Analysis on the Combustion Characteristics of Combustion Chamber with Swirl-Type Oil Burner
本論文을 金榮煥의 工學碩士 學位論文으로 認准합

委員長 工學博士 金義肝

委員 工學博士 王之錫

委員 工學博士 鄭在鉉

2006年 8月

韓國海洋大學校 大學院

機械工學科

金榮煥
목 次

List of tables .. iii
List of figures .. iv
Abstract .. vi

제1장 서론
 1.1 연구의 배경 ...1
 1.2 연구의 목적 ..5
 1.3 선행연구 ..11

제2장 선화유동에 대한 계산적 고찰
 2.1 계산조건 및 방법 ..15
 2.2 결과 및 고찰 ..19

제3장 상용 버너와 스월 버너의 연소 특성
 3.1 상용 버너의 연소 특성..26
 3.1.1 화염 특성 및 온도 분포 특성...26
 3.2 스월 버너의 연소 특성 ..30
 3.2.1 화염 특성 및 온도 분포 특성...30
 3.3 스월 버너와 상용 버너의 특성 비교...34
제4장 CFD 유동해석을 통한 고찰

4.1 형상 정의..37
4.2 CFD 유동해석을 위한 계산 격자...40
4.3 유동 해석결과..42

제5장 결 론..45

참고문헌 ..47
List of Tables

Table 1.1 The performance of swirl burner at the full open condition and flame temperature of 765 oC

Table 1.2 The performance of swirl burner at the half open condition and flame temperature of 763 oC

Table 1.3 Oil consumption and heating time for swirl burner
Heating time for 60oC increase

Table 1.4 Oil consumption and heating time for wide burner
Heating time for 60oC increase

Table 2.1 Tools of simulation

Table 3.1 Test results of 2-pass dry-back fire tube and flue boiler

Table 3.2 Test results of fire tube and flue boiler

Table 3.3 Comparison of swirl burner and wide burner for 2-pass dry-back fire tube boiler

Table 3.4 Comparison of swirl burner and wide burner for fire tube and flue boiler

Table 4.1 Configuration of Furnace definition
List of Figures

Fig. 1.1 2-pass dry-back experimental setup
Fig. 2.1 Front view of swirl burner
Fig. 2.2 Front view of wide burner
Fig. 2.3 Inlet velocity distribution for swirl burner (side section)
Fig. 2.4 Inlet velocity distribution for wide burner (side section)
Fig. 2.5 Entrance section of swirl burner (front view)
Fig. 2.6 Entrance section of wide burner (front view)
Fig. 2.7 Flow distribution in combustion chamber of swirl burner
Fig. 2.8 Flow distribution in combustion chamber of wide burner
Fig. 2.9 Interior flow of swirl burner
Fig. 2.10 Interior flow of wide burner
Fig. 3.1 Shapes of ignition flame using wide burner
Fig. 3.2 Temperature distribution of flame for wide burner
Fig. 3.3 Dimensions of flame for wide burner
Fig. 3.4 Shapes of ignition flame using swirl burner
Fig. 3.5 Dimensions of flame for swirl burner
Fig. 3.6 Temperature distribution of flame for swirl burner
Fig. 3.7 Comparison of exhaust fume (2-pass dry-back fire tube boiler)
Fig. 3.8 Comparison of exhaust fumes (fire tube and flue boiler)
Fig. 4.1 Comparison of nozzle geometries
Fig. 4.2 Computational domain
Fig. 4.3 Computational mesh on the fan
Fig. 4.4 Computational mesh on the outer domain
Fig. 4.5 Streamlines of fan
Fig. 4.6 Streamlines of inlet
Fig. 4.7 Pressure distribution at mid-section (side view)
Fig. 4.8 Velocity distribution at mid-section (side view)
ABSTRACT

Analysis on the Combustion Characteristics of Combustion Chamber with Swirl Type Oil Burner

Young-Hwan Kim

Department of Mechanical Engineering, Graduate School
Korea Maritime University
Busan, Korea

(Supervised by Professor Jaehyun Jeong)

This thesis addresses the experimental and theoretical analyses of combustion chamber with swirl type oil burner. High efficiency combustion techniques of the industrial burner have been studied to conserve environmental resources and to reduce the exhaust emissions. The experimental test concentrated upon the flame behaviors of the commercial and swirl burners. In order to compare the behaviors of the two different designed burners, the swirl burner was modified with inserting swirling
baffles into the inlet of commercial wide burner. The flame movements were visualized, and the flame temperatures were measured. The flame shape of the swirl burner was rather wider than that of the commercial wide burner. The theoretical evaluation was carried out using Fluent 6.0 and CFD codes. The simulation conditions were the same as those in experimental work. The numbers of grids used in Fluent and CFD calculations were 50,000 and 250,000 respectively. The results showed that swirl burner is more effective than commercial wide burner. Swirl burner make a straight excellence flame performance in the furnace and combustion efficiency rise almost 40 percent. Also noxiousness exhaust fumes are decreased especially NOx and HC.
1. 서론

1.1 연구의 배경

최근 한정된 자원의 효율적인 이용과 환경적 문제의 해결을 위한 보다 완전한 연소 및 고효율 연소에 대한 관심과 연구가 활발히 진행되고 있다. 특히 국내외적으로 엄격해진 환경규제와 에너지절약 문제의 국가적 과제로 인해 고효율 저공해 연소기 개발은 매우 중요한 대마로 활발히 진행 중에 있다. 연소기의 연소 상태는 연료가스의 성분, 분사각도의 확산, 연료가스와 공기의 혼합 등 여러 가지 변수에 의해 좌우되고 있으나, 그중 연료가스와 공기의 혼합 정도가 연소 상태의 가장 중요한 변수가 된다.

버너설계에 대한 최적화 설계 변수로는 보염기(flame holder) 형상과 스위 빙(swirl vane)의 각도, 내주반경, 외주반경 등을 들 수 있다. 한편 버너의 기하학적 형상 변화에 따라 연소특성을 개선하기 위한 노력은 실험적 연구와 이론적 연구로 구분되어 국내외에서 활발히 진행되고 있다. 국외에서는 액체연료로 석유를 사용하는 엔트 오일버너(gun type oil burner)의 본 무 및 유동장에 대한 연구가 활발하여 이 자료를 바탕으로 연구를 하고 있지만, 국내에서는 엔트 오일버너에 대한 연구 자료가 매우 부족한 실정이다.

