저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

Collection
A study on the air supply and exhaust system affecting smoke ventilation in accommodation area on ship fire
본 논문을 김별의 공학석사 학위논문으로 인준함.

위원장 윤상국 (인)
위원 도덕희 (인)
위원 황광일 (인)

2016년 06월 23일

한국해양대학교 대학원
목차

List of Tables .. v
List of Figs .. vi
Abstract .. ix

1. 서 론
 1.1 연구배경 및 목적 ... 1
 1.2 기존연구 고찰 .. 3
 1.3 논문의 내용 및 구성 .. 5

2. 선박화재특성 및 제연설비 기준
 2.1 선박화재특성과 사고사례 ... 6
 2.1.1 선박화재특징 .. 6
 2.1.2 선박의 화재유형 및 소화요령 ... 7
 2.1.2.1 거주구역의 화재 ... 7
 2.1.2.2 기관구역의 화재 .. 8
 2.1.2.3 화물구역의 화재 .. 10
 2.1.3 선박화재 사고사례 ... 11
 2.2 제연설비 및 관련 기준 .. 12
 2.2.1 제연설비 .. 12
 2.2.2 건축물의 제연설비 관련 기준 .. 13
 2.2.3 선박의 제연설비 관련 기준 ... 15
 2.3 화재위험성 평가기준 .. 16
3. 실내공간의 화재이론 및 연기거동 해석

3.1 화재 및 연기거동 이론 .. 18
3.2 시뮬레이션 툴 및 이론 .. 19
 3.2.1 난류모델 .. 19
 3.2.2 연소모델 .. 20
 3.2.3 복사모델 .. 22
 3.2.4 가시도모델 .. 23
3.3 실내공간 화재 시 급·배기시스템에 따른 연기거동 해석 24
 3.3.1 실내공간의 개요 .. 24
 3.3.2 실내공간의 시뮬레이션 모델링 및 시나리오 25
 3.3.3 실내공간의 급·배기시스템에 따른 연기거동 해석 28

4. 선박화재 시 급·배기시스템에 따른 연기거동 해석

4.1 선박의 개요 .. 41
 4.1.1 선박의 개요 ... 41
 4.1.2 선박의 소화설비 ... 43
 4.1.3 선박의 공기조화 시스템 ... 44
4.2 선박의 시뮬레이션 모델링 및 시나리오 .. 45
4.3 선박화재 시 급·배기시스템에 따른 연기거동 해석 47
 4.3.1 Case 1의 시나리오별 결과 ... 47
 4.3.2 Case 2의 시나리오별 결과 ... 54
 4.3.3 Case 3의 시나리오별 결과 ... 61
4.4 선박화재 시 급·배기시스템 작동방식 제안 및 개선효과 68
 4.4.1 제어성능 향상을 위한 급·배기시스템 작동방식 제안 68
 4.4.2 작동방식에 따른 개선효과 ... 69
5. 결론

참고문헌 ... 80
List of Tables

Table 1 최근 국내 선박화재 사고사례 ... 11
Table 2 제연설비를 설치하여야 하는 특정소방대상물 13
Table 3 통로길이와 수직거리에 따른 배출량 .. 14
Table 4 연기의 농도와 가시거리가 피난에 미치는 영향 16
Table 5 일산화탄소농도가 인체에 미치는 영향 .. 17
Table 6 케이스 별 급·배기시스템 구성 ... 25
Table 7 케이스 별 시나리오 설정 .. 27
Table 8 케이스 별 허용가시도 값에 도달하는 시간 .. 40
Table 9 실습선의 주요 사양 ... 42
Table 10 테크별 주요배치 .. 42
Table 11 실습선에 설치된 화재탐지장치 .. 43
Table 12 AHU의 신선외기 도입용량(OA)과 배기용량(EA) 44
Table 13 허용가시도 값에 도달하는 시간 (Case 1) 51
Table 14 허용가시도 값에 도달하는 시간 (Case 2) 58
Table 15 허용가시도 값에 도달하는 시간 (Case 3) 61
Table 16 허용가시도 값에 도달하는 시간 개선효과 (Case 1) 72
Table 17 허용가시도 값에 도달하는 시간 개선효과 (Case 3) 76
List of Figs

Fig. 1 연도별 국내 여객선 이용객 현황 .. 1
Fig. 2 거주구역 화재 시 소화작업 호흡도 ... 8
Fig. 3 기관구역 화재 시 소화작업 호흡도 ... 9
Fig. 4 실내공간의 조감도 .. 24
Fig. 5 케이스 별 실내공간의 급·배기시스템 구성 26
Fig. 6 Case 1의 시나리오별 복도 연기확산모습 29
Fig. 7 Case 1의 시나리오별 연기확산모습 (평면도) 30
Fig. 8 Case 1의 시나리오별 Device-L의 가시도 31
Fig. 9 Case 1의 시나리오별 Device-R의 가시도 31
Fig. 10 Case 2의 시나리오별 복도 연기확산모습 33
Fig. 11 Case 2의 시나리오별 연기확산모습 (평면도) 34
Fig. 12 Case 2의 시나리오별 Device-L의 가시도 35
Fig. 13 Case 2의 시나리오별 Device-R의 가시도 35
Fig. 14 Case 3의 시나리오별 복도 연기확산모습 37
Fig. 15 Case 3의 시나리오별 연기확산모습 (평면도) 38
Fig. 16 Case 3의 시나리오별 Device-L의 가시도 39
Fig. 17 Case 3의 시나리오별 Device-R의 가시도 39
Fig. 18 운항실습선의 외관 .. 41
Fig. 19 선박의 해석대상 모델링 .. 45
Fig. 20 케이스 별 선박의 급·배기방식 배치 .. 46
Fig. 21 Ⓐ~Ⓑ구역 복도의 연기확산모습 (Case 1) 48
Fig. 22 Ⓐ~Ⓒ구역 복도의 연기확산모습 (Case 1) 49
Fig. 23 ①번 위치에서의 가시도 값 (Case 1) ... 50
Fig. 24 ②번 위치에서의 가시도 값 (Case 1) ... 50
Fig. 25 ③번 위치에서의 가시도 값 (Case 1) ... 51
Fig. 26 ①번 위치에서의 일산화탄소농도 값 (Case 1) 52
Fig. 27 ②번 위치에서의 일산화탄소농도 값 (Case 1) 52
Fig. 28 ③번 위치에서의 일산화탄소농도 값 (Case 1) 53
Fig. 29 Ⓐ-Ⓑ구역 복도의 연기확산모습 (Case 2) ... 55
Fig. 30 Ⓒ-Ⓓ구역 복도의 연기확산모습 (Case 2) ... 56
Fig. 31 ①번 위치에서의 가시도 값 (Case 2) ... 57
Fig. 32 ②번 위치에서의 가시도 값 (Case 2) ... 57
Fig. 33 ③번 위치에서의 가시도 값 (Case 2) ... 58
Fig. 34 ①번 위치에서의 일산화탄소농도 값 (Case 2) 59
Fig. 35 ②번 위치에서의 일산화탄소농도 값 (Case 2) 59
Fig. 36 ③번 위치에서의 일산화탄소농도 값 (Case 2) 60
Fig. 37 Ⓐ-Ⓑ구역 복도의 연기확산모습 (Case 3) ... 62
Fig. 38 Ⓒ-Ⓓ구역 복도의 연기확산모습 (Case 3) ... 63
Fig. 39 ①번 위치에서의 가시도 값 (Case 3) ... 64
Fig. 40 ②번 위치에서의 가시도 값 (Case 3) ... 64
Fig. 41 ③번 위치에서의 가시도 값 (Case 3) ... 65
Fig. 42 ①번 위치에서의 일산화탄소농도 값 (Case 3) 66
Fig. 43 ②번 위치에서의 일산화탄소농도 값 (Case 3) 66
Fig. 44 ③번 위치에서의 일산화탄소농도 값 (Case 3) 67
Fig. 45 Ⓐ-Ⓑ구역 복도의 연기확산 개선효과 (Case 1) 69
Fig. 46 Ⓒ-Ⓓ구역 복도의 연기확산 개선효과 (Case 1) 70
Fig. 47 ①번 위치에서의 가시도 값 개선효과 (Case 1) 71
Fig. 48 ②번 위치에서의 가시도 값 개선효과 (Case 1) 71
Fig. 49 ③번 위치에서의 가시도 값 개선효과 (Case 1) 72
Fig. 50 Ⓐ-Ⓑ구역 복도의 연기확산 개선효과 (Case 3) 73
Fig. 51 Ⓡ-⦁구역 복도의 연기확산 개선효과 (Case 3) 74
Fig. 52 ①번 위치에서의 가시도 값 개선효과 (Case 3) 75
Fig. 53 ②번 위치에서의 가시도 값 개선효과 (Case 3) 75
Fig. 54 ③번 위치에서의 가시도 값 개선효과 (Case 3) 76
A study on the air supply and exhaust system affecting smoke ventilation in accommodation area on ship fire

Byeol Kim

Department of Energy Plant Engineering
Graduate School of Korea Maritime and Ocean University

Abstract

According to Ministry of Public Safety and Security’s statistical data of ship fire, ship fire have occurred more than 74 times every year in recent 5 years. At 2015, 115 accidents of fire and explosion have happened. Due to special environment as sea for ships, it is hard to get support from outside. And complex structure with narrow passages makes rescue harder and can cause many life and property loss. Although air supply·exhaust system makes air flow circulation, ships can’t naturally emit smoke because of high air tight structure. However, if this is not controlled properly, smoke can be spreaded very fast all over the ship when fire occurs. Appropriate smoke control is necessary because more than 85% of life losses is caused by suffocation and toxic gas due to smoke diffusion in fire accidents. However there are no research of smoke diffusion control of ship fire. Therefore in this study smoke movement characteristics by air
supply · exhaust system is studied first in interior area. Then the fire simulation program Fire Dynamics Simulator (FDS), is used to study the influence of design factor on the performance of smoke ventilation on ship fire.

Main Deck is selected throughout Second, Upper and Shelter Deck in Training Ship and simulated by applying the blueprint of where and capacity of air supply · exhaust. The area of fire occurrence is when air supply or exhaust works. Except the area of fire occurrence in Main Deck, scenario is made of 3 cases when air supply · exhaust all works, air supply works or exhaust works.

The result of smoke movement simulation is as followed. When fire occurred while air supply system was working, due to supply of air, irrespective of scenario, smoke have spreaded very fast. And by seeing the reaching time of limit visibility value 5m, it has a little difference between scenario and positions. However it showed that transportation to safe area should be done before 62 seconds. When fire occurred where exhaust system was working, smoke was exhausted but the speed of smoke diffusion was faster than air exhaust speed. So, after 80 seconds of the occurrence of fire, the smoke was full in corridors. And by checking the time of reaching limit visibility value 5m, it is necessary to evacuate the fire occurrence area before 75 seconds. Concluding these results, when ship is on fire, the differences of air supply · exhaust ways also changes the evacuation time by at least 14 seconds. Especially air supply system should be stopped immediately due to fast speed of smoke spreading.

KEY WORDS: Ship 선박; Fire 화재; Air supply · exhaust system 급·배기시스템; 배연성능 Smoke ventilation; FDS.
제 1장 서 론

1.1 연구 배경 및 목적

주5일 근무제 정착과 국민소득 증가로 인한 삶의 수준이 높아짐에 따라 여가 시간을 활용하기 위한 방안으로 국내외 여객선, 크루즈를 이용한 관광산업이 빠른 속도로 성장하고 있다. 이를 증명하듯 Korea Shipping Association (KSA) (2014)에 따르면 Fig. 1에서 볼 수 있듯이 지난 10년간 국내 연안여객선 이용승객수가 2004년 1064만 명에서 2013년 1606만 명으로 50.9% 증가하였으며, 국내 항에 입항하는 크루즈선의 입항횟수 또한 Korea Culture & Tourism Institute (KCTI) (2015)에 따르면 2008년 88회 6만9454명 수준이었던 것에 비해 2014년 461회, 105만7872명으로 증가하였다.

Fig. 1 연도별 국내 여객선 이용객 현황

중대형 여객선과 크루즈선은 승객(여객)을 운송하는 것을 목적으로 하는 선박으로 승객 운송이외에도 숙박 및 식당시설 그리고 오락실, 노래방과 같은 위락시설이 있으며 특히 거주구역의 경우 담뱃불, 전기화재와 같이 선원이나 여객의 부주의로 인해 화재가 발생할 위험이 크다. 특히 거주구역에는 침구 및 직물류, 가구등과 같은 가연성 물질이 많기 때문에 빠른 시간 내에 화재가 확산되어 대형화재로 확대될 수 있다. 또한 선박은 해상이라는 특수한 환경에 위치하고 복잡한 구조로 인하여 화재와 같은 재난 발생 시 외부로부터 지원을 받아도 구조 활동이 어렵기 때문에 대규모의 인명 및 재산피해가 발생될 우려가 있다.

