신경회로망을 이용한 유도진동기의
센서리스 속도제어에 관한 연구

A Study on the Sensorless Speed Control of Induction Motor by Neural Network

指導教授 金 成 煥

2002年 2月

韓國海洋大學校 大學院

機 關 工 學 科

金 宗 洙
목차

목차 .. i

그림 및 표 목차 ... iii

기호 및 약어 .. vii

Abstract .. xiii

제1장 서론 ... 1
 1.1 연구배경 .. 1
 1.2 연구동향 .. 2
 1.3 연구내용 .. 3
 1.4 논문의 구성 ... 5

제2장 유도전동기의 수학적 모델 및 벡터제어 ... 6
 2.1 좌표측 변화 .. 6
 2.2 유도전동기 수식모델링 ... 9
 2.3 유도전동기의 벡터제어 .. 14
 2.3.1 직접벡터제어 .. 15
 2.3.2 간접벡터제어 .. 18

제3장 신경회로망을 이용한 유도전동기 속도추정 ... 24
 3.1 신경회로망의 개요 .. 24
 3.1.1 신경회로망의 생물학적 구조 ... 24
 3.1.2 신경 회로망의 구성요소와 동작특성 ... 26
 3.1.3 다층 신경회로망의 구조와 학습 ... 28
 3.1.4 모멘텀(momentum)과 바이어스(bias) ... 33
 3.2 신경회로망에 의한 유도전동기 속도추정 .. 33

- i -
<table>
<thead>
<tr>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 전동기 수식모델</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2 신경회로망에 의한 속도추정기</td>
<td>36</td>
</tr>
<tr>
<td>제4장 센서리스 속도제어 시스템</td>
<td>51</td>
</tr>
<tr>
<td>4.1 속도제어기</td>
<td>52</td>
</tr>
<tr>
<td>4.2 토크제어기</td>
<td>53</td>
</tr>
<tr>
<td>4.3 공간벡터 PWM 전류제어기</td>
<td>54</td>
</tr>
<tr>
<td>제5장 시뮬레이션</td>
<td>61</td>
</tr>
<tr>
<td>제6장 실험장치의 구성과 실험결과</td>
<td>69</td>
</tr>
<tr>
<td>6.1 실험장치의 구성</td>
<td>69</td>
</tr>
<tr>
<td>6.2 실험결과 및 검토</td>
<td>76</td>
</tr>
<tr>
<td>제7장 결론</td>
<td>81</td>
</tr>
<tr>
<td>참고문헌</td>
<td>83</td>
</tr>
</tbody>
</table>
Fig. 2.1 Transformation of the stationary a, b, c axis to \(a-\beta\) axis … 6
Fig. 2.2 Transformation of the stationary \(a-\beta\) axis to synchronously rotating \(d-q\) axis .. 8
Fig. 2.3 Equivalent model of 3-phase symmetrical induction machine ... 9
Fig. 2.4 equivalent circuits at synchronously rotating reference frame ... 13
Fig. 2.5 Vector diagram for the indirect vector control ………….. 19
Fig. 2.6 The block diagram of the indirect vector control induction motor .. 23
Fig. 3.1 Structure of the biological neuron ... 25
Fig. 3.2 Structure of the artificial neuron ... 26
Fig. 3.3 Activation function used in neural network 28
Fig 3.4 Structure of the general multilayer neural network 29
Fig. 3.5 Flow chart of the backpropagation algorithm 32
Fig. 3.6 Structure of the neural network speed estimator 37
Fig 3.7 Block diagram for training estimator 38
Fig. 3.8 Neural network input signals for training 39
Fig. 3.9 Speed responses of IM model ... 40
Fig. 3.10 Flow chart of training algorithm by ANN speed estimator 48
Fig. 3.11 Speed response of neural network estimator 49

- iii -
Fig 3.12 Flow chart of the training program for speed estimator ……50
Fig 4.1 Block diagram of the proposed sensorless speed control ……51
Fig. 4.2 Three phase voltage source inverter55
Fig. 4.3 Representation of space voltage vectors56
Fig. 4.4 Optimal switching pattern of space vector PWM60
Fig. 5.1 Simulation responses for step change of speed setting ……62
(0→10[rpm])
Fig. 5.2 Simulation responses for step change of speed setting ……62
(0→15[rpm])
Fig. 5.3 Simulation responses for step change of speed setting ……63
(0→25[rpm])
Fig. 5.4 Simulation responses for step change of speed setting ……63
(0→50[rpm])
Fig. 5.5 Simulation responses for step change of speed setting ……64
(0→100[rpm])
Fig. 5.6 Simulation responses for step change of speed setting ……64
(0→200[rpm])
Fig. 5.7 Simulation responses for step change of load torque65
(0→5[N·m])
Fig. 5.8 Simulation responses for step change of load torque65
(0→5[N·m])
Fig. 5.9 Simulation responses for step change of speed setting ……66
(100→100[rpm])
Fig. 5.10 Simulation speed responses for the change of stator resistance (200[rpm], 0→5[N–m]) ... 67
Fig. 5.11 Simulation speed responses for the change of rotor resistance (200[rpm], 0→5[N–m]) ... 68
Fig. 6.1 Control part of the experimental equipment 69
Fig. 6.2 PCL–818 Card block diagram .. 70
Fig. 6.3 Drive system of the experimental equipment 71
Fig. 6.4 Configuration of gate drive circuit 72
Fig. 6.5 Configuration of power circuits 73
Fig. 6.6 Induction motor and Dynamometer of the experimental equipment .. 75
Fig. 6.7 Block diagram of total hardware system 75
Fig. 6.8 Experimental responses for step change of speed 76 (0→10[rpm])
Fig. 6.9 Experimental responses for step change of speed 76 (0→15[rpm])
Fig. 6.10 Experimental responses for step change of speed 77 (0→25[rpm])
Fig. 6.11 Experimental responses for step change of speed 77 (0→50[rpm])
Fig. 6.12 Experimental responses for step change of speed 78 (0→100[rpm])
Fig. 6.13 Experimental responses for step change of speed 78
(0→200[rpm])

Fig. 6.14 Experimental responses for step change of load 79
(50[rpm], 0→5[N·m])

Fig. 6.15 Experimental responses for step change of load 79
(100[rpm], 0→5[N·m])

Fig. 6.16 Experimental responses for step change of load 80
(200[rpm], 0→5[N·m])

Fig. 6.17 Experimental responses for step change of speed 80
(100→100[rpm])

Table 1 Parameters of induction motor used for computer
 simulation and experiment and system constants 59

Table 2 Gating sequence in the sector I 61

Table 3 Specification of dynamometer .. 74
기호 및 약어

\(\alpha, \beta \) : 고정직교좌표계

\(B \) : 마찰계수 \([\text{Nm/rad/s}]\)

\(B_j \) : 은닉층의 바이어스 행렬

\(B_k \) : 출력층의 바이어스 행렬

\(d, q \) : 동기회전좌표계

\(e \) : 역기전력 \([\text{V}]\)

\(E \) : 신경회로망의 출력오차 (목표값 - 신경회로망의 출력)

\(f \) : 전압, 전류, 자속등의 물리량

\(F_j \) : 활성함수, Tansigmoid

\(f(\text{net}) \) : 활성함수

\(f'(\text{net}) \) : 활성함수의 미분값

\(i_r \) : 회전전류 \([\text{A}]\)

\(i_s \) : 고정전류 \([\text{A}]\)

\(i_{qs}, i_{bs}, i_{cs} \) : 상전류 \([\text{A}]\)

\(i_{qr}, i_{br} \) : \(a-\beta \)축 회전전류 \([\text{A}]\)

\(i_{qs}, i_{bs} \) : \(a-\beta \)축 고정전류 \([\text{A}]\)

\(i_{dr}, i_{qr} \) : \(d-q \)축 회전전류 \([\text{A}]\)

\(i_{ds}, i_{qs} \) : \(d-q \)축 고정전류 \([\text{A}]\)

\(i_{der}, i_{qer} \) : 지령값과 실제값의 오차

- vii -
\(I_m \) : 회전자축 자속전류 [A]

\(i_{m}(k), i_{m}(k-1) \) : \(\alpha \)축 고정자 전류 및 시간 지연항

\(i_{\beta}(k), i_{\beta}(k-1) \) : \(\beta \)축 고정자 전류 및 시간 지연항

\(J \) : 전동기 관성모멘트 [Kgm²]

\(L_{br} \) : 회전자 두설험 인덕턴스 [H]

\(L_{bc} \) : 고정자 두설험 인덕턴스 [H]

\(L_{m} \) : 상호인덕턴스 [H]

\(L_{r} \) : 회전자 자기인덕턴스 [H]

\(L_{s} \) : 고정자 자기인덕턴스 [H]

\(L_{o} \) : \((= \sqrt{L_{r}L_{s} - L_{m}^2}) \)

\(m \) : 모멘텀 상수

\(net \) : 연결가중치에 대한 입력의 가중치 합

\(P \) : 극수

\(p (= \frac{d\psi}{dt}) \) : 미분연산자

\(R_{r} \) : 회전자저항 [Ω]

\(R_{s} \) : 고정자저항 [Ω]

\(T_{o}, T_{1}, T_{2} \) : 전압벡터 인가시간 [s]

\(T_{e}, T_{L} \) : 출력토크 및 부하토크 [Nm]

\(T_{r} \) : 회전자 시정수 [s]

\(T_{s} \) : 샘플링주기 [s]

- viii -
\(v_s \) : 고정자전압 [V]
\(v_{ab}, v_{bc}, v_{ca} \) : 선간전압 [V]
\(v_{as}, v_{bs}, v_{cs} \) : 상전압 [V]
\(v_{ar}, v_{br} \) : \(a-\beta \)축 회전자전압 [V]
\(v_{as}, v_{bs} \) : \(a-\beta \)축 고정자전압 [V]
\(v_{as}(k), v_{as}(k-1) \) : \(a \)축 고정자 전압 및 시간 지연항
\(v_{bs}(k), v_{bs}(k-1) \) : \(\beta \)축 고정자 전압 및 시간 지연항
\(v_{dr}, v_{qr} \) : \(d-q \)축 회전자전압 [V]
\(v_{ds}, v_{qs} \) : \(d-q \)축 고정자전압 [V]
\(\dot{v}_s \) : \(d-q \)축 고정자전압 [V] \((= v_{ds} + jv_{qs}) \)

\(V_{dc} \) : 직류링크전압 [V]
\(\lambda_r \) : 회전자자속 [Wb]
\(\lambda_s \) : 고정자자속 [Wb]
\(\lambda_{ar}, \lambda_{br} \) : \(a-\beta \)축 회전자자속 [Wb]
\(\lambda_{as}, \lambda_{bs} \) : \(a-\beta \)축 고정자자속 [Wb]
\(\lambda_{ds}, \lambda_{qr} \) : \(d-q \)축 회전자자속 [Wb]
\(\lambda_{ds}, \lambda_{qs} \) : \(d-q \)축 고정자자속 [Wb]
\(\lambda_r^\prime \) : \(d-q \)축 고정자자속 [Wb] \((= \lambda_{ds} + j\lambda_{qs}) \)

\(\sigma \) : 누설계수 \((= 1 - \frac{L_m^2}{L_s L_r}) \)

\(\theta_{sl} \) : 슬립각변위 [rad]
\(\theta \) : 처리기의 고유바이어스

\(\omega_c \) : 동기각속도 \([\text{rad} / \text{s}]\)

\(\omega_r \) : 전동기각속도 \([\text{rad} / \text{s}]\)

\(w_{cr} \) : 지령속도와 추정속도 오차

\(\omega_s \) : 슬립각속도 \([\text{rad} / \text{s}]\)

\(w_i \) : 연결가중치

\(w_{ij} \) : 입력층과 은닉층 사이의 연결가중치

\(w_{jk} \) : 은닉층과 출력층 사이의 연결가중치

\(\Delta w_{ij} \) : 은닉층의 가중치 변화량 \((\Delta w_{ij}) = -\frac{\partial F}{\partial w_{ij}} \)

\(\Delta w_{jk} \) : 출력층의 가중치 변화량 \((\Delta w_{jk}) = -\frac{\partial F}{\partial w_{jk}} \)

\(w_r(k) \) : 전동기 수식 모델에서의 회전각속도

\(\hat{w}_r(k) \) : 신경회로망의 출력인 회전자 추정속도

\(\frac{\partial F}{\partial w_r(k)} \) : 신경회로망 출력에 대한 오차의 변화

\(\frac{\partial \hat{w}_r(k)}{\partial \text{net}_k} \) : net 입력의 변화에 관계되는 출력의 변화

\(\frac{\partial \text{net}_i}{\partial w_{ij}} \) : 은닉층 가중치의 변화에 대한 은닉층 net의 변화

\(\Delta w_{jk}(k+1) \) : 은닉층과 출력층 사이의 가중치 변화량

\(\Delta w_{ij}(k+1) \) : 입력층과 은닉층 사이의 가중치 변화량

\(W_{ij} \) : 입력층과 은닉층 사이의 연결가중치의 행렬

\(-x-\)
\(W_{jk} \) : 은닉층과 출력층 사이의 연결가중치 행렬

\(x_{ar}, x_{br} \) : \(a - \beta \)축 회전자 상태 변수

\(x_{as}, x_{bs} \) : \(a - \beta \)축 고정자 상태 변수

\(x_{ds}, x_{qs} \) : \(d - q \)축 고정자 상태 변수

\(x_i \) : 신경회로망의 입력

\(X_i \) : 입력행렬

\(y \) : 신경회로망 출력 (\(= f(\text{net} + \theta) \))

\(y_i, y_j, y_k \) : 입력층, 은닉층, 출력층의 뉴런

\(\delta_j \) : 은닉층에서의 일반화된 오차신호 (\(= -\frac{\partial E}{\partial \text{net}_j} \))

\(\delta_k \) : 출력층에서의 일반화된 오차신호 (\(= -\frac{\partial E}{\partial \text{net}_k} \))

\(\eta \) : 학습률

\(^\wedge \) : 추정값

\(^\circ \) : 지령값

\(^\cdot \) : 벡터량

\(\times \) : 벡터곱 (vector product)

\(\cdot \) : 스칼라곱 (scalar product)

A/D : Analog to Digital

CT : Current Transducer

FOC : Field Orientation Control

IC : Integrated Circuit

IM : Induction Motor

- xi -
IGBT : Insulated Gate Bipolar Transistor
PC : Personal Computer
PI : Proportional and Integral
PWM : Pulse Width Modulation
Sensorless Speed Control of Induction Motor
by Neural Network

Jong-Su Kim

Dept. of Marine Engineering, Graduate School,
Korea Maritime University

Abstract

Recently, with the development of vector control technology, induction motors has been used more in the industrial variable speed drive system.