에너지 절약형 연소기술로는 고 복사 연소, 축열 연소, 축쇄 연소 그리고 산소부화 연소기술 등이 있으며, 이들 중 고 복사 연소는 적열된 버너의 표면 및 노벽면으로부터 방출되는 높은 복사에너지를 이용하여 노온도가 유지되는 연소로써 있어서 피열체에 신속한 열전달과 균일 가열이 가능하다. 특히 연소공기의 스위 유동을 이용한 난류분류확산화염을 가지는 스위화염 버너는 연
료와 공기혼합가스에 강한 선회력을 수반함으로 중심축상에 넓은 제순환 유동을 발생시켜, 이로 인해 고온의 연소가스가 역류함으로서 연료와 공기의 혼합이 촉진되어 넓은 연소 범위에 걸쳐서 안정된 고부하 연소가 가능하다. 또한 화염 면적이 증가하여 화염온도가 낮아지고, 연소가스의 제순환으로 산소농도가 낮아져 NOx(질소산화물)가 저감되는 효과로 인해 스월 화염 연소기의 활용도가 점점 높아지고 있다.1)

연소기에서 고효율을 유지하고 유해성 배기기를 줄이는 것은 서로 상충되는 문제로, 이 두문제의 효율적인 개선방안으로서 연료의 분무특성 향상과 연료와 공기의 혼합 증대 측면이 강조되고 있다. 이러한 점에서 혼합 특성 증대 및 연소 특성 향상의 방안으로 선회류에 의한 연구를 진행하고 있다.2) 3) 동상 선회류에 의한 제순환 영역의 생성은 분무의 성능을 향상시키고 기연가스 제순환 과정을 생성시켜 이로 인해 화염의 형상과 안전성에 보다 긍정적인 영향을 미친다.3) 4) 이와 아울러 연료와 공기 및 기연가스의 강한 선회력을 수반함으로, 연소시작 전 단계에서 양호한 예혼합이 이루어지므로 이론 당량비 부근에서도 완전 연소가 가능하여 NOx, 메인(soot) 등의 배기기를 감소시키는 것이 가능하게 된다.5)

이러한 선회류의 효과를 극대화하기 위한 방안으로 최근 들어 이중 선회 공기를 이용하는 이중 선회류에 대한 연구가 활발히 진행되고 있다. 그 중에서 도 이중선회류에 의해 연료의 고른 분포와 연료와 공기의 혼합률 증대에 따라 공해물질의 저감을 보고하고 있다.5)

고 복사 연소기중 연소공기의 스월 유동을 이용한 난류분류확산화염을 가지는 평면화염 버너(flat flame burner)는 연료, 공기 혼합가스의 강한 선회력을 수반함으로서 연소시작 전 단계에서 양호한 예혼합이 이루어지므로 이론 당량비 부근에서도 완전연소가 가능하여, CO, soot 등의 미연소 물질이 발생하지
않아 열효율 향상이 추가적으로 가능하게 된다. 또한 버너화염 전면의 후류형성에 의한 배기가스 재순환으로 NOx를 저감할 수 있다.

Ottino\(^6\)와 Cox\(^7\) 등의 연구에 의하면 원통내부 유동의 경우 양호한 교반을 위해서 정상유동과 요동유동이 동시에 작용하는 것이 요구된다. 와 유동을 이용한 원통내의 유동은 원통의 크기, 태이블의 운동진폭, 요동각속도, 액체의 깊이 등에 따라 달라지게 되며, 버너의 화염의 형상 안전성, 온도분포 및 배출가스 특성을 구조와 연료 및 산화제의 유동 특성에 영향을 받게 된다.

이러한 특성을 고려할 때 버너 설계에 대한 최적의 설계 변수로는 보염기의 형상과 스릴 배인의 각도, 대주 반경, 외주 반경을 들 수 있고, 버너의 기하학적 형상 변화에 따라 나타나는 연소 특성에 관한 실험적, 이론적 연구들이 국내외에서 활발히 진행되고 있고, 흥미 있는 연구 결과가 계속 발표되고 있다.

김인규등과 윤욱현\(^8\)은 건 테일 버너에서 경사형과 수직형의 보염기 형상에 따른 유동장 및 연소장 특성을 비교하기 위해 실험적 방법과 수치해석 방법을 도입하여 경사형 보염기가 수직형보다 하류의 버너 중심부에서 보다 안정된 화염장 구조를 형성하여 스릴 배인 후류영역과 외곽부 슬릿부에서 고온부가 이루어짐을 밝힌바 있다.

이러한 많은 연구들이 수행되었지만 대부분의 연구는 국부적인 현상의 분석에 국한되고 있으며, 유동에서부터 연소후의 배기까지의 종합적인 연구는 부족한 상태이다. 특히 산업용 연소기에 대한 연구는 아직 경험에 의한 개조의 수준을 벗어나지 못하고 있다.

이러한 현상에서 오일버너의 선회류 유동에 관한 구체적인 장점과 효율을 밝혀 보다 나은 환경에서 기술 축적을 할 수 있도록 하여야 한다.

스릴 유동을 이용한 화염 버너의 연소특성 즉, 화염의 형상, 안정성, 온도
분포 및 배출 가스 특성은 버너의 가하학적 구조와 연료 및 산화제의 유동 특성에 따라 상당한 영향을 받게 된다. 이와 관련한 실험적, 이론적 연구가 활발히 진행되고 있고, 흥미 있는 연구 결과가 계속 발표되고 있다.
1.2 연구의 목적

공업적으로 사용되는 오일버너는 대부분가 연료를 연소시켜 발생되는 열을 이용하는 연소로서, 여기에 사용되는 연소기의 성능 특성에 따라 열효율, 가열특성, 유해 배출가스량 등이 크게 영향을 받는다. 상용화된 기존의 연소기는 대부분 가스의 연소열을 대류가열의 형태로 이용하고 있기 때문에 열효율이 낮고 연소부하에 따른 화염구조 등이 변하게 되어 피열체의 연소가열을 발생시킬 수 있으며 화염중 국부 고온역의 존재와 연료 및 공기의 불충분한 혼합으로 배출가스중 NOx과 미연소물질이 증대되는 문제점이 있다.

이에 반해 난류분류확산화염의 형태인 스월 유동을 이용한 평면화염버너는 버너목(throat)에서 토출되는 연소화염 및 고온의 연소가스를 이용하여, 버너 타일(tile)부와 노벽면을 가열시키고 고체표면으로부터 발생되는 목사열을 피열체에 빠르고 균일하게 전달함으로써 피열체의 가열시간을 단축시키고, 가열품질을 향상시킬 수 있는 장점이 있으며 터널 중앙에서 강한 전화력을 동반한 연소공기가 반경방향으로 토출되기 때문에 화염의 전면에서는 후류가 형성되어 연소가스의 자기 재순환이 이루어지므로 연소영역에서의 산소농도 저하와 함께 평평한 화염형상에 따른 화염의 방열성 우수한 질소산화물의 발생을 억제하고 연료 및 공기의 혼합성 향상으로 저공기비 운전영역에서도 완전연소가 가능한 특징을 가지고 있다.