육상건물 구조와 달리 고기밀성 구조인 선박은 내부공기와 외부공기의 자연스러운 환기가 발생하기 어려워 자연적으로 연기를 배출하기 쉽지 않고, 기계식 환기시스템을 이용하여 실내공기를 순환시키지만 선박에서 화재 발생 시 환기시스템을 적절하게 제어하지 못할 경우에는 공조시스템에 의해 연기가 선내 전체로 쉽게 확산될 수 있으며 확산된 연기로 인해 피난활동 시 가시거리 저하와 유독가스 흡입 등으로 대규모 인명피해를 입을 수 있다. 육상의 경우 연기로 인한 피해를 최소화하기 위하여 "제연설비의 화재안전기준(소방방재청, 2012)"에 화재 발생 시 연기제어방법이나 배연방, 배연구 면적 등과 같은 규정이 있지만 해상의 경우 연기제거를 위한 제어장치의 필요성에 대한 기준만 있을 뿐 육상에 비하여 기준이 미흡한 실정이다. 따라서 선박화재 시 실질적으로 연기제어성능을 확보하기 위한 보다 현실적이고 구체적인 기준이 마련되어야
한다. 이에 본 연구에서는 화재구역의 급·배기방식에 의해 발생 가능한 문제점과 고찰하고 선박화재 시 급·배기시스템이 연기확산에 미치는 영향 및 위험성을 평가한 뒤 선박에서 화재발생 시 급·배기시스템을 효율적으로 사용할 수 있는 방안을 제안하는데 그 목적이 있다.

1.2 기존연구 고찰

선박화재와 관련된 연구는 시뮬레이션 툴을 이용한 연구가 주를 이루었으며, 선내의 연기제어와 같은 연구는 찾아볼 수 없었다. 우선 선박 화재시뮬레이션과 관련된 연구의 경우를 정리하면 다음과 같다.

(김원욱 등, 2015)은 해상에서 운행하는 선박의 환경적 특징과 복잡하고 좁은 통로와 같은 구조적 특징으로 인해 선박화재의 위험성을 언급하고 화재해석 프로그램인 fds를 이용하여 선박의 복도폭 및 천장높이 변화와 같이 구조개선을 제안하였다. 그리고 선박의 구조가 인명안전측면에서 어떠한 영향을 미치는지 검토한 뒤, 선박의 복도폭과 천장높이의 개선이 인명안전에 상당한 도움이 되는 것을 확인하였다.

(최진 등, 2007)은 선박의 화재안전성능에 대한 정량적 평가를 위하여 화재시뮬레이션 도구들 중 CFAST 5, FDS 4, KFX 2005, BRI 2002에 대한 도구별 특성과 각 도구들을 이용한 화재시뮬레이션에 필요한 데이터베이스에 대해 분석하고, 선박의 기관실 주변 구획을 대상으로 Pool fire 시뮬레이션을 수행해 해석 결과를 비교 분석하였다. 그 결과 현재 개발된 화재시뮬레이션 도구들은 육상용으로 개발되었기 때문에 실제 선박화재에 적용 가능한 화재특성데이터베이스의 구축이 필요함을 제안하였다.

(황광일 등, 2009)은 선박화재 시 제연설비가 작동하지 않을 경우 연기가 피난자에게 미치는 생리적 피해, 시각적 피해, 심리적 피해에 주목하고 Zone 모델 화재시뮬레이션인 CFAST를 이용하여 선박화재 시 연기온도, 농도에 따른 피난시간을 예측하였다. 그리고 실습선 내에서의 가상모의실험을 통하여 피난
특성을 분석하고 가시율에 따른 생존율을 측정하였다. 그 결과 가시율이 100%일 때의 생존율은 100%이었고, 가시율 27%일 때 생존율 90%, 가시율 8%일 때 생존율 70%인 것을 보고하였으며, 선박화재 시 연기를 제어하여 가시율이 높을수록 생존율을 높일 수 있다는 사실을 확인하였다.

그리고 (한원희 등, 2005)에 의한 연구로 현재 운항중인 여객선의 축소모델을 대상으로 선박 대형공간에서의 연기거동특성에 관한 연구는 찾아볼 수 있었다. 이 연구는 화원의 크기 및 위치에 따라 축소모형 실험을 수행한 후, 모서리형 화재가 연기와 열의 확산이 가장 가파른 상승 곡선을 보이는 것을 밝혔으며 화원의 크기에 따라 연기층이 1.5m까지 도달하는데 걸리는 시간이 44초에서 180초 정도로 차이가 난다는 결론을 얻었다. 그리고 선박 실내공간에서의 화재에 대한 정량적인 데이터를 확보하기 위해서는 개구부의 개폐, 배기팬에 의한 흡입 및 배출 등의 조건을 변경하여 추가 실험 및 연구가 필요함을 제시하였다.

선박을 대상으로 한 연기제어와 관련된 연구는 없었지만, 육상건물의 경우 화재 발생 시, 연기거동특성을 분석하고 효과적으로 연기를 제어할 수 있는 방안을 제안한 연구는 다수 찾아볼 수 있었다.

(김태훈 등, 2011)은 대형공간에서 주로 사용하는 거실급배기 방식에서 급기방식 및 방향에 따른 연기의 이동현상을 위해 CFD 도구인 FDS프로그램을 이용하여 확인해보았다. 그 결과 거실급배기 방식에서 연기의 확산속도가 가장 빨라지는 것을 확인하였고 개선방안으로 급기를 한 방향이 아닌 화재실 인접구역에 나누어 동시에 급기를 실시하여 연기의 확산속도를 줄일 수 있다는 것을 보여주었다.

(김명배 등, 2008)은 대규 지하철 화재가 발생한 중앙로 역사를 1/20 축소모델로 제작하여 연기확산실험을 수행하였으며, 화재발생 시 화재확산구획에서만 배기를 하고 나머지의 구획에서는 배기를 하는 제한방식이 연기확산을 촉진시키는 것을 실험연구를 통한 연기전파시간을 확인함으로써 이를 검증하였다.
(박원희 등, 2007)은 지하철의 승강장에 화재열차가 정차하였을 경우, 여러 제
연모드에 따른 연기하강현상을 실험을 통하여 검토하였으며, 계단 및 터널부에
서 유속을 측정하여 이를 분석하였다. 그 결과 승강장에서 화재가 발생 시, 화
재가 발생한 구역에서만 배연을 하는 것보다 승강장의 모든 제연구역에서 배연
이 작동한 경우 화재연기하강 시간을 더 확보할 수 있다는 결과를 얻었다.

1.3 논문의 내용 및 구성

이 논문은 선박에서 화재발생 시, 제연성능에 영향을 미치는 급·배기시스템
에 관한 연구로 논문의 내용 및 구성은 다음과 같다.

1장에서는 연구배경 및 목적, 기존 연구 고찰, 논문의 내용 및 구성이 포함
되어 있다. 2장은 선박화재특성 및 제연설비 기준으로 선박화재특성과 사고사
례를 조사하고, 제연설비의 개념과 선박 및 육상의 제연설비관련 기준을 다루
었다. 그리고 제연성능 평가지표로 화재위험성 평가기준에 대한 내용이 포함되
어 있다. 3장에서는 실내공간의 화재이론 및 연기거동 해석으로 화재 및 연기
거동 이론, 시뮬레이션 둘 및 주요이론, 실내공간 화재 시 연기유동 시뮬레이션
을 정리하였다. 4장에서는 선박 화재 시 급·배기시스템에 따른 연기거동 해석
을 하고 급·배기시스템 작동 방식에 따른 개선효과를 나타내었다. 그리고 마
지막 5장은 결론 부분으로 위 내용을 종 정리하였다.
제 2장 선박화재특성 및 제연설비 기준

2.1 선박화재특성과 사고사례

2.1.1 선박화재특징

선박에서는 충돌, 침몰, 화재·폭발 등과 같은 해양사고가 발생하는데, 특히 선박화재의 경우 육상에서 발생하는 화재와 다양한 관점에서 그 특징과 성격이 다르다. 선박화재특징을 다음과 같이 정리할 수 있다.

첫째, 선박은 부두에 접안하고 있거나 항구에 정박하고 있는 경우를 제외하고 해상에서 운항중이기 때문에 화재발생 시 해상이라는 환경적 요인으로 인하여 외부로부터 지원을 받기 힘들며, 외부로부터 지원을 받아도 구조활동이 어렵기 때문에 대규모 인명 및 재산피해가 발생될 우려가 있다.

둘째, 선박은 육상건물에 비하여 낮은 천장과 좁은 복도를 가지고, 연료유나 운활유와 같은 인화성물질 사용 및 보유로 인해 화재발생 시 단시간에 대규모 화재로 진전될 가능성이 크다.

셋째, 선박은 선내와 선외 간의 자연스러운 환기가 발생하기 어렵고 고기밀성 구조이기 때문에 연기의 자연배출이 쉽지 않아 기계식 환기시스템에 의한 급기(Supply air)모드와 배기(Exhaust air)모드로 순환기류를 발생시킨다. 하지만 이러한 특징들로 인해 화재발생 지점에서 유출된 연기는 빠른 시간 내에 선박 전체로 확산될 수 있다. 확산된 연기와 유독가스는 화재발생 시 주요한 사상원인 중 하나이며, 연기로 인한 가시거리 저하로 피난활동에 영향을 미치기 때문에 선박 화재로부터 인명피해를 최소화시키기 위해서는 화재 발생 시 환기시스템 유무에 따라 화재거동을 예측하고, 열 및 연기거동을 분석하여 연기제어를 위한 적절한 급·배기 방식 제안과 같은 안전계획을 수립할 필요가 있다.
2.1.2 선박의 화재유형 및 소화요령

선박화재는 화재가 발생하는 구역에 따라 발생요인과 발생장소가 다양하며, 화재발생 원인과 진압 요령이 다르다. 선박의 구역은 크게 3가지로 나눌 수 있으며 그 구역에는 거주구역, 기관구역, 화물구역이 속한다. 거주구역은 선원이나 여객들이 생활하고 머무르는 공간이고, 기관구역은 선박의 추진 장치인 각종 보조기기들이 설치가 되는 구역이며 화물구역은 화물을 실을 수 있는 구역으로 엔진룸과 거주구역을 제외한 구역을 말한다.

2.1.2.1 거주구역의 화재

거주구역에서 발생하는 화재는 승선자의 흡연, 전열기의 과부하와 같이 선원이나 여객의 부주의로 인해 발생할 수 있다. 거주구역에는 침구 및 직물류, 가구 등과 같은 가연성 물질이 많이 있기 때문에 빠른 시간 내에 화재가 확산되어 대형 화재로 확대될 수 있어 (선박기초안전, 2011)에서는 다음과 같은 진압요령으로 화재를 진압하도록 소화 훈련 방법을 제시하고 있다.

첫째, 화재가 발생하면, 즉시 경보를 울려 전 선원에게 알리고 가능한 초기진화를 실시하도록 한다. 둘째, 수동경보나 자동경보가 울리면 비상 소화부서 배치표에서 정한 집결소에 집결하여 소화부서 배치표에 따라 신속히 임무수행지로 이동한다. 셋째, 비상정지버튼(ES-B)을 눌러 거주구역내의 통풍장치를 모두 차단하고, 외부로 통하는 문과 소화에 필요한 곳을 제외하고 전부 폐쇄하여 화재의 확산을 방지한다. 넷째, 휴대식 및 이동식 소화기를 이용하여 화재의 초기진화를 실시하는 동시에 소화펌프를 가동하고 소화전에 소화호스와 노즐을 연결하여 물분무를 실시한다. 이때 문을 열어 소화를 하는 것이 아니라, 문의 하부에 설치된 판넬을 통해 소화수를 창단부로 향하게 하여 진압을 하도록 한다. 다섯째, 화재 진압여부를 확인한 뒤, 잔료 불씨나 연기가 발생되면 즉시 진화하고 완전히 진압되면 거주구역을 개방하고 환기시켜 피해 현장을 조사하도록 한다.

Fig. 2에 거주구역 화재 시 소화작업 흐름도를 나타내었다.
2.1.2.2 기관구역의 화재

선박의 기관구역에는 연료유 및 윤활유 등과 같은 여러 종류의 가연성물질을 포함하여 보일러, 증기기관, 배기관 등의 뜨거운 표면 및 전기장치와 같은 발화원이 설치되어 있으며, 기관 구역 내의 기기 및 통풍 장치에서 공기가 공급되고 있어 선박의 기관구역에는 항상 화재위험에 노출되어 있다. 실제 기관구역 화재의 주원인 또한 발전기의 연료유, 기관의 진동으로 인해 윤활유 배관이 느슨해지고, 풀리게 되어 배관으로부터 새어나온 기름이 고온표면에 접촉하여 인화되는 경우가 있으며 그 이외에도 배전반과 발전기와 같은 전기 기기의 접촉부

Fig. 2 거주구역 화재 시 소화작업 흐름도
와 도체부의 연결 불량으로 인한 과열, 용접, 절단과 같은 열 작업 시, 내장재와 같은 인화성 물질에 옮겨붙여 화재가 발생할 수 있다. 선박에서 기관구역은 엔진, 보일러, 발전기 등과 같은 중요한 장치들이 배치되어 있는 핵심시설이기 때문에 화재로부터 안전하게 대응할 수 있도록 대책이 마련되어야 하며, 다음 Fig. 3과 같이 화재를 진압하도록 하고 있다.

