일으키는 잠재능력이 CO₂ 보다 21배 크며, SF₆는 온난화지수는 가장 높지만 발생량이 적어 전체적으로 지구온난화에 기여하는 정도는 CO₂ 보 다 훨씬 작다. 따라서 현재 CO₂가 지구온난화 논의의 주요대상이 되고 있다. **Table 2.1**에서는 온실 가스를 종류별로 분류하였다. **Table 2.2**는 선박에서 발생 하는 CO₂의 배출량 및 전세계 배출량에서의 비중(%)을 보여주고 있다. 그리고 **Fig. 2.4**는 선박의 선종별 1년간 CO₂의 발생량을 보여주고 있다.

	CO_2	CH ₄	N ₂ O	PFC _s , HFC _s , SF ₆
Emission source	Energy usage/ Industrial Plant	Waste/ Agriculture/ Livestock	Industrial Plant/ Fertilizer use	Refrigerant/ Cleaning
Global warming potential	1	21	310	1,300~23,900
Global warming contribution(%)	55	15	6	24
Domestic total emission(%)	86.6	6.8	2.7	3.9

Table 2.1 Classification of the green house gas

Table 2.2 CO_2 emission from ships

Section	CO ₂ emission from ships (million tons)	Global CO ₂ emissions(%)
Total shipping	1,046	3.3%
International shipping	870	2.7%

Fig. 2.4 CO₂ emissions by ship category^[1]

2.4 IMO의 CO2 규제 동향

2013년 1월 1일 이후 총톤수 400톤 이상의 선박은 EEDI와 SEEMP가 강제 적 용될 뿐만 아니라 운항선 에너지효율지수(EEOI: Energy Efficiency Operational Indicator)에 대해서도 논의가 되고 있어 선박의 에너지효율은 선박 건조 및 운 항에 있어 중요한 인자로 자리매김 하고 있다.

IMO에서 인증하고 있는 에너지효율설계지수(EEDI)에 따라 2015~2019년 건조 된 선박의 경우 에너지 효율성 10% 개선, 2020~2024년 건조된 선박은 20%개선, 2024년 이후 건조된 선박은 30% 개선을 해야 한다.

IMO의 CO₂ 규제 관련 회의는 하기 Fig. 2.5와 같은 일정으로 진행되었다.

2.4.1 기술적 조치 (에너지효율설계지수, EEDI)^[9]

EEDI는 신조되는 선박의 CO₂ 배출량 (즉, 화물 1톤을 싣고 1해리를 항해하는 데 발생하는 CO₂ 배출량)을 계산하고, 해당되는 선박의 배출허용기준을 초과하 는 경우에는 해당 선박의 인도 및 취항을 금지시키는 요건이다. 이것은 강제 요건으로서 MARPOL 부속서 6 제2.23 규칙에서 정의된 신선에 적용된다.

EEDI는 선박의 에너지효율을 지표화하기 위한 일종의 수식이며, EEDI의 목적

Collection

은 선종 및 선박의 크기별로 CO₂ 배출 특성을 비교하기 위한 것으로 다음과 같은 단계를 거쳐서 계산된다.

(1) 에너지효율설계지수(Attained EEDI) 계산

설계단계에서 선박의 CO₂ 배출특성을 비교하기 위한 수식은 식 2.1과 같다. *EEDI* =

$$\frac{\left(\left[\prod_{j=1}^{M}f_{j}\right]\left(\sum_{i=1}^{nME}C_{FMEi}SFC_{MEi}P_{MEi}\right)\right) + \left(P_{AE}C_{FAE}SFC_{AE}\right) + \left(\left[\prod_{j=1}^{M}f_{j}\sum_{i=1}^{nPT}P_{PT(i)} - \sum_{i=1}^{nWHR}f_{eff(i)}P_{AEeff(i)}\right]C_{FAE}SFC_{AE}\right) - \left(\sum_{i=1}^{eff}f_{eff(i)}P_{eff(i)}C_{FMEi}SFC_{MEi}\right) - f_{i} \cdot f_{c} \cdot Capacity \cdot f_{w} \cdot V_{ref}$$

$$(2.1)$$

여기서 분자에 해당하는 첫 번째 항에서 네 번째 항까지는 선박으로부터 발 생하는 CO₂를 계산하고자 하는 것으로 다음과 같은 의미를 가진다.

1) 첫 번째 항은 선박의 주기관으로부터 배출되는 CO2를 계산하는 부분이다.

2) 두 번째 항은 선박의 전력생산용 보조기관으로부터 배출되는 CO₂를 계산 하는 부분이다.

3) 세 번째 항은 전기추진용 선박의 추진용 전동기 및 폐열회수장치와 관련 된 것이며, 폐열회수장치를 감해준 것은 폐열회수장치에서 생산된 전력은 보조 기관으로부터 발생하는 CO₂를 감소시키기 때문이다.

4) 네 번째 항은 전력을 생산하는 축발전기 및 폐열회수장치 이외에 선박에 설치되는 에너지저감장치로 인하여 저감되는 CO₂를 고려한 항목이다.

분모는 선박의 크기, 속도 및 특정 설계요소에 대한 보정 계수들을 곱한 것으로 상기 수식은 최종적으로 "1톤의 화물을 1해리 운송할 때 발생하는 CO₂ 배출량"을 의미한다.

(2) 기준선(Reference Line) 확정

Collection

상기 식 2.1에 따라 계산된 선박의 에너지효율설계지수(Attained EEDI)가 협

- 12 -

약 요건을 만족하는지를 판단하기 위해서는 규제값을 설정하기 위한 기준이 확 정되어야 한다.

이를 위해서 국제해사기구에서는 최근 10년간(1999.1.1.~2009.1.1.) 건조된 총 톤수 400톤 이상 선박의 CO₂ 배출량을 선종별로 조사하였다. 이 때 사용된 수 식은 **식 2.2**와 같다.

$$Estimated \ Index \ Value = 3.1144 \times \frac{190 \sum_{i=1}^{nME} P_{MEi} + 215 P_{AE}}{Capacity \times V_{ref}}$$
(2.2)

상기 식 2.2에 따라 계산한 결과를 재화중량(DWT)를 X축, 계산 결과를 Y축 에 나타내면 Fig. 2.6과 같다.

Fig. 2.6 Reference line^[9]

그런 다음 회귀분석을 통하여 얻어진 상기 곡선(즉, 기준선)을 **식 2.3**과 같은 형태의 수식으로 표현한 것이 기준선 값이 되며, 이를 선종별로 정리한 것이

Table 2.3, Fig. 2.7과 같다.

Reference line value = $a \times b^{-c}$

Ship type	а	b	С
Bulk carrier	961.79	DWT of ship	0.477
Gas carrier	1120.00	DWT of ship	0.456
Tanker	1218.80	DWT of ship	0.488
Container ship	174.22	DWT of ship	0.201
General cargo ship	107.48	DWT of ship	0.216
Refrigerated cargo carrier	227.01	DWT of ship	0.244
Combination carrier	1219.00	DWT of ship	0.488

Table 2.3 Parameters for determination of reference values for the different ship types^[10]

Fig. 2.7 EEDI reference line for different ship types^[11]

(2.3)

(3) 에너지효율설계지수 허용값(Required EEDI) 계산

MARPOL 부속서 6 제21규칙에 따라 에너지효율설계지수 허용값 계산식은 식 2.4와 같으며, X는 에너지효율설계지수 기준선과 비교된 에너지효율설계지수 허용값을 위해 규정된 감축계수이며, 이것은 Table 2.4와 같다.

Attained $EEDI \le Required EEDI = (1 - X/100) \times Reference line value$ (2.4)

Ship Type	Size	Phase 0 2013.1.1~ 2014.12.31	Phase 1 2015.1.1.~ 2019.12.31	Phase 2 2020.1.1~ 2024.12.31	Phase 3 2025.1.1. and onwards
Bulk carrier	20,000DWT and above	0	10	20	30
	10,000~ 20,000DWT	n/a	0-10*	0-20*	0-30*
Gas carrier	10,000DWT and above	0	10	20	30
	2,000~ 10,000DWT	n/a	0-10*	0-20*	0-30*
Tanker	20,000DWT and above	0	10	20	30
	4,000~ 20,000DWT	n/a	0-10*	0-20*	0-30*
Container ship	15,000DWT and above	0	10	20	30
	10,000~ 15,000DWT	n/a	0-10*	0-20*	0-30*
General Cargo ships	15,000DWT and above	0	10	15	30
	3,000~ 15,000DWT	n/a	0-10*	0-15*	0-30*
Refrigerated cargo carrier	5,000DWT and above	0	10	15	30
	3,000~ 5,000DWT	n/a	0-10*	0-15*	0-30*
Combination carrier	20,000DWT and above	0	10	20	30
	4,000~ 20,000DWT	n/a	0-10*	0-20*	0-30*

Table 2.4 Reduction factors (in percentage) for the EEDI relative to the EEDI reference line^[10]

* Reduction factor to be linearly interpolated between the two values dependent upon vessel size. The lower value of the reduction factor is to be applied to the smaller ship size.

아래의 경우 중 하나 이상에 해당되는 경우, 에너지효율설계지수 허용값이 적용되지 않는다.

1) 상기 Table 2.4에 선종별로 0단계(2013.1.1.~2014.12.31.)에 "n/a"으로 표시 된 경우

2) 선박의 재화용량이 상기 Table 2.4의 최소 재화용량 기준 미만인 경우 (예 : 10,000DWT 미만의 산적화물선)

3) MARPOL 부속서 6 제2.32규칙에서 제2.35규칙의 범주 중 하나에 해당되는 경우이며, 하기 Table 2.5와 같다.

ABIIMEUN

최종적으로 신선의 에너지효율설계지수값이 에너지효율설계지수 허용값보다 작아야 하며, 그 반대인 경우 해당 선박의 운항은 불가능하다.

Table 2.5 MARPOL Annex VI Reg. 2.25 ~ $2.35^{[12]}$

Reg.	Ship Type	Definition		
2.25	Bulk carrier	A ship which is intended primarily to carry dry cargo in bulk, including such types as ore carriers as defined in SOLAS chapter XII, regulation 1, but excluding combination carriers.		
2.26	Gas carrier	A cargo ship constructed or adapted and used for the carriage in bulk of any liquefied gas.		
2.27	Tanker	An oil tanker as defined in MARPOL Annex I, regulation 1 or a chemical tanker or an NLS tanker as defined in MARPOL Annex II, regulation 1.		
2.28	Container ship	A ship designed exclusively for the carriage of containers in holds and on deck.		
2.29	General cargo ship	A ship with a multi-deck or single deck hull designed primarily for the carriage of general cargo. This definition excludes specialized dry cargo ships, which are not included in the calculation of reference lines for general cargo ships, namely livestock carrier, barge carrier, heavy load carrier, yacht carrier, nuclear fuel carrier.		
2.30	Refrigerated cargo carrier	A ship designed exclusively for the carriage of refrigerated cargoes in holds.		
2.31	Combination carrier	A ship designed to load 100% deadweight with both liquid and dry cargo in bulk.		
2.32	Passenger ship	A ship which carries more than 12 passengers.		
2.33	Ro-Ro cargo ship (vehicle carrier)	A multi deck roll-on-roll-off cargo ship designed for the carriage of empty cars and trucks.		
2.34	Ro-Ro cargo ship	A ship designed for the carriage of roll-on-roll-off cargo transportation units.		
2.35	Ro-Ro passenger ship	A passenger ship with roll-on-roll-off cargo spaces.		