Generally, induction motor controller requires rotor speed sensors for commutation and current control, but they increase cost and size of the motor.

So in these days, various researches including speed sensorless vector control are reported and some have been put to practical use.

Many sensorless control algorithms use mathematical model based upon analysis techniques which have been used for the steady and transient states of induction motor.

However, their control performances are greatly influenced by the parameters and load deviations. Furthermore, many difficulties occurred in starting and low-speed range.
In this paper a new speed estimation method using neural networks is proposed.

The neural network structure was again found by trial and error and it was found that the 8–16–1 neural network has given correct results for the instantaneous rotor speed.

The eight inputs to the neural network are monitored values of the stator voltages and stator currents. The neural network contains a singles hidden layer with 16 nodes, and the activation functions used in the hidden layer are tanhsigmoid. The output layer contains a single node, which outputs the rotor speed.

A feedback signal is necessary for only training. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used.

The back–propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network.

Also, the proposed methods have advantages such as the independency on machine parameter, the insensitivity to the load condition, and the stability in the low speed operation.

The results of simulation and experiment indicate good response characteristics even in the low speed range and in the parameter variation.
제1장 서론

1.1 연구배경

그러나, 유도 전등기의 고성능, 고정밀 속도제어를 실현하기 위해서는 회전자의 정확한 속도정보가 필요하며 이는 리졸버, 필스 엔코더 등의 기계적인 센서를 이용하여 얻을 수 있다. 하지만, 이들 센서들을 사용하여 정밀한 속도정보를 얻는다는 운전속도에 따라서 한계를 가질 수 있으므로 구동 시스템의 성능향상에 문제 요소로 작용하게 된다. 그리고 구동장치의 설치 환경에 따라 센서를 취부하는 것이 허용되지 않거나, 구동시스템의 가격상승과 신뢰도 및 외안에 대한 강연성을 감소시킨다.

이런 문제점을 해소하기 위해 1980년대 후반 이후 센서를 사용하지 않는 센서리스 속도제어방식[5-31]에 관한 연구가 진행되었다. 초기에는 고정자 전압과 전류값에 의해 자속을 추정하고 전류와 추정 자속값을 이용하여 회전자 속도정보를 얻는 방법을 취해 왔으나, 요즘에는 보다 더 정확하고 강연성을 가지는 속도추정 및 센서리스 제어방식들이 발표되고 있다.
1.2 연구동향

기존의 센서리스 속도제어방식에는 대표적으로 다음과 같은 5가지 방식이 있으며 본 장에서 제어성능을 살펴보았다[4].

2) 유도 전동기의 두 모델, 즉 고정자 모델과 회전자 모델에 의해 구한 자속이나 역기전력 추정치의 차이를 적응제어니즘에 적용시켜 속도를 추정하는 방식[16-19]으로서 100[rpm] 이상에서 속도 추정 및 제어가 가능하였고 회전자 저항이 20% 증가하였을 때, 응답속도는 지령속도값에 대하여 약 6% 정도의 오차를 보였다.

3) 상태 관측기에 의해 회전자 자속을 추정하고 고정자 전류와 회전자 자속을 이용하여 속도정보를 얻는 방식[20-23]은 20[rpm] 이상에서 속도 추정 및 제어가 가능하였고 회전자 저항이 20% 증가하였을 때, 응답속도는 지령속도값에 대하여 약 4% 정도의 오차를 발생시켰다.

4) 입출력 잡음의 영향을 받을 경우에 최적의 필터링 알고리즘인 칼만필터를 이용하는 방식[24-27]은 20[rpm] 이상에서 속도 추정 및 제어가
가능하였고 회전자 저항이 20% 증가하였을 때, 응답속도는 지령속도값에 대하여 약 4% 정도의 오차를 나타내었다.

5) 회전자 슬롯에 의한 밸런턴스 변화로 야기되는 고정자 전압이나 전류 고조파를 이용하여 속도를 추정하는 방식[28-31]은 60[rpm] 이상에서 속도 추정 및 제어가 가능하였고 회전자 저항이 20% 증가하였을 때, 응답속도는 지령속도값에 대하여 약 5% 정도의 오차를 보였다.

이상의 응답특성을 살펴보면 기존의 센서리스 속도제어 방식에서는 극 저속 영역이나 파라미터 변동시에 강한 제어성능을 얻기가 어려움을 알 수 있다.

1.3 연구내용

1943년 McCulloch와 Pitts에 의해 연구되기 시작한 신경회로망은 학습을 통해 연결가중치를 조정함으로써 수학적으로 모델을 구하기 어려운 비선형 시스템이라 할지라도 입·출력 특성을 묘사할 수 있으며, 입력정보의 왜곡, 잡음 등에 강한 특성을 갖는다. 또한, 신경회로망은 다수개의 입·출력으로 구성되어 다변수 시스템의 모델링이 쉬운 특성을 가지며, 이러한 신경회로망의 특성들로 인하여 패턴인식, 이미지처리와 음성인식 등에 관한 응용분야에 주로 적용될 뿐만 아니라, 최근에는 비선형 동특성 시스템의 동정(Identification)과 제어에 응용하기 위해 많이 연구되고 있다[32-34].
이에 따라 1990년대 이후 PWM 인버터의 전류제어, 직류전동기 제어
등에 대한 연구가 시작되었으며 최근에는 신경회로망을 이용한 유도전동
기의 속도추정에 관한 연구가 진행되고 있다[35-37].

하지만, 종전의 신경회로망을 이용한 속도추정 방식에는 모델기준적응
제어의 적응매커니즘에 신경회로망을 이용하는 방식, 제어기로서 신경회
로망을 이용하여 회전자속과 토크 및 자속각 위치를 추정하여 회전자속
도를 제어하는 방식, 유도전동기의 구동과 동시에 on-line 학습을 통하여
속도를 추정하는 방식들이 있으나 이 방식들은 저속 운전영역과 고정자
및 회전자지향의 파라미터변동, 그리고 부하변화시 추정속도에 오차가 발생
한다.

따라서, 본 논문에서는 기존의 문제점을 해결하기 위하여 신경회로망
을 이용한 새로운 유도전동기의 속도추정 방식을 제안하였으며 추정속도
를 이용하여 센서리스 속도제어를 실행하였다.

유도전동기의 토크는 전압 및 토크방향 zdjęć에 의해 구해지며, 이 토크를
이용하여 회전자 속도정보를 얻을 수 있다. 따라서 신경회로망의 입력패
턴과 출력패턴으로 사용되는 데이터는 유도전동기의 전압 및 전류와 회전
자속도 상호간의 비선형 특성에 착안하여 전압 및 전류를 입력패턴 요소
로, 회전자속도를 출력패턴으로 사용한다.

제안된 방식은 다층 퍼셉트론을 이용하며, 시뮬레이션을 통하여 비리
연어진 입력 출력 데이터를 신경회로망의 입력패턴과 출력패턴으로 간주하
여 역전화 학습 알고리즘을 적용하여 학습함으로써 최적의 연결가중치를
구하여 속도추정기를 구성하였다. 이 연결가중치와 신경회로망의 입력 데
이터와의 연산에 의해 실제 회전자 속도정보를 추정함으로써 기존의 속도

- 4 -
추정 알고리즘이 가지는 복잡성과 파라미터나 부하의 변동 등 운전 환경에 대한 의존성의 문제를 극복할 수 있었다. 신경회로망의 견실한 특성으로 인해 여러가지 운전 상황 변화에도 정확한 속도추정 성능을 나타내고 과도상태에서도 만족할 만한 제어성을 보여준다.

또한, 전통기 모델의 시뮬레이션을 통한 신경회로망의 입력 출력 데이터 수집, 역전과 학습 알고리즘을 이용한 연결가중치 도출, 학습을 통하여 얻어진 연결가중치의 정확성을 검정할 수 있는 신경회로망의 추정속도 출력 및 비교분석 등의 과정을 포함하는 프로그램을 개발하였다.

1.4 논문의 구성

제1장에서는 서론을 기술하였고,
제2장에서는 유도전동기의 수학적 모델 및 벡터계어의 원리에 대하여 설명하였다.
제3장에서는 신경회로망에 대한 설명과 본 논문에서 제안한 신경회로망을 이용한 유도전동기의 속도추정 방식을 제시하였다.
제4장에서는 센서리스 속도계어 시스템의 속도계어기, 토크계어기 및 전류계어기에 대하여 다루었다.
제5장에서는 제시된 알고리즘의 유효성을 검증하기 위한 시뮬레이션 결과를 보여주었으며,
제6장에서는 실험장치 구성과 실험결과를 상술하였다.
마지막으로, 제7장에서는 본 논문에 대한 결론으로서 제안된 방식에 대한 전체적인 평가를 언급하였다.
제2장 유도전동기의 수학적 모델 및 벡터제어

2.1 좌표축 변환

3상 변수를 임의 좌표계로 변환하는 과정에서 2축 동특성 모델은 고정자에 고정된 고정 좌표계나 회전자계와 동기로 회전하는 동기회전 좌표계 상의 값으로 표현될 수 있다.

고정 좌표계는 기본적으로 4축 변환과정[34]을 나타내며 고정자와 회전자의 3상 변수의 전압, 전류 및 쇄교각속에 대해 선형변환을 적용하였다. 먼저 3상 유도전동기의 a, b, c축과 고정 좌표계 a-β축 사이의 관계를 Fig. 2.1에 나타내었다.

Fig. 2.1 Transformation of stationary a, b, c axis to a - β axis
Fig. 2.1에 따르면 식(2.1)과 같이 3상변수를 2축 고정 좌표계로 나타낼 수 있다.

\[
\begin{bmatrix}
 f_{as} \\
 f_{bs} \\
 f_{cs}
\end{bmatrix} = \frac{2}{3} \begin{bmatrix}
 \cos \theta & \cos(\theta - \frac{2}{3} \pi) & \cos(\theta + \frac{2}{3} \pi) \\
 -\sin \theta & -\sin(\theta - \frac{2}{3} \pi) & -\sin(\theta + \frac{2}{3} \pi) \\
 \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{bmatrix} \begin{bmatrix}
 f_{as} \\
 f_{bs} \\
 f_{cs}
\end{bmatrix}
\] (2.1)

\[\theta = 0\] 으로 하여 \(a\)축과 \(a\)축을 일치시키고 영상분을 무시하면 식(2.2)가 된다.

\[
\begin{bmatrix}
 f_{as} \\
 f_{bs}
\end{bmatrix} = \frac{2}{3} \begin{bmatrix}
 1 & -\frac{1}{2} & -\frac{1}{2} \\
 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{bmatrix}
\] (2.2)

이와 같이 3상변수를 고정자에 고정된 2축 상분으로 변환한 값은 회전 자계와 동기로 회전하는 동기회전 좌표계상의 값과 Fig. 2.2와 같은 관계가 있으므로 식(2.3)에 의해 회전축상의 값으로 변환될 수 있다.
Fig. 2.2 Transformation of stationary $a - \beta$ axis to synchronously rotating $d - q$ axis

\[
\begin{bmatrix}
 f_{ds} \\
 f_{qs}
\end{bmatrix} = \begin{bmatrix}
 \cos \theta_e & \sin \theta_e \\
 -\sin \theta_e & \cos \theta_e
\end{bmatrix}
\begin{bmatrix}
 f_{as} \\
 f_{\beta s}
\end{bmatrix}
\]

(2.3)

또, 위 식을 역변환하면 식(2.4)가 된다.

\[
\begin{bmatrix}
 f_{as} \\
 f_{\beta s}
\end{bmatrix} = \begin{bmatrix}
 \cos \theta_e & -\sin \theta_e \\
 \sin \theta_e & \cos \theta_e
\end{bmatrix}
\begin{bmatrix}
 f_{ds} \\
 f_{qs}
\end{bmatrix}
\]

(2.4)

동기회전 좌표계 모델은 정현 입력시 정상상태에서 변수들이 직류량으로
로 나타나기 때문에 교류기 해석에 많이 적용되고 있으며 앞의 식들에 의해 동기회전 좌표계의 2축 변수들을 구할 수 있다.