Fig. 3 기관구역 화재 시 소화작업 흐름도
2.1.2.3 화물구역의 화재

선박의 화물구역은 화물을 실을 수 있는 구역으로 컨테이너를 비교적 안전하게 적재할 수 있도록 내측에는 단열보드와 방벽 등을 설치하기 위한 목재류의 족장과, 보온패널, 보온재 설치용 본드 등이 설치된다. 하지만 화재가 발생하면 내측에 설치된 보온패널, 단열재료 등과 같은 가연성재료로 인해 화재가 빠른 속도로 확산될 수 있다. 또한 화물구역은 밀폐구역으로 창문이 없고, 족장으로 공간이 구분되어 있어 화재발생 시 소화작업이 쉽지 않다. 이로 인해 화물구역의 시설물 파괴 및 인명피해로 이어질 수 있다. 따라서 신속하게 화재발생을 감지하여 초기에 화재를 진압할 수 있도록 해야 한다.
2.1.3 선박화재 사고사례

(국민안전처, 2014)의 화재통계연보에 따르면 지난 10년 동안 국내에서 발생한 선박의 화재 및 폭발사고는 1,071건이며 이로 인해 인명 및 재산 피해 또한 발생하였다. 국내에서 발생한 선박화재사고 사례를 아래에 정리하였다.

국내에서는 1994년 기관실의 엔진호로 인해 화재가 발생하고 선실과 감판으로 화재가 옮겨붙어 29명이 사망한 충주호 유람선 화재사고, 2011년 선박화물납치선에 의해 화재가 발생하여 화물차량이 전소된 설봉호 화재사고 그리고 2015년 탱크 내부에서 용접작업 중 불꽃이 인화성이 강한 물질에 옮겨붙어 2명이 사망하고 7명이 부상을 입은 대우조선해양 화재사고 등이 있으며 그 이외에 선박화재 사고와 원인은 아래 표 Table 1에 정리하였다.

<table>
<thead>
<tr>
<th>선명</th>
<th>발생연도</th>
<th>화재발생원인</th>
</tr>
</thead>
<tbody>
<tr>
<td>제9성극호</td>
<td>2006</td>
<td>전기스파크 가 갑판상에 누적된 인화성 가스에 착화되어 폭발</td>
</tr>
<tr>
<td>강진호</td>
<td>2008</td>
<td>연료유관접합부 이완 → 비산된 연료유가 과열된 과급기에 접촉 → 화재</td>
</tr>
<tr>
<td>연화호</td>
<td>2009</td>
<td>항해중 선체동요 → 연료유서비스탱크 공기관(Air vent)으로 연료유 넘쳐 과급기 발생 → 배기관에 접촉 → 화재</td>
</tr>
<tr>
<td>제13덕운호</td>
<td>2010</td>
<td>연료유서비스탱크의 전기식 가열장치 고장 → 연료유 과열 → 유증기 증가 → 유증기가 과열된 히팅코일과 접촉 → 화재</td>
</tr>
<tr>
<td>제809주영호</td>
<td>2011</td>
<td>연료유관 접속부위(Nipple)가 기관진동에 의해 손상 → 연료유 분출 → 배기관 및 과급기에 접촉 → 화재</td>
</tr>
<tr>
<td>두라3호</td>
<td>2012</td>
<td>화물탱크 내부의 가연성 가스를 충분히 배출하지 않은 상태 → 선원의 의복에서 발생된 정전기가 유증기에 착화 → 폭발</td>
</tr>
</tbody>
</table>
2.2 제연설비 및 관련 기준

2.2.1 제연설비

제연설비는 자연 또는 기계적인 방법인(송풍기, 배출기)을 이용하여 연기의 이동 및 확산을 제한하기 위해 사용되는 설비로서 화재 시 발생하는 연기 등을 감지하여 화재실의 연기를 배출하고 피난경로로 사용되는 복도, 계단 등에는 연기가 확산되지 않도록 함으로써 거주자를 연기로부터 보호하고 안전하게 피난할 수 있도록 하고 소방대가 소화활동을 할 수 있도록 연기를 제어하는데 목적이 있다.

제연설비는 송풍기(급·배기용), 방화댐퍼, 제연댐퍼, 배출구, 공기유입구 등으로 구성되어 있으며 화재가 발생하면 연기감지기 작동을 하고 연기감지기의 신호로 제연커튼 및 각종 댐퍼를 동작시켜 구역을 폐쇄하고 흡입구와 배출기를 개방하여 제연설비가 구동되도록 한다. 이러한 제연설비는 크게 두 가지로 구분할 수 있는데 송풍기로 가압시켜 가압공간내로 연기가 들어오지 못하도록 하는 방연(smoke defense)설비와 배출기로 화재실의 연기를 배출시키는 배연(smoke ventilation)설비로 구분할 수 있다.

일반적으로 육상에서는 제연설비가 설치된 장소에 따라 거실제연설비와 특별피난계단의 계단실 및 부속제연설설비로 구분한다. 거실제연설비는 거실이 화재가 발생하는 화재실이기 때문에 화재발생으로 인한 연기와 열기를 직접 배출시키기 위하여 급기와 배기를 동시에 실시하고 배기송풍기를 통해 배출시킨 배기량 이상으로 급기를 하여 피난과 소화활동을 할 수 있도록 한다. 그리고 특별피난계단의 계단실이나 부속실의 제연설비는 화재가 발생한 곳이 아니며 거실에서 화재가 발생할 경우 거주자가 일시적으로 피난을 하거나 소방대가 대기하는 공간으로 볼 수 있다. 따라서 이 구역에서는 급기와 배기를 동시에 실시하는 거실제연설비와 달리 급기만 실시하여 화재실 보다 압력을 높게 함으로서 화재로 인한 연기가 침투하지 않도록 한다.
2.2.2 건축물의 제연설비 관련 기준

육상 건축물에서의 제연설비 관련 기준은 건축법과 소방법에서 각각 찾아볼 수 있다. 건축법에서는 연기제어와 관련된 기준으로 건축법 시행령 제 51조 2항에서 설치해야 하는 대상 건축물을 제시하고 있으며, 그 건축물은 6층 이상인 건축물로서 제2종 근린생활시설 중 공연장 종교집회장, 문화 및 집회시설, 종교시설, 판매시설, 의료시설, 업무시설, 숙박시설, 위탁시설 등이 있다. 이 기준이외에도 건축물의 설비기준 등에 관한 규칙 제 14조에서 배연설비 설치 기준을 찾아볼 수 있다.

건축법 이외에 소방법에서도 제연설비와 관련된 기준을 찾아볼 수 있다. 소방법에서는 제연설비를 설치하여야 할 특정소방대상물을 용도, 규모 그리고 수용인원 등으로 분류하고 있으며 Table 2와 같이 규정하고 있다.

Table 2 제연 설비를 설치하여야 하는 특정소방대상물

<table>
<thead>
<tr>
<th>특정소방대상물</th>
<th>대상물별 제한면적</th>
</tr>
</thead>
<tbody>
<tr>
<td>문화 및 집회시설, 종교시설, 운동시설</td>
<td>무대부 바닥면적 200㎡ 이상</td>
</tr>
<tr>
<td></td>
<td>영화상영관으로서 수용인원 100명 이상</td>
</tr>
<tr>
<td>지하층이나 무창층에 설치된 근린생활시설, 판매시설, 운수시설, 숙박시설, 위탁시설 또는 창고시설</td>
<td>바닥면적 1,000㎡ 이상</td>
</tr>
<tr>
<td>시외버스정류장, 철도 및 도시철도 시설, 공항시설 및 항만시설의 대합실 또는 휴게실</td>
<td>지하층 또는 무창층의 바닥면적이 1,000㎡ 이상</td>
</tr>
<tr>
<td>지하가 (터널 제외)</td>
<td>연면적 1,000㎡ 이상</td>
</tr>
<tr>
<td>지하가 중 길이가 500미터 이상</td>
<td>예상 교통량, 경사도 등 터널의 특성을 고려하여 안전행정부령으로 정하는 위험등급 이상에 해당하는 터널</td>
</tr>
<tr>
<td>특별과난계단 또는 비상용승강기의 승강장</td>
<td>특정소방대상물 (갓복도형아파트 제외)의 부설된 것 (지하3층 이하, 11층 이상의 건물)</td>
</tr>
</tbody>
</table>
제연설비 설치장소는 건물 내의 공간 중 제연구역으로 구획한 곳에 설치해야 한다. 제연구역은 화재에 의해 발생한 연기가 광범위하게 확산하는 것을 방지하고, 동시에 제연효율을 높이기 위해서 구획된 구역을 말한다. 제연설비의 화재안전기준에서는 첫째, 하나의 제연구역의 면적은 1,000㎡ 이내로 하며, 둘째, 거실과 복도를 포함한 통로는 상호 제연구역을 하도록 하고, 셋째, 통로상의 제연구역은 보행중심선의 길이가 60m를 초과하지 않도록 하고 있다. 그리고 마지막으로 넷째, 하나의 제연구역은 직경 60m 원내에 들어갈 수 있도록 한다.

그리고 제연설비에서 하나의 예상제연구역에 대하여 단독제연방식을 적용할 경우 소규모 거실(400㎡ 미만)과 대규모 거실(400㎡ 이상)로 나누어 배출량을 다르게 선정한다. 소규모 거실의 경우 바닥면적별로 배출량을 산정하며 대규모 거실은 제연경계 수직거리(높이) 별로 배출량을 산정한다. 400㎡ 미만의 소규모 거실은 바닥면적 1㎡마다 1㎥/min이상 배출을 하도록 배출량을 정하고 있으며, 각각의 실마다 최저 배출량은 5,000㎥/hr이상이 되도록 적용하고 있다. 그리고 바닥면적이 50㎡ 미만인 예상제연구역을 통로배출방식으로 하는 경우 통로 길이와 수직거리에 따라 배출량을 다음 Table 3과 같이 정하고 있다.

Table 3 통로길이와 수직거리에 따른 배출량

<table>
<thead>
<tr>
<th>통로길이</th>
<th>수직거리</th>
<th>배출량</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>40m 이하</td>
<td>2m 이하</td>
<td>25,000㎥/hr</td>
<td>벽으로 구획된 경우를 포함한다.</td>
</tr>
<tr>
<td></td>
<td>2m초과 2.5m이하</td>
<td>30,000㎥/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5m초과 3m이하</td>
<td>35,000㎥/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3m초과</td>
<td>45,000㎥/hr</td>
<td></td>
</tr>
<tr>
<td>40m 초과 60m 이하</td>
<td>2m 이하</td>
<td>30,000㎥/hr</td>
<td>벽으로 구획된 경우를 포함한다.</td>
</tr>
<tr>
<td></td>
<td>2m초과 2.5m이하</td>
<td>35,000㎥/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5m초과 3m이하</td>
<td>40,000㎥/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3m초과</td>
<td>50,000㎥/hr</td>
<td></td>
</tr>
</tbody>
</table>
2.2.3 선박의 제연설비 관련 기준

선박에서의 제연설비 관련 기준은 해양수산부 고시 “선박방화구조기준(해양수산부, 2014)”에서 찾아볼 수 있다. 선박에서는 육상건물의 제연설비 관련 기준과 달리 통풍장치의 개념으로 관련 기준을 제시하고 있다.

제15조(통풍장치)에서는 통풍장치의 설치기준을 제시하고 있으며 이 기준에는 연기 및 고온가스가 퍽트를 통하여 다른 갑판으로 침입하는 것을 방지할 수 있도록 설치해야 하며, 흡입구와 배기구는 외부에서 쉽게 폐쇄할 수 있도록 폐쇄장치를 설치하도록 하고 있다. 그리고 그 이외에도 통풍용덕트의 단면적에 따라 재료를 정하고 있다. 제16조(중앙홀의 통풍)에서는 중앙홀에서는 10분이내에 공용실의 총용적에 상당하는 용적의 공기를 환기할 수 있는 배기식기계통풍장치를 설치해야한다고 규정하고 있으며 연기탐지기 작동과 연동되며 수동으로도 조작할 수 있어야 한다고 규정하고 있다. 또한 제17조(계단위벽의 통풍)에서는 여객정원이 36인을 초과하는 선박의 계단에서 적합한 통풍장치를 설치하도록 하고 있다. 그리고 제18조(제어장소의 통풍)에서는 또한 제어장소(갑판실, 선루위벽에 인접한 무선실 또는 조타실)에서 흡기식기계통풍장치를 설치하도록 하고 있다. 하지만 선박의 제연설비 관련기준은 건축물의 제연설비 관련기준과 달리 제연방식, 배출량 등과 같은 기준은 찾아볼 수 없으며 통풍장치의 설치 필요성에 관한 규정만 있기 때문에 화재발생 시 연기 제어와 같은 연구를 통해 체계적인 기준 수립이 필요하다고 생각된다.