2.4.2 운항적 조치 (에너지효율운항지수 : EEOI, 선박에너지효율관리계획서 : SEEMP)^[9]

EEOI 및 SEEMP는 선박을 운항하는 과정에서 선박의 에너지효율을 향상시키 기 위한 다양한 방안들을 계획서(SEEMP)로 작성하여 실행하고, 이를 측정하는 도구(EEOI)를 사용하여 측정하고, 지속적으로 에너지효율을 개선해 나가도록 하는 요건이다.

설계단계에서 신선의 CO₂ 배출 특성을 지표화하기 위한 EEDI(강제 요건)와는 달리, EEOI(자발적인 요건)는 운항 중인 선박으로부터 실제로 배출되는 CO₂ 발 생량을 계산하기 위한 목적으로 개발되었으며, 이것을 쉽게 도식화하면 하기 Fig. 2.8과 같다.

Fig. 2.8 EEDI and EEOI diagraming

(1) 에너지효율운항지수(EEOI) 계산

EEOI는 아래 **식 2.5**로 정의되며, 1톤의 화물을 1해리 운송할 때 선박으로부 터 배출되는 CO₂ 발생량이 얼마인가를 나타낸다.

$$EEOI = \frac{\sum_{j} FC_{j} \times C_{Fj}}{m_{cargo} \times D}$$
(2.5)

만약 여러 항차가 있는 경우, 상기 식 2.5는 하기 식 2.6과 같이 변경된다.

$$Average \ EEOI = \frac{\sum_{i} \sum_{j} (FC_{ij} \times C_{Fj})}{\sum_{i} (m_{cargo,i} \times D_{i})}$$
(2.6)

여기서, i : 항차 수, j : 연료 사양, FC : 연료소모량, C_{Fj} : 연료에 대한 CO₂ 환산계수, m_{cargo} : 운송 화물량(ton) 또는 작업량(TEU 또는 승객 수) 또는 여객 선에 대한 총톤수, D : 운송된 화물 또는 작업량에 대한 항해 거리(nautical miles)

MEPC.1/Circ.684에 따른 연료에 대한 CO₂ 환산계수인 C_F는 **Table 2.6**과 같다.

Type of fuel	Deference	Carbon	C _F	
Type of Tuer	Reference	content	(t-CO ₂ /t-Fuel)	
Diocol/Cos Oil	ISO 8217 Grades	0.975	3.206000	
Diesel/Gas Oli	DMX through DMC	0.075		
Light Fuel Oil(LEO)	ISO 8217 Grades	0.86	3.151040	
LIGIIL FUEL OII(LFO)	RMA through RMD	0.00		
HONTY FUEL OIL(UEO)	ISO 8217 Grades	0.85	2 114400	
Heavy Fuel Oli(HI'O)	RME through RMK	0.05	5.114400	
Liquefied Petroleum	Propane	0.819	3.000000	
Gas(LPG)	Butane	0.827	3.030000	
Liquefied Natural		0.75	2 750000	
Gas(LNG)		0.75	2.130000	

Table 2.6 CO_2 conversion factor for fuel

(2) 선박에너지효율관리계획서(SEEMP) 개념

선박 운항자가 효율적으로 CO₂ 배출량을 줄이고자 작성하는 계획서(선박 비 치가 강제 요건, 승인 대상은 아님)이며, 다음과 같이 4가지로 구성된다.

1) 계획

- 2) 시행
- 3) 모니터링(EEOI 또는 기타 활용)
- 4) 개선

최종적으로 선박을 운항하는 과정에서 선박의 에너지효율을 향상시키기 위한 다양한 방안들을 계획서(SEEMP)로 작성 및 계획하여 시행하고, 이것을 모니터 링하는 도구(EEOI 또는 기타 활용 가능)를 사용하여 측정하고, 지속적으로 에 너지효율을 개선해 나가도록 하는 것이다.

제 3 장 추진 효율 향상 기술 현황

3.1 추진기 개선 장치

추진기는 일반적으로 나선형의 고정날개를 가지고 있으며, 선박에서는 추진 기의 캐비테이션으로 인한 진동이나 날개 침식 등의 심각한 문제가 발생될 수 있기 때문에, 먼저 캐비테이션으로 인한 문제가 발생하지 않는 한도에서 최고 의 추진효율을 갖도록 설계된다. 최근에는 모두 높은 추진효율을 얻기 위하여 많은 연구가 이루어지고 있으며, 아래에 다양한 고효율의 프로펠러를 열거하였다.

- a) 팁 레이크 프로펠러(tip rake propeller)
- b) 카펠 프로펠러(Kappel propeller)
- c) CLT (Contracted and Loaded Tip)
- d) 와이드 팁 프로펠러(Wide tip propeller)
- e) PBCF (Propeller Boss Cap Fins)
- f) CRP (Contra Rotating Propeller)
- g) 유연 프로펠러(composite propeller)

3.1.1 팁 레이크 프로펠러(tip rake propeller)

(1) 원리

날개끝 부근에서의 레이크값을 Fig. 3.1과 같이 후류방향으로 크게 변화시킴 으로써 날개끝에서의 와류형성(tip vortex roll-up)을 최소화하고(Fig 3.2는 날개 끝에서의 와류 세기가 감소됨을 보여주고 있음), 날개끝의 부하를 감소시켜 고 차 변동압력을 감소시킬 수 있는 프로펠러이다. 특히 컨테이너선이나 LNG선에

Fig. 3.2 Tip vortex of conventional propeller and tip rake propeller^[13]

(2) 개발현황

1) 외국 Lips(현 Wartsila)에서 개발되어 사용되고 있다.

 2) 현대중공업에서 개발하여 시운전에서 성능을 입증하였고, 그 후 국내 대형 조선사 대부분에서 사용하고 있다.

3) 고차 변동압력을 감소시킬 수 있으며, 보통 프로펠러 면적비를 감소시키 는 설계를 하고 이에 대한 효율의 향상은 대체로 1% 정도이다.

4) 프로펠러의 팁 레이크가 후류쪽으로 휘면 팁 와류 형성이 지연되어 팁 와류 세기가 작아짐을 알 수 있다.

3.1.2 카펠 프로펠러(Kappel propeller)

(1) 원리

팁 레이크 프로펠러와 비슷한 개념이나 레이크는 반대의 방향을 가지는 프로 펠러이다. Fig. 3.3과 같이 레이크분포는 날개 중간부에서 레이크가 후류방향을 향하다 날개끝에서 전류방향을 향하도록 함으로써 팁에서의 부하를 증가시킴으 로써 효율을 향상시키는 프로펠러이다.

이러한 레이크를 가지면 날개끝 부분에서 어느 정도 부하를 담당할 수 있어 효율의 향상을 기대할 수 있다. (이 레이크는 항공기 날개의 winglet와 같은 개 넘을 가진다. 항공기의 winglet은 날개의 부하를 증가시키기도 하지만 Fig 3.4와 같이 팁에서의 와류 세기를 감소시키는 효과도 있다.)

단점은 날개끝에서 캐비테이션의 과다 발생이며 이로 인한 변동압력의 증가 이다.

Fig. 3.3 Kappel propeller

(2) 개발현황

1) 덴마크 해군 장교 Jens Kappel에 의해 고안되었으며, 2001년 실선시험에서 약 2~4% 정도의 추진효율 개선을 보인다고 주장하였다.

2) 국내 조선소에서는 선주에 의해 장착하고 시운전한 경험이 있으며, 효율은 약 2% 내외로 알려져 있다.

3.1.3 CLT (Contracted and Loaded Tip)

(1) 원리

CLT는 Fig. 3.5와 같이 날개 끝의 형상의 변화를 주어 날개 끝이 꺾여 있는 형상을 구현함으로써, 날개 압력면과 흡입면 사이의 유동을 차단하는 효과를 주어 날개 끝에서 발생하는 3차원 효과를 감소시켜 효율을 증대시킨 프로펠러 이다.

스페인 Sistemar(Studio di Ingegneria Navale e Meccanica)에서 초기 TVF(Tip Vortex Free) 프로펠러의 형태로 고안되어 1986년도에 이르러서 현재의 모습을 갖추게 되었다.

팁에서 유한한 코오드를 가지면서 후류방향으로 뒤로 급격한 레이크를 주어 서 팁에서 유한한 부하를 갖기 때문에 끝판(end plate)을 장착한 것 같은 효율 향상 효과가 있다.

그러나, 팁에서의 와류 세기를 감소시키는 방안과 함께, 팁 부위의 급격하게 꺾어진 부위에서의 저항 증가가 예상되어 이를 해결하는 것이 과제이다.

Fig. 3.5 CLT (Contracted and Loaded Tip)

(2) 개발현황

1) 스페인 Sistemar에서 개발되어 전세계에 적용 사례 다수 있다. (대부분 중 소선박을 대상으로 하고 있고, 모형시험과 실선 시험과의 차이가 있다고 하며, 모형시험 결과는 많지 않다.)

2) 효율 향상은 약 5% 이상으로 주장하고 있으나, MARIN에서 모형시험시 약 1%의 효율 향상을 얻었다고 한다.

아직도 모형시험 기법은 확립되지 않았다고 하며, 시운전에서의 성능이 다
 소 높다고 주장하고 있다.

4) 국내에서는 선주의 요구에 의해 장착되고 시운전 실적이 있으나, 효율 증가는 별로 없었다고 한다.

3.1.4 와이드 팁 프로펠러(Wide tip propeller)

(1) 원리

Fig. 3.6과 같이 팁(tip)에서의 코오드(chord)를 증가시킴으로써 캐비테이션 발 생을 상대적으로 감소시킬 수 있다는 장점을 살려서 면적비를 감소시켜서 효율 향상을 꾀하는 것이다.

Fig. 3.6 Wide tip propeller

(2) 개발현황

- 1) 국내 STX에서 개발되었으며 특허도 가지고 있다.
- 2) 적용 사례 다수 있다.
- 3) 일반적인 경우에 효율 증가는 최대 1% 이내로 추정된다.

3.1.5 PBCF (Propeller Boss Cap Fins)

(1) 원리

PBCF는 Fig. 3.7처럼 프로펠러 캡 상에 프로펠러 날개와 같은 수의 작은 날 개를 장착시키고, 이 날개를 지날 때 Fig. 3.8과 같이 프로펠러 추력과 반대되는 방향으로 추력을 발생시킴으로써 프로펠러 허브 와류(hub vortex) 세기를 감소시키는 프로펠러이다.

Fig. 3.9와 같이 허브 와류형성(hub vortex roll-up)으로 인한 저항증가를 감소 시켜서 결과적으로 프로펠러의 효율을 향상시키며, 이외에도 와류의 감소에 따 라 선미 진동 및 소음의 감소 효과도 있다.