2.2 유도전동기의 수식 모델링

Fig. 2.3은 삼상 유도전동기의 고정자와 회전자 등가모델이다.

Fig. 2.3 Equivalent model of 3-phase symmetrical induction machine
각 상에 대한 전압방정식은 아래 식과 같다.

\[
\begin{align*}
\vec{v}_{abc} &= R_s \vec{i}_{abc} + \frac{d\vec{\lambda}_{abc}}{dt} \\
\vec{v}_{a^{\prime}bc} &= R_r \vec{i}_{a^{\prime}bc} + \frac{d\vec{\lambda}_{a^{\prime}bc}}{dt}
\end{align*}
\]

여기서,

\[
\begin{align*}
\vec{v}_{abc} &= [v_{as} \ v_{bs} \ v_{cs}]^T \\
\vec{i}_{abc} &= [i_{as} \ i_{bs} \ i_{cs}]^T \\
\vec{\lambda}_{abc} &= [\lambda_{as} \ \lambda_{bs} \ \lambda_{cs}]^T \\
\vec{v}_{a^{\prime}bc} &= [v_{ar} \ v_{br} \ v_{cr}]^T \\
\vec{i}_{a^{\prime}bc} &= [i_{ar} \ i_{br} \ i_{cr}]^T \\
\vec{\lambda}_{a^{\prime}bc} &= [\lambda_{ar} \ \lambda_{br} \ \lambda_{cr}]^T
\end{align*}
\]

또한, 쇄교자속은 다음과 같이 표현된다.

\[
\begin{bmatrix}
\vec{\lambda}_{abc} \\
\vec{\lambda}_{a^{\prime}bc}
\end{bmatrix} =
\begin{bmatrix}
\vec{L}_s & \vec{L}_{sr} \\
(\vec{L}_{sr})^T & \vec{L}_r
\end{bmatrix}
\begin{bmatrix}
\vec{i}_{abc} \\
\vec{i}_{a^{\prime}bc}
\end{bmatrix}
\]

여기서,
\[\overline{L}_s = \begin{bmatrix} L_b + L_{ms} - \frac{1}{2} L_{ms} - \frac{1}{2} L_{ms} \\ - \frac{1}{2} L_{ms} L_b + L_{ms} - \frac{1}{2} L_{ms} \\ - \frac{1}{2} L_{ms} - \frac{1}{2} L_{ms} L_b + L_{ms} \end{bmatrix} \] \hspace{1cm} (2.8)

\[\overline{L}_r = \begin{bmatrix} L_{br} + L_{mr} - \frac{1}{2} L_{mr} - \frac{1}{2} L_{mr} \\ - \frac{1}{2} L_{mr} L_{br} + L_{mr} - \frac{1}{2} L_{mr} \\ - \frac{1}{2} L_{mr} - \frac{1}{2} L_{mr} L_{br} + L_{mr} \end{bmatrix} \] \hspace{1cm} (2.9)

\[\overline{L}_{sr} = L_{sr} \begin{bmatrix} \cos \theta_r & \cos(\theta_r + \frac{2}{3} \pi) & \cos(\theta_r - \frac{2}{3} \pi) \\ \cos(\theta_r - \frac{2}{3} \pi) & \cos \theta_r & \cos(\theta_r + \frac{2}{3} \pi) \\ \cos(\theta_r + \frac{2}{3} \pi) & \cos(\theta_r - \frac{2}{3} \pi) & \cos \theta_r \end{bmatrix} \] \hspace{1cm} (2.10)

위 식에서 알 수 있듯이 유도전동기의 동특성은 고정자와 회전자 상호 간의 결합효과 때문에 시변계수를 가지는 복잡한 미분방정식으로 표현된다. 회교자속을 상대변수로 하여 유도전동기의 상태 미분방정식을 풀기 위해서는 인덕턴스 행렬의 역행렬을 구해야 하는데 이는 시변행성을 포함 하므로 매우 어렵다. 따라서 계수를 상수화하기 위해서 좌표축 변환을 도입한다.

유도전동기의 고정자 전압방정식을 동기회전 좌표축상의 값들로 나타내면 아래와 같다.

\[v_{ds} = R_s i_{ds} + \frac{d\lambda_{ds}}{dt} - \omega e \lambda_{qs} \] \hspace{1cm} (2.11)
전동기 회전자가 ω_r로 회전한다면, 회전자는 동기회전 좌표계에 대해 $\omega_e - \omega_r$의 상대속도를 가진다. 따라서, 전동기 회전자의 $d - q$축 전압방정식은 다음과 같이 나타낼 수 있다.

\[
v_{qs} = R_s i_{qs} + \frac{d\lambda_{qs}}{dt} + \omega_e \lambda_{ds} \quad (2.12)
\]

\[
v_{dr} = R_r i_{dr} + \frac{d\lambda_{dr}}{dt} - (\omega_e - \omega_r) \lambda_{qr} \quad (2.13)
\]

\[
v_{qr} = R_r i_{qr} + \frac{d\lambda_{qr}}{dt} + (\omega_e - \omega_r) \lambda_{dr} \quad (2.14)
\]

위 식에서 동형 유도전동기의 경우는 $v_{dr} = v_{qr} = 0$이다. 또한, 고정자와 회전자의 채교차속은 다음과 같다.

\[
\lambda_{ds} = L_b i_{ds} + L_m(i_{ds} + i_{dr}) = L_s i_{ds} + L_m i_{dr} \quad (2.15)
\]

\[
\lambda_{qs} = L_b i_{qs} + L_m(i_{qs} + i_{qr}) = L_s i_{qs} + L_m i_{qr} \quad (2.16)
\]

\[
\lambda_{dr} = L_r i_{dr} + L_m(i_{ds} + i_{dr}) = L_r i_{dr} + L_m i_{ds} \quad (2.17)
\]

\[
\lambda_{qr} = L_r i_{qr} + L_m(i_{qs} + i_{qr}) = L_r i_{qr} + L_m i_{qs} \quad (2.18)
\]

동기회전 좌표계에서의 동기회로를 그리면 Fig. 2.4와 같다.
Fig. 2.4

\begin{enumerate}
\item \(d\)-axis equivalent circuit
\item \(q\)-axis equivalent circuit
\end{enumerate}
위에서 나타내고 있는 동기회전좌표계에서의 전압방정식은 행렬식으로 나타내면 식(2.19)와 같다.

\[
\begin{bmatrix}
 v_{ds} \\
v_{qr} \\
v_{dr} \\
v_{qr}
\end{bmatrix} =
\begin{bmatrix}
 R_s + pL_s & -\omega_s L_s & pL_m & -\omega_s L_m \\
 \omega_s L_s & R_s + pL_s & \omega_s L_m & pL_m \\
 pL_m & -(\omega_c - \omega_r)L_m & R_r + pL_r & -(\omega_c - \omega_r)L_r \\
 (\omega_c - \omega_r)L_m & pL_m & (\omega_c - \omega_r)L_r & R_r + pL_r
\end{bmatrix}
\begin{bmatrix}
i_{ds} \\
i_{qr} \\
i_{dr} \\
i_{qr}
\end{bmatrix}
\]

(2.19)

또한, 발생토크식과 회전자 각속도의 상태방정식은 식(2.20) 및 식(2.21)과 같다.

\[
T_e = \frac{3}{2} \frac{P}{2} \frac{L_m}{L_r} (i_{qs} \lambda_{ds} - i_{ds} \lambda_{qr})
\]

(2.20)

\[
\frac{d\omega_r}{dt} = -\frac{B}{J} \omega_r + \frac{T_e - T_L}{J}
\]

(2.21)

2.3 유도전동기의 벡터제어

빠른 과도응답을 갖는 토크제어를 위하여 유도전동기의 고정좌표계를 자속각을 기준으로, 자속성분 전류와 토크성분 전류로 분리시켜 독립적으로 제어하는 방식을 자속기준제어(Field Oriented Control, FOC) 혹은 벡터제어(Vector Control)라고 한다[1-4]. 이때, 자속성분 전류는 항상 기준자속벡터와 일치하도록 하며 동기좌표계의 \(d\)축상의 값으로, 토크성분 전류는 기준자속벡터와 직교하도록 제어하며 동기좌표계의 \(q\)축상의 값으로.
나타낸다. 벡터제어는 기준작용의 종류에 따라 고정자작용 기준제어 (Stator Flux Oriented Control), 공극작용 기준제어(Air Gap Flux Oriented Control)와 회전작용 기준제어(Rotor Flux Oriented Control) 등으로 구분되며, 자속의 크기와 각변위를 추정하는 방식에 따라 직접벡터제어(Direct Vector Control)와 간접벡터제어(Indirect Vector Control)로 나누어진다.

2.3.1 직접벡터제어

직접벡터제어는 Blaschke가 처음 제안한 방법으로 고정자 속도에 흔소자(Hall Effect Transducer)나 검색코일(Flux Sensing Coil)등과 같은 자속센서를 이용하여 자속을 얻는 직접측정법과 전압, 전류와 속도정보 등을 이용하여 자속을 추정하는 자속추정법이 있다. 직접측정법은 흔소자나 검색코일을 설치해야 하므로 제작상 문제점이 있을 뿐만 아니라 속도에 의해 발생되는 고조파가 전동기 속도에 따라 변하기로 필터의 설계가 복잡해진다. 따라서, 전동기정수와 전압, 전류, 속도 등으로부터 자속정보를 추정하는 자속모델을 이용하는 것이 일반적인데, 여기에는 아래의 두 종류가 있다.

(1) 고정자 회로의 진압모델

먼저, 식(2.22), 식(2.23)과 같이 고정자 진압을 적분하여 고정자 자속을 구한다.
\[
\lambda_{as} = \int (v_{as} - R_s i_{as}) \, dt \\
\lambda_{bs} = \int (v_{bs} - R_s i_{bs}) \, dt
\]

고정자 누설자속의 영향을 고려하여 회전자자속을 다음 식들에 의해 구한다.

\[
\lambda_{ar} = \frac{L_r}{L_m} (\lambda_{as} - \sigma L_s i_{as}) \\
\lambda_{br} = \frac{L_r}{L_m} (\lambda_{bs} - \sigma L_s i_{bs})
\]

여기서, \(\sigma = 1 - \frac{L_m^2}{L_s L_r} \) 는 누설계수이다.

또한, 위 식들로부터 다음과 같이 회전자 자속각을 구한다.

\[
\theta_e = \tan^{-1} \left(\frac{\lambda_{br}}{\lambda_{ar}} \right)
\]

위의 방식은 역기전력이 작은 저속영역에서 고정자 임피던스 강하의 영향으로 추정값이 정확하지 않고, 또한 적분식 측정변수들의 음성 때문에 적분기가 포함되기 쉽다. 따라서, 고주파 대역필터(high-pass filter)를 사용하여 주로 고속 운전영역에서 사용된다.
(2) 회전자 회로의 전류모델

저속운전영역에서는 회전자 속도와 고정자 전류로부터 자속을 연산하는 방식이 유용하다. 식(2.13)은, 동형 유도전동기일 경우 \(v_{dr} = 0 \) 이고 정지
좌표계에서는 기준축속도 \(\omega_c = 0 \)이며 \(d \) 축과 \(a \)축이 일치하므로, 다음
식이 된다.

\[
R_r i_{ar} + \frac{d}{dt} \lambda_{ar} + \omega_r \lambda_{\beta r} = 0
\]

식(2.17)에서 \(i_{ar} \) (정지좌표계에서 \(i_{ar} = i_{dr} , i_{\beta r} = i_{qr} \))을 구하여 식(2.27)에
대입하면 식(2.28)을 얻을 수 있다.

\[
\frac{d \lambda_{ar}}{dt} = \frac{L_m}{T_r} i_{as} - \omega_r \lambda_{\beta r} - \frac{1}{T_r} \lambda_{ar}
\]

마찬가지로, 식(2.14), (2.18)로부터 다음 식을 얻는다.

\[
\frac{d \lambda_{\beta r}}{dt} = \frac{L_m}{T_r} i_{bs} + \omega_r \lambda_{ar} - \frac{1}{T_r} \lambda_{\beta r}
\]

위의 두 식(2.28),(2.29)를 마이크로프로세서에서 실시간 연산하여 자속을
추정한다. 이 식들을 백터 미분방정식으로 표시하면 식(2.30)가 된다.
\[
\frac{d\lambda_r}{dt} = \left[-\frac{1}{T_r} I + \omega_r J \right] \lambda_r + \frac{L_m}{T_r} i_s
\] \hspace{1cm} (2.30)

단, \(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \)이다.

이 회전자회로의 전류모델에 의한 방식은 자속영역의 자속추정에 적합하지만 식(2.30)의 고유치가 \(-1 / T_r \pm j \omega_r\)로 주어지므로 속도가 증가하면 허수부가 커져 진동하기 쉽다.

2.3.2 간접벡터제어

슬립주파수형 또는 피드포워드(feed-forward)제어로 불리는 이 방식은 Hasse가 제안한 것으로 동기회전 좌표계상의 자속전류, 토크전류 및 전동기상수를 이용하여 슬립지령 각속도를 계산하고 이를 회전자 속도에 더한 적분값을 자속각으로 추정하여 제어하는 일종의 예측제어이다.

이 방식은 전동기 상수의 변화에 따라 민감하고 회전자속도를 얻기 위해 TG나 엔코더 등을 사용한다는 단점이 있으나 자속센서나 모델을 필요로 하지 않으므로 보다 널리 사용되고 있다.