2.3 화재위험성 평가기준

(NFDS, 2015)에 따르면 화재로 인한 인명피해의 대부분은 열의 직접적인 흡입에 의한 호흡기 손상, 화상 그리고 연기나 유독가스에 의한 질식이나 중독으로 인해 발생하는 것을 알 수 있다. 연기와 유독가스는 인체에 대해 직접적으로 피해를 입힐 뿐만 아니라, 시야확보에도 영향을 주어 피난행동 및 화재진압에도 간접적으로 피해를 끼치기 때문에 연기발생을 최대한 억제하고 연기확산을 제어하는 것이 필요하다.

이 논문에서는 발화를 통해 인체에 영향을 미칠 수 있는 요소 중 가시거리와 일산화탄소농도 값을 예측하였다. 선박의 경우 화재시뮬레이션 수행 시 인명안전기준을 따로 찾아볼 수 없기 때문에 육상에서 적용되고 있는 소방방재청에서 제시한 인명안전기준에 따라 화재위험성을 평가하였다. 소방방재청에서는 가시거리의 경우는 5m, 일산화탄소농도는 1,400ppm을 기준으로 하고 있다. 가시거리는 방해를 받지 않고 눈으로 어떤 물체를 볼 수 있는 거리를 뜻하며 감광계수란 연기 농도에 의해 빛이 감해지는 계수이다. 연기의 농도와 가시거리가 피난에 미치는 영향을 보면 Table 4와 같다.

<table>
<thead>
<tr>
<th>감광계수(m^{-1})</th>
<th>가시거리(m)</th>
<th>상황</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>20~30</td>
<td>연기감지기가 작동할 때의 농도</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>건물내부에 익숙한 사람이 피난에 지�장을 느끼는 정도의 농도</td>
</tr>
<tr>
<td>0.5</td>
<td>3</td>
<td>어두운 것을 느낄 정도의 농도</td>
</tr>
<tr>
<td>1</td>
<td>1~2</td>
<td>거의 앞이 보이지 않을 정도의 농도</td>
</tr>
<tr>
<td>10</td>
<td>0.3~0.5</td>
<td>화재 최성기 때의 농도</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>출화실에서 연기가 분출할 때의 농도</td>
</tr>
</tbody>
</table>
그리고 일산화탄소는 연료가 불완전연소하여 생긴 생성물로서 체내에 산소를 운반하는 역할을 하는 혈액중의 헤모글로빈(Hb)와 결합하여 일산화탄소-헤모글로빈(COHb)를 만들어 혈액의 산소운반능력을 저하시켜 그 농도에 따라서 사망에 이르게 할 수 있다. 일산화탄소농도가 인체에 미치는 영향을 요약하면 Table 5와 같다.

Table 5 일산화탄소농도가 인체에 미치는 영향

<table>
<thead>
<tr>
<th>일산화탄소(CO) 농도 [ppm]</th>
<th>인체에 미치는 영향</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>6~8시간 노출될 경우 두통 및 현기증</td>
</tr>
<tr>
<td>200</td>
<td>2~3시간 내에 경미한 두통 유발</td>
</tr>
<tr>
<td>400</td>
<td>1~2시간 내에 두통 유발</td>
</tr>
<tr>
<td>1,600</td>
<td>20분 내에 두통, 어지러움증 및 미식거림 증상, 2시간 안에 사망</td>
</tr>
<tr>
<td>3,200</td>
<td>5~10분 내에 두통, 어지러움증 및 미식거림 증상, 30분 안에 사망</td>
</tr>
<tr>
<td>6,400</td>
<td>1~2분 내에 두통 및 어지러움 증 발생, 20분 안에 사망</td>
</tr>
</tbody>
</table>
제 3 장 실내공간의 화재이론 및 연기거동 해석

3.1 화재 및 연기거동 이론

화재가 발생하면 연소가스, 화염, 열, 연기와 같은 연소생성물이 발생하는데 특히 연소생성물 중 연기는 화재실 뿐만 아니라 건물전체로 확산되어 거주자의 피난과 소화활동에 영향을 미친다. (NFPA, 2009)에 의하면 연기는 물질이 연소되는 경우 열분해를 거쳐서 발생하는 부유성의 고체나 액체상태의 입자 및 가스로 정의되며 화염보다 빠르게 화재실 내부로 확산되어 화재가 성숙기에 이르기 전에 화재발생구역에 가득 차게 되며, 이로 인해 거주자는 호흡이 힘들고, 신체기능저하로 피난이 힘들게 되며 직접적인 사망원인이 된다.

일반적으로 연기는 열에너지에 의한 부력을 기반으로 확산되며 확산속도는 수평으로는 약 0.5~1m/s, 수직으로는 약 2~3m/s이 속도로 확산된다. 그리고 연기는 벽이나 천장을 따라 유동하며, 계단이나 덕트를 통해서 빠른속도로 상층까지 이동한다.

연기거동에 영향을 미치는 요인은 균특효과, 부력, 팽창, 바람 그리고 공조설비로 말할 수 있다. 균특효과는 공기의 밀도차에 의해 생성되는 공기의 이동을 말하여 공기의 밀도차는 건물 내외부 공기의 온도차 때문에 발생하며, 주로 건물 내 수직동로와 같은 공간에서 공기흐름을 만들어 낸다. 그리고 부력은 화재실의 온도와 화재실과 면한 공간의 온도차로 인한 작은 연돌효과로 말할 수 있다. 또 팽창은 기체는 온도가 올라가면 부피가 팽창하기 때문에 화재로부터 방출되는 에너지는 팽창력으로 인해 연기의 이동을 발생시킨다. 마지막으로 공조설비는 보통 화재감지기와 연동되어 화재가 발생하면 연기의 확산을 방지하기 위하여 공조기를 정지하지만 오히려 연기는 덕트를 따라 부력, 확산과 같은 힘에 의해 확산될 수 있다.
3.2 시뮬레이션 툴 및 이론

이 논문에서는 선박화재 시 급·배기시스템에 의한 연기거동 해석 툴로 미국 국립표준연구소 (NIST, National Institute of Standards and Technology)가 개발한 소프트웨어인 FDS Ver 6.0.1를 이용하였고 (NIST, 2014), 모델링은 Pyrosim 2014를 활용하였다. FDS는 화재 발생으로 인한 열과 연기의 거동을 해석하기 위한 모델에는 난류모델, 연소모델, 복사모델, 그리고 가시도 모델이 있다.

3.2.1 난류모델

난류모델에서는 난류현상을 해석하기 위한 주요모델로 RANS (Raynold-Averaged Navier-Stokes), LES (Large Eddy Simulation), DNS (Direct Numerical Simulation)등이 있지만 FDS에서는 주로 LES와 DNS 기법만 사용한다. 그리고 난류모델에서는 화재해석을 위한 기본방정식으로 연속방정식(1), 운동량방정식(2), 에너지 방정식(3), 이상기체 방정식(4)을 적용하며 다음과 같이 표현된다.

1) Continuity equation:
\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = m_i \] \hspace{1cm} (1)

2) Momentum equation:
\[\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) + \nabla p - \nabla \cdot \tau_{ij} = \rho g + f_b + \nabla \cdot \mathbf{q} \] \hspace{1cm} (2)

3) Energy equation:
\[\frac{\partial (\rho h_s)}{\partial t} + \nabla \cdot (\rho h_s \mathbf{u}) = \frac{Dp}{Dt} + q'' - q'' - \nabla \cdot \mathbf{q} + \epsilon \] \hspace{1cm} (3)

4) Ideal gas equation:
\[p = \rho RT \] \hspace{1cm} (4)

여기서,
\[t \quad = \quad \text{시간} \]
\[\rho \quad = \quad \text{밀도} \]
3.2.2 연소모델

화재 시 발생되는 물질의 연소현상 예측과 관련된 연소모델은 원료와 연소생성물을 최초 및 최종결과의 반응식만으로 수식화한 것으로, 연소 시에 생성된 연기의 분율은 연료와 산소, 연소생성물의 비율로 나타낸다. 다음 식은 가연물\((C_2 H_y O_z N_a M_b)\)과 산소\((V_{O_2}O_2)\)의 연소방정식이다.

\[
C_2H_yO_zN_aM_b + V_{O_2}O_2 \rightarrow V_{CO_2}CO_2 + V_{H_2O}CO + V_sS + V_{N_2}N_2 + V_M M
\] (5)

가연물 질량내의 질소는 \(N_2\)로 가정하며, \(M\)은 연소생성물의 중당 평균 물질량, \(S\)는 연기 그리고 연료의 질량분율 \(V\)의 아래첨자를 \(V\)라고 할 때 \(V\)는 전체의 연소과정에 있어서 산소와 반응하여 생성물 \(P\)를 만들어내는 연료에 대한 화
학양론계수이다.

또한 연소생성물은 산소와 반응하지 않으며 탄소와 수소의 결합을 1이라 한다면 수소의 질량분율은 X_H이고, 탄소의 질량분율은 $(1-X_H)$로 나타낸다. 그리고 S는 연기, 화학양론계수 V_S는 그을음(Soot)로 변한 연료의 양이며 다음과 같은 식으로 표현할 수 있다.

$$\begin{align*}
v_S &= \frac{W_F}{W_S}y_s, \quad W_S = X_H W_H + (1 - X_H) W_C
\end{align*}$$ (6)

여기서,
- W_F = 연료의 분자량
- W_S = 연기의 분자량
- y_s = 연기의 수율
- X_H = 수소원자분율
- W_H = 수소의 분자량
- W_C = 탄소의 분자량

동일한 방법으로 일산화탄소 CO의 화학양론계수 V_{CO}를 수식으로 나타내면 다음과 같으며, 그을음(Soot)이나 CO의 수율은 환기상태나 화염측정값에 근거 한다.

$$v_{CO} = \frac{W_F}{W_{CO}}y_{CO}$$ (7)

여기서,
- W_{CO} = 일산화탄소의 분자량
- y_{CO} = 일산화탄소의 수율
혼합분율 Z 는 연료의 질량분율과 탄소성분의 연소생성물로 정의될 수 있으며, 다음 식으로 나타낸다.

$$Z = Y_F + \frac{W_F}{x W_{CO_2}} Y_{CO_2} + \frac{W_F}{x W_{CO}} Y_{CO} + \frac{W_F}{x W_s} Y_S$$ \hspace{1cm} (8)

여기서,
Y_F = 연료의 질량분율
Y_{CO_2} = 이산화탄소의 질량분율
W_{CO_2} = 이산화탄소의 분자량
x = 연소반응의 전화율

3.2.3 복사모델

화재로 인해 발생된 에너지는 대류, 전도, 복사의 형태로 전달되며, 대류에 의한 열전달은 기본적인 에너지보존법칙을 따르지만 전도나 복사에 의한 열전달은 경계면에서 흡수와 방출의 상호작용이 발생하므로, 복사열의 흡수 및 방출을 계산하는 모델은 기본적으로 완전 복사체 또는 흑체에 적용하는 모델을 설정하였다.

$$I_b(x) = \frac{\sigma T(x)^4}{\pi}$$ \hspace{1cm} (9)

여기서,
$I_b(x)$ = 흑체의 복사강도
T = 물체의 절대온도
σ = Stefan–Boltzmann 상수 ($5.67 \times 10^{-11} kW/m^2 \cdot K^4$)
3.2.4 가시도모델

화재로 인해 발생한 연기가 가시도 감소를 발생시킬 수 있으며, 화재로 인한 그을음이나 타르의 응축물에 의한 연기에 의해 빛이 점점 감쇄된다. 그을음과 타르는 연기를 쉽게 만든다. 빛의 흡수와 산란으로 연기 중에서 가시도가 감소 되는 정도를 감광계수 \(\alpha \)라 하고 측정단위는 \(m^{-1} \)이다. 빛이 연기에 의해 감소 되는 것은 Bouguer의 법칙에 의해 알 수 있다.

\[
\frac{I}{I_0} = \exp(-\alpha \hat{s}) \tag{10}
\]

여기서,
\(I \) = 연기를 통한 빛의 광도
\(I_0 \) = 처음 방출된 광도
\(\hat{s} \) = 투과된 길이
3.3 실내공간 화재 시 급·배기시스템에 따른 연기거동 해석

3.3.1 실내공간의 개요

선박에서 화재 시 공조방식이 연기확산에 미치는 영향을 평가하기에 앞서, 실내공간에서 화재발생 시 급·배기방식에 의해 발생 가능한 문제점을 고찰하기 위하여 가상의 단층 건축물을 연구대상으로 하여 연기확산모습을 확인해 보았다. 건물의 연면적은 90㎡이며 건물의 실 높이(바닥에서 반자까지의 높이)는 2.4m를 적용하여 3개의 Zone과 Zone과 접한 1개의 복도가 있는 형태로 구성하였다. 기본적인 실내공간의 조감도는 Fig. 4와 같다.

Fig. 4 실내공간의 조감도
3.3.2 실내공간의 시뮬레이션 모델링 및 시나리오

이 연구에서는 실내공간에서 화재 발생 시 공조방식이 연기 확산에 미치는 위험성을 평가하기 위하여 화재 발생구역의 급·배기방식을 주요 변수로 설정하였다. Pyrosim 2014를 이용하여 3개 Zone(모델링 상 Zone 01, Zone 02, Zone 03)과 접해있는 복도로 실내공간을 모델링을 하였고, 시뮬레이션을 수행하였으며 Zone 2를 화재실로 설정하였다.