Fig. 3.7 PBCF

Fig. 3.8 Fluid force on propeller and $\ensuremath{\mathsf{PBCF}}^{\ensuremath{^{[15]}}}$

Fig. 3.9 Hub vortex - conventional versus PBCF^[16]

(2) 성능

1) PBCF의 추진효율이 약 2~4%의 연료절감 효과가 있다고 주장한다.

2) 국내에서 모형시험 수행해본 결과 약 1~2%의 연료절감 효과가 있음을 확 인하였다.

3) HSVA에서는 PBCF의 연료절감 효과가 모형시험 결과 1.3%이었다고 한다.

(3) 개발현황

PBCF는 1986년 Mitsui에서 처음으로 연구를 시작하였고, 1987년 Mitsui
 OSK라인, 서 일본 유체공학연구실, Mikado 프로펠러 제작회사가 공동으로
 특허 출원 및 실제 선박에 적용하였다.

2) 1993년에는 한국의 조선업체에서 설치하여 PBCF의 효율을 입증하였고, 1999년에는 PBCF를 LNG선에 적용하였다. 1999년에는 한국 기업과 일본 기 업 간 PBCF에 관한 독점 계약을 체결하였으며, 2001년에는 85,550ps 컨테이너 선에 PBCF를 설치하였다. 2006년을 기준으로 1,000척의 선박에 설치되었다. 국 내의 경우 선박의 효율 향상을 위해 PBCF의 설치가 증가되고 이지만, PBCF에 관한 연구 개발보다는 대부분 일본으로부터 기술도입 및 수입에 의존하고 있다.

3) PBCF가 설치된 프로펠러 시스템은 기존의 나선형 프로펠러 시스템에 비 하여 초기 투자비가 발생하지만 유지 보수가 불필요하며 반영구적으로 사용이 가능하다. 또한 입거 중이나 해상에서도 설치가 가능하며, 단기간 투자비용을 회수할 수 있는 장점이 있다.

3.1.6 CRP (Contra Rotating Propeller)

(1) 원리

Fig. 3.10과 같이 서로 반대 방향으로 회전하는 두 개의 프로펠러를 동심 축 상에 전후 방향으로 설치하여 추력을 발생하는 복합 추진 장치이다. 반대 방향

으로 회전하는 두 개의 프로펠러로 인해 회전방향 속도 성분이 중첩에 의해 상 쇄되고, 전체 프로펠러 시스템의 회전 에너지 유실을 최소화 할 수 있어, 전체 효율을 증대한다.

보통 상반회전 프로펠러에서 회전방향 에너지 손실의 회복은 전체 프로펠러 에 의한 동력의 약 6%를 상회하지 못하나, 프로펠러에 의한 추력이 감소되어 프로펠러 직경도 함께 작아진다. 보통 상반회전 프로펠러에서의 효율 향상 10~12%는 감소된 프로펠러의 직경을 증가시킴으로써 효율 증가까지를 고려한 것이다.

축 진동을 줄이기 위하여 두 프로펠러의 날개수가 다르고, 따라서 어떤 날개 도 동시에 같은 지점을 지나지는 않는다.

뒤 프로펠러는 대부분 주기관과 직접 연결되고, 그 회전수는 주기관의 회전 수에 의해 결정된다. 앞 프로펠러는 기어박스를 통하여 역회전하게 되며, 축 회 전수는 감소된다.

Fig. 3.10 Drive type of Contra-Rotating Propellers, IHI

(2) 성능

1) 일반 상선의 경우 효율 10%이상 기대한다.

2) 선박의 직진성능, 프로펠러의 기진력 및 캐비테이션 특성의 향상과 단일
 프로펠러 대비 직경, 소음 및 진동의 감소를 기대할 수 있다.

(3) 개발현황

 과거 기어문제로 인하여 효율은 높으나 실현되기 어려운 프로펠러로 분류 되었으나, 일본 MHI, IHI의 사례에서 기어문제는 해결된 것으로 판단되어 현재 상용화 연구가 활발히 진행되고 있다. IHI에서는 최근 컨테이너선을 대상으로 CRP 개발 및 장착에 성공하였다.

2) CRP는 특수 프로펠러에도 적용이 많이 되고 있다. 아래에 대표적인 예를 보여준다.

a) MHI(일본) + ABB(스위스) : CRP Azipod (Fig. 3.11)

b) Rolls-Royce(영국): Ulstein Aquamaster Azimuthing CRP (Fig. 3.12)

c) SCHOTTELR(독일): Combi Drive Azimuth Thrusters (Fig. 3.13)

Fig. 3.11 Contra Rotating Propeller Azipod System, ABB

Fig. 3.12 Ulstein Aquamaster Azimuthing CRP, Rolls-Royce

Fig. 3.13 Combi Drive Azimuth Thrusters, SCHOTTELR

3.1.7 유연 프로펠러(composite propeller)

(1) 원리

기존 금속형 프로펠러의 재질을 FRP로 바꿈으로써 유연성을 부여하여 최적 피치의 범위를 넓혔다.

(2) 성능

1) 최적 피치 포인트가 실질적인 유동상황에 따른 운동하중에 맞게 변환한다.

2) 최적 피치의 범위를 넓힘으로써 연료 소모를 줄인다.

(3) 개발현황

 1) 연료 소모를 줄이고, 가속을 향상시키는 등의 특징들로 인하여 주로 요트 분야에 적용한다.

2) 탄소(Carbon) 섬유 프로펠러의 경우 기존의 프로펠러보다 약 1/3정도 가볍 지만, 비용적인 면에서 약 25%정도 비싸다. (기존 프로펠러 보다 중량이 1/3이 감소하기 때문에 축계의 중량도 따라서 감소하는 효과도 있음)

3) 유연 프로펠러에서의 가장 큰 장점은 소음을 흡수할 수 있다는 점이고 이때문에 군용 프로펠러로 개발 중에 있다.

4) 현 기술로 약 1~3%정도의 연료 감소를 할 수 있다고 한다.

5) 유연 프로펠러는 대부분 고스큐를 사용하며, 반류가 큰 지점을 지날 때, 먼저 중간 부분의 앞날에서 부하를 받으며 이에 따라 피치가 큰 쪽으로 변형이 가게 된다. 이때 팁 부근에서는 피치가 작은 방향으로 변형이 가게 되어 캐비 테이션 발생이 감소하게 되며 항력도 작은 상태에서 작동하는 것이다. 이와 같 이 반류 중에서의 추진효율이 향상될 수 있으며, 캐비테이션 감소를 고려하여 면적비를 감소시킬 수 있다.

3.2 추진기 전방의 에너지 저감 장치

추진기 전방의 에너지 저감 장치는 프로펠러에 입사하는 유동을 개선함으로 써 프로펠러의 작동을 유리하게 하도록 하여 에너지 저감 효과를 가져오는 것 이며, 아래의 다양한 추진기 전방의 에너지 저감 장치를 열거하였다.

- a) 덕트 프로펠러 (duct propeller)
- b) 반류 덕트 (wake duct)
- c) 세이버 핀 (Saver fin)
- d) 전류고정날개 (pre-swirl stator)
- e) 뮤이스 덕트(Mewis duct)

3.2.1 덕트 프로펠러 (duct propeller)

(1) 원리

Fig. 3.14와 같이 프로펠러와 덕트를 결합시킨 형태의 추진기이며, 선체에 덕 트 프로펠러를 고정시키는 방법과 회전이 가능하도록 하는 방법이 있다. 덕트 는 특히 선체반류 중에서 반경방향 유속이 큰 경우 즉, 뚱뚱한 배일수록 효율 향상이 크다. 그러나 컨테이너선처럼 날씬한 선형에서는 추진효율 향상이 쉽지 않다.

프로펠러 날개 끝에서 발생하는 손실을 줄일 수 있으며, 프로펠러로 들어오는 유동과 나가는 유동을 개선하여 약 2~4% 정도의 효율 개선 효과가 있다.

프로펠러 직경의 한계가 있는 경우 및 프로펠러에 하중이 많이 걸리는 경우 에 효과적이다. 저속 탱커의 경우, 프로펠러 부하계수(C_{TH})¹⁾가 약 2이기 때문에 다른 선종에 비하며 덕트를 사용할 때 효과가 있다.

특히 프로펠러 부하계수가 높은 중소형의 특수 프로펠러에서 많이 장착하고 있다.

¹⁾ 프로펠러 부하계수(C_{TH}) : Thrust계수(K_T)를 전진비(J)의 제곱으로 나눈 값이다.

Fig. 3.14 Duct propeller

(2) 개발현황

티 덕트 프로펠러의 사용은 매우 오래전 일이며, 과거 프로펠러 회전수가 높
 지 않아서 프로펠러 부하계수가 클 때에, 중대형 프로펠러에 많이 사용된 경험
 이 있다.

2) 구조가 대형구조라서 지지구조가 취약한 것이 단점이나, 점차 덕트는 프로 펠러 전방으로 향하도록 하거나(Mitsui duct), 작은 형태로 프로펠러 전방 상방 의 선미에 장착하는 반류 덕트(wake duct), 그리고 최근에는 프로펠러 바로 전 방에 프로펠러 상방이 노출이 많은 뮤이스 덕트(Mewis duct) 등 변형된 형태의 덕트가 많이 사용되고 있다.

3.2.2 반류 덕트 (wake duct)

(1) 원리

Fig. 3.15와 같이 반류 균등 덕트는 날개형 단면을 가지는 반원으로 구성되어 있는데 선미의 프로펠러 앞부분에 장착된다. 이 반원은 가속 덕트로 선체 주위 의 유동을 가속화 시키며 동시에 프로펠러로 들어가는 유체의 흐름을 균일류에 가깝도록 만드는 역할을 한다. 반류 덕트도 일반 덕트와 마찬가지로 선형이 뚱

뚱하고 방향 유속이 큰 선박에서 연료절감 효과가 크다. 그리고 선형이 선형 최적화가 상대적으로 되지 않은 선형에서 효과가 높다.

Fig. 3.15 SCHNEEKLUTH duct^[17]

(2) 성능

1) 네델란드의 Maritime 연구소의 회류수조에서 9.7%의 연료절감율을 기록하 였으며 독일 함부르크의 HSVA에서 11.8%의 연료절감율을 기록한 바 있다.

프로펠러로 유입되는 반류를 개선함으로써 프로펠러에서 발생하는 진동
 50%가량 줄어들었다.

(3) 개발현황

Collection

1) SCHNEEKLUTH가 가장 대표적인 제작사 이며 1,500척 이상의 선박에 반류 균등 덕트를 설치하였다.

2) 2,500TEU급 선박의 경우 함부르크에서 시드니까지 11,800마일의 거리에서
27,000유로의 연료를 절약하고 253톤의 CO₂ 감소 효과를 얻을 수 있다. 함부르
크와 싱가폴간의 운항에는 총 8,541마일의 거리에서 19,000유로의 연료절감과
184톤의 CO₂ 감소를 얻을 수 있다.

3) 프로펠러 진동의 감소로 선박의 유지비도 줄이는 효과도 얻을 수 있다.