확산화염에 대한 실험적, 이론적 연구는 기체 연료를 정지 대기 중이나 공기 분류중에 분출시켜 형성시킨 분류화염화염에 대한 연구가 대부분이다. 그 이유는 분류 확산화염이 실제의 연소장치에서 가장 많이 사용되고 있고, 연소에 의해 유동장의 본질이 변화하지 않을 뿐 아니라 유체역학적 관점에서의 연구에 가장 적합하기 때문이다. 따라서 분류확산화염에 대한 연구는 스텝
과 보염기의 후류에 안정화된 확산화염의 구조에 대한 연구\(^9\)와, 연료제트와 공기와의 전단층에 형성되는 확산화염에 대한 연구\(^{10}\)가 있다.

Mathur\(^{11}\), Maccallum\(^{12}\)등은 3차원 구형피토관을 사용하여 3차원 난류 유동장을 측정하였으며, 강선화류는 연소실 중앙부에 제순환영역을 발생시킴을 확인하였다.

Aoki 등은 원통형 연소기내의 유동현상을 해석하기 위해 레이저 유속계와 일정유속계 그리고 5공 피토관을 이용하여 스릴수를 0.35에서 1.35까지 변화시켜 가면서 시간평균 유속과 난류강도 등을 측정하여 액류영역, 와 중심영역, 보조 순환영역의 위치와 크기, 형상 등 연소기 내부의 유동양식을 규명하였다.

Hirai 등은 산업용 보일러나 공업용 노(furnace)등에서 분무 연소할 때 배출되는 NOx 농도를 저감하기 위해서 강선화 공기유동과 넓은 분무각을 갖는 이유체 분무기(twin-fluid atomizer)를 조합한 선화공기류에 의한 연소방식을 사용한 바 있다.

이것은 보염능력이 우수하고 공기와 연료의 혼합을 용이하게 하여 고부하 연소효과를 회전중심 부근에서 생성되는 강선화류를 이용한 보염 효과에 의해 화염을 반경방향으로 확대하여 고부하연소를 실현하는 것이다.

Kurihara 등은 분무연소로에서 상용 건형 오일버너의 분무연소 특성을 파악하고 코져 속도분포들을 연소시와 비연소시로 나누어 레이저 유속계를 이용하여 측정하였는데, 배플판(baffle plate) 후류 측에서 연소 시 및 비연소 시 연소용 공기의 유동특성이 부압으로 나타나 순환류가 존재하고, 반경방향 속도는 외 측에 양의 최고값이 나타날 것을 확인하였다.

Yule\(^{13}\)은 프로판과 공기의 전단층에 형성되는 분류확산화염에 관한 연구에서, 혼합 영역 내에서 좌하 영역이 형성되어 난류혼합을 조건시키고 있음을 확인하였고, Takagi\(^{14}\)은 혼합기구를 밝히기 위해 난류변동 성분에 대한 연구
를 수행하였으며 난류 확산연소분야에서는 난류변동 성분의 계측을 통해 난류 혼합기구를 밝히고자 하는 연구\(^\text{15}\)들이 계속 수행되고 있다.

Yamaguchie는 평면 전단류중에 형성되는 난류확산 화염을 대상으로 실험과 수치 계산을 통해 코히어런트(coherent) 구조와 난류확산 기구를 조사하였 다. 비연소시에는 고속과 적속의 양측에서 휘말려 들어오는 Brown–Roshko의 코히어런트 구조와 동일한 스케일의 와(vortex)를 확인 하였지만, 연소시의 코 히어런트 구조는 고속쪽에서만 형성되고, 저속조로는 휘말려 들어오지 않는 화염이 형성된다고 보고한 바가 있다. 그러므로 공기를 고속류로, 기체연료를 저속류로 하게되면, 고속적인 공기류에 의해 연료의 공기확산이 비해되어, 기 존의 기체연료가 고속적인 확산화염 보다 연료의 공기확산이 더 크게 되어, 단위 시간당의 더 많은 연료가 연소될 것으로 사료된다.

선회류는 보염효과를 높이고 연소속도를 지배하는 난류강도의 증대 및 채류시간을 재어하는 역할을 하는 것으로 알려져 있다. 특히 재순환 영역은 고강도의 난류에 의해 연소가스와 미연소가스의 활발한 혼합이 이루어져 열과 물질전달을 지배하고, 또 활성화학반응을 저장하는 역할을 하므로 화염안정화에 중요한 역할을 한다.\(^{2,16}\)

재순환류는 연소기의 공기덕트에 접선방향 공기류가 공급되면, 공기류는 나선모양의 선화운동을 하며, 유체에 가해진 원심력과 공기덕트 밖에 가해지는 압력사지에 \(dp/dr =
ho u^2/r\) (\(u\) :접선방향 유속)의 정압분포와 관계가 형성된다.\(^{17}\) 선화공기류가 연소기 출구에서 분출됨에 따라 중심축 부근의 저압은 접착압력 을 회복하여 축방향의 압력 역구배를 형성시키며, 유동의 축방향 운동에너지 가 역방향의 압력구배를 극복하지 못할 때 재순환 영역이 형성된다.\(^{17}\)

이러한 재순환 영역은 toroidal vortex의 형태를 취하므로 CTRZ(Central Toroidal Recirculation Zone)라 하며, 선화화열에서는 열과 반응성이 강한 각
종 화학종의 저장고로 작용한다. 제순환영역은 일반적으로 주류에 둘러싸여 제순환 영역의 경계를 통한 순
질량유량이 없는 폐루프(closed loop)로 생각되므로, 제순환영역의 경계는 축
방향의 단면에서 순류의 질량유량과 역류의질량유량이 같아지는 반경방향의
위치로 결정된다.
반면에 환류영역의 경계는 축방향의 각 단면에서 순류에서 환류로 유동방향
이 바뀌는 위치인 순류와 환류의 경계이므로 축방향의 유속이 0인 반경방향의
위치로 결정된다.

