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ABSTRACT

Titanium and its alloy have been widely utilized for
excellent corrosion—resistance, high melting point, high strength
and biocompatibility. However, Ti and Ti alloys are
non—bioactive after being implanted in bone. Thus, for further
improvement in biocompatibility the various implant surface
modifications have been investigated. These surface
modifications have included deposition of Ti coating using plasma
spraying, and deposition of calcium phosphate or
hydroxy—apatite = (HA) coating, sandblasting, acid ething,
oxidation, ion implantation and alkaline treatment.

One of these surface modifications that alkaline solution is

formed on Ti in 5 M NaOH solution at 60 , and it can be



converted into an amorphous sodium titanate layer by heat
treatment that induces a bone-like apatite formation on its
surface in simulated body fluid. Although electrochemical and
chemical treatments of Ti have been carried out in alkaline
solutions to form surface oxide film for medical application, the
detailed electrochemical behavior of titanium in various
concentrations of sodium hydroxide has not been reported.

In this work, electrochemical behavior of commercially
pure titanium in alkaline solution was investigated as a function
of NaOH concentration by open—circuit potential transients,
cyclic polarization curves, galvanostatic (constant current)
method and surface morphological study using SEM and CLSM.

Commercially pure titanium specimen (99.6% ASTM
gradel) of 1.77 cm® surface area was used as the working
electrode. The specimen was ground successively with silicon
carbide papers from 400 to 2000 grit for 30 seconds and then
rinsed with ethanol for 30 minutes by using ultra sonic and
distilled water. A platinum mesh and saturated calomel electrode
(SCE) were used as the counter electrode and the reference
electrode, respectively.

The open—circuit potential transients of Ti in different
concentrations of NaOH were measured. The open—circuit

potential showed an increase with time in the solutions lower



than 0.1 M NaOH, while it showed a decrease with time in the
solutions higher than 0.1 M, which are attributed to the growth
and dissolution of surface oxide film, respectively. It is noted
that the open-—circuit potential value obtained at 2000 seconds of
immersion time decreases with increasing concentration of
NaOH. This indicates that the dissolution of surface oxide film is
easier in more concentrated NaOH solutions.

Cyclic polarization curves of Ti were obtained at 5 /s in
different concentrations of NaOH. Current peaks were clearly
observed during the positive going scan of potential in
concentrated NaOH solutions. The magnitude of the peak current
was higher but peak potential became lower with increasing
concentration of NaOH.

Galvanostatic potential transients obtained form Ti at 0.5

/ in different concentrations of NaOH. The potential under
the anodic current increased with time in the initial stage and
then reached a steady-—state value in all the concentrations of
NaOH. The rate of initial increase and steady-—stated value of
potential was lowered with increasing concentration of NaOH,
which suggest that the dissolution of Ti metal through the anodic
oxide film is easier in more concentrated NaOH solutions.
Surface morphological observation revealed that the dissolution

of Ti is enhanced by the increase of NaOH concentration.
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Table 1. Commercial of Titanium in ASTM

Tensile . . o
yield Impurity limits, wt%(max)
strength
strength

Desigination MPa MPa N C H Fe o
unalloyed grade
ASTM gradel 240 170 0.03 0.08 0.0015 0.20 0.18
ASTM grade2 340 280 0.03 0.08 0.0015 0.30 0.28
ASTM grade3 450 380 0.05 0.08 0.0015 0.30 0.35
ASTM grade4 550 480 0.05 0.08 0.0015 0.50 0.40

Titanium, A Technical Guide, Second Edition, Mattew J. Donachie, Jr



2.1.2

(hydroxyapatite)

CaO,
Na,O, P,0s, SiO;

(strength) (hardness)



2.2
221

body)

2.2.2

pivot tooth
1887 Hauis, 1895
1913 Greenfiled

Co—-Cr—Mo

(foreign

1809  Maggiolo
.[5.6] 1845 Roger
, 1886 Edmunds,

Bonvell, 1898 Payne, 1905 Scholl,

-[7]
vitallium

. 1937 Strock

Harvard vitallium screw implant

Formiggini 1947

-[8]

tantalum spiral implant



, Chercheve

Sciaom

sew implant

2.2.3.

Branemark

Branemark

Formiggini implant
. 1960

tripodial implant , tantalum

Tromomte bone spiral

, drive screw

self—tapping vitallium

-[9]

Branemark 1952

(osseointegration)

-[10]

, ITl ,

. 1970



Schroeder

Straumann

. Straumann AG

, 1980
(Tl
Implantology) .[11]

titanium plasma—coating

, 15
titanium

3

anchorage (

International

Waldenburg

ITI
( ) ,

Team for Oral

20~-30

plasma—coating



ITI
(Tl 8~12mm

Branemark

ITI

ceramics, sapphire

crystal, vitreous carbon, aluminum oxide

, Branemark

. 90%

100%

-[12]

- 10 -



2.3
23.1

Machined surface

-[13]

1) Machined smooth surface

, Branemark

(groove)

0.5~0.8

2) Titanium plasma spray surface

- 11 -

Ra



3) (hydroxyapatite coating surface)