3.2.3 세이버 핀 (Saver fin)

(1) 원리

세이버 핀은 삼성중공업에서 개발한 에너지 저감 장치로 Fig. 3.16과 같이 선 미에 빌지 와류(bilge vortex)가 생성되는 부위에 핀(fin)을 설치하여 빌지 와류 를 선미의 자유수면으로 보내어 반류를 개선하여 추진효율을 향상시키며, 자유 수면으로 보내진 빌지 와류로 인해 압력저항을 감소시키는 형태이다.

Fig. 3.16 Saver fin

(2) 성능

모형 시험 결과 5%정도의 마력감소 효과가 있다고 보고되었으며, 실선에 서는 선박 운항에 소모되는 연료의 2~4% 절약가능하며 선체 진동도 50%가량 줄일 수 있다.

(3) 개발현황

1) 2007년경 삼성중공업에 의해 개발 되었으며 2010년경에는 약 50척의 선박 에 적용 되었다.

2) VLCC기준 연간 5~10억원의 연료비를 절감할 수 있다.

3.2.4 전류고정날개 (pre-swirl stator)

(1) 원리

Fig. 3.17은 전류고정날개이며 프로펠러 앞쪽에 설치되고 Fig. 3.18 원리와 같 이 프로펠러의 회전방향과 반대 방향으로 프로펠러에 유입되는 원주방향의 유 속성분을 추가로 생성시켜 프로펠러 후류에서 프로펠러에 의한 회전에너지를 상쇄시킴으로써 프로펠러의 효율을 향상시키는 장치이다. 전류고정날개는 입사 류에 대해 배의 후진방향으로 추력을 발생시키도록 배치되나, 전류고정날개에 의해 전류가 발생되기 때문에 프로펠러가 발생시키는 추력이 증가하고 선각효 율도 증가한다.

Fig. 3.17 Pre-swirl stator^[18]

Fig. 3.18 Operational principle of Pre-swirl stator

(2) 성능

1) 1980년대부터 일본의 Mitsubishi 조선소에서 건조되고 있는 VLCC의 경우 약 5~6%의 효율 향상이 있다.

2) 국내에서는 1990년대부터 KRISO, 대우조선해양 등에서 꾸준히 연구하였으 며 모형시험에서 저속비대선의 경우 약 4~6%의 효율향상을 보인바 있다.

(3) 개발현황

Collection

1) 국내에서는 1990년대 초부터 KIOST를 중심으로 꾸준히 연구해 왔으며 최 대 6% 정도의 에너지 저감 효율을 얻었다.

2) 전류고정날개에서 발전된 비대칭 전류고정날개의 경우는 우현의 1개, 좌현 의 3개, 총 4개의 날개를 가지며 기존의 날개수가 6개인 전류고정날개와 유사 한 수준의 에너지 저감 효율을 얻을 수 있다. 대우조선해양에서 비대칭 전류고 정날개를 실선에 적용하여 4.5%의 효율 향상을 달성하였다.

3) 전류고정날개의 성능을 단가로 환산하여 계산하면 44만불이 투자된 비용

을 약 2년반 만에 회수할 수 있고 선박의 수명을 25년으로만 보아도 약 400만 불의 에너지 저감 효과가 있다.

3.2.5 뮤이스 덕트 (Mewis duct)

(1) 원리

Fig. 3.19는 뮤이스 덕트이며 선체에 의해 교란되어 프로펠러에 불균일하게 유입되는 유동을 정류하고 프로펠러 유입면의 유동장의 유입 각도를 바꾸어 유 속 분포를 고르게 바꾸기 위해 프로펠러 전방에 고정날개와 덕트가 복합된 부 가물을 설치하여 뮤이스 덕트 후류에서 에너지의 손실을 최소화함으로써 추진 효율을 향상시키는 장치이다.

Fin system

Pre-duct

Fin system + Pre-duct Fig. 3.19 Mewis duct^[19]

(2) 성능

유이스 덕트는 탱커와 같이 상대적으로 고속인 선형에서는 5~7%의 추진효율 증가를 얻을 수 있고 벌크선과 같은 저속 선형에서는 7~8%의 효율 증가를 얻 을 수 있다고 알려져 있다.

(3) 개발현황

Becker Marine Systems에서 설계 및 제작하고 있는 에너지 저감 장치로서 구 동부가 없어 한번 설치하고 나면 관리가 편하다. 일반적으로 설치비용은 선박 을 1년 동안 운반하면 모두 회수 할 수 있으며, 설치는 4일 정도로 짧은 기간 에 가능하다.

3.3 추진기 후방의 에너지 저감 장치

프로펠러 후류에 위치하여 프로펠러에 의하여 수행한 일을 하면서 물을 회전 시킨 성분을 회수함으로써 에너지 저감 효과를 얻는 장치이다.

a) 러더 벌브 (rudder bulb)

b) 트위스트 러더 (twist rudder)

c) 추력날개 (thrust fin)

d) 러더 핀 (rudder fin)

e) 베인 휠 (vane wheel)

f) 고양력 타 (high lift rudder)

3.3.1 러더 벌브 (rudder bulb)

(1) 원리

프로펠러 허브 와류(hub vortex)를 감소시키고, 프로펠러에서 러더까지 유입 되는 유동을 개선함으로써 효율을 증가시키는 개념이다.

(2) 성능

- 1) 약 2~7% 효율 향상이 있다.
- 2) 비용이 저렴하고 러더와의 호환성이 우수하다.

(3) 개발현황

1) 최근에는 러더의 벌브가 프로펠러의 허브까지 확장되는 형태로 발전하였다.

프로펠러 교체 및 수리 시에, 타를 제거하여야 한다는 문제점과 벌브와 타
 의 면이 이루는 각이 과도한 탓에 캐비테이션 및 침식의 문제가 발생한다.

3) 최근 프로펠러 - 러더 패키지 형태로 판매가 되고 있으며, 아래와 같은 대 표적인 사례를 들 수 있다.

- a) Rolls-Royce : Promas (Fig. 3.20)
- b) Wartsila : Energopac (Fig. 3.21)
- c) Mitsui Engineering & Shipbuilding (MES) : Mitsui Integrated Propeller
 Boss (MIPB) (Fig. 3.22)

Fig. 3.20 Promas of Rolls-Royce

Fig. 3.21 Energopac of Wartsila

Fig. 3.22 Mitsui Integrated Propeller Boss of MES

3.3.2 트위스트 러더 (twist rudder)

(1) 원리

Fig. 3.23과 같이 프로펠러로부터 빠져나오는 후류가 러더로 들어오는 입사각을 고려하여 러더의 상부와 하부를 서로 비틀리게 배치함으로써, 타의 효율을 증대 시키고, 캐비테이션을 감소시키는 개념이다.

Fig. 3.23 Operational principle of Twist rudder, NAKASHIMA propeller

(2) 성능

1) 약 3~4% 효율 향상이 있다.

2) 세미 스페이드 러더의 단점인 러더와 혼사이의 갭이 없다.

3) 기존의 타에 비해, 높은 양력을 기대할 수 있으며, 캐비테이션 및 진동 측 면에서 유리하다.

(3) 개발현황

1) Becker Marine Systems의 특허가 만료됨에 따라, 국내 기업인 해덕파워웨 이에서 기존의 타에 비해 성능이 개선된 트위스트 러더를 개발하여 특허권을 소유하고 있다.

2) 트위스트 부에서 발생하는 캐비테이션 및 침식을 방지하기 위하여, 벌브와 결합하거나, 트위스트 부가 매끄럽게 연결되도록 형상이 개선된 제품들이 출시 되고 있다.

3.3.3 추력날개 (Thrust fin)

(1) 원리

Fig. 3.24와 같이 프로펠러 뒤 방향타에 장착되어 추진력을 극대화하는 비행 기 날개모양의 장치로 약 2~5% 연료절감 효과가 있다.

Fig. 3.24 Thrust fin of HHI^[18]

(2) 개발현황

1) 현대중공업에서 개발하였으며, 특허도 가지고 있다. 다른 타에 부착하는

추력날개와 다른 점은 타의 혼 부위에 추력날개를 부착하는 것으로, 운항시 타 각의 변화에 따른 추력날개의 성능 손실을 막아준다.

2) HHI의 추력날개의 경우, 대형 컨테이너선에서 6,000만 달러의 연료절감(연 간 240만 달러x25년) 효과가 있을 것으로 예상하고 있으며, 날개 장착 비용은 50만 달러 수준(독일 하팍로이드社, 8,600TEU급 컨테이너선, 2006년 수주, 2008 년 4월 인도)이다.

3.3.4 러더 핀 (rudder fin)

(1) 원리

타에 추력을 발생시키는 날개를 설치하여, 프로펠러 후류에서 손실되는 회전 에너지를 회수하는 개념이다.

(2) 성능

약 2~5% 연료절감 효과가 있다. (부착위치에 따라 효율의 큰 차를 보임.)

(3) 개발현황

최근에는 러더 벌브와 타를 결합하여 사용하는 복합 장치 형태로 사용되는 사례가 늘고 있다.

2) 한국 및 일본, 유럽 등에서 유사한 개념의 추력날개가 개발되어 장착되고 있으며, 아래와 같은 대표적인 사례를 들 수 있다.

a) Hyundai Heavy Industries (HHI) : Thrust Fin (Fig. 3.25)

b) Ishikawajima-Harima Heavy Industries (IHI) : Additional Thrust Fin

(Fig. 3.25)

- c) Nippon Kokan (NKK) : Swept-back Up-thrusting Rudder Fin (SURF)(Fig. 3.25)
- d) Kawasaki Heavy Industries (KHI) : Rudder-bulb System with Fin (PBS-F)(Fig. 3.25)
- e) Mitsubishi Heavy Industries (MHI) : Rudder Stator Fin (Fig. 3.25)
- f) Asea Brown Boveri (ABB) : AZIPOD Trailing Fin (Fig. 3.25)

Fig. 3.25 Rudder fin type

3.3.5 베인 휠 (vane wheel)

(1) 원리

선박의 주프로펠러(screw propeller)는 전진력을 낳고 프로펠러는 그 배후에 가속류와 회전류의 2개의 타입의 흐름을 일으킨다. 엔진으로부터의 에너지의 일부는 배의 후방에로의 가속류에 의해 잃게 된다. Fig. 3.26, Fig. 3.27과 같이 베인 휠은 통상의 주프로펠러(screw propeller)의 배후에 같은 축상에 장비되고, 발생하는 가속류를 회전류로 바꾼다. 주프로펠러보다 큰 직경을 가지고 있기 때문에 베인 휠의 날개 끝은 주프로펠러의 항적의 외측으로 나와, 익판이 부가 추진력을 생기는 것이 된다.

Fig. 3.26 Vane wheel installed on propeller cap^[18]

Fig. 3.27 Vane wheel installed on rudder horn

(2) 성능

일본 IHI에서는 개선된 베인 휠(vane wheel)을 적용한 선박에서 최대 8%의 연료절감을 얻었으며 베인 휠을 적용한 일반 선박에서는 5~6%의 효율 향상을 얻을 수 있다.

(3) 개발현황

1990년에 일본의 IHI에서 출원한 선박용 프로펠러 추진장치이다. 기계적인 결 함으로 손상사례가 빈번하였으며, 이러한 문제점을 개선하여 베인 휠을 러더 혼에 설치하여 효율과 신뢰성을 향상시키는 기술로 개발이 진행되고 있다.