고성능의 토크와 자속제어를 위해서 전동기에 공급되는 고정자전류를 기준자속에 각각 작동되는 성분과 일치하는 성분으로 나누어 제어하여야 만 한다. 회전자 자속기준 간접벡터제어는 회전자자속의 순시속도가 되도록 동기각속도를 선정하여 회전자속이 \(d\) 축에만 존재하도록 제어하는 것이다.
Fig. 2.5에서 $\alpha - \beta$축은 고정자에 고정되어 있고 $d - q$축은 동기각속도 ω_e로 회전하며 회전자 자속축(rotating axis)은 d축과 일치시키고 회전 자축(rotor axis)에 대해 슬립각 (θ_s)을 유지하며 회전한다.

그러므로 고성능의 토크와 자속제어를 위해 전동기에 공급되는 고정자전류를 자속분전류 i_{ds}와 토크성분전류 i_{qs}로 분리 제어함을 알 수 있다.

![Fig. 2.5 Vector diagram for indirect vector control](image)

회전자 자속기준 간접벡터제어는 회전자 자속이 d축 성분에만 존재하므로 제어하므로 아래 식이 성립한다.
\[\lambda_{qr} = p \lambda_{qr} = 0 \] \hspace{1cm} (2.31)

식(2.18)과 식(2.31)에 의해 식(2.32)를 얻을 수 있다.

\[i_{qs} = - \frac{L_r}{L_m} i_{qr} \] \hspace{1cm} (2.32)

또한, 식(2.31)을 식(2.20)에 대입하여 토크 식을 식(2.33)과 같이 구할 수 있다.

\[T_c = \frac{3}{2} \frac{P}{2} \frac{L_m}{L_r} \lambda_{dr} i_{qs} \] \hspace{1cm} (2.33)

식(2.13), 식(2.14)에서 농형 유도전동기의 경우 \(v_{dr} \), \(v_{qr} \) 는 각각 영이 며 식(2.31)을 고려하여 식(2.14)로부터 다음과 같은 슬립관계식을 구할 수 있다.

\[\omega_e - \omega_r = \omega_s l = - R_r \frac{i_{qr}}{\lambda_{dr}} \] \hspace{1cm} (2.34)

식(2.13) 및 식(2.31)에 의해 회전자 자속은 다음과 같은 관계를 가진다.

\[R_r i_{dr} + p \lambda_{dr} = 0 \] \hspace{1cm} (2.35)

- 20 -
회전자지속 일정제어인 경우 \(p \lambda_{dr} = 0 \)이므로 \(i_{dr} = 0 \)이 되고 회전자
지속은 식(2.17)에 의해 식(2.36)과 같이 된다.

\[
\lambda_{dr} = L_m i_{ds} \tag{2.36}
\]

그러서, \(\lambda_{dr} \) 이 일정할 때 슬립관계식은 식(2.32)와 식(2.36)을 이용하여
다음과 같이 표현할 수 있다.

\[
\omega_d = -R_f \frac{i_{qr}}{\lambda_{dr}} = \frac{R_f}{L_r} \frac{i_{qs}}{i_{ds}} \tag{2.37}
\]

식(2.33)에서 보았듯이 토클은 \(i_{qs} \)에 비례하므로 \(i_{qs} \)를 토클정분 전류라
고 하고 자속일정제어의 경우 회전자지속은 \(i_{ds} \)로 캐어할 수 있으므로
\(i_{ds} \)를 자속정분 전류라고 한다.

회전자 지속의 위치는 전동기속도와 식(2.37)의 슬립 지점각속도를 합한
작용값으로 다음 식이 된다.

\[
\theta_e = \int (\omega_r + \omega_d) dt \tag{2.38}
\]

그리고, 백터제어 회전자지향 변동의 보상이 이상적이면 유도전동기
의 응답특성이 직류기와 유사하여 식(2.33), 식(2.36)을 역산하여 자속정분
전류 \(i_{ds} \) 와 토크성분전류 \(i_{qs} \)의 지령치를 다음과 같이 구할 수 있다.

\[
i_{ds} = \frac{1}{L_m} \lambda_{dr}^* \tag{2.39}
\]

\[
i_{qs} = \frac{2}{3} \frac{2}{P} \frac{L_r}{L_m} \frac{1}{\lambda_{dr}} T_e^* \tag{2.40}
\]

여기서, "\(^*\)"는 지령치

지금까지 유도전동기의 벡터제어에서 회전자 진압, 전류 및 쇄교작속 방정식에서 식(2.31) \sim (2.38)과 같이 벡터제어 관계식을 유도하고 벡터제어 유도기의 역모델을 이용하여 자속성분과 토크성분 전류의 지령치를 구하였다. 그러나 실제 벡터제어 시스템의 성능을 좌우하는 전류제어기 구성에 있어서는 벡터제어 유도기의 고정자진압 방정식을 알아야한다. 이는 고정자진압 방정식인 식(2.11), (2.12)와 고정자 쇄교작속 방정식인 식 (2.15), (2.16)에 벡터제어 관계식 식(2.31), (2.32)를 대입하여 구할 수 있으며 그 결과는 다음 식과 같다.

\[
v_{ds} = R_s i_{ds} - \omega_c \sigma L_s i_{qs} \tag{2.41}
\]

\[
v_{qs} = R_s i_{qs} + \sigma L_s p i_{qs} + \omega_c L_s i_{ds} \tag{2.42}
\]

Fig 2.6은 이상의 결과를 토대로 간접벡터제어이론을 적용한 유도전동기 모델을 나타낸다.
Fig. 2.6 The block diagram of indirect vector controlled induction motor.

\[V_d \]

\[V_q \]

\[i_q \]

\[i_d \]

\[R_s \]

\[L_s \]

\[L_m \]

\[T_r \]

\[\omega_r \]

\[p = \text{differential operator} \]

\[T_l \]

\[J_p + B \]

\[\omega_e + \omega_r \]

\[\frac{L_m}{T_r} \cdot \frac{1}{\omega_r} \]

\[\frac{3P}{4} \cdot \frac{1}{L_m} \cdot \frac{1}{\omega_r} \]

\[R_s + L_s \cdot I_q \]
제3장 신경회로망을 이용한 유도전동기의 속도추정

3.1 신경회로망의 개요

신경회로망은 인간이나 동물들이 가지고 있는 생물학적인 뇌의 신경세포(Neuron)를 모델화하여 인공적으로 지능을 만드는 것이다. 즉, 인간의 뇌에 존재하는 생물학적 신경세포와 이들의 연결관계를 단순화시켜 수학적으로 모델링하므로써 인간의 두뇌가 나타내는 지능적 형태를 구하는 것이다. 또한, 병렬 시스템인 인간의 두뇌를 모델링하여 만든 인공적인 두뇌결합이나 기타 여러 분야에 적용시키려고 하는 것이 신경회로망의 연구목적이다.

3.1.1 신경회로망의 생물학적 구조

신경회로망의 구조를 알기 위해서는 반드시 인간의 뇌세포가 어떻게 이루어졌는가를 알아야한다. 왜냐하면 신경회로망 연구는 기본적으로 인간의 두뇌 메카니즘을 구현하는 것을 그 목표로 하고 있기 때문이다. 신경조직의 기본 구성요소는 신경세포 즉, 뉴런이다.

뉴런의 구성은 Fig. 3.1과 같이 뉴런은 생체 속에서 정보처리를 위해 특별한 분화를 이룬 세포이다. 그림에서 볼 수 있듯이 뉴런은 본체인 세포체(Soma) 부문과 복잡하게 갈라진 수상돌기(Dendrite)라고 불리는 부분, 그리고 본체에서 한 줄로만 뻗어 나와서 말단에서 다수로 갈라진 축색(Axon)이라고 불리는 부분의 세 가지로 나누어져 있다. 축색은 세포체
Fig. 3.1 Structure of biological neuron

본체로 부터의 신호를 다른 뉴런에 전달하는 섬유(Nerve Fibers)이다.

수상돌기는 다른 뉴런으로부터의 신호를 받아들이는 부분이다. 즉, 다른 뉴런의 축색 발단이 여기에 연결되어 있다. 이 연결 부분을 시냅스(Synapse)라 부른다.

뉴런은 다른 뉴런으로부터의 신호를 받아들이고, 그것에 가중치(Weight)를 곱한 값을 더하고, 그 결과 발화하느냐, 하지 않느냐를 결정한다. 이것을 기본으로 뉴런의 수리 모델을 만들 수가 있다. 이때 중요한 점은 두 가지가 있는데 첫 번째는 신형 가산성으로서 뉴런은 다른 뉴런으로부터의 신호에 가중치를 곱하고 더한다. 두 번째는 비선형 임계치 특
성으로서 합계가 임계치를 넘지 않으면 아무 반응도 일어나지 않으며, 넘으면 펀스를 내보내는 비선형적인 동작을 한다.

3.1.2 신경 회로망의 구성요소와 동작특성

신경회로망에서 중요한 구성요소는 처리기(Processing Element)와 이들 상호간의 연결(Interconnection)이다. 뉴런의 인공적인 모델을 처리기 혹은 유니트(Unit)라고 한다. 뇌의 신경세포에 해당하는 처리기의 구성은 다음과 그림과 같다.

Fig. 3.2 Structure of artificial neuron
한 처리기에 연결된 다른 처리기들로부터의 입력에 연결선의 가중치를 고려하여 다음, 그 결과를 적당한 활성함수(Activation Function)로 처리하여 연결된 다른 처리기로 출력한다.

 이를 구체적으로 설명하면 다음과 같다. 하나의 처리기가 다른 처리기의 출력을 그 입력 x_i로 받아 해당하는 연결가중치 w_i를 곱한 가중치 합 net을 다음과 같이 구할 수 있다.

$$net = \sum_{i=1}^{n} w_i x_i$$ (3.1)

이 합을 활성함수에 적용시켜서 얻은 결과를 그 처리기의 출력으로 하여 이와 연결되어 있는 다른 처리기로 보낸다. 그 출력은 다음과 같다.

$$y = f(net + \theta)$$ (3.2)

여기서, f: 활성함수

θ: 처리기의 고유 바이어스

식(3.2)는 뉴런의 입력에 각 입력에 대응하는 시냅스 가중치를 곱하여 합한 값 net에 함수관계 f를 적용한 값을 출력한다.

신경회로망에서 사용되는 활성함수는 Fig. 3.3에 나타내었고, 대표적으로 사용되는 활성함수는 단극성 선형함수(Unipolar linear function), 양극성 선형함수(Bipolar linear function), 양극성 계단함수(Bipolar step function), 단극성 시그모이드 함수(Unipolar sigmoid function) 및 양극성
시그모이드 함수(Bipolar sigmoid function)등이 있다.

![Activation function](image)

Fig. 3.3 Activation function used in neural network

3.1.3 다층 신경회로망의 구조와 학습

인간의 뇌는 수많은 뉴런으로 서로 연결되어 있다. 따라서 인간의 뇌와 유사한 인공적인 신경회로망은 다층의 구조라고 할 수 있다. 그리고 서로 연결된 뉴런에 의해서 더욱 좋은 기능을 발휘할 수 있다. 뉴런을 총에 배열하는 것은 뇌의 일부분인 계층화된 구조를 흉내낸 것이다. 전형적인 다층 신경회로망은 Fig. 3.4와 같다.
이 신경회로망은 \(x \)라는 입력벡터를 갖는 입력층(Input Layer)과 \(y \)라는 출력벡터를 갖는 출력층(Output Layer)으로 이루어져며 입력층과 출력층 사이의 층을 은닉층(Hidden Layer)이라 한다.

\(y_i, y_j, y_k \)는 입력층, 은닉층 및 출력층들의 각 뉴런의 출력이며, 입력층과 은닉층 사이의 가중치를 \(w_{ij} \), 은닉층과 출력층 사이의 가중치를 \(w_{jk} \)로 표기한다. 모든 정보는 신경회로망의 가중치에 저장되며 학습과정 동안 가중치 \(w_{ij}, w_{jk} \)의 성분은 계속적으로 새로운 정보로 바뀌어 진다.

Fig 3.4 Structure of general multilayer neural network
신경회로망은 각 입력에 연결된 가중치를 조정함으로써 학습되는 데, 이는 신경회로망의 학습법칙을 이용하여 주어진 입력에 대해 올바른 출력을 내도록 연결가중치를 어떻게 변화시킬 것인가를 결정하게 된다.

신경회로망의 학습 종류는 기준에 따라서 여러 가지로 분류될 수 있다. 가장 일반적인 것으로는 감독학습(Supervised learning)과 무감독 학습(Unsupervised learning)이 있다.[38-39] 감독 학습은 학습 중 주어진 입력에 대하여 올바른 출력이 어떤 것이어야 하는지를 제공해 주는 학습법이다. 즉, 입력 패턴에 대한 신경회로망의 출력 패턴 형태를 지시해 주는 목적 패턴을 갖는 것으로 입력 패턴과 목적 패턴의 쌍들로 이루어진 학습 패턴이 사용된다.

입력 패턴이 신경회로망에 주어지면 신경회로망의 출력 패턴이 구해지고, 여기에 목적 패턴이 간섭하여 출력 패턴과 목적패턴이 같아지도록 연결 가중치를 조절한다. 이런 과정을 반복하여 신경회로망은 주어진 입력 패턴에 대해 그것과 쌍을 이루는 목적 패턴을 출력한다. 이 경우에 신경회로망은 자신의 출력이 올바른지를 판단할 수 있다.