화재가 발생한 Zone 02의 급·배기방식에 따라 케이스를 나누었으며 다음과 같이 설명할 수 있다. 3개 Zone 모두에 급·배기시스템이 있는 경우, 화재가 발생한 Zone 2에는 배기시스템이 작동하고 Zone 01에는 급기시스템이 작동되며 Zone 03에는 아무것도 작동되지 않는 경우, 마지막으로 화재가 발생한 Zone 02에는 급기시스템이 작동되고 Zone 01에는 배기시스템이 작동되며 Zone 03에는 아무것도 작동되지 않는 경우로 케이스를 구성하였으며 정리하면 Table 6과 Fig.5와 같다.

<table>
<thead>
<tr>
<th>케이스</th>
<th>Zone 01</th>
<th>Zone 02 (화재 발생)</th>
<th>Zone 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE 1</td>
<td>급기/배기</td>
<td>급기/배기</td>
<td>급기/배기</td>
</tr>
<tr>
<td>CASE 2</td>
<td>급기</td>
<td>배기</td>
<td>-</td>
</tr>
<tr>
<td>CASE 3</td>
<td>배기</td>
<td>급기</td>
<td>-</td>
</tr>
</tbody>
</table>
발화원은 Fig. 5에서와 같이 Zone 02의 정중앙에서 발화한 것으로 하였다. 그리고 화재의 크기는 0.5m×0.5m이고, 발열량은 50kW를 적용하였다. 그리고 각 Zone에 위치한 급기구와 배기구의 크기는 0.3m×0.3m이며, 용량은 각각 5050㎥/hr, 5000㎥/hr로 설정하였다. 그리고 각 케이스마다 시나리오를 달리하여 시뮬레이션을 수행하였으며 설정한 시나리오를 설명하면 다음과 같다.
급·배기시스템이 모두 작동하지 않는 경우, 급·배기시스템이 작동하는 경우, 배기시스템만 작동하는 경우, 급기시스템만 작동하는 경우로 시나리오를 설정하였다. 그리고 Zone 01과 Zone 03 복도 1.5m 지점에서 Device-L과 R 측정점을 두어 가시거리 값을 측정하였다. 그리고 시나리오 이름과 조건을 정리하면 Table 7과 같다.

Table 7 케이스 별 시나리오 설정

<table>
<thead>
<tr>
<th>시나리오</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nop_Exh_Sup</td>
<td>급·배기시스템이 작동하지 않는 경우</td>
</tr>
<tr>
<td>Exh_Sup</td>
<td>급·배기시스템이 작동하는 경우</td>
</tr>
<tr>
<td>Exh</td>
<td>배기시스템만 작동하는 경우</td>
</tr>
<tr>
<td>Sup</td>
<td>급기시스템만 작동하는 경우</td>
</tr>
</tbody>
</table>
3.3.3 실내공간의 급·배기시스템에 따른 연기거동 해석

(1) Case 1의 시나리오별 결과

Case 1에서 화재발생 시 급·배기방식에 따른 복도의 연기확산모습은 Fig. 6과 같다. 시나리오 Nop_Exp_Sup의 경우 발화 후 60초 후 복도에 연기가 가득 찬 모습을 볼 수 있으며, 시나리오 Exh_Sup의 경우 화재가 발생한 구역에서 급·배기시스템이 모두 작동하며 급기구를 통해 공급된 공기만큼 배기구를 통해 연기가 배출되기 때문에 화재 초기에는 복도에 청결층이 유지되고 있는 것을 볼 수 있다. 그리고 시나리오 Exh의 경우도 화재가 발생한 구역에서 배기시스템 작동으로 인해 발화 40초 후에는 청결층이 유지되고 있는 것을 볼 수 있지만 시나리오 Sup의 경우는 급기구를 통해 공급되는 공기압을 축진시켜 발화 40초 만에 연기가 복도에 가득 차 가시거리 확보가 어려울 것으로 예상된다. Fig. 7은 Zone 02에서 화재발생 시 Case 1의 시나리오 별 연기확산을 위에서 보았을 때의 모습이다.

Fig. 8과 Fig. 9에서는 시간에 따른 시나리오 별 Device-L과 R의 가시거리 감소현상을 볼 수 있다. 시나리오 Nop_Exh_Sup의 경우 화재 초기에 청결층이 유지되며 Device-L과 R에서 각각 53초, 50초에 허용가시도 값인 5m에 도달하며, 시나리오 Exh_Sup의 경우 화재 초기에는 청결층이 유지되고 있지만 시간이 지남수록 배기구를 통한 배출속도 보다 연기확산속도가 빠르기 때문에 Device-L과 R에서 허용가시도 값인 5m에 각각 126초와 123초에 도달하는 것을 알 수 있다. 그리고 시나리오 Exh의 경우도 시나리오 Exh_Sup와 마찬가지로 배기구를 통한 배출속도 보다 연기확산속도가 빠르기 때문에 Device-L과 R에서 가시도가 5m 이하로 감소되는 시간이 각각 56초와 53초에 도달하는 것을 알 수 있다. 마지막으로 시나리오 Sup의 경우는 시나리오 Exh_Sup에 비해 Device-L과 R에서 각각 82초, 81초 빠른 44초와 42초에 허용가시도 값에 도달하는 것을 알 수 있다. 시나리오별 허용가시도 값에 도달하는 시간을 비교하면 급기시스템이 작동하는 경우 가장 위험할 것으로 판단된다.
Fig. 6 Case 1의 시나리오별 복도 연기확산모습
Fig. 7 Case 1의 시나리오별 연기확산모습 (평면도)
Fig. 8 Case 1의 시나리오별 Device-L의 가시도

Fig. 9 Case 1의 시나리오별 Device-R의 가시도
(2) Case 2의 시나리오별 결과

Fig. 10은 화재가 발생한 구역인 Zone 02에서 배기시스템이 작동하고 있는 Case 2의 시나리오 별 복도의 연기확산모습이다. 시나리오 Nop_Exp_Sup의 경우 발화 후 60초 후 복도에 연기가 가득치는 모습을 볼 수 있으며, 시나리오 Exh_Sup의 경우 급기구를 통한 공기공급으로 인한 압력으로 Zone 02에서 연기가 복도로 확산되지 않고 배기구를 통해 연기가 배출되고 있는 모습을 볼 수 있다. 이로 인해 복도는 청결층을 유지하는 것을 알 수 있다. 그리고 시나리오 Exh의 경우 발화 40초 까지는 배기구를 통해 연기가 배출되어 청결층을 유지하고 있지만 연기확산속도가 빨라짐에 따라 복도에 연기가 가득 차는 것을 알 수 있다. 마지막으로 시나리오 Sup의 경우 Zone 01에서 공급되는 공기 압력으로 인해 연기가 Zone 03 앞의 복도로 연기가 쏟리는 것을 확인해 볼 수 있으며, 시간이 지남에 따라 연기가 Zone 01의 복도까지 확장되는 것을 볼 수 있다. Fig. 11은 Zone 02에서 화재발생 시 Case 2의 시나리오 별 연기확산을 위에서 보았을 때의 모습이다.

Case 2의 시간에 따른 시나리오 별 Device-L과 R의 가시거리 값은 Fig. 12 및 Fig. 13와 같다. 시나리오 Nop_Exh_Sup의 경우 Device-L과 R에서 각각 53초, 50초에 허용가시도 값인 5m에 도달하며, 시나리오 Exh_Sup의 경우 Zone 01 급기시스템 영향으로 인해 Device-L과 R에서 각각 허용가시도 값에 도달하지 않고 청결층이 유지되어 가시거리 값을 확인해 볼 수 있다. 그리고 시나리오 Exh의 경우 배기되는 속도보다 연기확산이 더 빠르기 때문에 Device-L과 R에서 허용가시도 값인 5m에 각각 56초와 57초에 도달하는 것을 알 수 있다. 마지막으로 시나리오 Sup의 경우 Zone 03로 연기가 쏟리기 때문에 Device-R에서는 56초에 허용가시도 값에 도달하지만 Device-L에서는 발화 56초 후인 110초에 허용가시도 값에 도달하는 것을 확인할 수 있다.
Fig. 10 Case 2의 시나리오별 복도 연기확산모습
Fig. 11 Case 2의 시나리오별 연기확산모습 (평면도)
Fig. 12 Case 2의 시나리오별 Device-L의 가시도

Fig. 13 Case 2의 시나리오별 Device-R의 가시도
(3) Case 3의 시나리오별 결과

Fig. 14는 화재가 발생한 구역인 Zone 02에서 급기시스템이 작동하고 있는 Case 3의 시나리오 별 복도의 연기확산 모습이다. 시나리오 Nop_Exp_Sup의 경우 발화 후 60초 후 복도에 연기가 가득차 높은 모습을 볼 수 있으며, 시나리오 Exh_Sup의 경우 발화 20초 후 배기시스템이 작동하고 있는 Zone 01로 연기를 흘림 현상으로 인해 Zone 01 앞의 복도에 연기가 집중되어 있는 것을 확인해 볼 수 있다. 그리고 시나리오 Exh의 경우 시나리오 Exh_Sup와 비교했을 때 급기 시스템이 작동하지 않아 화재구역에서 상대적으로 연기 확산속도가 느리기 때문에 배기시스템의 영향을 덜 받는 것을 확인해 볼 수 있다. 그리고 시나리오 Sup의 경우 급기구를 통해 공급된 공기가 연기확산을 촉진시키기 위해 발화 40초 후 연기가 복도 전체로 확산되는 것을 볼 수 있다. Fig. 15는 Zone 02에서 화재발생 시 Case 3의 시나리오 별 연기확산을 위해서 보았을 때의 모습이다.

Fig. 16과 Fig. 17에서 Case 3의 시간에 따른 시나리오 별 Device-L과 R의 가시도 값을 볼 수 있다. 시나리오 Nop_Exh_Sup의 경우 Device-L과 R에서 각각 53초, 50초에 허용가시도 값인 5m에 도달하며, 시나리오 Exh_Sup의 경우 Zone 01의 복도로 연기가 이동하며 점점 Zone 03로 확산되면서 Device-L과 R에서 허용가시도 값인 5m에 각각 25초와 29초에 도달하는 것을 알 수 있다. 그리고 시나리오 Exh의 경우 시나리오 Exh_Sup과 비교하여 상대적으로 연기확산이 느리기 때문에 발화 26초와 22초 뒤인 51초, 56초에 허용가시도 값에 도달하는 것을 알 수 있다. 그리고 시나리오 Sup의 경우 급기시스템으로 인해 연기확산이 촉진되어 Device-L의 경우 발화 34초 후, Device-R의 경우 발화 38초 뒤에 허용가시도 값에 도달하는 것을 볼 수 있다.
Fig. 14 Case 3의 시나리오별 복도 연기확산모습
Case 3의 시나리오별 연기확산모습 (평면도)
Fig. 16 Case 3의 시나리오별 Device-L의 가시도

Fig. 17 Case 3의 시나리오별 Device-R의 가시도
실내공간 화재 시 각 케이스의 시나리오 별 허용가시도 값에 도달하는 시간 결과를 종합해 보면, Table 8에서도 볼 수 있듯이 화재가 발생한 구역에 급·배기방식이 모두 작동하고 있을 때(Exh_Sup) 가시거리를 확보할 수 있는 시간이 많았으며 화재가 발생한 구역에 급기시스템이 작동하고 있을 때(Sup) 가장 위험한 것을 알 수 있다. 그리고 화재발생 시 급·배기시스템이 모두 작동하고 있지 않는 경우(Nop_Exh_Sup)도 급기시스템이 작동하고 있을 경우(Sup) 다음으로 허용가시도 값에 도달하기 때문에 화재 시 급·배기시스템을 중단하는 것은 연기확산제어에 큰 효과가 없는 것을 알 수 있다.

Table 8 케이스 별 허용가시도 값에 도달하는 시간

<table>
<thead>
<tr>
<th>구분</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device-L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nop_Exh_Sup</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Exh_Sup</td>
<td>126 × 25</td>
<td>×</td>
<td>25</td>
</tr>
<tr>
<td>Exh</td>
<td>56</td>
<td>56</td>
<td>51</td>
</tr>
<tr>
<td>Sup</td>
<td>44</td>
<td>110</td>
<td>34</td>
</tr>
<tr>
<td>Device-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nop_Exh_Sup</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Exh_Sup</td>
<td>123 × 29</td>
<td>×</td>
<td>29</td>
</tr>
<tr>
<td>Exh</td>
<td>56</td>
<td>57</td>
<td>56</td>
</tr>
<tr>
<td>Sup</td>
<td>42</td>
<td>56</td>
<td>38</td>
</tr>
</tbody>
</table>
제 4 장 선박화재 시 급·배기시스템에 따른 연기거동 해석

4.1 선박의 개요

4.1.1 선박의 개요

선박에서 화재 시 공조방식이 연기확산에 미치는 영향을 평가하기 위하여 해가기가 되고자 하는 학생들의 승선실습 교육을 목적으로 2005년 12월에 건조된 운항실습선을 연구대상으로 연구를 수행하였다. 실습선은 Fig. 18에서 볼 수 있듯이 총 6개의 Deck로 구성되며 각 Deck의 배치내용은 다음과 같다. 실습생 숙소와 기관실, 체력단련실 등으로 구성된 2nd Deck, 실습생 숙소, 강의실, 학생당직실과 학생실 등으로 구성된 Main Deck, 실습생 숙소, 강의실 그리고 취사실로 구성된 Upper Deck, 항해사실, 기관사실, 교육교관실 등으로 구성된 Shelter Deck, 교수실, 세미나실, 선장실과 기관장실등으로 구성된 Boat Deck, 멀티미디어실과 선교실로 구성된 Navigation and Bridge Deck로 배치되어 있다. 운항실습선의 외관모습은 Fig. 18과 같다.