3.3.6 고양력 타 (high lift rudder)

(1) 원리

Fig. 3.28과 같이 러더(rudder)의 면적을 감소시켜서 러더의 항력을 감소시키 기 위하여 러더의 단면을 고양력 단면으로 바꾸어, 러더의 양력은 동일하게 유 지하나 전체적인 러더의 항력은 감소시킨 고안이다.

Collection

(2) 개발현황

독일의 HSVA에서는 기존의 NACA00 계열의 단면 대신에 앞날과 중앙부 까지 는 NACA00과 동일하나, 뒷날 부분은 약간 오목하여(hollow) 양력이 약 10% 이 상 증가한 MP73 단면을 사용하여 약 1%의 연료절감 효과를 얻었다.

제 4 장 주기관 최적화 방법 현황

4.1 전자 제어 엔진 적용

연료 분사 펌프와 배기밸브 작동펌프의 기계적 구동을 전기적 신호에 의하여 대체할 수 있는 전자 제어 시스템을 연구하여 전자 제어 엔진(ME engine)을 개 발하였다. 전자 엔진의 특징으로는 상이한 부하상태에서 연료 분사 특성을 최 적화 시킬 수 있으며, 상부 부하범위에서 연료 분사 시기와 압축비 변경의 결 합으로 일정 P_{max}를 달성할 수 있다. 그 결과로 보다 넓은 부하 영역에 걸쳐서 엔진을 과부하로 하지 않고서도 최고 압력을 일정하게 유지할 수 있으며 부분 부하에서 연료 소모량이 감소하게 된다.^[20]

하기 Fig. 4.1은 MAN사의 ME 엔진과 MC 엔진에 대한 연료소모량의 비교를 나타내고 있다. 90% 부하 기준, 연료소모량이 약 3% 절감됨을 확인할 수 있다.

Fig. 4.1 SFOC comparison between ME vs MC engine (MAN)^[21]

4.2 연료소모량 최적화 (SFOC optimization)

특정 엔진 부하에서 배기 밸브의 개폐 간격, 연료 분사 특성, 연소 공기 압력 을 조절하여 연료소모량을 최소화 할 수 있는데 이러한 방법을 연료소모량 최 적화(SFOC optimization)라고 한다. MAN사는 연료소모량 최적화를 하기 Table 4.1과 같이 세가지 엔진 부하로 구분하고 있다.^[20]

Table 4.1 SFOC optimized load ranges

Load	Optimized load range		
High load	85~100% SMCR (standard-tuned engine)		
Part load	50~85% SMCR		
Low load	25~70% SMCR		

Fig. 4.2는 ME 엔진과 MC 엔진의 각 최적부하영역(optimized load range)에 대한 연료소모량의 비교를 나타내고 있다. ME 엔진은 저부하에서 최적화를 한 경우, 65% 부하에서 고부하보다 연료소모량이 3% 절감됨을 확인할 수 있고, MC 엔진도 저부하에서 최적화를 한 경우, 65% 부하에서 고부하보다 연료소모 량이 1.8% 절감됨을 확인할 수 있다.

Fig. 4.2 SFOC curves for each optimization (MAN)^[22]

4.3 고출력 저회전수 엔진 적용

Collection

선박용 주기관의 효율은 최대 폭발 압력과 최대 유효 압력의 비율에 좌우된 다. 이 비율이 커지면 엔진의 효율도 증가하게 되는데 달리 말하면 연료소모량 이 감소한다는 의미이다. 또한 2행정 기관에서 행경(stroke/bore) 비율이 커질수 록 효율이 증가한다는 것은 이미 알려진 사실이다. 따라서, 적은 회전수의 주기 관을 선정하는 것이 연료소모량 감소에 효율적이다.

최근에 MAN에서 G-type 엔진과 같이 고출력 엔진에 초장행정(Ultra long stroke)을 적용하여 주기관 선택의 제약 사항을 감소시켰다.

주기관의 회전수가 감소하면 프로펠러의 회전수도 감소하고 선박이 필요로 하는 출력을 위해서는 프로펠러의 직경이 커지게 된다. 최근에는 이러한 경향 을 반영하기 위하여 컨테이너선의 선미 부분 형상이 대폭 변경되고 있다.^[20]

하기 Fig. 4.3은 MAN사의 G-type 엔진과 S-type 엔진에 대한 연료소모량의

비교를 나타내고 있다. 90% 부하 기준, 연료소모량이 약 3% 절감됨을 확인할 수 있다.

Fig. 4.3 SFOC comparison between G-type vs S-type engine (MAN)^[23]

4.4 De-rating(정격조정) 적용

2행정 저속 엔진은 엔진 자체가 정격 출력을 최적화를 통하여 특정 범위 내 에서 결정할 수 있는 특징이 있다. Fig. 4.4는 특정 엔진의 출력을 최적화할 경 우, 각 출력/회전수에 상응하는 연료소모량의 감소 효과를 나타내고 있다. L1-L2-L3-L4 면적 내부에서 엔진의 출력을 선정할 수 있으며, 평균 유효 압력 (MEP) 감소에 따라 연료소모량도 비례적으로 감소하는 경향을 보인다. 따라서, 주기관 선정시 추진에 필요로 하는 출력보다 더 큰 최대 출력을 가지는 엔진을 선정하고 최적화 과정을 거쳐 최대 출력을 제한하는 방식을 적용하게 되는데 이를 de-rating 방법이라고 한다.^[20]

Fig. 4.4 Engine layout diagram (MAN)

제 5 장 실선 추진 성능의 비교 분석

이 장에서는 핸디형 벌크선인 34k 벌크선과 35k 벌크선에 에너지 저감 장치 인 SCHNEEKLUTH duct, PBCF, 비대칭 러더 벌브, 뮤이스 덕트를 실제로 적용 하여 어느 정도의 추진 성능이 개선되고, 연료소모량 계측값 데이터와 주기관 의 최적화를 통해 얼마나 연료가 절감 되는지를 확인 및 비교 검토하고자 한 다. Table 5.1은 실선 주요 제원이며 Table 5.2는 실선 주기관 제원이다.

Table	5.1	Principal	dimensions	of	bulk	carrier
-------	-----	-----------	------------	----	------	---------

Principal Dimensions	DWT 34,000	DWT 35,000	
	Bulk Carrier	Bulk Carrier	
Length (O.A)	180.40 m	182.00 m	
Length (B.P)	171.40 m	177.00 m	
Breadth (Mld)	30.00 m	30.00 m	
Depth (Mld)	14.40 m	14.60 m	
Draft (D.L.W.L)	9.3 m	10.016 m	

Table 5.2 Specification of main engine

1943				
Main Engine	DWT 34,000	DWT 35,000		
Main Engine	Bulk Carrier	Bulk Carrier		
Model	6S42MC7	5S50ME-B9.2		
Cylinder Bore X Stroke	420mm X 1,764mm	500mm X 2,214mm		
NMCR	6,480kW at 136rpm	8,900kW at 117rpm		
SMCR	6,480kW at 136rpm	6,050kW at 99rpm		
NCR	5,832kW at 131rpm	5,445kW at 95.6rpm		
Mean Piston Speed at	0.0 m/a	7.2 m/s		
SMCR	8.0 III/S	1.3 m/s		
MEP at SMCR	19.5 bar	16.9 bar		
Max. Combustion Pressure	145 0 h	100.0.1		
(Pmax)	145.0 Dar	190.0 bar		
SFOC at SMCR	179 g/kW • hr	162.1 g/kW · hr		

5.1 34k 벌크선의 에너지 저감 장치별 성능 비교

총 3척의 동일 시리즈인 34k 벌크선에서 1척은 에너지 저감 장치를 적용하지 않았고, 1척은 PBCF를 적용하였으며 나머지 1척은 SCHNEEKLUTH duct를 적용 하였다. 실제 시운전은 하기 Table 5.3과 같은 발라스트 조건으로 진행되었으 며, 계측값을 명확하게 구분하여 비교 검토하기 위해 같은 발라스트 조건하에 서 비교 분석하였다.

Table 5.3 Sea trial ballast condition

Ship	Normal Ballast Condition ²⁾	Heavy Ballast Condition ³⁾
Without ESD (Energy Saving Device)	Carried out	Carried out
With PBCF	Carried out	N/A
With SCHNEEKLUTH duct	N/A	Carried out
	1945 A	

(1) PBCF 효과

상기 Table 5.3을 기준으로 먼저 Normal ballast 조건하에서의 에너지 저감 장 치 미적용 선박과 PBCF를 적용한 선박의 시운전 계측값을 비교 검토하였고, 에너지 저감 장치 미적용 선박을 A1 선박, 하기 Fig. 5.1 도면의 PBCF를 적용 한 선박을 A2 선박이라고 칭하였다.

A1 선박과 A2 선박의 시운전 계측값을 Fig. 5.2와 Fig. 5.3의 그래프로 나타 내었다. Fig. 5.2는 선박 속도와 마력값 간의 그래프이고 Fig. 5.3은 주기관 회전 수와 마력값 간의 그래프이다.

²⁾ Normal Ballast Condition : 선수탱크(Fore Peak Tank)와 선미탱크(After Peak Tank)를 제 외한 나머지 발라스트 탱크(Ballast Tank)에만 발라스팅(Ballasting)한 조건이다.

³⁾ Heavy Ballast Condition : 선수탱크, 선미탱크, 발라스트 탱크 모두에 발라스팅한 조건이다.

Fig. 5.2 Speed-Power for A1 ship and A2 ship

Fig. 5.2 그래프를 검토하면 선박 속도 15knots 기준, A1 선박과 A2 선박의 마력값은 Table 5.4와 같으며 A2 선박이 A1 선박대비 마력값이 6% 감소하였음

을 확인하였고, 마력값 5,000kW 기준, A1 선박과 A2 선박의 속도는 **Table 5.5** 와 같으며 A2 선박이 A1 선박대비 속도가 1.3% 증가하였음을 확인하였다.

Table 5.4 Power for A1 ship and A2 ship

Item	Al ship	A2 ship
Power based on 15knots	5,145kW	4,829kW

Table 5.5 Speed for A1 ship and A2 ship

Fig. 5.3 RPM-Power for A1 ship and A2 ship

Fig. 5.3 그래프를 검토하면 근소하지만 동일마력상 A2 선박이 A1 선박대비 주기관 회전수가 약 0.4% 증가하였으며, 이것은 PBCF가 프로펠러 토크 감소에 영향을 미치고, 토크 감소는 주기관 마력 감소와 연관됨을 의미하며, 실제로 상 기 내용에 언급되었듯이 마력값이 6% 감소하였음을 확인하였다.

그리고 A1 선박과 A2 선박의 연료소모량 계측값을 Table 5.6과 Table 5.7로 나타내었다. Table 5.6은 A1 선박의 연료소모량 계측값이고 Table 5.7은 A2 선 박의 연료소모량 계측값이다.