(calcium phosphate)

HA(hydroxyapatite) OHA(oxyhydroxy

apatite), DCP(dicalcium phosphates), TCP(tricalcium phosphates)

a. Plasma spray coating HA powder
1-2
HA
-[14,15]
b. lon sputter coating (sintering) HA
target
r.f. (radio

frequency sputtering)

- 12 -



HA ,

-[16]

4) Blasted surface

(25~250 )
machined
Al;O3 TiO2
CazPOq4 (resorbable blasting media, RBM)
-[17,18]
5) (Etched surface)
(acid etching)
peak valley
, blasting
Ra 1.3~1.7
H>SO4 / HNO3
(fibrin)
HCI / H.SO4 HNO; / HF
ITI SLA (sandblated large grit and
acid—etched) blasting

- 13 -



-[19]

6) Blasted and etched surface(SLA)

7) (Oxidation)
3~5
(thermal
oxidation), (chemical  oxidation), (anodic
oxidation)
a. 600~800CIc
1-2 ,
0.1% 0.2%
-[13]
b.
(tissue)
(TiO)

- 14 -



van der waals . )

(anodization)

-[20,21,22]

8) lon implantation

lon implantation

Buchanan,

Rostlud

lon implantation

100—~1000

- 15 -



(corrosion resistance) (wear resistance)
-[23]
Hanawa calcium ion implanted

, Hanawa Ota

[Ca]/[P] Ca*?
Tuboi HA ion
implantation

-[17]

9) Alkaline treatment

60 SM
NaOH 24

-[24,25]

- 16 -



3.1

commercial pure titanium, 99.6%, ASTM Grade 1

1.77cm? , . (Fig.1)
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Fig.1l. Titanium Grade 1.
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3.2
SiC emery paper 400, 600, 800, 1000, 1200, 1500, 2000 grit
30 2 30 ultra sonic
cleaner
0.001M, 0.01M, 0.1M, 0.5M, 1M, 3M, 5M, 7M NaOH

water bath 20

3.3
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counter .(Fig.2)
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Fig. 2. Platinum Electrode.
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Open—circuit potential Cyclic voltammetry CH
instrument(Fig.3) Galvanstatic experiment
AUTOLAB(Fig.4) Potentiostat / Galvanostat

300

Fig. 3. CH instrument. Fig. 4. AUTO LAB.
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Fig. 5. Experimental equipment.
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1) LM(Laser microsocopy)
20 LM

.(Fig.6)

Fig. 6. Laser microscope.

- 21 -



2) SEM(scanning electron microscopy)
JFC—-1100E lon sputtering device
8 2 . 500

.(Fig.7)

Fig. 7. Scanning electron microscope.
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4.1

4.1.1 Open-Circuit Potential Test
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Fig. 8. Relationship between Open-Circuit Potential and

immersion time(s) with various concentrations of NaOH solution.

0.001M NaOH 7M NaOH Ti OCP(Open—Circuit

Potential) Figure 8
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Fig. 9. Variation of OCP potentials with concentration of NaOH

after immersion 2000 seconds.
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4.1.2 Cyclic Votalmmtery Test
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Fig. 10. Cyclic Voltammogramms of Ti in various concentrations

of NaOH.
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Fig. 11. Variation of Peak Current on the cyclic voltammogram

with concentration of NaOH.
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Fig. 12. Variation of applied current corresponding to 0.5V on

the cyclic voltammogram with concentration of NaOH.
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4.1.3 Galvanostatic Test
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Fig. 13. Polarization Potential-Time behavior of Ti at 0.5 / in

various NaOH solutions
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4.2

4.2.1 Laser Microscopy (LM)
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Fig 14. Ra value of Ti surface at 0.5 /

different NaOH solutions.
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Figure 14
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(Ra) 1M
1M
1M

Table 2. Ra value of Ti surface at 0.5 / for 1000 seconds in

different NaOH solutions for 1000 seconds.

Mole Control 10°M 10°M 10'M 1M 3M 5M 7M

Ra(um) 1.49 1.57 1.64 165 271 217 207 1.59
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(a) control (><20, 100 ) (b) 0.001M (0, 100

(c) 0.01M (=20, 100 ) (@ 0.1M (=20, 100 )
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(e) 1M (20 100 ' (H 3M (<20, 100 )

(h) 7M (<20, 100 )

(g) 5M (><20, 100 )

Fig. 15. Laser microscopy of Ti surface obtained 0.5 / in

different NaOH solutions for 1000 seconds.

- 37 -



4.2.2 Scanning Eelectron Microscopy (SEM)
(a) control (<500, 5 ) (b) 0.001M (>=<500, 5 )

(c) 0.01M (<500, 5 ) (d) 0.1M (=500, 5 )
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(e) 1M (<500, 5 ) ) 3M (<500, 5 )

(@ 5M (<500, 5 )

(h) 7M (=500, 5 )

Fig. 16. Scannig Electron Microscopy of Ti surface at 0.5 /

for 1000 seconds in different NaOH solutions.
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