Fig. 18 운항실습선의 외관
실습선의 길이는 117.2m, 폭은 17.8m 그리고 총톤수는 6,686톤이며 교수 및 승조원 42명과 훈련생 204명 등 총 246명이 승선할 수 있다. 이 실습선의 전반적인 개요는 Table 9에서 정리한 것과 같다.

Table 9 실습선의 주요 사양

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>117.20m</td>
<td>Width</td>
</tr>
<tr>
<td>Gross Ton</td>
<td>6,686GT</td>
<td>DLWL</td>
</tr>
<tr>
<td>People</td>
<td>Total 246 (Crew 42, Trainee 204)</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Max.19, Av. 17.5 kts</td>
<td></td>
</tr>
</tbody>
</table>

실습선의 특성상 선교(실습 선교 포함), 기관실(실습 기관실 포함), 강의실 등을 제외하고는 교수 및 사관구역, 승무원구역, 학생구역으로 구분되어있으며 각 구역별로 식당 및 휴게실, 화장실, 샤워실, 세탁실 등의 편의시설이 배치되어 있다. 많은 인원의 원활한 통행을 위하여 복도의 폭은 1,400mm로 설계되었으며, 각 데크의 천장 높이는 2,000mm이다. 그리고 각 Deck별 주요배치는 Table 10에 정리하였다.

Table 10 테크별 주요배치

<table>
<thead>
<tr>
<th>구분</th>
<th>배치 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navi.&Bri. Deck</td>
<td>선교, Multimedia Room</td>
</tr>
<tr>
<td>Boat Deck</td>
<td>세미나실, 선장실, 기관장실, VIP실, 교수실 (A)-(H), Doctor Room</td>
</tr>
<tr>
<td>Shelter Deck</td>
<td>사관식당, Ship’s Office, 사관회의실, 항해사실, 기관사실 교육 교관실</td>
</tr>
<tr>
<td>Upper Deck</td>
<td>NO. 1 Lecture Room, NO. 1 Reading Room, 현문당직실, 부원구역, 취사실, 학생실 (1)-(8)</td>
</tr>
<tr>
<td>Main Deck</td>
<td>NO. 2 Lecture Room, NO. 2 Reading Room, 학생당직실, 학생실 (10)-(36)</td>
</tr>
<tr>
<td>2nd Deck</td>
<td>학생실 (37)-(52), 기관실, 냉장고, 체력단련실</td>
</tr>
</tbody>
</table>
4.1.2 선박의 소화설비

선박에 설치되려는 소화설비는 해양수산부 고시인 “선박소방설비기준(해양수산부, 2013)에서 그 기준을 찾아볼 수 있으며 소방시설 설치기준은 선박의 종류와 톤수, 선체재질에 따라 다르게 적용되지만 크게 고정식소화설비와 이동식소화설비로 나눌 수 있다. 해석대상 실습선의 소화설비는 다음과 같다.

화재발생 시 화재탐지를 위한 장치인 화재탐지장치가 있으며 실습선에 설치된 화재탐지장치의 경우 화재가 발생하면 화재경보장치의 작동에 따라 Magnetic Holder가 잡고 있는 주요 계단 및 통로의 모든 문을 자동으로 폐쇄하게 함으로써 화재의 확산을 방지하도록 되어있다. 실습선에 설치된 화재탐지장치의 내용 및 수량은 Table 11과 같다. 화재탐지장치 이외에 기관실 화재 및 기관실 내 청정기실 국부 화재를 따로 진압할 수 있는 고정식 이산화탄소(CO2)소화 장치가 있으며 이 장치는 초기에 화재 진화에 실패하였을 때 사용하며 질식효과와 냉각효과를 동시에 얻을 수 있는 효과적인 소화 장치이며, 그 이외에는 기관실의 Main Engine, 발전기실, 청정기실, 보일러실 등에 설치되어 해당 장소의 국부화재를 자동 혹은 수동으로 분무를 발생시켜 타 설비에 비해 소화능력이 탁월해 화재를 신속하게 진화하는데 이용되고 있는 미분무설비 등이 있다.

Table 11 실습선에 설치된 화재탐지장치

<table>
<thead>
<tr>
<th>구분</th>
<th>수량</th>
</tr>
</thead>
<tbody>
<tr>
<td>연기탐지기 (Smoke detector)</td>
<td>281</td>
</tr>
<tr>
<td>열탐지기 (Heat detector)</td>
<td>8</td>
</tr>
<tr>
<td>화염탐지기 (Flame detector)</td>
<td>3</td>
</tr>
</tbody>
</table>
4.1.3 선박의 공기조화 시스템

선박은 육상건물과 달리 해상에 위치하기 때문에 침수에 의한 부력상실을 막기 위하여 완전히 밀폐시키고 창문을 열 수 없는 내수 또는 내화구조로 해야 한다. 이러한 특수한 구조 때문에 선박의 내부와 외부는 외기에 의한 자연통풍이 고려될 수 없어 중앙식 공기조화장치와 기계 통풍장치를 사용하여 선박 내부의 공기를 순환시킨다. 하지만 선박화재 시 기계식 공기조화시스템으로 인하여 연기의 확산을 촉진시켜 승객이나 승무원이 피해를 입을 수 있다. 이러한 이유로 화재발생 시 선박의 공기조화시스템을 적절히 제어함으로써 연기확산을 지연시킬 필요가 있다.

이 실습선의 선실에는 급기(Supply air)중심의 양압(Positive pressure)을, 복도 등은 흡기(Return air)중심의 음압(Negative pressure)의 구조로써 선실내외의 압력차에 의해 선실내 공기가 복도 및 계단 등 개방공간을 거쳐 AHU(Air Handling Unit)으로 환기되는 기류가 형성되도록 설계되었다. 이 실습선에서는 5대의 AHU(Air Handling Unit)으로 6개 테크 전체에 대한 난방과 난방에 대한 환기를 수행한다. 각 테크에서는 수요에 따라 AHU들로부터 환기 및 급기를 통해 공조환경을 제공받는다. Table 12는 각 AHU의 신선외기 도입용량(OA, Outdoor air volume)과 배기용량(EA, Exhaust air volume)을 나타낸 것이다.

<table>
<thead>
<tr>
<th>No. of AHU</th>
<th>Outdoor air volume (OA) [m³/h]</th>
<th>Exhaust air volume (EA) [m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,865</td>
<td>2,965</td>
</tr>
<tr>
<td>2</td>
<td>5,080</td>
<td>3,895</td>
</tr>
<tr>
<td>3</td>
<td>6,145</td>
<td>3,050</td>
</tr>
<tr>
<td>4</td>
<td>6,895</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>6,735</td>
<td>4,485</td>
</tr>
<tr>
<td>Sum</td>
<td>31,720</td>
<td>14,395</td>
</tr>
</tbody>
</table>
4.2 선박의 시뮬레이션 모델링 및 시나리오

이 연구에서는 선박에서 화재 시 공조방식이 연기확산에 미치는 영향을 평가하기 위하여 Pyrosim 2014를 이용하여 실습선의 6개의 deck 중 Main deck의 한 구역을 대상으로 시뮬레이션을 수행하였다. 설계도면 상의 값을 반영하여 모델링에서 급·배기구의 위치, 사이즈 그리고 용량 등을 설정하였고, Fig. 19에서 Main deck의 해석대상 모델링을 확인해 볼 수 있다. 그리고 실내공간에서의 시뮬레이션 시나리오와 동일하게 급·배기방식에 따라 화재위치를 설정하였다. 화재의 크기는 0.5m × 0.5m이고, 발열량은 50kW를 적용하였다. 그리고 각 Zone에 위치한 급기구와 배기구의 총 용량은 각각 2225㎥/hr, 3550㎥/hr이다. 그리고 실내공간의 시뮬레이션과 동일하게 급·배기방식에 따라 케이스를 나누고 1.5m 지점에서 측정점 ①, ②, ③을 두어 가시거리와 일산화탄소농도를 측정하였으며 Fig. 20에 나타낸 것과 같다.

Fig. 19 선박의 해석대상 모델링
Fig. 20 케이스 별 선박의 급·배기방식 배치
4.3 선박화재 시 급·배기시스템에 따른 연기거동 해석

4.3.1 Case 1의 시나리오별 결과

Fig. 21은 Main deck의 해석대상 구역 중 급·배기시스템이 모두 작동하는 곳에서 화재발생 시 Ⓐ-Ⓑ구역 복도의 연기확산모습이다. 시나리오 Nop_Exh_Sup의 경우 40초에서 복도에 연기확산이 시작되고 있으며, 80초에는 연기가 복도에 가득차고 있는 현상을 확인해 볼 수 있다. 시나리오 Exh_Sup의 경우 실내공간에서의 연기거동 시뮬레이션과 마찬가지로 처음에는 급기구를 통해 공급되는 만큼 배기구를 통해 배출되기 때문에 발화 후 40초까지는 청결층이 유지되지만 시간이 지남수록 연기가 Ⓑ구역으로 연기가 쏠리며 발화 120초 후에는 연기가 복도에 확대되어 가득 찬 것을 알 수 있다. 그리고 시나리오 Exh의 경우 화재발생 구역에 배기시스템이 작동하지만 빠른 연기확산속도로 인해 시간이 지남수록 연기가 복도에 가득 차는 것을 알 수 있다. 마지막으로 시나리오 Sup의 경우 화재발생 복도를 배기시스템이 작동하지만 빠른 연기확산속도로 인해 시간이 지남수록 연기가 복도에 가득 찬 것을 알 수 있다. 마지막으로 시나리오 Exh_Sup와 마찬가지로 공급되는 공기의 압력이상으로 연기가 확대되며 복도에 연기가 가득차는 현상을 볼 수 있다.

그리고 Fig. 22는 Main deck의 해석대상 구역 중 급·배기시스템이 모두 작동하는 곳에서 화재발생 시 Ⓒ-Ⓓ구역 복도의 연기확산모습이다. 시나리오 Nop_Exh_Sup의 경우 100초에 연기가 복도로 확산되는 모습을 볼 수 있으며 140초에는 복도 전체로 확산되는 모습을 확인할 수 있다. 시나리오 Exh_Sup의 경우 화재발생 시 급기의 영향으로 Ⓒ-Ⓓ구역 복도까지 연기가 확산되지 않은 것을 알 수 있다. 그리고 시나리오 Exh의 경우 빠른 연기확산속도로 인하여 발화 후 140초에는 Ⓒ-Ⓓ구역 복도까지 연기가 가득 찬 것을 알 수 있다. 마지막으로 시나리오 Sup의 경우 급기의 영향으로 처음에는 청결층이 유지되고 있지만 발화 후 200초에는 연기가 확대되어 Ⓒ-Ⓓ구역 복도까지 연기가 확산된 것을 알 수 있다.
Fig. 21 Ⓐ-Ⓑ 구역 복도의 연기확산모습 (Case 1)
Fig. 22 Case 1: zone 1-1 corridor smoke spreading patterns (Case 1)
Fig. 23 ①번 위치에서의 가시도 값 (Case 1)

Fig. 24 ②번 위치에서의 가시도 값 (Case 1)
Fig. 25 ③번 위치에서의 가시도 값 (Case 1)

Fig. 23-Fig. 25의 Case 1의 각 측정점에서 시나리오 별 가시도 값을 통해 시도 위의 결과를 확인해 볼 수 있다. 그리고 시나리오와 측정점 별 허용가시도 값에 도달하는 시간을 정리하면 Table 13과 같다. 각 시나리오와 위치마다 허용가시도 값에 도달하는 시간이 다르지만 급·배기시스템 모두 작동하지 않는 경우와 급기시스템만 작동하는 경우 ③번 위치에서 화재 발생 시 62초에 허용가시도 값에 도달하기 때문에 다른 시나리오에 비해 가장 위험하다고 판단되었다.