Main engine load	90% load
Flowmeter inlet	
Start	62950
Stop	64570
Flow M/E in [L]	1620
Measuring Time [Second]	1603
Flow M/E in, A [L/h]	3638.2
Flowmeter outlet	
Start	52270
Stop	53340
Flow M/E out [L]	1070
Measuring Time [Second]	1607
Flow M/E out, B [L/h]	2397
Flow M/E in – out, AL [L/h] = (A–B)*C*D	1131.2
F.O. temp.	135
Gravity, C	0.9836
Volume at indicated temp., D	0.9266
Engine Output (kW)	5312
g/kW · hr, B3=AL*1000/kW	213.0
1945	
Ambient temp.(TI)	26
Conversion factor by ambient temperature TIF=0.002X(25-T1)/10	
TIF=	-0.0002
Charge air coolent temp(T2)	38
Conversion factor by air coolant temperature T2F=0.006X(25-T2)/10
T2F=	-0.0078
Ambient pressure(P)	1025
Conversion factor by ambient pressure PF=0.0002X(P-1000)/10	
PF=	0.0005
Fuel oil lower calorific value(HF)	9610.0
Conversion factor by lower calorific value HF=(H-10200)/10200	
HF=	-0.05784
Total conversion factor, TCF=TIF+T2F+PF+HF	
TCF=	-0.065
Converted of fuel of F.O. consumption based on ISO(g/kW \cdot hr),	B1=B3+(B3*TCF)
Fuel Oil Consumption (ISO)g/kW · hr	199.04

Table 5.6 F.O. consumption for A1 ship

Main engine load	90% load
Flowmeter inlet	
Start	72420
Stop	73050
Flow M/E in [L]	630
Measuring Time [Second]	602
Flow M/E in, A [L/h]	3767.4
Flowmeter outlet	
Start	73760
Stop	74190
Flow M/E out [L]	430
Measuring Time [Second]	607
Flow M/E out, B [L/h]	2549.7
Flow M/E in - out, AL [L/h] = (A-B)*C*D	1120.0
F.O. temp.	128
Gravity, C	0.9882
Volume at indicated temp., D	0.9308
Engine Output (kW)	5564
g/kW · hr, B3=AL*1000/kW	201.3
1945	
Ambient temp.(TI)	32
Conversion factor by ambient temperature TIF=0.002X(25-T1)/10	
TIF=	-0.0014
Charge air coolent temp(T2)	38
Conversion factor by air coolant temperature T2F=0.006X(25-T2)/1	0
T2F=	-0.0078
Ambient pressure(P)	1025
Conversion factor by ambient pressure PF=0.0002X(P-1000)/10	
PF=	0.0005
Fuel oil lower calorific value(HF)	9500.0
Conversion factor by lower calorific value HF=(H-10200)/10200	
HF=	-0.06863
Total conversion factor, TCF=TIF+T2F+PF+HF	
TCF=	-0.077
Converted of fuel of F.O. consumption based on ISO(g/kW · hr), B1	=B3+(B3*TCF)
Fuel Oil Consumption (ISO)g/kW · hr	185.73

Table 5.7 F.O. consumption for A2 ship

상기 Table 5.6과 Table 5.7에서 주기관 90% 부하 기준, A1 선박의 연료소모 량 계측값은 199.04 g/kW・hr 이며, A2 선박의 연료소모량 계측값은 185.73 g/kW・hr 임을 확인하였다.

이 계측값을 하루 단위로 다시 계산하면, A1 선박의 연료소모량은 25.4 tons/day 이고, A2 선박의 연료소모량은 24.8 tons/day 이며, A2 선박이 A1 선박 대비 연료소모량이 2.4% 절감됨을 확인할 수 있었다.

(2) SCHNEEKLUTH duct 효과

상기 Table 5.3을 기준으로 두 번째로 Heavy ballast 조건하에서의 에너지 저 감 장치 미적용 선박과 SCHNEEKLUTH duct를 적용한 선박의 시운전 계측값을 비교 검토하였고, 에너지 저감 장치 미적용 선박을 A3 선박, 하기 Fig. 5.4 도면 의 SCHNEEKLUTH duct를 적용한 선박을 A4 선박이라고 칭하였다.

Fig. 5.4 SCHNEEKLUTH duct for A4 ship

A3 선박과 A4 선박의 시운전 계측값을 Fig. 5.5와 Fig. 5.6의 그래프로 나타내었다. Fig. 5.5는 선박 속도와 마력값 간의 그래프이고 Fig. 5.6은 주기관 회전수와 마력값 간의 그래프이다.

Fig. 5.5 Speed-Power for A3 ship and A4 ship

Fig. 5.5 그래프를 검토하면 선박 속도 14knots 기준, A3 선박과 A4 선박의 마력값은 Table 5.8과 같으며 A4 선박이 A3 선박대비 마력값이 17.5% 감소하였 음을 확인하였고, 마력값 5,000kW 기준, A3 선박과 A4 선박의 속도는 Table 5.9와 같으며 A4 선박이 A3 선박대비 속도가 6.2% 증가하였음을 확인하였다.

Table 5.8 Power for A3 ship and A4 ship

Item	A3 ship	A4 ship
Power based on 14knots	5,277kW	4,353kW

Table 5.9 Speed for A3 s	mp and	A4	snip
--------------------------	--------	----	------

Item	A3 ship	A4 ship
Speed based on 5,000kW	13.7knots	14.6knots

Fig. 5.6 RPM-Power for A3 ship and A4 ship

Fig. 5.6 그래프를 검토하면 118rpm이하인 저회전수에서는 A3 선박이 근소하 게 회전수가 크나, 고회전수로 갈수록 A4 선박의 회전수가 A3 선박대비 증가하 고 있으며, 평균적으로 A4 선박이 A3 선박대비 주기관 회전수가 약 1.4% 증가 하였다.

SCHNEEKLUTH duct를 장착한 선박의 주기관 회전수가 PBCF를 장착한 선박 대비 약 1.0% 더 증가하였으며, 회전수가 더 증가하였다는 것은 SCHNEEKLUTH duct가 PBCF보다 프로펠러 토크 감소에 좀 더 영향을 미친다는 의미로 분석되 고, 실제로 PBCF가 마력값을 6% 감소시킨 것에 비교하여 SCHNEEKLUTH duct 는 마력값을 17.5% 감소시켰다.

SCHNEEKLUTH duct가 PBCF보다 11.5%나 마력값을 감소시킨 만큼 연료소모 량도 더 절감될 것으로 예상되며, A3 선박과 A4 선박의 연료소모량 계측값을 확인해 보았다.

A3 선박과 A4 선박의 연료소모량 계측값을 Table 5.10과 Table 5.11로 나타 내었다. Table 5.10은 A3 선박의 연료소모량 계측값이고 Table 5.11은 A4 선박 의 연료소모량 계측값이다.

Main engine load	90% load
Flowmeter inlet	
Start	178980
Stop	180680
Flow M/E in [L]	1700
Measuring Time [Second]	1561
Flow M/E in, A [L/h]	3920.6
	•
Flowmeter outlet	
Start	138020
Stop	139140
Flow M/E out [L]	1120
Measuring Time [Second]	1555
Flow M/E out, B [L/h]	2592.9
	•
Flow M/E in - out, AL [L/h] = (A-B)*C*D	1210.0
F.O. temp.	135
Gravity, C	0.9836
Volume at indicated temp., D	0.9266
Engine Output (kW)	5509
g/kW · hr, B3=AL*1000/kW	219.6
Ambient temp.(TI)	25
Conversion factor by ambient temperature TIF=0.002X(25-T1)/10	
TIF=	0
Charge air coolent temp(T2)	38
Conversion factor by air coolant temperature T2F=0.006X(25-T2)/10)
T2F=	-0.0078
Ambient pressure(P)	1025
Conversion factor by ambient pressure PF=0.0002X(P-1000)/10	
PF=	0.0005
Fuel oil lower calorific value(HF)	9610
Conversion factor by lower calorific value HF=(H-10200)/10200	
HF=	-0.05784
Total conversion factor, TCF=TIF+T2F+PF+HF	·
TCF=	-0.065
Converted of fuel of F.O. consumption based on ISO(g/kW · hr), B1=	=B3+(B3*TCF)
Fuel Oil Consumption (ISO)g/kW · hr	205.3

Table 5.10 F.O. consumption for A3 ship

Main engine load	90% load	
Flowmeter inlet		
Start	82550	
Stop	83656	
Flow M/E in [L]	1106	
Measuring Time [Second]	1200	
Flow M/E in, A [L/h]	3318.0	
Flowmeter outlet		
Start	62150	
Stop	62861	
Flow M/E out [L]	711	
Measuring Time [Second]	1200	
Flow M/E out, B [L/h]	2133.0	
Flow M/E in - out, AL [L/h] = (A-B)*C*D	1092.3	
F.O. temp.	125	
Gravity, C	0.9884	
Volume at indicated temp., D	0.9326	
Engine Output (kW)	5027	
g/kW · hr, B3=AL*1000/kW	217.3	
1945		
Ambient temp.(TI)	35	
Conversion factor by ambient temperature TIF=0.002X(25-T1)/10		
TIF=	-0.002	
Charge air coolent temp(T2)	39	
Conversion factor by air coolant temperature T2F=0.006X(25-T2)/2	10	
T2F=	-0.0084	
Ambient pressure(P)	1025	
Conversion factor by ambient pressure PF=0.0002X(P-1000)/10		
PF=	0.0005	
Fuel oil lower calorific value(HF)	9593.0	
Conversion factor by lower calorific value HF=(H-10200)/10200		
HF=	-0.05951	
Total conversion factor, TCF=TIF+T2F+PF+HF	1	
TCF=	-0.069	
Converted of fuel of F.O. consumption based on ISO(g/kW · hr), B1=B3+(B3*TCF)		
Fuel Oil Consumption (ISO) g/kW · hr	202.2	

Table 5.11 F.O. consumption for A4 ship

상기 Table 5.10과 Table 5.11에서 주기관 90% 부하 기준, A3 선박의 연료소 모량 계측값은 205.3 g/kW·hr 이며, A4 선박의 연료소모량 계측값은 202.2 g/kW·hr 임을 확인하였다.

이 계측값을 하루 단위로 다시 계산하면, A3 선박의 연료소모량은 27.1 tons/day 이고, A4 선박의 연료소모량은 24.4 tons/day 이며, A4 선박이 A3 선박 대비 연료소모량이 10% 절감됨을 확인할 수 있었다.

이것은 PBCF가 연료소모량을 2.4% 절감시킨 것 보다 7.6%를 더 절감시켰으 며, SCHNEEKLUTH duct가 PBCF보다 마력값을 11.5% 더 감소시킨 만큼 연료소 모량도 더 절감되었음을 확인하였다.

그리고 SCHNEEKLUTH duct 제작사의 시험 결과 보고서에 의하면 SCHNEEKLUTH duct가 프로펠러로 들어가는 유체의 흐름을 균일류에 가깝도록 만드는 역할을 함으로서 프로펠러 날개 팁(blade tips)에서 발생하는 캐비테이션 형성을 억제하 고 맥동 압력(pressure pulse)도 감소시켜 거주구의 진동을 감소시킬 수 있다고 한다. 실제로 하기 Fig. 5.7과 같이 SCHNEEKLUTH duct를 장착한 선박의 거주 구 진동은 에너지 저감 장치를 설치하지 않은 선박대비 진동 수준은 약 36%이 고, PBCF를 장착한 선박대비 진동 수준은 약 55%이며, 거주구 갑판의 진동을 0.5~0.7mm/s 수준으로 유지하였다.

