工學碩士 學位論文

洗車場 廢水 二段 電解處理

Two Steps Electrolytic Treatment of Car Washing Wastewater

指導教授 金 仁 洙

2001年 2月

韓國海洋大學校 大學院

土木環境工學科 環境工學專攻

朴 成 進

論文 朴成進 工學碩士學位論文 認准

委員長:朴相潤 (印)

委員:金仁洙(印)

委員:鄭柄健(印)

2000年 12月 19日

韓國海洋大學校 大學院

土木環境工學科 環境工學專攻

朴 成 進

List of Tables List of Figures

Abstract

	1
	3
2.1	3
2.1.1	3
2.1.2	5
2.1.3	12
2.2	18
2.2.1	18
2.2.2	19
2.2.3	20
	21
3.1	21
3.2	23
3.3	24
3.4	25

	26
4.1	26
4.2	32
4.2.1	32
4.2.2.	35
4.2.3	38
4.2.4 pH	40
4.3	42
4.3.1	42
4.4.	45

List of Tables

Table 2.1	The cause and countermeasure of the pollutants	
	for each item	18
Table 2.2	Characteristic of Car washing wastewater	
	in Korea	19
Table 2.3	Critical effluent standards of Car washing wastewater	
	in Korea	20
Table 3.1	Characteristics of Car washing wastewater	24
Table 3.2	Analytical methods and instruments	25
Table 4.1	Comparison of characteristics by each treatment	
	method	45

List of Figures

Fig.2.1	The scheme of pollutant removal pathway in electro-chemica	al
	oxidation process.	4
Fig.2.2	Distribution of HOCl and OCl in water at indicated	
	pH levels.	7
Fig.2.3	Voltage versus current.	14
Fig.3.1	Schematic diagram of two steps electrolytic system.	22
Fig.4.1	Voltage versus electrolytic time at various current density	
	with 6mm of electrode clearance.	28
Fig.4.2	Voltage versus current density at various conductivities with	1
	6mm cell clearance at 25 .	29
Fig.4.3	Current versus voltage with variation of choride concentration	on
	at electro-oxidation process.	30
Fig.4.4	Current versus voltage with variation of choride concentration	on
	at electro-coagulation process.	31
Fig.4.5	COD_{Mn} removal rate according to the current density at	
	electro-coagulation process(running condition : conductivity	
	750μ $\odot/cm,$ flow rate 0.2L/min and COD_{Mn} conc.	
	200mg/L).	33
Fig.4.6	COD_{Mn} removal rate according to the current density at	
	electro-oxidation process(running condition : clearance 6mm,	
	conductivity 750μ $\odot/cm,$ flow rate 0.2L/min and	
	COD_{Mn} conc. $200mg/L$).	34

Fig.4.7 COD_{Mn} removal according to the conductivity at electro-coagulation process(running condition : current density 2.0A/dm², flow rate 0.2L/min and COD_{Mn} conc. 200mg/L).

36

41

- Fig.4.8 COD_{Mn} removal according to the conductivity at electro-oxidation process(running condition : clearance 6mm, current density 2.0A/dm², flow rate 0.2L/min and COD_{Mn} conc. 200mg/L).
- Fig.4.9 COD_{Mn} removal according to the clearance at electro-oxidation process(running condition : conductivity 750µ☉/cm, current density 2.0A/dm², flow rate 0.2L/min and COD_{Mn} conc. 200mg/L). 39
- Fig.4.10 Variation of pH according to the current density with conductivity 750µ ⑦/cm and flow rate 0.2L/min.
- Fig.4.11 COD_{Mn}, n-Hexane and Anion Surfactant removal according to the flow rate at electro-coagulation(running condition : CODMn 200mg/L, n-Hexane 5.4mg/L, Anion Surfactant 7.2mg/L).
- Fig 4.12 COD_{Mn}, n-Hexane and Anion Surfactant removal according to the flow rate at electro-oxidation(running condition : CODMn 200mg/L, n-Hexane 5.4mg/L, Anion Surfactant 7.2mg/L).

Two Steps Electrolytic Treatment of Car washing Wastewater

Park Sung Jin

Department of Civil and Environmental Engineering, Graduate School, Korea Maritime University

Abstract

Car washing wastewater which contains nonbiodegradable pollutants such as surfactants, waxes, lubricants and antifreeze which results pollution on water environment. The number of Car washing shop in Korea reach almost 14,000 places and the most part of them have small scale. Therefore there have been some problems in treating Car washing wastewater by biological methods.