Table 13 허용가시도 값에 도달하는 시간 (Case 1)

<table>
<thead>
<tr>
<th>구분</th>
<th>측정점</th>
<th>①</th>
<th>②</th>
<th>③</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nop_Exh_Sup</td>
<td>①</td>
<td>98</td>
<td>65</td>
<td>62</td>
</tr>
<tr>
<td>Exh_Sup</td>
<td>①</td>
<td>113</td>
<td>83</td>
<td>68</td>
</tr>
<tr>
<td>Exh</td>
<td>①</td>
<td>101</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>Sup</td>
<td>①</td>
<td>112</td>
<td>77</td>
<td>62</td>
</tr>
</tbody>
</table>
Fig. 26 ①번 위치에서의 일산화탄소농도 값 (Case 1)

Fig. 27 ②번 위치에서의 일산화탄소농도 값 (Case 1)
가시거리와 일산화탄소농도 결과 값을 종합하여 보면 발화 후 62초 뒤에 가시거리 값이 허용가시거리 기준 값에 도달하기 때문에 화재 인근 구역에 거주 하고 있는 학생들은 62초 이내에 화재구역을 벗어나야 시야확보에 영향을 받지 않음 것으로 예측되었다.
4.3.2 Case 2의 시나리오별 결과

Fig. 29은 Main deck의 해석대상 구역 중 배기시스템이 작동하는 곳에서 화재발생 시 ⓐ-Ⓑ 구역 복도의 연기확산모습이다. 시나리오 Nop_Exh_Sup의 경우 40초에 복도로 연기확산이 시작되고 있으며, 80초에는 연기가 복도에 가득차고 있는 현상을 확인해 볼 수 있다. 시나리오 Exh_Sup의 연기확산모습을 살펴보면 급기시스템의 영향으로 연기가 ⓡ구역으로 끌려고 있는 현상을 살펴볼 수 있다. 그리고 시나리오 Exh의 경우 화재발생 구역에서 배기시스템이 작동을 하고 있지만 충분한 배기가 이루어지지 못하여 연기가 복도 전체로 확산되는 모습을 볼 수 있다. 마지막으로 시나리오 Sup의 경우도 시나리오 Exh_Sup와 마찬가지로 급기방식의 영향으로 ⓡ구역으로 연기가 쏠리지만 연기가 급기로 가해진 압력 이상으로 확대 되며 약 100초에는 복도 전체로 확대되는 것을 볼 수 있다.

Fig. 30은 ⓢ-ⓣ 구역 복도의 연기확산모습이며, 시나리오 Nop_Exh_Sup의 경우 100초에 연기가 복도로 확산되는 모습을 볼 수 있으며 140초에는 복도 전체로 확산되는 모습을 확인할 수 있다. 시나리오 Exh_Sup의 경우 화재가 발생하고 ⓢ지점에 있는 계단으로 연기가 배출되어 ⓢ-ⓣ 구역 복도에는 청결층이 유지되고 있는 것을 확인해 볼 수 있다. 그리고 시나리오 Exh의 경우 연기가 계단으로 배출되었지만 배출량 이상으로 연기가 발생하여 200초에는 ⓢ-ⓣ 구역 복도에도 연기가 가득 차있는 모습을 확인할 수 있다. 마지막으로 시나리오 Sup의 경우 140초에서 연기확산모습을 보았을 때 급기시스템의 영향으로 시나리오 Exh에 비하여 비교적 연기확산이 지연되고 있지만 발화 후 200초 뒤에는 복도 전체로 연기가 확산된 모습을 확인해 볼 수 있다.
Fig. 29 ①-⑧구역 복도의 연기확산모습 (Case 2)
Fig. 30 Ⓒ-Ⓓ 구역 복도의 연기확산모습 (Case 2)
Fig. 31 ①번 위치에서의 가시도 값 (Case 2)

Fig. 32 ②번 위치에서의 가시도 값 (Case 2)
Fig. 33 ③번 위치에서의 가시도 값 (Case 2)

Fig. 31~Fig. 33는 Case 2의 각 측정점에서 시나리오 별 가시도 값이다. 시
나리오와 측정점 별 허용가시도 값에 도달하는 시간을 정리하면 Table 14와
같다. 시나리오 Exh_Sup의 경우 ①번과 ②번 위치에서 허용가시도 값에 도달
하지 않으며 각 시나리오와 위치마다 허용가시도 값에 도달하는 시간이 다르
지만, 시나리오 Nop_Exh_Sup의 경우 ②번 위치에서 71초에 허용가시도 값에
도달하고 시나리오 Sup의 경우 ③번 위치에서 73초에 허용가시도 값에 도달
하는 것을 알 수 있다.

Table 14 허용가시도 값에 도달하는 시간 (Case 2)

<table>
<thead>
<tr>
<th>구분</th>
<th>측정점</th>
<th>①</th>
<th>②</th>
<th>③</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nop_Exh_Sup</td>
<td></td>
<td>112</td>
<td>71</td>
<td>78</td>
</tr>
<tr>
<td>Exh_Sup</td>
<td></td>
<td>×</td>
<td>×</td>
<td>74</td>
</tr>
<tr>
<td>Exh</td>
<td></td>
<td>117</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>Sup</td>
<td></td>
<td>117</td>
<td>86</td>
<td>73</td>
</tr>
</tbody>
</table>
Fig. 34 ①번 위치에서의 일산화탄소농도 값 (Case 2)

Fig. 35 ②번 위치에서의 일산화탄소농도 값 (Case 2)
Fig. 36 ③번 위치에서의 일산화탄소농도 값 (Case 2)

Fig. 34~Fig. 36은 Case 2의 각 측정점에서 시나리오별 일산화탄소농도 값으로 ①번과 ②번 위치에서는 시나리오 Exh의 경우 일산화탄소에 의한 영향을 받지 않을 것으로 예측되었으며, 나머지 시나리오 Exh_Sup와 Sup의 경우도 Case 1과 마찬가지로 120초 이후 일산화탄소농도 값이 100~200ppm으로 오랜 시간 노출 될 경우 두통과 현기증을 유발할 수 있지만 허용 일산화탄소농도 값에는 미치지 않는 것을 확인해 볼 수 있다.

가시거리와 일산화탄소농도 결과 값을 종합하여 보면 Case 2의 경우도 Case 1과 마찬가지로 시나리오 Nop_Exh_Sup와 시나리오 Sup가 가장 위험하고 시나리오 Exh_Sup가 연기확산 제어에 제일 효과적인 것을 알 수 있다. 그리고 발화 후 71초 뒤에 가시거리 값이 허용가시거리 기준 값에 도달하기 때문에 화재 인근 구역에 거주하고 있는 학생들은 71초 이내에 화재구역을 벗어나야 시야확보에 영향을 받지 않을 것으로 예측되었다.
4.3.3 Case 3의 시나리오별 결과

Fig. 37은 Main deck의 해석대상 구역 중 급기시스템이 작동하는 곳에서 화재 발생 시 A~B구역 복도의 연기확산모습이다. A~B구역 복도 뒤의 구역에서 화재가 발생하였기 때문에 시나리오와 상관없이 A~B구역에서는 발화 후 100초 뒤에 연기의 전파가 시작되는 것을 확인해 볼 수 있으며, 발화 후 140초 뒤에는 연기로 인해 가시도가 현격히 떨어진 것을 알 수 있다. 그리고 Fig. 38은 C~D구역 복도의 연기확산모습으로 시나리오 Exh_Sup와 Sup의 경우 급기시스템의 영향으로 화재 발생 후 80초에는 연기가 복도의 양 끝까지 확산된 것을 확인해 볼 수 있으며 시나리오 Nop_Exh_Sup와 Exh의 경우도 유사하게 연기의 확산이 진행되고 있는 것을 확인해 볼 수 있다.

Fig. 39~Fig. 41의 위치 별 가시거리 5m이하 감소시간을 보면 ①번 위치에서는 시나리오 Nop_Exh_Sup의 경우 66초, 시나리오 Exh_Sup의 경우 64초, 시나리오 Exh의 경우 66초 그리고 시나리오 Sup의 경우 59초로 큰 차이는 없지만 7초 빨리 허용가시거리 값에 도달하는 것을 확인해 볼 수 있다. 그리고 ②번 위치와 ③번 위치에서도 시나리오 Sup일 경우 시나리오 Nop_Exh_Sup에 비해 최대 11초에서 최소 6초 빨리 허용가시거리 값에 도달하는 것을 확인할 수 있으며 Table 15에 정리하였다. 가시거리 결과 값을 통하여 확인해 볼 때 급기시스템이 있는 곳에서 화재가 발생하면 배기시스템작동과 상관없이 연기가 빠른 속도로 확산되는 것을 알 수 있었다.

Table 15 허용가시도 값에 도달하는 시간 (Case 3)

<table>
<thead>
<tr>
<th>구분</th>
<th>측정점</th>
<th>①</th>
<th>②</th>
<th>③</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nop_Exh_Sup</td>
<td></td>
<td>66</td>
<td>104</td>
<td>97</td>
</tr>
<tr>
<td>Exh_Sup</td>
<td></td>
<td>64</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>Exh</td>
<td></td>
<td>66</td>
<td>103</td>
<td>97</td>
</tr>
<tr>
<td>Sup</td>
<td></td>
<td>59</td>
<td>93</td>
<td>91</td>
</tr>
</tbody>
</table>
Fig. 37 (A~B 구역 복도의 연기확산모습 (Case 3)
Fig. 38: 구역 복도의 연기확산모습 (Case 3)
Fig. 39 ①번 위치에서의 가시도 값 (Case 3)

Fig. 40 ②번 위치에서의 가시도 값 (Case 3)
Fig. 41 ③번 위치에서의 가시도 값 (Case 3)

Fig. 42~Fig. 44의 위치와 시나리오 별 일산화탄소농도 값을 보면 화점과 인접한 ①번 위치에서는 발화 후 약 150초 뒤에는 2~3시간 노출 시 두통과 현기증을 야기할 수 있는 200~270ppm이며, ②번과 ③번 위치에서는 약 150초 뒤 100~200ppm 일산화탄소농도를 나타내는 것을 확인해 볼 수 있다. 다른 시나리오와 마찬가지로 Case 3의 경우도 허용 일산화탄소농도에 미치지 않는 것을 확인해 볼 수 있다.

가시거리와 일산화탄소농도 결과 값을 종합하여 보면 급기시스템이 작동하는 곳에서 화재발생 시 시나리오와 상관없이 유사한 양상으로 연기확산이 이루 어지고 있으며, 시나리오 Sup의 경우 ①번 위치에서 발화 후 59초 뒤에 가시거리 값이 허용가시거리 기준 값에 도달하며 위치 별 최소 32초 만에 복도 전체로 연기확산이 진행되기 때문에 화재 인근 구역에 거주하고 있는 학생들은 59초 이내에 화재구역을 벗어나야 하는 것을 가시거리를 확보할 수 있을 것으로 예측 되었다.
Fig. 42 ①번 위치에서의 일산화탄소농도 값 (Case 3)

Fig. 43 ②번 위치에서의 일산화탄소농도 값 (Case 3)
Fig. 44 ③번 위치에서의 일산화탄소농도 값 (Case 3)
4.4 선박화재 시 급·배기시스템 작동방식 제안 및 개선효과

4.4.1 제연성능 향상을 위한 급·배기시스템 작동방식 제안

지금까지 해석 통 FDS를 이용하여 선박에서 화재 발생 구역의 급·배기방식에 따른 연기 이동현상을 살펴보았다. 논문에서 제시된 급·배기방식은 다음과 같이 설명될 수 있다. 급기 방식은 화재 발생 인접구역에 공기를 급기 하여 연기 확산을 지연시키는 것이고, 배기 방식은 화재로 인해 발생한 연기를 배출하는 것을 말한다.

연기거동 시뮬레이션을 통해 급·배기 방식이 연기 확산에 영향을 미치는 것을 알 수 있었다. 특히 급기시스템이 작동하는 곳에서는 화재 발생 시, 급기구를 통해 공급되는 공기로 인하여 화재 확산에 영향을 미치는 것을 알 수 있었으며 배기시스템에 작동하는 곳에서는 화재 발생 시, 배기구를 통해 충분히 연기가 배출되지 않기 때문에 시간이 지남에 따라 연기가 확대되는 것을 확인할 수 있었다. 급·배기시스템의 작동 상태에 따라 선박에서 승선하고 있는 승선자의 피난에 필요한 가용시간이 달라지기 때문에 이 논문에서는 화재 발생 구역의 급·배기시스템의 작동 방법을 개선방안으로 제시하여 연기거동에 어떠한 영향을 미치는지를 살펴보았다.

개선방안을 요약하면 다음과 같이 설명할 수 있다. 첫째로 배기시스템만 있는 곳에서는 화재 발생 시, 화재 감지기 중 연기감지기가 작동을 하면 연기감지기와 연동된 급기시스템을 작동시키 급기에 의한 압력으로 연기가 확산되는 시간을 지연 시키는 개선방안을 제안하였다. 그리고 둘째로는 급기시스템만 있는 곳에서 화재 발생 시, 연기감지기가 작동을 하면 연기감지기와 연동된 급기시스템을 중지시켜 급기에 의하여 연기가 확산되는 것을 지연 시키는 개선방안을 제안하였다. 결과를 정리하면 다음과 같다.
4.4.2 제안방식에 따른 개선효과

(1) Case 1의 개선효과

Fig. 45는 배기시스템이 작동하는 곳에서 화재 발생 시 연기감지기가 작동하면 급기시스템을 작동시켜 급기에 의한 압력으로 연기가 확산되는 시간을 지연시키는 개선방안의 결과이다. 화재가 발생한 구역에서 발화 후 5초 뒤에 연기감지기가 작동하였고 연기감지기가 작동하자마자 급기시스템을 작동시켜 보았다. Fig. 45의 Ⓐ-Ⓑ 구역 복도의 연기확산모습을 보면 알 수 있듯이, 급기시스템 작동으로 인해 발화 후 60초에 Ⓓ 구역으로의 연기 쏠림현상을 볼 수 있다. Ⓐ-Ⓒ 구역 복도에서는 급기시스템을 작동하여도 화재 발생 구역에서 연기가 확대됨에 따라 발화 후 80초에는 복도의 연기기동이 비슷한 것을 알 수 있다.