그러므로 제순환영역의 중심은 환류영역의 경계상에 위치하게 된다. 화염의
안정은 제순환영역과 주류사이(제순환 영역의 경계)에서의 난류확산에 의한
열 및 물질교환에 의해 이루어진다고 알려져 있으며, 또한 제순환 영역내의
대부분의 대류열전달은 환류영역으로부터 순류로의 열이동에 의해 이루어지므
로 환류영역의 경계가 화염안정성에 중요한 요소이다. 이러한 선회류의 효과
를 극대화하기 위한 방안으로 이중 선회를 이용하는 이중 선회류와 제순환 영
역에 대한 연구가 활발히 진행되고 있다.
Takashi와 Samulesen 등은 이중선회에 의한 혼합률 증대가 과농지역을 감
소시키고 저 NOx특성을 보이는 것을 실험을 통해 관찰하였고, 이중선회의 방
향성에 따른 연료의 분포와 혼합특성을 비교하였다. Chigier는 NOx의 생성
을 Thermal, Fuel 및 Prompt NOx의 3가지 메커니즘으로 나누고, 각각의 특
성을 연구하였다.
Starkman은 NO를 포함한 주요화학종의 농도분포를 직접 측정하고, 이들
농도의 원자량 평형식을 사용하여 연소기 내의 국소 당량비 분포 및 연소 효
율을 구하여서 당량비의 변화에 따른 연소기 내의 온도 분포와 농도 분포를
언급하였다.
Ghaffarpour 등은 30°의 분무 각을 가지는 압력 선회 용 노즐과 0.36의 선회 수를 가지는 선회기를 이용하여 가스터빈 모델 연소기내에서의 선회 및 회석 공기의 유량에 따른 화염의 형상 및 안정성에 관해 연구하였다. 선회기에 의해 안정화된 모델 연소기내에서의 화염의 blow-off한계 및 일정한 회석공기의 유량에 따른 선회공기량의 증가가 결과적으로 화염소멸을 가져왔고, 선회공기량의 감소는 화염의 신장을 가여좌서 연소기 밖으로 blow-out을 유발시킴을 연구하였다.

Lefebvre 등은 CO와 NOx의 농도 함이 약 1700K 부근에서 가장 적게 나타나고, 이 조건을 만족시키기 위해서 연소기의 형상을 바꾸고, 여러 개의 연료 노즐을 설치하여 분사를 시키는 단계연소(staged combustion)방식을 제안하였다.

Kihm 등은 레이저 유속계를 이용하여 가스터버린에 사용될 선회기(swirler)의 배인각도와 허브(hub)직경을 변화시켜 가면서 난류 스릴유동장의 유동특성을 파악하였는데, 접선방향 속도분포의 peak치는 배인각도가 40°인 선회기의 출구에서 발견되었으며, 또 재순환 영역의 크기와 강도도 역시 40°에서 가장 높다는 것을 밝혀 냈다.

Lee 등은 고부하 연소기의 유동장 특성에 관한 연구에서 연소실 팽창각에 따른 유동 특성과 선회도의 증가에 따른 재순환 영역의 크기와 강도가 증가하는 것을 관찰하였다.

Ikeda 등은 가스터비연소기등에 대한 컴퓨터 시뮬레이션을 통해 선회류를 동반한 연소기내의 유동이 재순환 영역, 와중심영역등이 발생하여 복잡한 유동을 형성하고 있지만, 선회류에 의해 생성되는 재순환 영역의 거동과 유동상태, 연료와 공기의 혼합, 온도 및 농도분포들을 조사하였다.

Takagi와 Okamoto 등은 선회화염의 재순환 영역 내에서의 운동과 난류수송
의 제어를 위하여 수치해와 실험치를 비교한 결과, 유속성분과 온도측정을 하고, 그 변동치의 상관관계를 구하면 선회연소기의 혼합과 연소특성을 이해 하고 제어하는데 많은 도움이 된다고 보고하고 있다.

특히 Gupta 등은 유동장의 높은 전단응력 영역과 과농 영역이 일치 되도록 연료와 유동의 방향을 조절함으로써, 높은 연소 부하율을 얻을 수 있고, 또한 화염의 안정한계도 더 넓어지는 다중 선회연소기의 원리를 발표하였다.

이와 같이 스월 유동을 이용한 평면화염 버너는 선회단계에 따라 버너의 축 방향과 반경방향으로 유동의 형태 및 크기가 변화하고, 연소가스 재순환에 영향을 주게되어 연소의 제반 특성이 달라지게 된다.

따라서 본 연구의 목적은 평면화염버너에서 스월 유동각의 변화에 따른 유동현상 및 연소의 제반특성 변화를 유동해석하여 버너성능에 미치는 주요 요소를 인지함으로써 보다 효율적, 안정한 연소기의 설계기준을 제정하는 것이다. 연구범위는 실제 연소조건에서 선회수와 스월 유동각도의 변경에 따른 화염 안정성, 화염형상, 온도분포를 비교하여 유동현상과 관련하여 고찰하였 다.
1.3 선행연구

유동 해석적인 연구를 시작하기 전 스월 유동발생이 실체적으로 바너의 성능 및 배기가스 감소에 영향을 주는지를 알기 위하여 바너 연구에서 기본적인 사항이 되는 온도변화, 배기가스 측정, 소모연료량 등에 관한 자료 취득을 위한 실험을 하였다.

Table 1.1과 1.2는 스월 바너의 동일한 홍기조건에서 배기구의 개도를 변화시킨 경우의 배기성능을 측정한 결과이다. 원전개도의 경우 스포크가 44%인 반면 50% 개도의 경우 5%이며, HC와 NOx의 배출량도 매우 낮아지는 것을 알 수 있다. 이는 배기구의 개도를 줄이면 연소실내의 압력이 상승하고 가스 유동의 속도가 감소하면서 연료의 연소기간이 증가하기 때문에 연소가 잘되는 것이다. 그러나 지나친 배기구 개도의 감소는 불완전 연소로 인한 성능저하를 나타낸다. Table 1.3과 1.4는 보일러의 물의 온도를 60°C 가열하는 동안 상용 바너와 스월 바너에서의 연료소모량과 가열기간을 비교한 결과이다. 스월 바너는 연료소모량이 2.73이며 상용 바너는 4.33으로 63% 연료소모량이 감소되며, 가열시간 역시 스월 바너는 2490s이고 상용 바너는 3862s로 64.5% 감소되는 것을 알 수 있다.
Fig. 1.1 2-pass dry-back experimental setup
Table 1.1 The performance of swirl burner at the full open condition and flame temperature of 765 oC

<table>
<thead>
<tr>
<th>Smoke</th>
<th>T1</th>
<th>T2</th>
<th>ΔT</th>
<th>exhaust gas(T)</th>
<th>exhaust fumes (mean value)</th>
<th>consumption oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean value of four times measurements (44%)</td>
<td>19.4°C</td>
<td>28.5°C</td>
<td>9.1°C</td>
<td>251°C</td>
<td></td>
<td>4.25 l/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1 The performance of swirl burner at the half open condition and flame temperature of 763 oC

<table>
<thead>
<tr>
<th>Smoke</th>
<th>T1</th>
<th>T2</th>
<th>ΔT</th>
<th>exhaust gas(T)</th>
<th>exhaust fumes (mean value)</th>
<th>consumption oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean value of four times measurements (5%)</td>
<td>20.1°C</td>
<td>28.7°C</td>
<td>8.6°C</td>
<td>366°C</td>
<td></td>
<td>4.1 l/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 13 -
Table 1.3 Oil consumption and heating time for swirl burner
Heating time for 60°C increase