감독 학습방법에는 헤브의 규칙(Hebb rule), 델타 규칙(Delta rule), 오류 역전과 규칙(Error Back-propagation rule) 등이 있으며 무감독 학습방법에는 인스타 규칙(Instar rule), 자기 조작기도 등이 있다. 감독 학습방법 중 델타 학습규칙의 일종인 오류 역전과 규칙은 실제의 문제에 있어서 가장 널리 사용되는 학습법이다. 델타 학습 규칙의 기본은 현재 주어진 연결가중치로 생성되는 오차값을 구하여 이를 감소시키는 방향으로 연결 가중치의 값을 조정하는 것으로 이 때 오차값의 계산을 위해 각 노드의 올바른 출력값을 제공해 주어야 한다. 하지만, 간단한 XOR 문제도 해결
하지 못하는 단점을 가진다. 오류 역전과 규칙은 이러한 문제를 해결하기 위한 방법의 일종으로 다층의 신경망을 학습시키는데 적합하다. 오류 역전과 규칙은 일반화된 델타 규칙이라고도 불리우며 1986년 롬멜하트 (David E. Rumelhart)에 의해 만들어진 학습 규칙으로 오늘날 가장 유명해진 신경회로망 학습규칙 중 하나이다.

오류 역전과 알고리즘의 원리는 먼저 입력층에서의 신경회로망 입력 \(x_i \)를 은닉층으로 보낸다. 그리고, 은닉층의 뉴런들은 각각의 입력층으로부터 입력된 값과 가중치들의 곱을 합산함과 동시에 활성함수를 통해 연산된 결과를 출력층으로 보낸다.

출력층은 은닉층과 같은 뉴런 연산을 행하여 출력한다. 이때 신경회로망의 출력값과 원하는 목표값과의 오차를 구한다. 이 오차를 최소화하기 위해 각 층의 가중치의 오차 백터향을 편미분하여 가중치를 조정한다. 즉, 출력층의 출력과 원하는 목표값의 오차를 연산한 후 출력층에서 은닉층으로, 은닉층에서 입력층으로 역전파하여 가중치를 조정한다.

Fig. 3.5는 오류 역전과 알고리즘의 순서도이다.

지금까지 설명했듯이 오류 역전과 학습 알고리즘은 오차 신호를 계산하고 신경회로망의 가중치들을 조정하기 위해서 바라는 응답값이 필요하다. 이러한 초기의 학습 후에 신경회로망은 학습에 사용되지 않은 새로운 데이터의 집합을 입력할 수 있다.

학습된 데이터의 집합이 아닌 다른 데이터에서도 정확하게 응답하는 것을 일반화 능력이라고 한다. 그리고, 이것은 곧 신경회로망의 신뢰도를 가리킨다. 학습과 신경회로망의 성능을 검사한 후에 신경회로망은 폐턴 분류기, 미지의 비선형 함수 및 복잡한 처리를 모델화하는데 사용될 수 있다.
Fig. 3.5 Flow chart of backpropagation algorithm
머물게 되므로 다른 지점에서 학습을 다시 시작해야 한다.

3.1.4 모멘텀(momentum)과 바이어스(bias)

모멘텀은 신경망의 연결 가중치 조정에 관성을 줄이므로써 학습 시간을 단축하고 학습 성능의 향상을 위해 고안된 것이다. 모멘텀은 현재의 연결 가중치와 그 이전 연결가중치의 차이에 의해 계산된다. 현재의 연결 가중치를 \(w_i(new) \)로 나타내고 그 이전의 연결가중치를 \(w_i(old) \)이라 한다면 현재의 모멘텀 \(\Delta w_i \)는 다음과 같이 표현된다.

\[
\Delta w_i = w_i(new) - w_i(old)
\]

(3.3)

따라서, 모멘텀을 구하기 위해서는 이전의 연결가중치를 저장하고 있어야 한다. 모멘텀은 연결가중치 변화에 관심을 줄이므로써 연결가중치가 아주 얇은 지역의 극에 빠지는 것을 어느 정도 해결할 수 있으며 신경망의 학습속도를 다소 향상시킬 수 있다.

바이어스는 신경 세포의 활성에 참여할 뿐만 아니라 다른 연결가중치들과 마찬가지로 학습에 의해 조정된다.

3.2 신경회로망에 의한 유도전동기 속도추정

유도전동기의 고정자와 회전자 사이의 결합 효과와 토크 발생에 있어서 강한 비선형성을 지니며 운전 조건에 따라 특성 변화가 심하고, 측정이
어러운 다양한 외란 성분을 갖기 때문에 종래의 여러 가지 속도 센서리스 제어 방식들로는 유도전동기의 전 속도 영역과 과도상태에서 만족할 만한 성능을 얻기가 어렵다.

신경회로망은 학습을 통하여 연결가중치를 조정함으로써 수학적으로 모델을 구하기 어러운 비선형 시스템이라 할지라도 입출력 특성을 묘사할 수 있으며, 입력 정보의 왜곡, 잡음 등에 강한 특성을 갖는다.

본 논문에서는 전동기의 수식 모델을 통해서 얻어진 입 출력 데이터를 사용하여 학습함으로써 비선형성을 갖는 유도전동기의 회전 속도를 추정한다.

먼저 속도 추정을 위한 입출력 데이터 수집을 위해서 유도전동기의 전압, 토크 및 기계방정식이 요구되며 제어기술이 정의되어야 한다.

3.2.1 전동기 수식모델

신경회로망의 입출력 데이터는 전동기 수식모델로부터 얻어지며 유도전동기의 고정축에서 추정되므로 고정좌표계상의 값을 이용한다. 고정좌표계상의 전압방정식은 동기회전좌표계상의 전압방정식인 식(2.19)에서 동기회전좌표각속도 \(w_e \) 0인 경우이므로 아래식과 같이 나타낼 수 있다.
\[
\begin{bmatrix}
 v_{as} \\
 v_{\beta s} \\
 v_{ar} \\
 v_{\beta r}
\end{bmatrix}
= \begin{bmatrix}
 R_s & 0 & 0 & 0 \\
 0 & R_s & 0 & 0 \\
 0 & w_r L_m & R_r & w_r L_r \\
 -w_r L_m & 0 & -w_r L_r & R_r
\end{bmatrix} \begin{bmatrix}
 i_{as} \\
 i_{\beta s} \\
 i_{ar} \\
 i_{\beta r}
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
 L_s & 0 & L_m & 0 \\
 0 & L_s & 0 & L_m \\
 L_m & 0 & L_r & 0 \\
 0 & L_m & 0 & L_r
\end{bmatrix} \frac{d}{dt} \begin{bmatrix}
 i_{as} \\
 i_{\beta s} \\
 i_{ar} \\
 i_{\beta r}
\end{bmatrix}
\]

식 (3.4)를 전류에 대한 식으로 정리하면 식 (3.5)가 된다.

\[
\begin{bmatrix}
 i_{as} \\
 i_{\beta s} \\
 i_{ar} \\
 i_{\beta r}
\end{bmatrix} = \frac{1}{L_s} \begin{bmatrix}
 L_r & 0 & -L_m & 0 \\
 0 & L_r & 0 & -L_m \\
 -L_m & 0 & L_s & 0 \\
 0 & -L_m & 0 & L_s
\end{bmatrix} \begin{bmatrix}
 v_{as} \\
 v_{\beta s} \\
 v_{ar} \\
 v_{\beta r}
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
 -R_s L_r & w_r L_m^2 & R_s L_m & w_r L_r L_m \\
 -w_r L_m^2 & -R_s L_r & -w_r L_m L_m & R_s L_m \\
 R_s L_m & -w_r L_m & -R_s L_s & -w_r L_m L_m \\
 -w_r L_m L_m & R_s L_m & w_r L_r L_r & -R_s L_s
\end{bmatrix} \begin{bmatrix}
 i_{as} \\
 i_{\beta s} \\
 i_{ar} \\
 i_{\beta r}
\end{bmatrix}
\]

여기서, \(v_{ar}, v_{\beta r} \)은 동현 유도전동기의 회전자 전압이므로 0이다.

또한, 신경회로망의 출력 데이터로 사용되는 회전자 각속도 성분을 구
학기 위해서는 토크방정식 식(3.6) 및 기계방정식 식(3.7)을 사용한다.

\[T_e = \frac{3}{2} \frac{P}{2} \lambda^2 \xi \left(\psi \psi - i_{\omega} i_{\psi} \right) \]
(3.6)

\[\frac{dw_r}{dt} = - \frac{B}{J} w_r + \frac{T_e - T_L}{J} \]
(3.7)

속도제어는 2장에서 기술한 간접벡터제어 알고리즘을 적용하였다. 따라서 동기회전 좌표계상의 전류, 슬립지점 각속도 및 회전자 자속각은 다음 식들에 의해 얻을 수 있다.

\[
\begin{bmatrix} i_{ds} \\ i_{qs} \end{bmatrix} = \begin{bmatrix} \cos \theta_e & \sin \theta_e \\ -\sin \theta_e & \cos \theta_e \end{bmatrix} \begin{bmatrix} i_{as} \\ i_{\beta s} \end{bmatrix}
\]
(3.8)

\[w_{d*} = \frac{1}{T_r} \frac{\psi}{i_{ds}} \]
(3.9)

\[\theta_e = \int_0^t w_e dt = \int_0^t (w_r + w_{d*}) dt \]
(3.10)

3.2.2 신경회로망에 의한 속도추정기

본 논문에서 사용하는 신경회로망의 입력패턴의 성분은 앞의 수식에서 구하되지는 고정자 전압, 전류 성분과 이 성분의 시간 지연향인 \(v_{as}(k), v_{as}(k-1), v_{\beta s}(k), v_{\beta s}(k-1), i_{as}(k), i_{as}(k-1), i_{\beta s}(k), i_{\beta s}(k-1) \) 을 사용하였으며, 전동기의 수식 모델에 의해 구한 속도 \(w_r(k) \) 를 목적패턴의 성분으로 이용한다. 또한, 속도추정기의 은닉층 개수와 노드수는 수차례에
결린 시행착오를 통하여 16개의 노드를 갖는 1개의 은닉층으로 구성하였고 은닉층의 활성함수는 Tansigmoid 함수를 사용하였으며 출력층에는 선형함수를 사용하였다.

은닉층 활성함수로 사용하는 Tansigmoid 함수를 수식으로 표현하면 다음 식과 같다.

\[
f(x) = \frac{2}{1 + e^{-2x}} - 1 \quad (3.11)
\]

Fig. 3.6은 본 논문에서 제안한 신경회로망에 의한 속도추정기의 구조이다.

Fig. 3.6 Structure of neural network speed estimator
Fig. 3.7 is the block diagram for training of neural network speed estimator.
다음 그림은 신경회로망의 훈련에 사용된 입력 데이터의 전압과 전류의 형태이다.

Fig. 3.8 Neural network input signals for training

(a) v_{as} (b) i_{as}
Fig. 3.9는 중·저속 영역에서의 속도추정기 구성에 의해 신경회로망의 목적패턴 데이터로 사용된 유효전동기 수식 모델의 무부하 계단속도응답에 대한 속도과정이다.

신경회로망의 출력인 추정속도 \(\hat{w}(k) \)는 유효전동기 수식모델의 속도와 비교하여 오차가 발생하면 결과적으로 연결가중치가 부적합하다고 볼 수 있으므로 그 오차는 신경회로망에 역전파되어 신경회로망을 학습시킴으로써 오차를 최소화 하는 학습 알고리즘이 필수적이다.

다시 말해, 출력층의 출력과 원하는 목표값의 오차를 연산한 후 출력층에서 은닉층으로, 은닉층에서 입력층으로 역전파하여 오차에 따른 가중치
변화량에 의해 가중치를 조정한다.

오류 역전과 알고리즘에 의한 학습을 수식적으로 표현하면 다음과 같다. 먼저 입력층, 은닉층, 출력층의 뉴런 출력은 식(3.13), 식(3.15), 식 (3.17)과 같다.

\[
net_i = x_i \quad (i = 1, 2, 3, \ldots \ldots, n) \quad (3.12)
\]

\[
y_i = f(net_i) \quad (3.13)
\]

\[
net_j = \sum \omega_j y_j + \theta_j \quad (3.14)
\]

\[
y_j = f(net_j) \quad (3.15)
\]

\[
net_k = \sum \omega_k y_k + \theta_k \quad (3.16)
\]

\[
y_k = f(net_k) \quad (3.17)
\]

여기서, \(\theta_j \)와 \(\theta_k \)는 은닉층 및 출력층의 바이어스이며, \(net_i, net_j, net_k \)는 이전 층의 뉴런 출력과 가중치들과의 곱을 합산한 값이다.