Fig. 5.7 Deck house vibration for 34k bulk carriers

5.2 35k 벌크선의 에너지 저감 장치별 성능 비교

동일 시리즈는 아니지만 총 2척의 동일 선형 및 사양인 35k 벌크선에서 1척 은 삼성중공업에서 개발한 비대칭 러더 벌브(Asymmetric rudder bulb)를 적용하 였고, 나머지 1척은 뮤이스 덕트(Mewis duct)를 적용하였다. 실제 시운전은 2척 모두 Heavy ballast 조건하에서 진행되었다.

Heavy ballast 조건하에서의 비대칭 러더 벌브를 적용한 선박과 뮤이스 덕트 를 적용한 선박의 시운전 계측값을 비교 검토하였고, 하기 Fig. 5.8 도면의 비 대칭 러더 벌브를 적용한 선박을 B1 선박, 하기 Fig. 5.9 도면의 뮤이스 덕트를 적용한 선박을 B2 선박이라고 칭하였다.

Fig. 5.8 Asymmetric rudder bulb for B1 ship

Fig. 5.9 Mewis duct for B2 ship

B1 선박과 B2 선박의 시운전 계측값을 Fig. 5.10과 Fig. 5.11의 그래프로 나타 내었다. Fig. 5.10은 선박 속도와 마력값 간의 그래프이고 Fig. 5.11은 주기관 회 전수와 마력값 간의 그래프이다.

Fig. 5.10 Speed-Power for B1 ship and B2 ship

Fig. 5.10 그래프를 검토하면 선박 속도 14knots 기준, B1 선박과 B2 선박의 마력값은 Table 5.12와 같으며 B2 선박이 B1 선박대비 마력값이 9.7% 감소하였 음을 확인하였고, 마력값 5,000kW 기준, B1 선박과 B2 선박의 속도는 Table 5.13과 같으며 B2 선박이 B1 선박대비 속도가 3.5% 증가하였음을 확인하였다.

Table 5.12 Power for B1 ship and B2 ship

Item	B1 ship	B2 ship
Power based on 14knots	5,305kW	4,792kW

Table 5.13 Speed for B1 ship and B2 ship

Item	B1 ship	B2 ship
Speed based on 5,000kW	13.7knots	14.2knots
rot		

Fig. 5.11 RPM-Power for B1 ship and B2 ship

Fig. 5.11 그래프를 검토하면 B1 선박이 B2 선박보다 마력값과 속도에서는 안 좋았지만, 매우 근소하게 약 0.06% 정도의 주기관 회전수가 증가하였다.

유이스 덕트는 선체에 의해 교란되어 프로펠러에 불균일하게 유입되는 유동 을 정류하고 유속 분포를 고르게 함으로써 뮤이스 덕트 후류에서 에너지의 손 실을 최소화하여 비대칭 러더 벌브 대비 추진효율이 향상되는 반면, 비대칭 러 더 벌브는 하기 Fig. 5.12, Fig. 5.13과 같이 허브 와류를 감소시키면서 프로펠러 에 의해 발생된 맥동 압력도 함께 감소시켜 뮤이스 덕트 대비 매우 근소하게 주기관 회전수가 증가한 것으로 보인다.

Fig. 5.12 Pressure distribution and streamlines $^{\![24]}$

Fig. 5.13 Rotational energy by tangential flow^[25]

그리고 HSVA에서 Fig. 5.14와 같이 우현 러더 벌브 하부에서는 밀어넣는 힘 이 작용하고 좌현 러더 벌브 상부에서는 옆으로 빠져나가는 힘이 작용함을 확 인하였고, 이러한 작용으로 인해 Fig. 5.8과 같이 우현의 러더 벌브 끝은 하부 의 밀어넣는 힘을 완화시키고자 위로 올리고 좌현의 러더 벌브 끝은 상부의 옆 으로 빠져나가는 힘을 좀 더 증대시키기 위해 아래로 내린 것으로 보이며, 이 러한 비대칭 러더 벌브의 형상으로 인해 기존 형상의 러더 벌브보다 좀 더 허 브 와류 감소에 영향을 미쳐 주기관 회전수 증가와 연관되는 것으로 보인다.

B1 선박과 B2 선박의 연료소모량 계측값을 Table 5.14와 Table 5.15로 나타내었다. Table 5.14는 B1 선박의 연료소모량 계측값이고 Table 5.15는 B2 선박의 연료소모량 계측값이다.

Main engine load	90% load
Flowmeter inlet	
Start	49480
Stop	50350
Flow M/E in [L]	870
Measuring Time [Second]	1741
Flow M/E in, A [L/h]	1799.0
Flowmeter outlet	
Start	29900
Stop	30270
Flow M/E out [L]	370
Measuring Time [Second]	1733
Flow M/E out, B [L/h]	768.6
Flow M/E in - out, AL [L/h] = (A-B)*C*D	941.5
F.O. temp.	134
Gravity, C	0.9855
Volume at indicated temp., D	0.9272
Engine Output (kW)	5215
g/kW · hr, B3=AL*1000/kW	180.5
Ambient temp.(TI)	37
Conversion factor by ambient temperature TIF=0.002X(25-T1)/10	
TIF=	-0.0024
Charge air coolent temp(T2)	32
Conversion factor by air coolant temperature T2F=0.006X(25-T2)/10)
T2F=	-0.0042
Ambient pressure(P)	1025
Conversion factor by ambient pressure PF=0.0002X(P-1000)/10	
PF=	0.0005
Fuel oil lower calorific value(HF)	9600.0
Conversion factor by lower calorific value HF=(H-10200)/10200	
HF=	-0.05882
Total conversion factor, TCF=TIF+T2F+PF+HF	
TCF=	-0.065
Converted of fuel of F.O. consumption based on ISO(g/kW · hr), B1=	=B3+(B3*TCF)
Fuel Oil Consumption (ISO)g/kW · hr	168.8

Table 5.14 F.O. consumption for B1 ship

Main engine load	90% load
Flowmeter inlet	
Start	121344
Stop	125086
Flow M/E in [L]	3742
Measuring Time [Second]	7211
Flow M/E in, A [L/h]	1868.1
Flowmeter outlet	
Start	89679
Stop	91449
Flow M/E out [L]	1770
Measuring Time [Second]	7200
Flow M/E out, B [L/h]	885.0
Flow M/E in – out, AL [L/h] = (A–B)*C*D	892.0
F.O. temp.	130
Gravity, C	0.9760
Volume at indicated temp., D	0.9296
Engine Output (kW)	4999
g/kW · hr, B3=AL*1000/kW	178.4
Ambient temp.(TI)	26
Conversion factor by ambient temperature TIF=0.002X(25-T1)/10	
TIF=	-0.0002
Charge air coolent temp(T2)	32
Conversion factor by air coolant temperature T2F=0.006X(25-T2)/10)
T2F=	-0.0042
Ambient pressure(P)	1025
Conversion factor by ambient pressure PF=0.0002X(P-1000)/10	
PF=	0.0005
Fuel oil lower calorific value(HF)	9630.0
Conversion factor by lower calorific value HF=(H-10200)/10200	
HF=	-0.05588
Total conversion factor, TCF=TIF+T2F+PF+HF	
TCF=	-0.060
Converted of fuel of F.O. consumption based on ISO(g/kW · hr), B1=	=B3+(B3*TCF)
Fuel Oil Consumption (ISO)g/kW · hr	167.8

Table 5.15 F.O. consumption for B2 ship

상기 Table 5.14와 Table 5.15에서 주기관 90% 부하 기준, B1 선박의 연료소 모량 계측값은 168.8 g/kW·hr 이며, B2 선박의 연료소모량 계측값은 167.8 g/kW·hr 임을 확인하였다.

이 계측값을 하루 단위로 다시 계산하면, B1 선박의 연료소모량은 21.1 tons/day 이고, B2 선박의 연료소모량은 20.1 tons/day 이며, B2 선박이 B1 선박 대비 연료소모량이 4.7% 절감됨을 확인할 수 있었다.

35k 벌크선의 경우, 에너지 저감 장치를 미적용한 동일 사양의 실적선이 없 어 비교 대상이 없으므로, 해당 주기관 모델(5S50ME-B9.2) SNCR의 FOC(22 tons/day)에 비교하였고, B1 선박은 연료소모량이 4.1% 절감되고, B2 선박은 연 료소모량이 8.6% 절감됨을 확인하였다.

그리고 SCHNEEKLUTH duct가 거주구의 진동을 감소시키는 것을 확인하여 비대칭 러더 별브와 뮤이스 덕트를 장착한 선박의 거주구 진동을 Fig. 5.15와 같이 확인해 본 결과, 비대칭 러더 벌브는 허브 와류를 감소시킴으로서 러더의 저항이 감소되어 뮤이스 덕트 대비 거주구의 진동이 최대 약 23% 수준임을 확 인하였고, 뮤이스 덕트는 거주구의 낮은 갑판으로 갈수록 진동이 감소하는 반 면에 비대칭 러더 벌브는 거주구 갑판의 진동을 0.7~0.8mm/s 수준으로 유지하 였다.

Fig. 5.15 Deck house vibration for 35k bulk carriers

5.3 주기관 최적화에 따른 성능 비교

보통 주기관의 70~80% 부하에서 연료의 소모량이 가장 적으므로 선박에 장 착할 주기관을 선박에서 필요한 출력이 NMCR의 70~80%정도인 주기관을 선택 하여 주기관의 최적점(optimizing point)을 조절하면 연료소모량을 줄일 수 있으 며, 이러한 방법을 주기관 de-rating이라고 하였다.

즉, 주기관 de-rating은 선박에서 필요한 출력보다 큰 성능을 내는 주기관을 캠 변경, 조속기(governor)의 셋팅 변경, 공기 냉각기 변경 등 여러 가지 요소 들을 조절하여 주기관의 NMCR을 줄여 연료소모량이 적은 SMCR로 변경하여 연료소모량을 줄이는 방법이다.

상기와 같은 방법으로 34k 벌크선은 주기관 모델이 6S42MC7이었지만 35k 벌 크선은 MC 모델보다 연료소모량이 적은 ME 모델이면서도 선박에서 필요한 출 력보다 큰 성능을 내는 주기관 모델인 5S50ME-B9.2를 선택하고, 선박에서 필요 한 출력만큼 de-rating하여 연료소모량을 하기 Table 5.16과 같이 줄였다.