<table>
<thead>
<tr>
<th>Smoke</th>
<th>cooling water</th>
<th>oil consumption</th>
<th>heating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean value of four times measurements</td>
<td>19.4°C</td>
<td>2.73 l/h</td>
<td>60°C</td>
</tr>
<tr>
<td>(44%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.4 Oil consumption and heating time for wide burner
Heating time for 60°C increase

<table>
<thead>
<tr>
<th>Smoke</th>
<th>cooling water</th>
<th>oil consumption</th>
<th>heating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean value of four times measurements</td>
<td>20°C</td>
<td>4.33 l/h</td>
<td>60°C</td>
</tr>
<tr>
<td>(5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
상용 버너보다 화염이 넓고 큰 스월 버너가 Steady-state로 되었을 때 냉각수의 온도와 상용 버너의 냉각수의 온도가 거의 비슷한 이유는 냉각수의 유입이 밑에서 위로 계속해서 순환하기 때문에 보일러 내부 양쪽 면에 있는 뜨거운 물의 영향을 받지 않기 때문인 것으로 판단된다. 스월 버너의 경우 멤퍼를 열고 실험할 수가 없는 상태였기 때문에 제일 안정된 연소가 발생할 것이라고 판단되는 멤퍼의 각도로 실험을 하였으며 반면에 상용 버너는 스월 버너와 정반대의 조건을 보았기 때문에 멤퍼를 최대한 닫은 상태 즉 멤퍼를 1/2정도 열었을 때의 각도로 실험을 한 결과이다. 연료 소비량은 같은 압력으로 연료가 유입되기 때문에 4.1~4.2ℓ/분으로 거의 같았다고 미세한 차이는 측정시의 오차 값으로 보여진다. 배기가스의 온도의 경우 상용 버너가 스월 버너보다 더 높다는 것을 알 수 있다. 그 이유는 스월 버너의 경우는 보일러 내부에서 스월현상이 일어나 보일러 내부 표면에서 열전달이 잘 일어나고 열 손실이 적기 때문에 배기가스의 온도가 낮아지는 것이다. 실험실험결과 특정 온도까지 상승하는데 소요되는 시간과 연료 소비량을 보면 효율이 상용 버너보다 좋은 것을 알 수 있다.

이런 기본 분석 자료를 바탕으로 보다 대형의 보일러에 같은 조건으로 실험을 하면 지금보다 훨씬 더 큰 효과를 나타낼 것으로 판단된다.

위의 예비단계의 실험에 대한 고찰을 통해 스월 버너에 대한 보다 깊이 있는 연구가 필요하다고 생각되며 본 논문에서는 보일러 남개것에 각도변화를 주어 스월 각 변환에 따른 유동특성을 통해 기존의 상용 버너의 성능향상 및 더 우수한 스월 버너를 설계하여 효율 향상을 추구할 수 있을 것이라고 판단된다.
제2장 선회유동에 대한 계산적 고찰

2.1 계산조건 및 방법

선회유동에 대한 계산적 고찰은 회전 요동하는 원통내의 유체유동에 관한 것으로서, 흡입초기부터 흡입공기에 강한 와 유동을 형성시키는 스월 유동을 이용한 버너와 비교 실험 대상인 현재 상용화 되어 있는 Wide 버너의 원통 내에서의 각각의 내부 유동을 비교하기 위하여 상용코드인 Fluent 코드를 이용하여 수행하였다.

Table. 2.1 Tools of simulation

<table>
<thead>
<tr>
<th>Items</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (Dia*Length)</td>
<td>400 * 1350(mm)</td>
</tr>
<tr>
<td>Number of grids</td>
<td>50000</td>
</tr>
<tr>
<td>Tool of grid generation</td>
<td>CATIA 5.7, ICEM CFD</td>
</tr>
<tr>
<td>Solver</td>
<td>FLUENT 6.0</td>
</tr>
<tr>
<td>Turbulence model</td>
<td>k-ε</td>
</tr>
<tr>
<td>Governing Eqs.</td>
<td>Reynolds average, Navier-Stokes Eq.</td>
</tr>
<tr>
<td>Boundary values</td>
<td>Inlet velocity, Outlet pressure</td>
</tr>
<tr>
<td></td>
<td>3m/s, 1atm</td>
</tr>
</tbody>
</table>
원통내의 유동은 원통의 크기, 테이블의 운동전폭, 요동각속도 등에 따라서 달라지며 이러한 특성들에 따라 달라지는 유동을 이해하고 정상적으로 그 효과를 파악하고 스월 유동을 이용한 버너와 비교 실험 대상인 Wide 버너의 원통 내에서의 유동을 비교하기 위하여 스월 버너는 흡입공기에 강한 와 유동을 형성할 수 있도록 보염기와 노즐의 형상을 실제 형상대로 설계하고, Wide 버너 역시 실제 형상 그대로 설계하였으며 격자생성은 입구에서의 빠른 유동을 상세히 분석하기 위하여 조밀 격자를 사용하였으며 스월 버너와 Wide 버너를 동일한 격자로 구성하였다. 난류 모델은 벽 압축성 난류유동의 해석에 3차원 Reynolds averaged Navier-Stokes(RANS) 방정식과 연속방정식을 지배방정식으로 하였다.

본 연구에서는 실험을 통하여 결과를 고찰하기 이전에 스월 유동을 이용한 버너와 비교 실험 대상인 Wide 버너의 원통 내에서의 유동을 비교하기 위하여 스월 버너는 흡입공기에 강한 와 유동을 형성할 수 있도록 보염기와 노즐의 형상을 실제 형상대로 설계하고, Wide 버너 역시 실제 형상 그대로 설계하였으며 격자생성은 입구에서의 빠른 유동을 상세히 분석하기 위하여 조밀 격자를 사용하였으며 노즐은 Solid로 가정하여 스월 버너와 Wide 버너를 동일한 격자로 구성하였다.
난류 모델은 벽 압축성 난류유동의 해석에 3차원 Reynolds Averaged Navier–Stokes(RANS) 방정식과 연속방정식을 지배방정식으로 하였다.

계산조건으로는 TASCflow에서 제공하는 κ-ω난류모델을 사용하였고, 조밀한 격자를 사용할 경우에 발생하는 벽면함수(wall function)의 모순을 피하기 위해 격자수를 줄여 계산하는 수정된 함수를 사용하였다.