This study was conducted to treat Car washing wastewater by two steps electrolytic process using dimensionally stable anode(titanium coated with IrO₂) and stainless cathode(H-C metal). First step is electro-coagulation process packed bi-polar media between main electrode. Second step is electro-oxidation process to degrade remain soluble organic matters.

The optimum electrolytic conditions such as current density, electrode clearance, conductivity, pH and reaction time etc. were studied in this paper. And the capacity of each step and economic comparativeness with traditional methods were determined. Through this study, it is confirmed that two steps electrolytic process is an effective method to treat Car washing wastewater in Korea.

- 1 -

가

•

,

•

•

.

가

가

,

(12)(13).

가

,

	DSA (Dimensionally	Stable	Anode)	T i-IrO ₂		
H-	С					
	2		. 2			
			,	,		
				,		
		가				2
					가	

•

2.1
 2.1.1

.

Fig.2.1

•

.

•

•

•

가

1)

가 (14). 가.

(15).

•

(c) Indirect oxidation

Fig.2.1 The scheme of pollutant removal pathway in electro-chemical oxidation process(16)(17).

$$aO_{A} + bO_{B} + \dots + ze^{-} \Leftrightarrow pR_{p} + qR_{Q} + \dots$$
[1]

$$. O_{A}, R_{P} \qquad A$$

$$P \qquad 7^{1} \qquad () \qquad , ()$$

$$. \qquad (I) \qquad .$$

$$(i=I/S, S \qquad) \qquad .$$

2.1.2

.

1)

Anode :
$$H_2O + H_2O \rightarrow H_3O^+ + OH^- + e^-$$
 [2]

Cathode :
$$2H_2O + e^- \rightarrow OH^- + H_2O + H^+$$
 [3]

Total reaction :
$$H_2O \rightarrow H^+ + OH^-$$
 [4]

. [3] H⁺ OH⁻ 1 (F) 1 . 7 pH 7 (18). 2)

(HOCl) (OCl⁻) ()

•

,

•

Anode : $2C1^{-} \rightarrow C1_2$ (dissolved) + $2e^{-}$ [5] Cathode : $2H_2O + 2e^{-} \rightarrow 2OH^{-} + H_2$ [6] Between the electrodes : $C1_2 + H_2O \rightarrow HOC1 + C1^{-} + H^{+}$ [7] $HOC1 \rightarrow OC1^{-} + H^{+}$ [8]

[5]

.

가.,[6]

[7]

•

	pН	HOCl	OCL	Fig.2.2
pH 7.5		HOCI,	рН 7.5	OCl

•

Fig.2.2 Distribution of HOCl and OCl in water at indicated pH levels(19)

 $6HOC1 + 3H_2O \rightarrow 3/2O_2 + 2ClO_3^- + 4Cl^- + 12H^+ + 6e^-$ [12]

•

1 (22).

•

1.5 가

,

pH (21).

•

$$ClO_3 + H_2O + 6e^- \rightarrow Cl^- + 6OH^-$$
[11]

$$OCl^{-} + H_2O + 2e^{-} \rightarrow Cl^{-} + 2OH^{-}$$
[10]

가

$$2OH^{-} + Cl_{2} \rightarrow ClO^{-} + H_{2}O + Cl^{-}$$
[9]

•

•

(20).

가

•

가

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$
 [13]

Kelsall *et al.*(1984), Krstajic *et al.*(1987) Czarmetzki and Janssem(1992)

$$6OC1^{-} + 3H_2O \rightarrow 3/2O_2 + 2C1O_3^{-} + 4C1^{-} + 6H^{+} + 6e^{-}$$
 [14]

1 2 (22)(23).
Solution :
$$2HOC1 + OC1^{-} \rightarrow C1O_{3}^{-} + 2C1^{-} + 2H^{+}$$
 [15]

or
$$HOC1 + 2OC1^- \rightarrow C1O_3^- + 2C1^- + H^+$$
 [16]

40 50 가 (24).