신경회로망의 출력이 실제측도를 추정하도록 다음과 같이 속도 오차 함수를 정의할 수 있다.

\[
E = \frac{1}{2} \sum (w,(k) - \hat{w}(k))^2 \quad (3.18)
\]

신경회로망의 매개변수에 대한 학습은 원하는 목표 출력과 실제 출력 사이의 오차를 구하여 이 오차를 최소화하는 방향으로 학습하여 가중치를 조정하는 것이므로 먼저, 정사 하강법에 따라 출력층에 대해 요구되는 가
중지의 변화량은 다음과 같이 나타낼 수 있다.

\[\Delta w_{jk} = -\eta \frac{\partial E}{\partial w_{jk}}, \quad \eta > 0 \] (3.19)

따라서, 출력층 가중치의 변화량은 다음 식과 같다.

\[\Delta w_{jk} = w_{jk}(\text{new}) - w_{jk}(\text{old}) \] (3.20)

여기서 일반화된 오차신호 \(\delta_k \)를 식(3.21)과 같이 정의한다.

\[\delta_k = -\frac{\partial E}{\partial \text{net}_k} \] (3.21)

연쇄법칙을 사용하면 다음과 같이 표현된다.

\[\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial w_{jk}} = -\delta_k \frac{\partial \text{net}_k}{\partial w_{jk}} \] (3.22)

여기서 \(\frac{\partial E}{\partial w_{jk}} \)는 \(\text{net} \) 입력에 대한 유니트 변화의 한수로서 오차의 변화를 반영하고, \(\text{net} \) 입력에 결속된 가중치 변화의 효과를 표현한다. 식 (3.15)와 식(3.16)으로부터 \(\frac{\partial \text{net}_k}{\partial w_{jk}} \)는 다음과 같이 표현할 수 있다.
\[
\frac{\partial \text{net}_k}{\partial w_{jk}} = \frac{\partial \left(\sum_j w_{jk} y_j + \theta_k \right)}{\partial w_{jk}} = y_j
\]
(3.23)

여기서, \(\theta_k \)는 출력층의 바이어스이다.

그리므로, 출력층의 가중치 변화량은 다음 식이 된다.

\[
\Delta w_{jk} = \eta \delta_k y_j
\]
(3.24)

\(\delta_k \)의 값은 연쇄법칙의 적용으로 식(3.25)가 되며 출력층의 출력값인 \(y_k \)를 신경 회로망을 이용하여 구하고자 하는 추정값인 \(\hat{w}_r(k) \)로 표현한다.

\[
\delta_k = - \frac{\partial E}{\partial \text{net}_k} = - \frac{\partial E}{\partial \hat{w}_r(k)} \frac{\partial \hat{w}_r(k)}{\partial \text{net}_k}
\]
(3.25)

이 \(\delta_k \)는 유니트의 출력에 관계되는 오차의 변화와 \(\text{net} \)입력의 변화에 관계되는 출력의 변화를 표현하고, 식 (3.18)로부터 다음 식을 얻을 수 있다.

\[
\frac{\partial E}{\partial \hat{w}_r(k)} = -(w_r(k) - \hat{w}_r(k))
\]
(3.26)

그리고 식(4.17)을 이용하여 다음 식을 구할 수 있다.

\[
\frac{\partial \hat{w}_r(k)}{\partial \text{net}_k} = f'(\text{net}_k)
\]
(3.27)
식(3.11)을 미분하면 식(3.28)이 되고 이 식에 \(x = net_k \)을 대입하면 식 (3.29)가 된다.

\[
f'(x) = 4 \frac{e^{-2x}}{(1 + e^{-2x})^2} = 4 \frac{1}{(1 + e^{-2x})^2} \left(1 - \frac{1}{1 + e^{-2x}}\right) \quad (3.28)
\]

\[
f'(net_k) = (1 + f(net_k))(1 - f(net_k)) \quad (3.29)
\]

활성함수의 출력을 추정속도로 대치하면 아래의 식이 된다.

\[
\frac{\partial \hat{w}_r(k)}{\partial net_k} = (1 + \hat{w}_r(k))(1 - \hat{w}_r(k)) \quad (3.30)
\]

그리므로 출력층의 가중치 변화량은 식(3.24)와 같고, 식(3.24)에서 \(\delta_k \)는 다음과 같다.

\[
\delta_k = (1 + \hat{w}_r(k))(1 - \hat{w}_r(k))(w_r(k) - \hat{w}_r(k)) \quad (3.31)
\]

온닉층의 뉴런에 대해서는 원하는 응답이나 목표값은 없다. 온닉층의 뉴런에 대한 오차신호는 신경회로망의 출력층의 오차를 역전파하는 것으로 결정된다. 그러므로 온닉층의 가중치에 대한 학습규칙의 유도는 다음과 같은 경사하강법을 사용하여 구해진다.

\[
\triangle w_{ij} = -\frac{\partial E}{\partial w_{ij}} \quad (3.32)
\]
앞에서와 마찬가지로 연쇄법칙을 사용하면 다음과 같다.

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial \text{net}_j} \frac{\partial \text{net}_i}{\partial w_{ij}}$$ \hspace{1cm} (33)

그리고 δ_j는 다음 식(34)와 같이 정의한다.

$$\delta_j = -\frac{\partial E}{\partial \text{net}_j}$$ \hspace{1cm} (34)

또한, 식(314)로부터 다음을 얻을 수 있다.

$$\frac{\partial \text{net}_i}{\partial w_{ij}} = y_i$$ \hspace{1cm} (35)

식(33)～식(35)를 이용하여 식(32)를 다음과 같이 나타낼 수 있다.

$$\Delta w_{ij} = \eta \delta_j y_i$$ \hspace{1cm} (36)

연쇄법칙을 사용하면 δ_j의 값은 다음과 같다.

$$\delta_j = -\frac{\partial E}{\partial \text{net}_j} = -\sum \frac{\partial E}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial y_j} \frac{\partial y_i}{\partial \text{net}_j}$$

$$= \sum \delta_k w_{jk} f'(\text{net}_j) = (1 + y_j)(1 - y_j) \sum \delta_k w_{jk}$$ \hspace{1cm} (37)
따라서, 각 충사이의 연결가중치의 변화량은 다음과 같이 조정된다.

\[
\triangle w_{i}(k+1) = m \triangle w_{i}(k) + \eta \delta_i y_i \tag{3.38}
\]

\[
\triangle w_{j}(k+1) = m \triangle w_{j}(k) + \eta \delta_j y_i \tag{3.39}
\]

여기서, \(m \)은 모멘텀 상수이다.

신경회로망의 학습속도를 빠르게 하기 위해 학습률 \(\eta \)는 크게 해야 한다. 그러나, \(\eta \)가 너무 크면 가중치 갱신은 불안정하게 되고 발산을 시작한다. 역전파 학습 규칙의 학습속도를 증가시키기 위해 모멘텀 상수 \(m \)을 추가하는데, 즉, 모멘텀항이 포함된 식(3.38) 및 식(3.39)에 의해 가중치가 조정될 수 있다. 이는 실제속도 \(w_i(k) \)와 추정속도 \(\hat{w}_i(k) \)의 오차가 최소화 될 때까지 반복된다.

이러한 학습 과정을 통하여 구하던 최적의 가중치를 이용하여 유도전 동기의 회전자 속도를 추정하게 된다. 실제 회전자 속도정보는 식 (3.40)과 같이 추정된다.

\[
\hat{w}_i(k) = [F_j(X_i W_0 + B_j)] W_k + B_k \tag{3.40}
\]

여기서, \(i \)는 입력층의 노드수, 8

\(j \)는 은닉층의 노드수, 16

\(k \)는 출력층의 노드수, 1

\(F_j \)는 활성함수, Tansigmoid
\(X_i \) 는 입력데이터

\(W_{ij} \) 는 입력층과 은닉층 사이의 연결가중치

\(W_{jk} \) 는 은닉층과 출력층 사이의 연결가중치

\(B_j \) 는 은닉층 바이어스

\(B_k \) 는 출력층 바이어스

\[
F_j = \begin{bmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_j \\
\end{bmatrix}
\]

\[
X_i = \begin{bmatrix}
 v_{a_k}(k) & v_{\alpha}(k) & v_{\beta}(k) & i_{a_k}(k) & i_{\alpha}(k) & i_{\beta}(k) \\
\end{bmatrix}
\]

\[
W_{ij} = \begin{bmatrix}
 w_{i1} & w_{i2} & \cdots & w_{ij} \\
 w_{21} & w_{22} & \cdots & w_{2j} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{ij} & w_{ij} & \cdots & w_{ij} \\
\end{bmatrix}
\]

\[
W_{jk} = \begin{bmatrix}
 w_{1j} \\
 w_{2j} \\
 \vdots \\
 w_{jk} \\
\end{bmatrix}
\]
Initialization of neural network

Voltages, currents, estimation speed from induction motor model

Error calculation of real motor speed and estimation speed

Training of neural network

Optimal connection weights

Output calculation of neural network by trained connection weights

Fig. 3.10 Flow chart of training algorithm by ANN speed estimator
Fig. 3.11 Speed response of neural network estimator
Fig 3.12 Flow chart of the training program for speed estimator
제4장 센서리스 속도제어 시스템

본 논문에서 제안한 유도전동기의 센서리스 속도제어 구동 시스템의 전체적인 분류는 다음 그림과 같다.

Fig. 4.1 Block diagram of the proposed sensorless speed control
4.1 속도제어기

Fig 4.1의 (a)가 속도제어기 구성부이다. 신경회로망의 추정속도 \(\hat{w}_r(k) \)는, 고정자 전압 지령치 \(v_{as}\ast, v_{bs}\ast \)와 실제 전동기에 흘러는 전류값 \(i_{as}, i_{bs} \)를 검출한 후, 학습 알고리즘을 통하여 조정된 연결가중치 \(w_{as}, w_{bs} \) 및 각 층의 bias를 이용하여 연산에 의해 구한다.

지령속도와 신경회로망의 추정속도 사이의 오차는 다음과 같다.

\[
\begin{align*}
 w_{er} &= w_r\ast(k) - \hat{w}_r(k) \tag{4.1}
\end{align*}
\]

속도오차 \(w_{er} \)를 PI 속도제어기에 적용하여 토크전류 지령치 \(i_{qs}\ast \)를 식 (4.2)와 같이 구한다.

\[
\begin{align*}
 i_{qs}\ast &= k_p w_{er} + k_i \int w_{er}dt \tag{4.2}
\end{align*}
\]

여기서, \(k_p \) : 비례계인값

\(k_i \) : 적분계인값

또한, 회전자지속 일정제어를 위한 자속전류 지령치 \(i_{ds}\ast \)는 다음식에 의해 얻어진다.

\[
\begin{align*}
 i_{ds}\ast &= \frac{1}{L_{rm}} \lambda_{dr}\ast \tag{4.3}
\end{align*}
\]
자속기준제어를 만족시키기 위한 슬립지형각속도는 식(4.4)가 되며, 이 경우 자속각은 식(4.5)와 같이 나타낼 수 있다.

\[w_{sl} = \frac{1}{T_r} \frac{i_{qs}^*}{i_{ds}^*} \]

\[\theta_e = \int (\widehat{w_r} + w_{sl}^*) dt \]

4.2 토크제어기

토크제어기는 속도제어 구동 시스템의 전체 볼록도인 Fig. 4.1의 (b)부분이다.

실제 전동기의 각 상에 호르는 전류를 동기회전좌표계상의 값으로 변환하면 아래식이 된다.

\[
\begin{bmatrix}
i_{ds} \\
i_{qs}
\end{bmatrix} =
\begin{bmatrix}
\cos \theta_e & \sin \theta_e \\
-\sin \theta_e & \cos \theta_e
\end{bmatrix}
\begin{bmatrix}
i_{as} \\
i_{bs}
\end{bmatrix}
\]

(4.6)

그리고, 자속전류 지령치 \(i_{ds} \)와 실제 자속전류 \(i_{ds} \)의 오차 \(i_{der} \) 및 토크전류 지령치 \(i_{qs} \)와 실제 토크전류 \(i_{qs} \)의 오차 \(i_{qer} \)을 구하여, PI전류제어기에 적용함으로써 \(d-q \)계 전압지령치 \(v_{ds}^* \), \(v_{qs}^* \)를 다음 식들과 같이 구한다.

\[v_{ds}^* = k_{d}i_{der} + k_{di}\int i_{der} dt \]

(4.7)
\[v_{qs} = k_{dq} i_{qer} + k_{qi} \int i_{qer} dt \]
(4.8)

여기서, \(k_{dq}, k_{dp} \) : 비례계인값
\(k_{di}, k_{qi} \) : 적분계인값

또한, \(d-q \) 축 전압조정지는 식(4.9)의 좌표축 변환에 의해 고정자에 고정된 고정좌표축상의 값 \(v_{as}, v_{bs} \)로 변환된다.

\[
\begin{bmatrix}
 v_{as}^* \\
 v_{bs}^*
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta_e & -\sin \theta_e \\
 \sin \theta_e & \cos \theta_e
\end{bmatrix}
\begin{bmatrix}
 v_{ds}^* \\
 v_{qs}^*
\end{bmatrix}
\]
(4.9)

마지막으로, \(v_{as}^* \), \(v_{bs}^* \)에 해당하는 각 상의 인버터 출력 전압을 얻기 위해 공간벡터가 선택되고 그에 따른 전압이 유도전동기에 인가되어 속도 및 전류제어가 이루어진다.

4.3 공간벡터 PWM 전류제어

본 논문에서 제안한 신경회로망을 이용한 유도전동기 센서리스 속도제어방식을 실현하기 위해서 제작한 전류제어 방법은 3상 대칭 공간벡터PWM(Pulse Width Modulation)기법[40-41]을 사용하였으며 Fig. 4.1의 (c)가 공간벡터 PWM 전류제어기 구성부이다.