노즐은 Solid로 가정하고 연소실 내부에서 충분한 유동을 나타낼 수 있도록 하기 위하여 보임기를 통과하는 흡입공기에는 3m/s의 일정한 속도를 주어 계산을 수행하였고, 내부의 유동과 속도 벡터의 분포를 고찰하였다.
2.2 结果及总结

Fig. 2.1和Fig. 2.2是斯威维尔以及商用燃烧器的喷射方向的示意图。斯威维尔的情况是吸入空气时，吸入空气被均匀分配到燃烧室内，使得燃烧室内的空气分布均匀，从而提高燃烧效率。一般燃烧器由于燃烧室的限制，吸入空气只能从燃烧室的中心轴线进入，使得燃烧室内的空气分布不均匀，从而影响燃烧效率。

Fig. 2.3和Fig. 2.4是斯威维尔和Wide燃烧器的入口速度矢量图。斯威维尔燃烧器在吸入初期就显示出强烈的斯威维尔流动，随着轴向方向的扩展，速度分布范围变大。速度矢量在燃烧室外壁上分布最集中，速度约为4.25m/s。一般燃烧器大部分的吸入空气沿着轴向方向进入，小部分从外壁进入，速度矢量在轴心处分布，速度约为3.02m/s。斯威维尔燃烧器的中心速度矢量在燃烧室内有显著的提高，使得火焰沿着燃烧室的外壁旋转。一般燃烧器的火焰沿着轴向方向旋转，火焰的分布范围较小。

为了更详细地分析锅炉内部的流动分布和变化，图Fig. 2.7和Fig. 2.8展示了轴向断面的速度分布。斯威维尔燃烧器在燃烧室内有显著的流动，使得火焰沿着燃烧室的外壁旋转。一般燃烧器的火焰沿着轴向方向旋转，火焰的分布范围较小。
에 강한 역방향 속도를 나타내며 그 외곽으로 순반향의 높은 유동 속도를 보여준다. 이는 스월 유동으로 외부로 분산되며 이동된 유동의 영향으로 중심축 방향으로의 강한 와유동이 있음을 알 수 있다. wide 버너의 경우 중심축에서 가장 높은 속도를 나타내며 축에서 멀어지면서 점점 낮은 속도분포를 나타내다가 보일러 벽면 근처에서 역방향의 속도분포를 보이며 와 유동의 발생을 알 수 있다.

Fig. 2.9와 Fig. 2.10은 전체 유동으로 스월 버너는 유동 흡입초기부터 와 유동이 발생하여 2겹 3겹의 선회 유동 형태를 보여주고 있고, wide 버너는 직진성의 유동과 노 끝에서 선회하여 유동 흡입구까지 순환하는 단순 유동을 보여준다.
Fig. 2.1 Front view of swirl burner

Fig. 2.2 Front view of wide burner
Fig. 2.3 Inlet velocity distribution for swirl burner (side section)
Fig. 2.5 Entrance section of swirl burner (front view)

Fig. 2.5 Entrance section of wide burner (front view)
Fig. 2.7 Flow distribution in combustion chamber of swirl burner

Fig. 2.7 Flow distribution in combustion chamber of wide burner
Fig. 2.9 Interior flow of swirl burner

Fig. 2.10 Interior flow of wide burner
제3장 상용 버너와 스威尔 버너의 연소특성

3.1 상용 버너의 연소특성

3.1.1 화염 특성 및 온도 분포 특성

Fig. 3.1은 상용 버너의 점화 직후부터 0.7ms까지의 화염의 형상을 나타낸다. 입구 상단에서 점화가 시작되어 화염이 성장하는데 입구하단 쪽에 강한 화염이 형성되면서 직진성 유동을 따라 하류쪽으로 급히 성장하는 것을 알 수 있다. 화염내의 온도분포는 Fig. 3.2에서 알 수 있듯이 화염중심의 상단에서 가장 높은 온도를 나타내며 화염의 시작과 끝에서는 온도가 낮아진다. 이는 직진성 유동에서의 전형적인 화염의 온도분포로 연료의 확산 화염의 발달 연소의 종료에 따른 현상이다.

이는 상용 버너의 경우 보염기의 형상이 흡입공기를 벽면 쪽으로 확산시킬 수 있도록 구조가 되어있지만 벽면을 향하는 속도보다 중심축에 평행한 속도가 훨씬 커 화염이 축 방향으로 퍼지지 못하고 중심축 방향으로 뻗어나가는 속도가 더 크기 때문이라고 사료된다. 상용 버너는 열을 전달하는데 있어서도 연소실에서 화염이 벽면에 가깝게 위치하여 직사열의 형태로 열을 전달하는 것 보다 중심축 방향으로의 속도가 폭 방향의 속도보다 훨씬 커 화염과 직접적인 방향으로 화염의 열을 이용하여 복사열의 형태로 연소실 내부 벽면에 열을 전달한다.

Fig. 3.3는 상용 버너의 화염의 크기를 보여주고 있다. 상용 버너의 경우 흡입
댐퍼의 각도에 따라 화염의 크기가 변화되는 것을 알 수 있었으나 그에 따라 배기가스의 수치 역시 크게 변화됨을 알 수 있었으며 화염의 끝과 폭 방향의 화염 온도보다 중심축의 온도가 높다는 것을 알 수 있다. 상용 버너의 화염온도는 폭 방향의 화염보다 중심축의 온도가 높아 연소실 내부 벽면에 가까운 연소공기는 완전연소를 이루지 못하고 중심축의 온도가 높기 때문에 열을 전달하는 데 있어서도 실험버너에 비해 노동수의 냉각수를 넣는데 더 긴 시간이 필요할 것이라고 사료된다.
Fig. 3.1 Shapes of ignition flame using wide burner
Fig. 3.2 Temperature distribution of flame for wide burner

Fig. 3.3 Dimensions of flame for wide burner
3.2 스월 버너의 연소특성

3.2.1 화염 특성 및 온도 분포 특성

Fig. 3.4은 스월 버너의 점화 직후의 화염을 나타낸다. 입구하단에서 점화되며 화염이 상용버너에서는 앞으로 급히 성장한 것과는 반대로 선회유동을 따라 윗으로 확산되며 성장함을 알 수 있다. 이는 흡입유동의 형상이 점화에서 부터 화염성경에 중요한 역할을 한다는 것을 알 수 있다. 스월 버너의 경우는 Fig. 3.3에서 알 수 있듯이 점화전부터 흡입공기가 강한 와 유동을 보이고 있고 점화 직후 화염이 공기의 유동에 의해서 강하게 회전하면서 점화됨을 알 수 있다.

흡입공기가 펌프에 의해 흡입되고 보일기의 고리형상으로 되어 있는 것 부분에 충돌하면서 축 방향으로 뿜어 나가려는 힘이 발생되고 회전력을 갖게 되어 와 유동이 형성된다. 계속적인 흡입공기의 충돌로 인하여 연소실 내부 벽면까지 뿜어나가게 되고 화염을 회전시킬 수 있게 된다.