•

3)

가 . [17]

•

(25). $x \operatorname{M}^{n+} \rightarrow x \operatorname{M}^{(n+1)+} + x \operatorname{e}^{-}$ [17] $x \operatorname{M}^{(n+1)+} + \operatorname{reacting agent} \rightarrow x \operatorname{M}^{n+} + y \operatorname{CO}_{2}$ [18]

$$(MO_{x+1})$$
[22]

$$H_{2}O + MO_{x} \rightarrow MO_{x} [OH^{-}] + H^{+} + e^{-}$$
[21]

$$MO_{x} [OH^{-}] \rightarrow MO_{x+1} + H^{+} + e^{-}$$
[22]

$$(R)$$

$$, ...$$

$$R + MO_{x} [OH^{-}]_{z} \rightarrow CO_{2} + zH^{+} + ze^{-} + MO_{x}$$
[23]

$$DH^{-}] \rightarrow M[] + RO + H^{+} + e^{-}$$
[20]

(M[])

.

,
[20]
(26)(27).
$$R + M[OH^{-}] \rightarrow M[] + RO + H^{+} + e^{-}$$
[20]

[21]

$$H_2O + M[] \rightarrow M[OH^-] + H^+ + e^-$$
[19]

가

RO

.

Andre(1995)

(20).

 (MO_x)

[13]

$$H_2O + M[] + Cl^- \rightarrow M[HOC1] + H^+ + 2e^-$$
[24]

•

.

$$R + M[HOC1] \rightarrow M[] + RO + H^{+} + C1^{-} + 2e^{-}$$
[25]
[13] 7

•

$$\begin{split} \mathrm{NH}_{2}\mathrm{CH}_{2}\mathrm{COOH} + & [\mathrm{O}] \to \mathrm{NH}_{3} + \mathrm{HCHO} + & \mathrm{CO}_{2} & [26] \\ \mathrm{C}_{6}\mathrm{H}_{6} \to \mathrm{C}_{6}\mathrm{H}_{4}(\mathrm{OH})_{2} \to \mathrm{C}_{6}\mathrm{H}_{4}\mathrm{O}_{2} + & 2[\mathrm{H}] \to \mathrm{C}_{4}\mathrm{H}_{4}\mathrm{O}_{4} + & 2\mathrm{CO}_{2} & [27] \\ \mathrm{Kirk} \ et \ al.(1985) \quad \mathrm{Aniline} & \\ \cdot \ \mathrm{Benzoquinone} & & 7 \mathrm{h} & \mathrm{Maleic}, \\ & , & [13] & (28). \end{split}$$

 $C_{6}H_{3}N + 2H_{2}O = C_{6}H_{4}O_{2} + NH_{4}^{+} + 4e^{-}$ [28] $C_{6}H_{4}O_{2} + 6H_{2}O = C_{4}H_{4}O_{4} + 12H^{+} + 2CO_{2} + 12e$ [29]

$$C_4H_4O_4 + 4H_2O = 12H_2O + 4CO_2 + 12e$$
 [30]

(29).

,

.

4)

,

(30).

,

OH

,

 $Fe(OH)_2$, $Fe(OH)_3$, $Al(OH)_3$, (31).

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$
[31]

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$
[32]

$$\operatorname{Fe}^{3+} + 3\operatorname{OH}^{-} \rightarrow \operatorname{Fe}(\operatorname{OH})_{3} \downarrow$$
 [32]

$$A1 \rightarrow A1^{3+} + 3e^{-}$$
[33]

$$A1^{3+} + 3OH^{-} \rightarrow A1(OH)_{3} \downarrow$$
[34]

가

,

•

$$Fe^{n+}$$
 Al^{3+} OH^{-}

,

,

•

2.1.3 1) (Metallic Conductor)

.

.

,

(Cation),

•

•

(34).

•

.

가

(Conductivity)가 (35)(36),

가

(16)(37). Kotz et al.(1991)

가

Sb, F, Cl 가

2)

(Al), (Fe),

(Ni),

(Cu),

(Zn),

(Cd)

•

- 14 -

	(Corrosion)	(Anodic s	semi-
reaction)			
	,		H_2 ,
Cl_2	가		
•			
		•	
	가	:	가
	, 가		
	(40). Tsai <i>et al.</i> (1997)		
	, VOC CO ₂		
(41). Gro	terud and Smoczynski(1986) , ,		
	가	(42), 官崎	淸
(1993),	(1998) Lin and Wu(1996)		
		(43)-	(45).
	(Pt), (Au), (Ti)		
	DSA (Dimensionally Stable Anode)	(Ir),	(Ru)
	(Pd)		. ,
가	(· , , , , , , , , , , , , , , , , , ,		
	가		
			71
•			~1
	٦L		
	. 1		

- 15 -

	()	1g
	가		
			amp/cm^2 , amp/dm^2
milliamp/ cm ²		. 가	
가.			
			가
	가 (46).		
가		가	
가		(46)(47).	