Fig. 45 Ⓐ-Ⓒ 구역 복도의 연기확산 개선효과 (Case 1)
하지만 Fig. 46 Ⓒ-①구역 복도의 연기확산 모습을 보면 급기시스템 작동에 따라 연기확산 모습이 확연히 차이 나는 것을 볼 수 있다. 연기감지기가 작동하고 급기시스템이 작동되면서 발화 후 100초에는 연기 확산이 시작되고는 있지만 발화 후 140초를 보게 되면 배기시스템만 있는 경우에는 Ⓒ-①구역 복도 전체에 연기가 확산되어 가시거리 확보하기 힘들 것으로 예상되었지만 급기시스템을 작동한 경우는 배기시스템만 작동하고 있는 경우에 비하여 청결층을 유지하고 있는 모습을 확인해 볼 수 있다.

Fig. 46 Ⓒ-①구역 복도의 연기확산 개선효과 (Case 1)
Fig. 47 ①번 위치에서의 가시도 값 개선효과 (Case 1)

Fig. 48 ②번 위치에서의 가시도 값 개선효과 (Case 1)
위의 연기확산모습은 Fig. 47~Fig. 49의 가시도 값을 통해서도 확인해 볼 수 있다. 각 측정점은 Fig. 20과 같다. 시나리오 Exh의 경우는 ①번 위치에서 100초에 허용가시도 값 5m에 도달하지만 급기시스템을 작동시킨 시나리오 Sup_Oper_After_SD는 113초에 허용가시도 값에 도달하는 것을 확인해 볼 수 있다. 그리고 ②번과 ③번 위치에서도 시나리오 Exh의 경우 각각 69초, 83초이며 시나리오 Sup_Oper_After_SD의 경우는 각각 66초, 68초로 급기시스템 작동 시 가시거리 확보에 도움이 되는 것을 확인해 볼 수 있다. Table 16에 개선방안과 위치에 따른 허용가시도 값에 도달하는 시간을 정리하였다.

Table 16 허용가시도 값에 도달하는 시간 개선효과 (Case 1)

<table>
<thead>
<tr>
<th>구분</th>
<th>측정점 ①</th>
<th>측정점 ②</th>
<th>측정점 ③</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exh</td>
<td>100</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>Sup_Oper_After_SD</td>
<td>113</td>
<td>83</td>
<td>68</td>
</tr>
</tbody>
</table>
Fig. 50은 급기시스템이 작동하는 곳에서 화재 발생 시 연기감지기가 작동하면 급기시스템을 작동을 중단시켜 급기에 의해 연기 확산이 촉진되는 것을 지연되도록 한 개선방안의 결과이다. 화재가 발생한 구역에서 발화 후 5초 뒤에 연기감지기가 작동하였고 연기감지기가 작동하자마자 급기시스템의 작동을 중단시켜 보았다. Fig. 50의 Ⓐ-Ⓑ구역 복도의 연기확산모습을 보면 급기시스템 작동을 중단하여도 작동 중단전과 비교했을 때 비슷한 양상으로 연기가 확산되고 있어 복도의 연기거동 개선효과는 크지 않는 것으로 보인다.

Fig. 50 Ⓐ-Ⓑ구역 복도의 연기확산 개선효과 (Case 3)
Fig. 51의 ⑥-⑦구역 복도의 연기확산모습도 ①-⑧구역 복도의 연기확산모습도 급기시스템 작동을 중단하여도 작동 중단전과 비교했을 때 비슷한 양상으로 연기가 확산되고 있어 복도의 연기거동 개선효과는 크지 않는 것으로 보인다. 육안으로 보았을 때는 큰 차이를 알 수 없었기 때문에 Fig. 52~Fig. 54의 가시거리 값을 통해 확인하여 보았다.

Fig. 51 ⑥-⑦구역 복도의 연기확산 개선효과 (Case 3)
Fig. 52 ①번 위치에서의 가시도 값 개선효과 (Case 3)

Fig. 53 ②번 위치에서의 가시도 값 개선효과 (Case 3)
시나리오 Sup의 경우는 ①번 위치에서 62초에 허용가시도 값 5m에 도달하지만 급기시스템을 중단시킨 시나리오 Sup_Stop_After_SD는 65초에 허용가시도 값에 도달하며 3초 뒤에 허용가시도 값에 도달하는 것을 알 수 있다. 그리고 ②번과 ③번 위치에서도 시나리오 Sup의 경우 각각 96초, 104초이며 시나리오 Sup_Stop_After_SD의 경우는 각각 91초, 100초로 개선방안에 따라 각 위치에서 각각 8초, 9초 뒤에 허용가시도 값에 도달하여 급기시스템 중단이 가시거리 확보에 도움이 되는 것을 확인해 볼 수 있다. Table 17에 개선방안과 위치에 따른 허용가시도 값에 도달하는 시간을 정리하였다.

Table 17 허용가시도 값에 도달하는 시간 개선효과 (Case 3)

<table>
<thead>
<tr>
<th>구분</th>
<th>측정점</th>
<th>①</th>
<th>②</th>
<th>③</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exh</td>
<td></td>
<td>62</td>
<td>96</td>
<td>91</td>
</tr>
<tr>
<td>Sup_Oper_After_SD</td>
<td></td>
<td>65</td>
<td>104</td>
<td>100</td>
</tr>
</tbody>
</table>
제5장 결론

국민안전처의 선박화재현황 통계자료에 따르면, 선박에서 발생한 화재는 최근 5년간 매해 74건 이상 씩 발생하고 있으며 2015년도에는 115건의 화재 및 폭발사고가 발생하고 있다. 선박은 고기밀성 구조로 연기를 자연배출하기 쉽지 않고, 급·배기시스템으로 순환기류를 발생시키지만 화재발생 시 오히려 급·배기시스템을 적절히 제어하지 못하면 연기는 빠른 속도로 선박 전체로 확산될 수 있다. 화재사고 시 인명손실의 85%이상이 연기확산에 의한 질식과 유독가스 흡입이기 때문에 선박에서 연기제어와 관련하여 현실적으로 적용한 방안이 필요하다.

이에 이 연구에서는 선박에서 화재가 발생하였을 때, 화재구역의 급·배기방식에 의해 발생 가능한 문제점을 고찰하고 선박화재 시 급·배기시스템이 연기확산에 미치는 영향 및 위험성을 평가한 뒤 선박에서 화재발생 시 급·배기시스템을 효율적으로 사용할 수 있는 방안을 제안하였으며, 연구의 성과를 정리하면 다음과 같다.

(1) 실내공간의 연기거동 시뮬레이션을 통해 화재발생구역의 급·배기방식에 따라 연기거동특성이 다른 것을 확인해 볼 수 있었다. 그리고 화재구역에서 급·배기시스템이 모두 작동하는 경우(Case 1_Exh_Sup)는 발화 후 Device-L에서 126초에 허용가시거리 값인 5m에 도달하고, 배기시스템만 작동하는 경우(Case 2_Exh_Sup)는 가시거리에 영향을 받지 않을 것으로 예측되었으며 마지막으로 급기시스템만 작동하는 경우(Case 3_Exh_Sup)는 25초로 다른 케이스에 비해 가장 빨리 도달하는 것을 알 수 있었다. 이를 통해 화재실에서 급기시스템이 작동하는 경우가 가장 위험하다고 판단되며, 화재구역에서 배기시스템만 작동되는 경우는 화재가 발생한 지점의 인접구역에서 급기시스템을 작동하여 급기구를 통한 공기의 압력으로 연기확산을 지연시키는 것을 확인해 볼 수
있다.

(2) 선박의 경우 각 테크의 설 마다 급·배기방식이 다르기 때문에 실내공간의 연기거동 시뮬레이션과 동일하게 급·배기방식에 따라 케이스와 시나리오를 나누어 시뮬레이션을 수행하였으며 그 결과를 요약하면 다음과 같다.

선박에서 급·배기시스템이 모두 작동하는 경우(Case 1), 배기시스템만 작동하는 경우(Case 2)의 화재발생 시 화재실 인접구역에서는 급기시스템을 작동하는 것이 효과적인 것을 알 수 있었으며 허용가시도 값에 도달하는 시간을 통해 서도 알 수 있다. 위치와 시나리오 마다 차이는 나지만 Case 1에서 시나리오 Exh_Sup인 경우 ①번 위치에서 113초에 도달하였으며 그리고 Case 2에서 시나리오 Exh_Sup인 경우는 ①번 위치에서 청결층을 유지할 것으로 예측되었다. 하지만 Case 1과 2에서 급기시스템을 작동하지 않을 경우(시나리오 Exh)는 Case 1에서는 ①번 위치에서 101초에 도달하였으며, Case 2에서는 ①번 위치에서 117초에 도달하였다. 이를 통해 화재실 인접구역에서 급기시스템을 작동하여 연기가 확산되는 것을 제어하는데 효과적인 것을 알 수 있었다.

그리고 Case 1의 급·배기시스템이 모두 작동하지 않는 경우(시나리오 Nop_Exp_Sup) 각 위치별 시나리오 Sup보다 최대 14초, Case 2의 경우 최대 15초 빨리 허용가시도 값에 도달하는 것을 확인할 수 있었다. 이 결과를 통해 거주구역 화재 시 소화작업 홀름도와 같이 화재발생 시 모든 통풍을 차단하는 것은 효과적이지 않은 것을 알 수 있다.

(3) 실내공간과 선박의 급·배기방식에 따라 연기거동을 확인하여 배기시스템이 작동하는 곳에서는 급기시스템을 설치하여 연기확산을 지연해야하는 것을 알 수 있었으며, 급기시스템이 작동하는 곳에서는 화재발생 시 급기시스템을 중단하여 연기확산이 빠르게 진행되는 것을 막아야 하는 것을 알 수 있었다.

(4) 제연성능을 개선하기 위하여 선박에서 화재발생 시 급·배기시스템 작동 방식을 제안하였다. 배기시스템이 작동하는 곳에서 화재발생 시 연기감지기 작동한 후 급기시스템을 작동시킨 경우 허용가시도 값에 도달하는 시간이 개선 전에 비하여 100초에서 113초로 최대 13초 가시거리가 확보될 수 있는 것을 알 수 있었다. 그리고 급기시스템이 작동하는 곳에서 화재발생 시 급기시스템을
중단할 경우 중단전에 비하여 9초 정도 차이가 나는 것을 알 수 있었다.

(5) 급·배기시스템 작동방식을 제안에 따라 제안 전에 비하여 가시거리가 확보되기는 하지만 화재 인근 구역에 거주하고 있는 학생들은 발화 후 최소 62초 이내에 화재구역을 벗어나야 가시거리를 확보할 수 있을 것으로 예측되었 다.

선박의 경우 선내와 선외 간의 자연스러운 환기가 발생하기 어려운 고기밀성 구조이기 때문에 화재발생 시 연기의 자연배출이 쉽지 않으며 기계식 환기시스템으로 인해 화재발생 지점에서 유출된 연기는 빠른 시간 내에 선박 전체로 확산될 수 있다. 확산된 연기와 유독가스는 화재발생 시 주요한 사상원인 중 하나이기 때문에 연기제어와 관련된 연구가 필요하며 향후 선박 설계 시, 선박화재 시의 연기제어와 같은 점들을 반드시 고려하여야 될 것으로 판단된다.
참 고 문 헌

국토해양부, 2008. 연안여객선 선령제한제도 개선 연구 최종보고서, 국토해양부.

건축법 시행령 대통령령 제26974호

소방방재청, 2013. 제연설비의 화재안전기준(NFSC 501)해설, 소방방재청.

윤귀호 eds., 2011. 선박기초안전, 성학당.

윤주, 2015. 방한 크루즈 관광의 질적 제고방안, 한국문화관광연구원.

중앙소방학교, 2006. 화재성상 메커니즘 연구II, 중앙소방학교.

한국해운조합, 2014. 연안해운통계연보, 한국해운조합.
황광일, 2011. 기계식 환기시스템에 의한 선내 오염물질 확산 특성 예측. 한국마린엔지니어링학회지, 35(8), pp.1124-1131.
황성목, 정민희, 박진철, 안태경, 2016. 지하철 역사 내 화재발생 시 연기거동제어 시뮬레이션연구. 한국생활환경학회지, 23(1), pp.82-89.
해양수산부, 2015. 선박방화구조기준, 해양수산부.
해양수산부, 2015. 해양사고현황, 해양수산부.