이 방식은 3상 시스템에서 3상의 전압, 전류, 자속 등의 변수를 취급할 때, 3상 변수의 순서적인 함(영상변수)이 0이 되면 3상 시스템은 2개의 독립변수로 표시될 수 있고, 3상 변수의 변화는 평면상의 1점으로 표시될 수 있다. 원점과 평면상의 점을 연결하는 벡터를 공간벡터(Space Vector)라
고 하며, 이를 이용하여 3상의 전압, 전류, 자속을 동시에 표시할 수 있다.
중심점의 연결이 없는 3상 부하를 인버터로 구동할 경우 3상의 전압, 전류의 순서적인 합은 0이며 전등기의 원선에 의한 공간기자력이 정현적 이며 자속의 영상분도 0이다. 고정자전압은 복소평면상에서 식(4.10)으로 나타낼 수 있다.

\[v_s = \frac{2}{3} (v_{as} + a^2 v_{bs} + av_{cs}) \] (4.10)

단, \(a = e^{j\frac{2}{3} \pi} \)

Fig. 4.2는 3상 전압형 인버터를 나타낸다.

![Fig. 4.2 Three phase voltage source inverter](image-url)
Fig. 4.3 Representation of space voltage vectors

전동기의 각 상의 임피던스가 모두 동일하다고 가정하면 Fig. 4.3과 같이 각 유호벡터는 $\frac{2}{3} V_{dc}$의 크기로 60°의 위상차를 갖는 육각형을 형성한다.

공간벡터 PWM은 기준전압벡터의 위치를 기준으로 스위칭 시간함수를 결정하는 방식으로 3상 인버터에서는 유호전압 전동기에 공급할 수 있는 6개의 유호전압벡터($\vec{v}(1)$ - $\vec{v}(6)$)와 왼쪽 부분의 스위치가 모두 단락되는 2개의 영전압벡터($\vec{v}(0)$, $\vec{v}(7)$)의 조합으로 결정된다. 1은 각 상의 위쪽 스위치가 턴온되는 것을 의미하고 0은 아래쪽 스위치가 턴온되는 것을 의미한다.

공간벡터 PWM은 기준 전압벡터가 섹터 I에 있을 경우, 이 전압은 기
준벡터와 가장 가까운 벡터인 $\vec{v}(1)$ 벡터와 $\vec{v}(2)$ 벡터, 그리고 영벡터의 시간적인 함성으로 한 주기내에서 생성될 수 있다. 한 주기내에서의 절분 으로부터 각 유효벡터의 인가시간을 다음과 같이 결정할 수 있다.

$$\int_0^T \vec{V}^* \, dt = \int_0^{T_1} \vec{V}_n \, dt + \int_{T_1}^{T_1 + T_2} \vec{V}_{n+1} \, dt + \int_{T_1 + T_2}^T \vec{V}_0 \, dt \quad (4.11)$$

여기서, T_s는 샘플링 시간이며, T_1, T_2 는 \vec{V}_n과 \vec{V}_{n+1}의 전압이 인가되는 시간으로 식(4.11)에서 유효시간을 제외한 시간은 영전압벡터가 인가되고 있음을 알 수 있다.

기준벡터가 벡터공간상에서 색터 1에 주어진다는 가정하에, 전압을 벡터의 성분으로 환산하면 다음식들과 같다.

$$T_s \vec{v}^*(k) = T_1 \vec{v}(1) + T_2 \vec{v}(2) \quad (4.12)$$

$$T_s \left[\begin{array}{c} \cos a \\ \sin a \end{array} \right] = T_1 \frac{2}{3} \vec{V}_{dc} \left[\begin{array}{c} 1 \\ 0 \end{array} \right] + T_2 \frac{2}{3} \vec{V}_{dc} \left[\begin{array}{c} \cos (\pi/3) \\ \sin (\pi/3) \end{array} \right] \quad (4.13)$$

여기서, $0 \leq a < \frac{\pi}{3}$가 되고, 유효벡터 인가시간은 다음과 같이 계산되는 데 이는 게이팅 신호를 발생하는 시간이 아니므로 실제 스위칭 시간을 계산해야 한다.

즉, 유효벡터 인가시간은 인버터 유효전압을 기준 전압과 한 주기의 평균 개념으로 계산하고 게이팅 시간은 T_0, T_1, T_2의 조합에 의하여 구
한다.

\(\overrightarrow{v} (1) \)와 \(\overrightarrow{v} (2) \) 및 영벡터가 인가될 시간은 다음 식에 의해 계산된다.

\[
T_1 = \sqrt{3} T_s \frac{|\overrightarrow{v}_s^\ast(k)|}{V_{dc}} \sin\left(\frac{\pi}{3} - a\right)
\]

(4.14.a)

\[
T_2 = \sqrt{3} T_s \frac{|\overrightarrow{v}_s^\ast(k)|}{V_{dc}} \sin a
\]

(4.14.b)

\[
T_0 = T_s - (T_1 + T_2)
\]

(4.14.c)

단, \(|\overrightarrow{v}_s^\ast(k)| = \sqrt{v_{ds}^\ast + v_{qs}^\ast} \)이고 \(a \)는 벡터가 반시계방향으로 회전할 때 각 삼각형의 출발점에서 점 각도로서 \(a = \tan^{-1}(v_{qs}/v_{ds}) - \theta_m \) (단, \(\theta_m \)은 각 색택의 기저각)이며 \(0 \leq a < \frac{\pi}{3} \) 이다.

만약, 과도상태에서 앞에서 \(\overrightarrow{v}_s^\ast(k) \) 가 출력전압 벡터의 6각형의 내부에 존재하지 않아 인버터가 \(\overrightarrow{v}_s^\ast(k) \)와 같은 전압을 출력할 수 없는 과변조 상태에서는 과도상태 \(\overrightarrow{v}_s^\ast(k) \)와 방향은 같게 되고 크기를 줄여서 육각형 외 변으로 이동시킴으로써 지령치와 가장 유사한 출력벡터를 얻을 수 있다. 이때 유 효 벡터 2개만 인가되고, 영벡터는 인가되지 않게 되므로 샘플링한 인가시간 총 \(T'_1, T'_2 \)는 다음과 같이 표현된다.

즉, \((T_1 + T_2) > T_s \)이면

\[
T'_1 = \frac{T_1 T_s}{T_1 + T_2}
\]

(4.15.a)
\[T_2' = \frac{T_2 T_s}{T_1 + T_2} \quad \text{(4.15.b)} \]

\[T_0' = 0 \quad \text{(4.15.c)} \]

정밀한 전압생성, 전류량을 최소화하기 위해 ON, OFF 한 주기를 대칭으로 배열하는데 섹터 I에서는 \(-v(0) \rightarrow -v(1) \rightarrow -v(2) \rightarrow -v(3)\)
\(-v(2) \rightarrow -v(1) \rightarrow -v(0)\)의 스위칭 패턴을 구성한다.

Table 1은 섹터 I에서의 게이팅 시퀀스를 나타내고 있으며 게이팅 시간 \(T_{ga}, T_{gb}, T_{gc}\)은 시간지연을 의미하며, Fig. 4.4는 공간벡터 제어기의 1주기당 인가되는 유 효전압이다.

공간전압벡터 무단에서도 정확한 전압이 인가 될수 있도록 \(V_{dc}, v_a^*, v_b^*\)를 이용하여 선택된 전압벡터의 소요시간을 타이머로 출력한다.

<table>
<thead>
<tr>
<th>ON Gating sequence</th>
<th>OFF Gating sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{ga} = \frac{T_0}{2})</td>
<td>(T_{ga} = \frac{T_0}{2} + T_1 + T_2)</td>
</tr>
<tr>
<td>(T_{gb} = \frac{T_0}{2} + T_1)</td>
<td>(T_{gb} = \frac{T_0}{2} + T_2)</td>
</tr>
<tr>
<td>(T_{gc} = \frac{T_0}{2} + T_1 + T_2)</td>
<td>(T_{gc} = \frac{T_0}{2})</td>
</tr>
</tbody>
</table>
Fig. 4.4 Optimal switching pattern of space vector PWM
제5장 시뮬레이션

본 논문에서 제안한 신경회로망을 이용한 유도 진동기의 센서리스 속도 제어 알고리즘의 타당성을 고찰하기 위해 실험에 앞서 컴퓨터 시뮬레이션을 행하였다. 신경회로망의 속도 추정기는 앞에서 기술한 바와 같이 하나의 응력층을 갖는 다층 퍼셉트론으로 구성하였는데, 이는 다수의 응력층을 갖는 속도 추정기를 설계하여 속도추정 결과를 비교 분석해 본 결과 유도 진동기의 비선형성을 고려하여 1개의 응력층을 가지는 속도 추정기에서 최적의 결과를 얻을 수 있었다.

입력에는 \(v_a(k), v_a(k-1), v_p(k), v_p(k-1), i_a(k), i_a(k-1), i_p(k), \)
\(i_p(k-1) \)를 사용하였고, 출력은 진동기의 수식 모델에 의해 구한 회전자 속도 \(w_r(k) \)를 이용하였다. 응력층의 노드수는 수 차례의 반복 실험에 의해 가장 우수한 속도 추정결과를 얻을 수 있는 16개로 하였고 출력층의 노드수는 1개로 설정하였다. 시뮬레이션에 사용한 유도진동기의 파라미터 및 시스템 정수는 Table 2와 같다.

| Table 2 Parameters of induction motor used for computer simulation and experiment and system constants |
|---|------------------|------------------|
| 정격출력 | 3 [HP] | \(R_r \) | 1.6 [\(\Omega \)] |
| 정격전압 | 220 [V] | \(L_s \) | 216 [mH] |
| 정격속도 | 1720 [rpm] | \(L_r \) | 216 [mH] |
| 극수 | 4 | \(L_m \) | 211 [mH] |
| \(R_s \) | 2.4 [\(\Omega \)] | \(J \) | 0.1 [kgm²] |
Fig. 5.1, Fig.5.2는 0→10[rpm], 0→15[rpm]의 무부하 계단속도지령에 대한 응답 시뮬레이션 결과를 도시하고 있다. 정격속도 1[%] 미만의 저속에서도 양호한 속도응답특성을 나타내었다.

Fig. 5.1 Simulation responses for step change of speed setting
(0→10[rpm])

Fig. 5.2 Simulation responses for step change of speed setting
(0→15[rpm])
Fig. 5.3, Fig. 5.4는 0→25[rpm], 0→50[rpm]의 무부하 계단속도지령을 가했을 경우의 응답속도를 나타낸다. 정상오차가 거의 발생되지 않음을 보여주고 있다.

Fig. 5.3 Simulation responses for step change of speed setting (0→25[rpm]).

Fig. 5.4 Simulation responses for step change of speed setting (0→50[rpm])
Fig. 5.5, Fig. 5.6은 0→100[rpm], 0→200[rpm]의 무부하 계단속도지령을 가했을 경우의 속도를 나타내고 있으며, 중전 저속에서의 속도응답 특성이 양호함을 확인할 수 있다.

Fig. 5.5 Simulation responses for step change of speed setting (0→100[rpm])

Fig. 5.6 Simulation responses for step change of speed setting (0→200[rpm])
Fig. 5.7, Fig. 5.8은 각각 100[rpm], 200[rpm]의 속도로 구동중 5[N·m]의 부하인가시의 속도응답특성을 나타내고 있으며 부하응전시에도 지령 속도에 잘 추종함을 알 수 있다.

Fig. 5.7 Simulation responses for step change of load torque (0–5[N·m])

Fig. 5.8 Simulation responses for step change of load torque (0–5[N·m])
또한, Fig. 5.9는 100[rpm]의 속도로 구동중 100→100[rpm]의 반전속도 지령을 가했을 경우의 응답을 도시한다. 역전지령시에도 속도응답의 속용성이 뛰어남을 알 수 있다.

![Fig. 5.9 Simulation responses for step change of speed setting (100→100[rpm])](image)

Fig. 5.10(a)는 실제 유도전동기의 고정자저항이 모델의 고정자저항보다 30[%] 큰 값인 경우, 200[rpm]의 속도로 구동중 5[N-m]의 부하인가시 속도응답을 나타내고 있으며 (b)는 실제 유도전동기 고정자저항이 모델의 고정자저항보다 30[%] 작은 값인 경우, 200[rpm]의 속도로 구동중 5[N-m]의 부하인가시 속도응답을 나타내고 있다. 파라미터 및 부하 변동에도 속도응답 특성이 양호함을 알 수 있다.

Fig. 5.11(a)는 실제 유도전동기 회전자저항이 모델의 회전자저항보다 30[%] 큰 값인 경우, 200[rpm]의 속도로 구동중 5[N-m]의 부하인가시 속도응답을 나타내고있으며 (b)는 실제 유도전동기 회전자저항이 모델의 회
전자저항보다 30[%] 작은 값인 경우, 200[rpm]의 속도로 구동중 5[N-m]의 부하인가시 속도응답을 나타내고 있는데 파라미터 및 변하변동에도 강
인한 속도응답 특성을 나타내고 있다.