,

•

•

,

- 16 -

가

,

•

•

.

.

,

(Electrochemical polarization) , . 가 *i* , [35] . $\eta = |E - E^e|$ [35] i E Ee . 가 , , 가 . 가 가 ,

가

•

,

•

2.2.1

. Table 2.1

•

Table 2.1 The cause and countermeasure of the pollutants for each item

•

Items	Cause	Countermeasure
рН		
COD	, , ,	
SS	, ,	
n-Hexane	, , ,	
ABS		

Table 2.2

.

가 가

,

LAS ABS

•

, ,

It em s	1996		1996		2000	
рН	8.5	9.7	5.8	7.9	7.5	7.7
COD	140	210	50	656	33	162
SS	135	210	384	441	35	128
n-Hexane	12	35	12	24	8.0	56.0
ABS	2	5	1	3.5	2.3	7.5

Table 2.2 Characteristic of Car washing wastewater in Korea

2.2.2

가 가

.

		가			
, 가	,		,		
				가	

COD가 pH . 가 가

가 가 가

가

- 19 -

•

2.2.3		
Table 2.3		, 가
,	pH, COD, SS, n-Hexane	
, ABS	(48).	

Item s	"		<i>66</i> ??	
рН	5.8 86	5.8 86	5.8 86	
COD(mg/L)	50	90	130	
SS(mg/L)	40	80	120	
n - Hex ane (mg/L)	1	5	5	
ABS(mg/L)	3	5	5	

Table	2.3	Critical	effluent	stan	dards	of	Car	washing	wastewater
in Korea									

Fig.3.1				2	
			가		
				(T i)	
(IrO_2)			,	H-0	C Metal
				0.2mm,	가
2001	nm, 95mm .				
		260mm ×	130mm ,		25mm
	0.85L	,			1:1
가	가				
	200mm, × 90mm	,		(1994)가	
	6mm		(49).		
	Peris	staltic Flow	v Pump		
		,			
	250V,	가 10	00Amper	가	
		D.C. Powe	r Supply		

- 1. Inlet Reservoir
- 2. Feed Pump
- 3. Packed Bi-Polar Electrolytic Reactor
- 4. Floating Separate Tank
- 5. Outlet Reservior
- 6. D.C. Power Supply
- 7. Electrolytic Oxidation Reactor

Fig.3.1 Schematic diagram of two steps electrolytic system

COD_{Mn}, n-Hexane, Anionic Surfactants

,

가

COD_{Mn}, n-Hexane, Anionic Surfactants, TOC, pH, Temperature, Zeta Potential, Conductivity

,

, ,

,

.

가

•

.

100 500mg/L 가

,

 $\begin{array}{cccc} 0.05 & 0.3 L/\min & , & D.C. \end{array}$ Power Supply $\begin{array}{cccc} 0.13 & 4.15 A/dm^2 \end{array}$

가

•

SDS (Sodium

,

Dodecyl Sulfate)

4

NaCl

Table 3.1 .

β	Table 3	3.1	Characteristics	of	Car	washing	wastewater
---------	---------	-----	-----------------	----	-----	---------	------------

,

Analysis Items	Unit	Range		Average
COD _{M n}	mg/L	120	300	180
n-Hexane	mg/L	5	10	5.4
Anionic Surfactants	mg/L	5	10	7.5
SS	mg/L	30	150	72
pH		6.5	8.5	7.8
Conductivity	µ♂/cm	350	680	580
Zeta potential	mV	- 10	- 24	15
Temperature		21	25	22

COD_{Mn}, n-Hexane, Anionic Surfactants,

SS, pH, Conductivity, Zeta potential, Temperature

Standard Method

Table 3.2

,

.