이것은 흡입공기가 축 방향의 진행과 함께 흡입공기의 와 유동으로서 화염을 회전시키는 연소실 내부에서 화염이 외벽으로 강한 속도를 가지고 운전하며 연소실 외벽 전체에 고르게 열을 전달 할 수 있고, 노동수의 온도 상승을 촉진시켜 소실 내부에 열을 전달하는데 있어 보다 효율적이다.

Fig. 3.5와 Fig. 3.6는 각각 스월 버너의 화염을 크기와 화염의 온도 분포를 나타내고 있다. 스월 버너의 화염은 강한 회전력을 수반하는 흡입공기의 와 유동으로 인하여 화염이 벽면을 따라 회전하며 화염의 크기가 축방향보다 폭
방향으로 더 넓음을 볼 수 있다.
실험버너의 화염의 온도 분포는 중심에서와 입구에서의 온도가 낮고 폭방향
의 화염 끝부분에서의 온도가 높은 것을 알 수 있다.
이는 흡입공기의 와 유동으로 인하여 화염이 벽면에 가깝게 분포되고 연소실
내벽에 가깝게 위치하고 있는 연소공기의 완전연소를 가능하게 하고 중심축
에서는 화염의 온도가 낮아 열전달을 하는데 있어 열손실이 적어진다고 볼 수
있다.
화염의 크기와 온도 분포에서 알 수 있듯이 스월 버너의 경우 중심축의 온
도는 낮고 화염의 끝 부분의 온도는 높아 연소실 내부에서는 완전연소가 이루
어질 수 있고 흡입공기의 와 유동으로 인해 화염의 폭이 넓어 연소실 내부에
서 상대적으로 적은 열손실이 발생하고 그 만큼의 열이 더 바르게 전달되기
때문에 노동수의 온도를 상승시키는 데 있어서 더 효율적이다.
Fig. 3.4 Shapes of ignition flame using swirl burner
Fig. 3.5 Dimensions of flame for swirl burner

Fig. 3.6 Temperature distribution of flame for swirl burner
3.3 스월 버너와 상용 버너의 특성 비교

Table 3.1과 3.2 그리고 Fig. 3.7과 3.8은 두가지 형태의 노통에서 스월버너와 상용버너에서의 성능을 비교한 것이다. 동일한 스모크 스케일을 갖을 수 있도록 흡배기를 조절한 상태에서 실험하였다. 효율은 스월버너가 70% 상용버너가 55%로 스월유동을 이용한 버너의 경우가 원통히 향상됨을 보여준다. 이는 스월 버너와 상용 버너의 화염특성과 온도 특성의 차이에 기인한다.

스월 버너와 상용 버너의 화염특성과 온도 특성을 비교해보면 스월 버너의 화염은 점화전부터 흡입공기가 강한 스월 유동을 동반하여 화염이 회전하게 되고 화염의 폭이 넓어 연소실 외벽전체에 고르게 열전달이 일어나 노동수의 온도상승을 촉진시킬 수 있고, 상용 버너는 화염이 직선적으로 점화되어 화염의 폭이 좁고 화염 끝부분 보다 중심축상의 온도가 높다는 것을 알 수 있어 스월 유동으로 인하여 화염의 폭이 넓게 분포되어 있기 때문에 연소실 내부에서 상대적으로 적은 열손실이 발생하고 그 만큼의 열이 더 빠르게 전달되기 때문에 냉각수를 테우는 데 있어서 스월 버너가 상용 버너에 비해서 더 효율적이다.

효율특성과 배기특성을 비교해보면 스월 버너의 화염이 직진성의 화염을 나타내는 상용 버너와는 달리 공기의 와 유동으로 인해 화염이 폭과 높이 방향으로 넓게 퍼지고, 중심축에 비해 화염의 끝에서 온도가 높게 분포되어 있어 연소실 내부에 활발하게 열을 전달하고, 배기가스의 온도가 낮아서 냉각수의 온도 상승을 촉진시켜 40%정도의 큰 연료 저감의 효과를 나타낸다.

배기가스에 대한 규제가 심화되고 있고, 특히 규제가 심화되고 있는 NOx의 경우 스월 버너가 상용 버너에 비해 훨씬 낮은 수치를 나타내고 있어서 공해 문제에 있어서도 적합한 버너라 할 수 있다.
Table 3.1 Comparison of swirl burner and wide burner for 2-pass dry-back fire tube boiler

<table>
<thead>
<tr>
<th>Item</th>
<th>Swirl burner</th>
<th>Wide burner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>70%</td>
<td>55%</td>
</tr>
<tr>
<td>Exhaust fumes temperature</td>
<td>238°C</td>
<td>305°C</td>
</tr>
<tr>
<td>Furnace temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnace size Dia(mm)*Length(mm)</td>
<td>400 * 1350, 500 * 1200</td>
<td></td>
</tr>
<tr>
<td>Furnace volume(l)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Heating time(s)</td>
<td>444</td>
<td>712</td>
</tr>
<tr>
<td>Oil consumption(l/h)</td>
<td>0.97</td>
<td>1.56</td>
</tr>
<tr>
<td>Chemical components of exhaust fumes (3times mean)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC(ppm)</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>NOx(ppm)</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>O2(%)</td>
<td>11.41</td>
<td>16.80</td>
</tr>
<tr>
<td>CO2(%)</td>
<td>2.6</td>
<td>7.0</td>
</tr>
<tr>
<td>CO(%)</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Smoke(%)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Fig. 3.7 Comparison of exhaust fume (2-pass dry-back fire tube boiler)
Table 3.2 Comparison of swirl burner and wide burner for fire tube and flue boiler

<table>
<thead>
<tr>
<th>Item</th>
<th>Swirl burner</th>
<th>Wide burner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>61%</td>
<td>45%</td>
</tr>
<tr>
<td>Exhaust fumes temperature</td>
<td>251°C</td>
<td>366°C</td>
</tr>
<tr>
<td>Furnace size (mm)*Length(mm)</td>
<td>500*1200</td>
<td></td>
</tr>
<tr>
<td>Furnace volume(l)</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Heating time(s)</td>
<td>723</td>
<td>1231</td>
</tr>
<tr>
<td>Oil consumption(l/h)</td>
<td>1.58</td>
<td>2.69</td>
</tr>
</tbody>
</table>

Chemical components of exhaust fumes (3 times mean):

<table>
<thead>
<tr>
<th>Component</th>
<th>Swirl burner</th>
<th>Wide burner</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC (ppm)</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>NOx (ppm)</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>O₂ (%)</td>
<td>8.6</td>
<td>15.5</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td>5.4</td>
<td>2.5</td>
</tr>
<tr>
<td>CO (%)</td>
<td>4.1</td>
<td>0</td>
</tr>
<tr>
<td>Smoke (%)</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Fig. 3.8 Comparison of exhaust fumes (fire tube and flue boiler)
4. CFD 유동해석을 통한 고찰

4.1 형상 정의

선행 연구와 일련의 실험을 통해 알 수 있듯이 스월 유동은 오일 버너의 성능향상에 두要紧한 효과를 보여 주고 있다. 보다 실제 현상에 근접한 유동 해석 데이터를 취득하기 위해서 실제 상용버너의 형상 및 치수를 재현하여 형상 모델링을 구성하였으며 fan의 각도는 28°이며 스월 유동을 생성하는 fan의 날개 깃은 각각의 각도차가 45° 각도로 8개이다.