	<i>⁰</i> ∦	5S50ME-B9.2		
Main Engine Model	6S42MC7	А	B (de-rating)	
Cylinder Bore X	420mm v 1 764mm	500mm v 2 214mm	500mm v 2 214mm	
Stroke	42011111 X 1,70411111	50011111 x 2,21411111	50011111 X 2,21411111	
NMCR	6,480kW at 136rpm	8,900kW at 117rpm	8,900kW at 117rpm	
SMCR	6,480kW at 136rpm	8,900kW at 117rpm	6,050kW at 99rpm	
NCR	5,832kW at 131rpm	8,010kW at 113rpm	5,445kW at 95.6rpm	
SFOC at SMCR	179 g/kW ∙ hr	168 g/kW ∙ hr	162.1 g/kW · hr	

Table 5.16 Comparison with 6S42MC7 and 5S50ME-B9.2

그러나 35k 벌크선은 하기 Fig. 5.16과 같이 축계 T/V를 계산한 결과, Limit 72(tau2)를 초과하여 T/V 댐퍼(damper)를 추가 설치하고 터닝휠 사양을 변경해 야 했으며, 그것으로 인해 초기 투자비용이 증가하였다.

그리고 5S50ME-B9.2는 5기통 주기관으로 진동으로 인한 문제가 많이 발생하 고, 엔진 프로젝트 가이드에서 PRU(Power Related Unbalance) 값이 120~180 Nm/kW 구간에 들어갈 경우, 모멘트 보정기(Moment compensator)를 설치할 것 을 추전하고 있으며, 실제로 35k 벌크선의 계산한 PRU 값이 약 143Nm/kW로 상기 구간에 들어가므로 모멘트 보정기를 추가로 설치해야 했다.

그러나 S50ME-B9 모델은 주기관에 모멘트 보정기를 설치할 수 없는 모델이 어서 하기 Fig. 5.17과 같은 전기식 발란서(electric balancer)를 추가로 설치함에 따라 초기 투자비용이 추가로 증가하였다.

Fig. 5.17 Electric balancer for 35k bulk carrier

상기 내용들을 종합하여 작성한 하기 **Table 5.17**은 6S42MC7과 5S50ME-B9.2 두 모델의 초기 투자비용과 운항비용을 비교한 것이다.

Items	6S42MC7	5S50ME-B9.2	Remark
NMCR	6,480kW at 136rpm	8,900kW at 117rpm	
SMCR	6,480kW at 136rpm	6,050kW at 99rpm	
NCR	5,832kW at 131rpm	5,445kW at 95.6rpm	
SFOC at NCR	177.4 g/kW · hr + 5%	160 g/kW · hr + 5%	
FOC per day	26.1 tons/day	22 tons/day	-4.1 tons/day
Fuel cost (USD/year)	4,384,800	3,696,000	-688,800
Investment (USD)	_	+400,000	+400,000

Table 5.17 Comparison of cost

1년에 280일을 운항하고, 중유(HFO) 가격을 현 시세에 따라 600 USD/ton이라

하면, 5S50ME-B9.2 모델이 6S42MC7 모델보다 연간 1,148톤의 연료를 적게 사 용하며, 연간 688,800 USD를 절약할 수 있고, 초기 주기관 구매 투자비용이 400,000 USD 더 비싸지만, 1년 이후에는 초기 구매 투자비용을 회수하고도 288,800 USD 운항 비용을 절감할 수 있다.

중유의 가격이 상승할수록 초기 구매 투자비용의 회수기간은 더욱 짧아질 것 이며, 5S50ME-B9.2에 의한 연료절감에 따른 이익은 증가한다. 뿐만 아니라 연 료를 적게 사용하게 되므로 배기가스의 배출량 또한 줄어들며, CO₂ 배출 저감 에 의한 이익을 계산하면 5S50ME-B9.2의 de-rating에 의한 이익은 더욱 증가할 것이다.

제 6 장 결 론

본 논문에서는 점차 강화되고 있는 환경 규제와 연료비 상승에 대응할 수 있 는 추진 효율을 향상시키고 연료소모량을 줄이면서 배출가스 또한 줄이는 에너 지 저감 장치와 주기관 최적화를 실선 핸디형 벌크선에 적용하여 운전 성능을 비교 검토해 보았으며, 이 과정에서 얻어진 결과를 요약하면 아래와 같다.

1. PBCF를 적용한 벌크선은 에너지 저감 장치 미적용 선박 대비 선속은 1.3% 증가하였고, 연료소모량은 2.4% 절감되었다.

2. SCHNEEKLUTH duct를 적용한 벌크선은 에너지 저감 장치 미적용 선박 대 비 선속은 6.2% 증가하였고, 연료소모량은 10% 절감되었다. PBCF를 적용한 벌 크선보다 효과가 더 크다.

3. SCHNEEKLUTH duct는 프로펠러로 들어가는 유체의 흐름을 균일류에 가깝 도록 만드는 역할을 함으로써 거주구 갑판의 진동을 0.5~0.7mm/s 수준으로 유 지하였다.

4. Mewis duct를 적용한 벌크선은 비대칭 러더 벌브를 적용한 벌크선 대비 선속은 3.5% 증가하였고, 연료소모량은 4.7% 절감되었다. 해당 주기관 모델 SNCR의 연료소모량 대비 비대칭 러더 벌브는 4.1% 연료소모량이 절감되었고, Mewis duct는 8.6% 연료소모량이 절감되었다.

5. 비대칭 러더 벌브는 허브 와류를 효율적으로 감소시킴으로서 러더의 저항 이 감소되어 거주구 갑판의 진동을 0.7~0.8mm/s 수준으로 유지하였다.

6. 주기관 de-rating을 이용하여 연료소모량을 약 15% 절감할 수 있었고, de-rating에 의한 초기 구매 투자비용이 증가하지만, 연료절감에 따른 운항 비 용 절감으로 짧은 기간 내에 투자비용을 회수할 수 있었다.

본 논문을 통해 핸디형 벌크선에서 SCHNEEKLUTH duct가 다른 에너지 저감 장치들에 비해 전반적으로 연료소모량이 많이 절감되고 추진 성능과 거주구 진 동이 좋음을 확인하였으며, 추후 34k와 35k급 벌크선에 5S50ME-B9 모델의 주 기관과 SCHNEEKLUTH duct 에너지 저감 장치를 같이 적용한다면, 연료소모량 을 더 많이 절감하면서 CO₂ 배출을 줄일 수 있을 것으로 예상된다. 본 논문이 친환경 선박 개발을 위한 자료로 활용될 것으로 기대하며, 앞으로 더 많은 CO₂ 의 배출을 줄인 친환경 선박의 개발을 기대해본다.

참고문헌

- [1] 김경민, 「선박에 기인한 대기오염과 CO₂에 대한 최근 IMO MEPC의 규제경 향과 정책에 관한 연구」, 목포해양대학교 대학원, 석사논문, p.1, pp.37~39, 2010.
- [2] 김철년, 「친환경 Container (tanker) 개발에 관한 연구」, 부산대학교 대학 원, 석사논문, p.1, pp.6~7, 2011.
- [3] IMO, [Second IMO GHG Study 2009, MEPC 59/4/7], p.6, 2009.
- [4] 문원준, 「저속 비대선용 에너지 저감 장치의 개발」, 부산대학교 대학원, 석사논문, p.1, 2013.
- [5] GL, [The "Zero-emission perspective" from a vision to a real perspective / the energy turnaround at sea], p.3, 2013.
- [6] 임종관 등, 「미래형 선박을 활용한 신해양비즈니스 모델 구축 연구」, 한 국해양수산개발원, p.17, 2011.
- [7] KR, FKR TECHNICAL REPORT 2012 J, p.12, p.38, p.86, 2012.
- [8] LR, [Implementing the Energy Efficiency Design Index (EEDI)], p.13, 2012.
- [9] KR, 「에너지효율설계지수(EEDI) 검증 및 국제에너지효율(IEE) 증서 발행」, pp.8~13, 2012.
- [10] MARPOL, 「2011 Amend / Annex VI / Regulation 21 Required EEDI」, pp.1~2, 2013.
- [11] MAN Diesel & Turbo, 「EEDI Energy Efficiency Design Index」, p.10, 2011.
- [12] MARPOL, [2011 Amend / Annes VI / Regulation 2 Definitions], p.3, 2013.
- [13] NK, [Eliminating Propeller Vortices], Technical Essay, p.7, 2007.

- [14] MAN Diesel & Turbo, 「High-efficient Fixed Pitch Propellers」, pp.6~8, 2012.
- [15] Journal of the M.E.S.J., FEffect and Application of PBCFJ, Vol.27, No.9, p.3, 1992.
- [16] J. Kansai Soc. N.A., 「Reduction of Propeller Cavitations Noise by PBC F」, No.216, p.11, 1991.
- [17] Dipl. Ing. Joachim Kessler, 「Use of the wake equalizing duct of Schneekluth design of fast container vessels of medium size」, p.3, p.5, 2004.
- [18] ABS, [Ship Energy Efficiency Measures], pp.19~22, 2013.
- [19] Becker Marine Systems, 「Mewis Duct a new Energy-Saving Device」, pp.25~27, 2010.
- [20] 김동주, 「컨테이너선의 주기관 선정에 따른 연료비 절감에 관한 연구」, 부산대학교 대학원, 석사논문, pp.4~7, p.12, 2012.
- [21] DOOSAN, [Introduction of S50ME-B9 Engine], p.4, 2011.
- [22] DOOSAN, [Tuning method of MAN Diesel & Turbo and Wartsila], p.5, 2012.
- [23] DOOSAN, 「Introduction of Ultra-Long-Stroke G-Type Engine」, p.7, 2012.
- [24] MAN Diesel & Turbo, [Combined Kappel propeller and rudder bulb system for improved propulsion efficiency], p.8, 2012.
- [25] HSVA, [Asymmetric Rudder Bulb for Energy Saving], p.7, p.12, 2013.

감사의 글

설렘과 꿈을 안고 학교 정문을 들어섰던 게 엊그제 같은데, 벌써 2년이라는 시간이 지났습니다.

대학원 수업을 수강하면서 많은 분들을 알게 되었고, 그 분들을 통해 조선 엔지니어로서의 태도와 학습방법을 배울 수 있었습니다. 특히 지도 교수님이신 조권회 교수님은 제 인생의 커다란 선물이었습니다.

본 논문이 완성되기까지 어려운 여건 속에서도 불구하고 항상 지도와 조언을 아끼지 않으시고 제가 대학원을 무사히 마칠 수 있도록 이끌어주신 조권회 지 도 교수님께 깊은 감사의 마음을 드립니다.

부족한 논문이지만 바쁘신 와중에도 시간을 내시어 세심히 다듬어주신 최재 성 교수님과 김정렬 교수님께 진심으로 감사드립니다.

산업체에 근무하면서도 본 학위과정을 마칠 수 있도록 배려해 주신 한국해양 대학교 당국에도 깊이 감사드리며, 아울러 본 논문이 원만히 작성될 수 있도록 도움을 준 전 직장 동료인 박주철 사원에게 깊은 감사를 드립니다.

학업에 매달리느라 무신경 했던 시간을 묵묵히 내조해 준 아내 지선이, 그리 고 주말과 휴일에도 논문을 작성하느라 잘 놀아주지 못해 항상 미안하게 생각 하면서도 눈에 넣어도 아프지 않을 사랑스런 내 인생의 보배 아들 동찬이에게 이 작은 기쁨을 바칩니다.

그리고 지금도 자식들을 위해 고생하시고 한결같은 사랑을 베푸시는 양가 부 모님에게 항상 건강하시기를 기원하며 이 논문을 바칩니다.