Analysis Items	Instruments	Methods
тос	SHIMADZU	
100	T OC - 5000A	-
COD		T itrim etric
COD _{M n}	-	(Closed reflux)
n-Hexane	HORIBA OCMA-300	-
Anionic Surfactants	-	Methylene Blue
C C		Fitering
22	-	(GF/C filter, Whatman)
pH, Temperature	HORIBA DM-21	pH Electrode
Conductivity	LC-84	-
Zeta potential	Zeta-Meter 3.0+	-

Table 3.2 Analytical methods and instruments

•

	бтт	25 ,	25 ,		
가	1500µ♂/cm				
		Fig.4.1			
Fig.4.1					
	20				
가					
		가	가		
Fig.4.2					
			1		
	,				
	(46).				
Fig.4.3	6mm		가		
100	500mg/L				
	가	가	,		
가	가	. '	Costaz		
가		,			
Fig.4.4		가	100		
500mg/L					

Fig.4.1 Voltage versus electrolytic time at various current density with 6mm of electrode clearance

Fig.4.2 Voltage versus current density at various conductivities with 6mm cell clearance at 25

Fig.4.3 Current versus voltage with variation of choride concentration at electro-oxidation process

Fig.4.4 Current versus voltage with variation of choride concentration at electro-coagulation process

4.2					
4.2.1					
2				COD _{M n}	
200 mg/L,		750µ♂/cm,	0.2L/ min		
0.5	2.5A/c	lm ²	. Fig.4	.5, Fig.4.6	
,					
		COD _{M n}		가	
가		$2.0A/dm^2$		4	
	가가	8	가	60)%
			(1999)		
		Naumczyk	(1996)		
		가		가	
$\text{COD}_{M n}$		가		(15)(50).	
			7 2.0A/dm	2	,
		,	58%, 65%	,) .	

Fig.4.5 COD_{Mn} removal according to the current density at electro-coagulation process(reactor condition : conductivity 750 μ \odot /cm, flow rate 0.2L/min and COD_{Mn} conc. 200mg/L)

Fig.4.6 COD_{Mn} removal according to the current density at electro-oxidation process(reactor condition : clearance 6mm, conductivity 750 μ $^{\circ}/^{\circ}$ cm, flow rate 0.2L/min and COD_{Mn} conc. 200mg/L)

4.2.2

가 (1992) (16)(51). Fig.4.7, Fig.4.8 COD_{M n} $2.0A/dm^{2}$, 200mg/L, 0.2L/min . COD_{M n} 100 500mg/L . 5 750µ♡/cm , 50% 15 , 가 750µ♡/cm 50% 가 가 . $COD_{M\,n}$ 가 . Chiang et al.(1997) (1999) 가 가 가 가 , 가 가 가 가

•

, ,

.

Mendia(1982)

Fig.4.7 COD_{Mn} removal according to the conductivity at electro-coagulation process(reactor condition : current density $2.0A/dm^2$, flow rate 0.2L/min and COD_{Mn} conc. 200mg/L)

Fig.4.8 COD_{Mn} removal according to the conductivity at electro-oxidation process (reactor condition : clearance 6mm, current density 2.0A/dm², flow rate 0.2L/min and COD_{Mn} conc. 200mg/L)

4.2.3

Fig.4.9 COD_{Mn} removal according to the clearance at electro-oxidation process(reactor condition : conductivity $750 \,\mu$ $^{\circ}/_{cm}$, current density $2.0A/dm^2$, flow rate $0.2L/_{min}$ and COD_{Mn} conc. 200mg/L)

4.2.4 pH

		pH		750
µ♂/cm,	0.2L/min		0.5	2.5 A/dm^2
		Fig.4.10	가	pН
	. pH			가
,		가 가	pH 7	5
,	pH	9 7		
가		\mathbf{H}^+		OH
	,	OH		
		,		
	\mathbf{H}^{+}	pH가		•
	가 가			
	가 가	OH	가	,
	pH가			

Fig.4.10 Variation of pH according to the current density with conductivity $750\,\mu$ \odot/cm and flow rate 0.2L/min

4.3.1			
	$2.0A/dm^{2}$,		750 µ
♂/cm,	, 25mm, 6mm		
	COD _{Mn} , n-Hexane, Anion Surfactant		
Fig.4.11, Fig.4.12			가
	7} , 0.15L/min		
가 .			
가	가		
	n-Hexane		
	,		
가 가	. n-Heane	가	
7			
가			

Fig.4.11 COD_{Mn}, n-Hexane and Anion Surfactant removal according to the flow rate at electro-coagulation(running condition : CODMn 200mg/L, n-Hexane 5.4mg/L, Anion Surfactant 7.2mg/L)

Fig 4.12 COD_{Mn}, n-Hexane and Anion Surfactant removal according to the flow rate at electro-oxidation(running condition : CODMn 200mg/L, n-Hexane 5.4mg/L, Anion Surfactant 7.2mg/L)

,

.