Fig. 5.10 Simulation speed responses for the change of stator resistance (200[rpm], 0→5[N-m])
 (a) in case of stator resistance increased by 30[%]
 (b) in case of stator resistance decreased by 30[%]
Fig. 5.11 Simulation speed responses for the change of rotor resistance (200[rpm], 0→5[N·m])
(a) in case of rotor resistance increased by 30[%]
(b) in case of rotor resistance decreased by 30[%]

본 논문에서 제안한 신경회로망을 이용한 유도진동기의 센서리스 속도 제어 방식은 고정자와 회전자지향의 피라미터 변동시에도 강한속도제어가 이루어지며 부하운전시에도 속도응답이 양호함을 알 수 있다.
제6장 실험장치의 구성과 실험결과

6.1 실험장치의 구성

본 센서리스 속도제어 시스템을 구현하기 위한 하드웨어의 구성은 세부적으로 마이크로프로세서 시스템, 상전류 및 직류탱크전압 검출회로, 구동 드라이브 시스템, 부하 인가장치로 나누어진다. 또한, 제어성능의 검정을 위해 제어회로와는 별도로 속도검출회로가 필요하다.

6.1.1 마이크로프로세서 시스템

Fig. 6.1은 제어부로서 80586 마이크로프로세서, PCL-818 Card를 이용한 카운터 및 A/D 변환부를 나타낸다.

Fig. 6.1 Control part of the experimental equipment
Fig. 6.2는 PCL-818 Card의 내부 블록도이다.

본 시스템 구성시 주 제어기로는 80586 마이크로프로세서가 장착된 IBM PC를 사용하였는데 제어알고리즘이 전적으로 소프트웨어로 처리되고 있으므로 이 부분이 제어기의 가장 핵심적인 부분이라 할 수 있다. 또한, PC가 지원하는 주변기능과의 I/O는 PCL-818 Card를 이용하였다.

6.1.2 전류 및 직류링크진압 검출

지 입력이 가능하고 12bit의 해상도를 가진다. 그리고 전류의 범위는
직류링크전압의 샘플링은 전압감지기 LEM LV25-P 및 저항을 사용하
여 0[V] ~ 5[V] 범위의 전압으로 변환시켜 A/D 컨버터를 통해 검출하였다.

6.1.3 구동 드라이브 시스템

Fig. 6.3은 본 실험장치의 구동 드라이브 시스템인 게이트 구동회로와 전
력회로 구성부이다.

![Fig. 6.3 Drive system of the experimental equipment](image)

(1) 게이트 구동회로

인버터 스위칭을 위한 최종적인 신호발생회로인 게이트 구동회로는
인버터를 구성하는 스위칭 소자인 IGBT를 구동시키기 위하여 마이크로 프로세서에서 발생된 TTL레벨의 신호를 게이트 신호의 레벨로 증폭시키는 회로이며, 상용으로 만들어진 게이트 구동용 전용 IC인 TF 1205를 사용하였다. Fig. 6.4는 이와 같이 구성한 게이트 구동회로를 나타낸다.

CPU에서 출력된 제어회로는 인버터 단락사고 방지를 위해 지연시간 (dead time) 발생기를 거치게 되는데 이 시간은 안정성을 고려하여 3[μs]로 충분히 주었다.

Fig. 6.4 Configuration of gate drive circuit

(2) 전력회로

전력회로의 구성은 정류부와 인버터부, 그리고 제어장치의 전원공급부로 나누어진다. 정류부는 3상 브리지 정류기와 평활용 콘덴서로 이루어져 전원 오프시에 콘덴서에 남아있는 고압충전전압은 전자접촉기에 의해 저항을 통하여 방전되도록 하였다. 인버터부는 IGBT모듈을 사용하여

Fig. 6.5는 이와 같은 전력회로의 구성을 나타낸 것이다.

Fig. 6.5 Configuration of power circuits

6.1.4 속도 검출회로

속도제어 실험의 검증을 위하여 속도 검출회로를 구성하였다. 엔코더를 사용한 속도측정법으로는 크게 세 가지로 나눌 수 있는데, 샘플링 주기동안 엔코더 출력펄스수를 세어서 전동기의 속도를 측정하는 방식(M method)과 엔코더 출력펄스간의 시간간격을 측정하여 속도를 측정하는
방식(T method) 및 위의 두 방식의 문제점을 보완한 M/T법이 있다.

본 실험에서는 저속에서의 정밀도를 높이기 위해 출력펄스간의 시간간격을 측정함으로써 속도를 계산하는 T 방식을 적용하였고 1000[pulses/rev]의 엔코더를 사용하였다. 엔코더 펄스간의 시간간격은 펄스 한 주기동안 발생하는 1[MHz] 발전기의 출력을 계수하여 환산하였다.

6.1.5 부하 인가장치

Table 3은 본 실험에서 사용한 부하 인가장치인 Dynamometer의 사양을 나타내고 있다.

Table 3 Specification of Dynamometer

<table>
<thead>
<tr>
<th></th>
<th>MAGTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maker</td>
<td>HD-805-7NA</td>
</tr>
<tr>
<td>Model</td>
<td>Hysteresis brake</td>
</tr>
<tr>
<td>Brake</td>
<td>240 kgf·cm</td>
</tr>
<tr>
<td>Torque range</td>
<td>6000 rpm</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>3600 Watts continuous duty</td>
</tr>
<tr>
<td>Maximum input power</td>
<td>6000 Watts < 5 minutes</td>
</tr>
</tbody>
</table>

Fig. 6.6은 실험에 사용한 3마력 유도전동기와 부하실험을 위한 부하인가장치(Dynamometer)이다.
Fig. 6.6 Induction motor and Dynamometer of the experimental equipment

Fig. 6.7은 본 논문의 전체 하드웨어 블록도를 나타낸 것이다.

Fig. 6.7 Block diagram of total hardware system
6.2 실험결과 및 검토

Fig. 6.8, Fig. 6.9는 0→10[rpm], 0→15[rpm]의 무부하 계단속도지령에 대한 응답 실험결과를 도시하고 있다. 지속에서는 전류의 정밀한 측정 및 제어가 어려우므로 속도변화가 상대적으로 커지면 정격속도 1[%] 미만에서도 평균 속도제어가 가능함을 알 수 있었다.

Fig. 6.8 Experimental responses for step change of speed setting (0→10[rpm])

Fig. 6.9 Experimental responses for step change of speed setting (0→15[rpm])
Fig. 6.10, Fig. 6.11은 0→25[rpm], 0→50[rpm]의 두 부하 계단속도지령에 대한 속도응답이다. 속도변화가 다소 있지만 저속에서의 속도응답이 비교적 양호함을 보여준다.

Fig. 6.10 Experimental responses for step change of speed setting (0→25[rpm])

Fig. 6.11 Experimental responses for step change of speed setting (0→50[rpm])
Fig. 6.12, Fig. 6.13은 0→100[rpm], 0→200[rpm]의 무부하 계단속도지령에 대한 응답 실험결과를 도시하고 있으며 중, 저속에서의 속도응답이 우수함을 알 수 있다.

Fig. 6.12 Experimental responses for step change of speed setting (0→100[rpm])

Fig. 6.13 Experimental responses for step change of speed setting (0→200[rpm])
Fig. 6.14, Fig. 6.15, Fig. 6.16은 50[rpm], 100[rpm], 200[rpm]으로 구동중 5[N·m]의 제단부하토크를 인가하였을 경우의 응답을 나타내는데 중, 저 속에서의 속도 응답의 부하특성이 양호함을 보여준다.

Fig. 6.14 Experimental responses for step change of load torque (0→5[N·m])

Fig. 6.15 Experimental responses for step change of load torque (0→5[N·m])
Fig. 6.16 Experimental responses for step change of load torque (0→5[N·m])

또한, Fig. 6.17은 100[rpm]의 속도로 운전중 100→100[rpm]의 반전속도지령을 주었다. 경우의 응답을 도시한다. 속도응답의 속응성이 뚜렷해짐을 알 수 있다.

Fig. 6.17 Experimental responses for step change of speed setting (100→100[rpm])
제7장 결론

산업용으로 널리 사용되고 있는 유도진동기의 고성능, 고정밀 속도제어를 실현하기 위해 광학식 센서가 주로 사용되는데 이는 가격 및 안정성 등에 대한 문제점을 내포하고 있다.

이러한 이유로 위치 및 속도센서를 사용하지 않고도 원활한 속도제어가 가능한 알고리즘에 대하여 많은 연구가 이루어지고 있다.

그러나, 대부분의 방식들이 저속영역에서 속도추정이 용이하지 않으며 또한 진동기 파라미터 변화에 크게 영향을 받는 단점을 가지고 있다.

따라서, 본 연구에서는 기존의 센서리스 속도제어 기법들이 가지고 있는 저속에서의 동특성 및 파라미터의존성을 극복할 수 있는 외란 및 잡음 등에 강화성과 유연성을 가지는 신경회로망을 이용하여 속도를 추정하는 다양한 속도추정 방식들을 시행한 결과 아래와 같은 결론을 얻을 수 있었다.

1) 진동기 수식모델을 사용하여 속도제어 시뮬레이션을 행함으로써 얻어지는 진압, 전류 및 회전자 속도정보를 입출력 데이터로 하는 신경회로망을 이용하여 속도추정기의 구성이 가능하였다.

2) 반복 실험결과 유도진동기 센서리스 속도제어를 위한 최적의 신경회로망 구조는 하나의 은닉층을 가진 8-16-1의 형태이었으며, 활성함수는 은닉층의 경우 Tansigmoid함수 이었고, 출력층의 경우 선형함수이었다.
3) 무부하 계단응답 시뮬레이션 결과로부터 얻은 전압, 전류 및 속도정보를 사용하여 신경회로망을 학습 시킨 후 최적의 연결가중치를 구했지만 부하운전이나 과도상태시에도 속도추정이 가능하였다.

4) 기존의 센서리스 속도제어 방식들은 저속운전이 어렵고 파라미터 변동시 5% 안팎의 정상오차를 보였지만 본 논문에서 제안된 방식은 정격속도 1% 미만에서도 운전이 가능하였고 파라미터 변화에 대한 영향도 극히 미소하였다.

5) 본 논문에서 개발한 제반 프로그램을 사용한 경우, 여타의 유도전동기라고 할지라도 대략적인 파라미터가 주어지면 수식모델 시뮬레이션에 의해 전압, 전류 및 회전자속도를 구하여 신경회로망의 입출력 데이터로 사용함으로써 학습을 통해 최적의 연결가중치를 얻을 수 있으므로 센서리스 속도제어가 가능하리라 사료된다.

본 논문에서 수행한 시뮬레이션과 실험 결과가 다소 차이가 나고 있는 것은 실험에 사용된 유도전동기의 각종 파라미터 및 기계정수의 오차로 인한 것으로 생각되며 전기적 및 기계적 상수가 성능특성에 미치는 영향 등에 대한 연구는 추후 과제로 남아있다.
참고문헌

38) 임영도, “파지 · 신경망 · 유전공학”, 1999.

감사의 글

부족함을 은퇴가 채우기 위해 항상 노력하고 최선을 다하고자 했지만 어려움이 많이 남습니다. 하지만 해야할 것이 남아있다는 것은 도전할 것이기에 희망을 갖게 합니다.

저의 부족함을 채울 수 있도록 도움을 주신 여러분들께 이 논문의 지면을 통하여 고 은혜에 감사드립니다.

먼저 학업 뿐만 아니라 모든면에 있어서 제가 어두운 바다의 동해가 되어주신 지도교수님께 진심한 교수님과 사모님 그리고 가족분들께 고개숙여 감사드립니다.

그리고 이 논문이 완성되기까지 많은 지도와 격려를 아끼지 않았던 하주식 교수님, 굽음하고 자상하시게 위안과 도움을 주신 유희현 교수님, 논문지도 뿐만 아니라 많은 것을 함께 걱정해주시신 이성근 교수님, 먼곳에 계시면서 논문지도와 산의 지해를 주시는데 주저하지 않으셨던 정주용 교수님께 감사드립니다.

아울러 힘들고 어려울 때 자식처럼 보살펴주시는 박진길 교수님과 저의 논문에 많은 관심을 가지시고 참고와 조언을 해주시신 정명길 교수님, 소명욱 교수님, 그리고 부족한 저를 위해 후원을 해주시신 김중호 교수님께 감사드립니다.

따뜻한 격려의 말씀을 많이 해주시기 기관시스템공학부 및 전략전자가계공학부 교수님들께도 감사드립니다.

또한 논문작성에 도움을 아끼지 않았던 연구실의 오세진 후배님, 오
동술 후배님, 김덕기 후배님 그리고 항상 마음의 여유와 고담함을 염
려해준 김천욱 후배님, 같이 논문을 작성하면서도 많은 위로를 해주
한현희 선배님, 정재용 선배님, 김현수선배님께도 감사드립니다.
학부사무실의 김민수 후배님, 정영훈 후배님께도 고마움을 전하며
늘 그 자리에서 지켜봐주고 후원자가 되어준 지선이와 부모님께도 감
사드립니다.
누구보다도 힘들고 고통을 때 제게 힘과 의지를 주시고 필성을 자식
격경으로 삼아주실 가시는 아버님과 어머님께 감사드리며 자고마한 것
이지만 보답을 드릴 수 있어 한 없이 기쁩니다.
그리고 항상 따뜻한 마음으로 감싸주신 누나, 자형, 기영, 해미께
감사하며, 언제나 학문의 기준을 주시는 형님, 형수님, 막내 정자, 예론
조차 이슬, 재현이에게도 고마움을 전합니다.
제게 돈든한 응원군이 되어준 거창향유회 회원님들과 방파제 회원인
용진, 기윤, 동국, 김형, 청철, 상현, 의철에게도 감사함을 표현합니다.