공기 유량은 fan에 의한 유량 부족현상을 보완하기 위하여 스월 버너에 유량을 상용버너의 유량과 같게 투입하였다.

Fig 4.1은 노즐 및 보염기의 형상이며, Table 4.1은 설계에 사용된 치수 데이터이다.

Fig 4.2는 CFD 유동 해석을 위해 설계한 버너의 형상이다.
Fig. 4.1 Comparison of nozzle geometries

Table 4.1 Configuration of Furnace definition

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan diameter</td>
<td>110 mm</td>
</tr>
<tr>
<td>Fan thickness</td>
<td>1 mm</td>
</tr>
<tr>
<td>Furnace diameter</td>
<td>470 mm</td>
</tr>
<tr>
<td>Furnace length</td>
<td>650 mm</td>
</tr>
<tr>
<td>Furnace thickness</td>
<td>2 mm</td>
</tr>
</tbody>
</table>
Fig. 4.2 Computational domain
4.2 CFD 유동해석을 위한 계산 격자

Fig 4.3과 Fig 4.4는 효과적인 계산격자의 생성을 위하여, 우수한 품질의 격자구역을 생성할 수 있는 전문 격자 생성 소프트웨어인 ANSYS-ICEM CFD 10.0을 사용하였으며, fan 주위의 복잡한 형상의 반영을 위해 Tetra-Prism 형태의 격자를 구성하였다.

모델이 직선 형태로 구성이 되지 않고 fan과 같이 유선형 형태나 노동과 같은 원형 형태일 때는 격자의 형태가 삼각형을 이루는 것이 최적의 상태임을 감안하여 격자 구성을 하였으며, edge 부분은 응력 및 압력의 집중을 고려하여 보다 정확한 데이터 획득을 위하여 모델 구성에 사용된 일반적인 계산격자의 크기보다 작고 세밀한 격자로 구성하였다.

전체 격자 도메인에 사용된 격자의 수는 약 250,000nodes이다.
Fig. 4.3 Computational mesh on the fan

Fig. 4.4 Computational mesh on the outer domain
4.3 유동 해석 결과

수치해석에 사용된 CFD 코드는 회전체 기계의 성능 및 유동해석에 탁월한 정확도를 확보하고 있다고 평가받는 CFX-Tasc-Flow의 solver기술과 다양 유동, 화학반응 등의 해석에 탁월한 성능을 발휘하는 CFX-4의 solver기술의 유기적인 결합으로 만들어진 ANSYS-CFX 10.0을 사용하였다.

난류모델로써 standard k-ε 모델을 적용하였으며, 입구조건으로 상온 공기 유속 3m/s의 균일 유입조건을, 출구 조건으로써 대기압 조건을 부여하였으며, fan의 회전 속도는 120rpm이며 정상상태 해석을 수행하였다.

Fig. 4.5에서는 fan에 공기가 흡입되고 fan이 회전함에 따라 노동 내부에 와유동이 일어남을 보여주고 있다. Fig. 4.6에서는 fan이 와유동을 일으킴에 따라 그 영향을 받은 노동 내부 전체의 유동현상이 와류를 형성하는 모습을 보여주고 있다.

Fig. 4.7에서는 fan으로 유입되어 노동으로 들어가는 공기의 압력 변화를 나타내고 있으며 큰 압력의 공기유입으로 fan에 부하가 크게 작용하는 것을 보여준다. 이 현상은 기존의 상용버너에 임의로 fan을 제작 설계하여 설치함으로서 fan의 설치가 고려되지 않은 버너이기 때문이다.

Fig. 4.8에서는 fan을 통과한 공기가 노동에 유입되는 형상과 속도를 나타내는 것으로 뛰어난 와유동을 유지하면서도 직진성이 우수하다는 것을 보여 주는 것이다. 이러한 현상은 노동 외벽면으로 열전달을 통해 성능을 나타내는 보일러 연소에서는 아주 중요한 부분으로서 향후 좀 더 세밀하고 정확한 자료를 토대로 연구를 진행해 나간다면 더욱 높은 효율과 적은 배기가스를 가지는 스월 유동을 이용한 오일버너가 개발될 것이라 사료된다.
Fig. 4.5 Streamlines of fan

Fig. 4.6 Streamlines of inlet
Fig. 4.7 Pressure distribution at mid-section (side view)

Fig. 4.8 Velocity distribution at mid-section (side view)
제4장 결론

스릴 유동을 이용한 버너의 유동과 화염 거동 및 버너 성능을 해석하고 분석한 본 연구를 종합하면 다음과 같다.

■ 스릴 유동을 일으킬 수 있는 보열기를 설치한 버너의 공기 유동은 공기흡기 직후부터 강한 와 유동을 동반하며 삼중의 연속된 와 유동을 나타내며, 화염의 거동도 이러한 유동의 형태와 유사하다.

■ 스릴 버너의 화염 온도는 중심축 상에서 높은 온도는 나타내고 있는 상용 버너에 비해서 중심축에는 온도가 낮고 스릴 유동으로 화염이 넓게 분포되는 화염 표면에서의 온도가 높다.

■ 스릴 버너의 스릴 유동에 의한 화염확산과 연소실벽면 근처의 고온 화염의 분포는 보일러 가열유체 내부로의 열 전달성능을 증가시켜 열효율을 향상시킨다.

■ 스릴 버너의 배기가스 수치는 전반적으로 Wide 버너에 비해서 낮고, 특히 NOx는 일반버너에서 14%인 반면 스릴 버너에서는 0%에 가까운 수치를 나타내고 있어서 환경오염의 규제 강화 분위기에 적합한 버너이다.

■ 와 유동을 일으키는 날개깃에 의한 흡입 공기량의 감소로 인해서 발생 될
수 있는 연소 효율의 감소는 거의 없었다.

■ 향후 과제로서 공기 흡입량에 따른 날개깃의 속도조절에 대한 연구와 fan에 의한 흡입 공기량 감소의 최소화에 대한 연구가 요구된다.