가 ,

•

Jar-test

Table 4.1

Table 4.1 Comparison of characteristics by each treatment method

2	
COD _{Mn} : 90%	COD _{Mn} : 68%
n-Hexane : 82%	n-Hexane : 47%
ABS : 92%	ABS : 45%
Current density : $2.0A/dm^2$	Al ₂ (SO ₄) ₃ : 200mg/L
Conductivity : 750µ♂/cm	NaOH : 120mg/L
Flow rate : 0.15L/min	Polymer : $12mg/L$
$\frac{15 \text{kWh/m}^3 \times 50}{= 750 \text{ /m}^3}$	+ + = 850 / m ³

1.	2	,
,	가	,
2. A/dm^2 ,	가 0.15 L/min	, 2.0 A/dm², 2.5 가 750µ♂/cm .
3. ,		67.5 mg _{cob} /

•

.

2

•

A \cdot min, 2.7 mg_{n-Hexane}/A \cdot min, 2.3 mg_{ABS}/A \cdot min

, ,

4.

가

1. , 122, 1998 , 2. 堀口, , 43-65, 1975 가 3. , , 17-19, 1985 가 4. , , Korea Society of Water Quality, 1(2), 15-19, 1987 5. , BEF , , 22-23, 1998 6. , Korea Journal of , Applied Microbiology Bioengineering, 4(3), 117-121, 1976 7. , , , 1997 8. , , 2000 9. , 1997 10. , , , 1998 11. Comeau. Y., Hall. K. J. and Hancock. R. E. W., "Biochemical model for enhanced biological phosphorous removal." Water Research, 30(12), 1511-1521, 1986

 Benefield, L.D., Judkins J.F. & Weand, B. L., Process Chemistry for Water and Waste water Treatment, Prentice-Hall Inc., 212, 1982

- Gillmore, F. W., Woytowich, D. L., Dalrymple, C. W. and Britton, M.G., "Electrocoagulation(CURE)", Treatment of ship Bilgewater for the U.S. Coast Guard in Alaska, Marine Technology Society Journal, 27(1), 62-66, 1993
- Chiang Li-Choung, Chang Juu-En and Wen Ten-Chin, Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate, Water Research, 29(2), 671-678, 1995
- Naumczyk J., Szpyrkowicz L. and Zilio-Grandi., Electrochemical Treatment of Textile Wastewater, Water Science & Technology, 34(11), 17-24, 1996
- Mendia L., Electrochemical Processes for Wastewater Treatment, Water Science & Technology, 14, 331-344, 1982
- 17. 草壁克己,諸岡成治,加藤岡夫,3次元電極の水處理への應用,水處理技術,22(11),993-1003,1981
- 18. , , , , , 522-523, 1995
- Baker R. J., Barg R. H., Carroll L. J., Faver H. A. et al., Wastewater Chlorination Principles and Practices, American Water Works Association, 11-19, 1973
- Israilides C. J., Vlyssides A. G., Mourafeti V. N. and Karouni G., Oil Wastewater Treatment with the Use of an Electrolysis System, Bioresource Technology, 61, 163-170, 1997
- 21. Hammer L. and Wranglen G., Cathodic and Anodic Efficiency Losses in Chlorate Electrolysis, Electrochemica Acta, 9, 1-19, 1964
- 22. Czarmetzki L. R., Janssem L. J. J., Formation of Hydrochlorite, Chlorate and Oxygen during NaCl Electrolysis from Alkaline Solution at an RuO₂/TiO₂ Anode, Journal of Applied

Electrochemistry, 22, 315-324, 1992

- Krstajic N.,Nakic V. and Spasojevic M., Hyphochlorite Production,
 I. A Model of the Cathodic Reactions, Journal of Applied Electrochemistry, 17, 77-81, 1987
- 24. 日本工業用水協, ,コロナ社, 163-166, 1988
- 25. Bringmann J., Ebert K., Galla U. and Schmider H., Electrochemical Mediators for Total Oxidation of Chlorated Hydrocarbons
 : Formation Kinetics of Ag(), Co() and Ce(), Journal of Applied Electro-chemical, 25, 846-851, 1995
- Adre Savall, Electrochemical Treatment of Industrial Organic Effluent, Chimia, 49, 23-27, 1995
- Vlyssides A. G., Israilides C. J., Loizidou M., Karvouni G and Mourafeti V., Electrochemical Treatment of Vinasses from Beet Molasses, Water Science & Technology, 36(2-3), 271-279, 1997
- Kirk D. W., Sharifian H., Foulkers F. R., Anodic Oxidation of Aniline for Wastewater Treatment, Journal of Applied Electrochemistry, 15, 285-292, 1985
- 29.

, 1992

- Cenkin. V. E. and Belevtsev. A. N., Electrochemical Treatment of Industrial Wastewater, Effluent and Water Treatment Journal, July, 243-247, 1985
- Rajeshwar. K., Ibanez. J. G., Swain. G. M., Reviews of Electrochemistry : Electrochemical and the Environment, Journal of Applied Electrochemistry, 24, 1077-1091, 1994

- Barrett. F., The Electroflotation of Organic Wastes, Chemistry and Industry, 16, October, 880-882, 1976
- 34. Murphy Oliver J., Hitchens Duncan G., Lamine Kada and Verostko Charles E., Direct Electrochemical Oxidation of Organics for Wastewater Treatment, Water Research, 26(4), 443-451, 1992
- 35. 和田英男,北村孝雄,加藤俊作,大屋敷覺,高鹽分有機廢水の電解處理, 用水と廢水, 30(11), 1064- 1069, 1988
- 36. Lin S. H. and Wu C. L., Electrochemical Nitrate and Ammonia Removal from Aqueous Solution, Journal of Environment Science and Health, A30(7), 1445-1456, 1995
- Dellamonica M., Agostiano A. and Ceglie A., An Electrochemical Sewage Treatment Process, Journal of Applied Electrochemistry, 10, 527-533, 1980
- 38. Kotz R., Stucki S., Carcer B., Electrochemical Wastewater Treatment Using High Overvoltage Anodes. Part I : Physical and Electrochemical Properties of SnO₂ Anodes, Journal of Applied Electrochemistry, 21, 14-20, 1991
- 39. Chiang Li-Choung, Chang Juu-En and Tseng Shu-Chuan, Electrochemical Oxidation Pretreatment of Refractory Pollutants, Water Science & Technology, 36(23), 123-130, 1997

,

40. , , ,

3(4), 417-425, 1994

- T sai C. T., Lin S. T., Shue Y. C. and Su P. L., Electrolysis of Soluble Organic Matter in Leachate from Landfills, Water Research, 31(12), 3073-3081, 1997
- 42. Groterud O. and Smoczynski L., Phosphorous Removal from

- 50 -

Water by Means of Electrolysis, Water Research, 20(3), 667-669, 1986

43. 官崎 淸, 吉村 廣, 山本 渟, 近藤 基一, 電氣分解お利用した燐の高度 處理, 資源環境對策, 29(11), 1044- 1056, 1993 44. , , ,

, 5, 277-283, 1998

,

- 45. Lin S. H. and Wu C. L., Electrochemical Removal Nitrate and Ammonia for Aquaculture, Water Research, 30(3), 715-721, 1996
- 46. Andrzej Biwyk, Electrocoagulation of Biologically Treated Sewage,35th Industrial Waste Conference Proceeding, 541-549
- 47 Lidia Szpyrkowicz, Jereni Naumczyk and Franceso Zilio-Grand, Electrochemical Treatment of Tannery Wastewater Using Ti/Pt and Ti/Pt/Ir Elcetrodes, Water Research, 29(29), 517-527, 1995
- 48. , , 1998
- 49.

,

- , 34-44, 1994
- 50. ,
- , 22(2), 251-264, 1999
- 51. , ,

,

, 14(4), 1992

,

