
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Masters Thesis

엄빌리컬케이블의영향을받는 UV의운동에관한연구

A Study on the Motions of Underwater Vehicle (UV) with the 

Umbilical Cable Effect

Supervisor: Professor Hyeung-Sik Choi

July 2015

Graduate School of Korea Maritime and Ocean University
Division of Mechanical Engineering

Mai The Vu



본 논문을 Mai The Vu 의 공학석사 학위논문으로

인준함.

              위원장     김 준 영     (인)

                  위  원     최 형 식     (인)

위  원     조 용 성     (인)

2015년 07월 10일

한국해양대학교 대학원



1

Acknowledgement

  First of all, I would like to thank my supervisor, Professor Hyeung-Sik Choi, at 

the Department of Mechanical Engineering, Korea Maritime and Ocean University 

(KMOU), for his encouraging and introducing me this wonderful research. His 

trust and scientific excitement inpired me through my research and I am so lucky to 

work with him.

  I am grateful to my co-supervisor, Professor Sam-sang You, major of 

Refrigeration, Air-conditioning and Energy System Engineering; Professor Joon-

Young Kim, major of Marine Equipment Engineering, KMOU; Professor Yong-

Seong Cho, major of Electronics Engineering, Dong-A University; for inviting me 

to research stay at KMOU. They always share their knowledge regarding the 

marine control systems and this helps me a lot in my research.

  I would like to thank my colleagues at Intelligent Robot & Automation Lab 

(KIAL) and KMOU for their invaluable helps and supporting me in my research 

work. I want to thank you all for all your kindly help, support, interest and valuable 

hints.

  I closely express my thanks to Korean and Vietnamese friends for their 

friendliness, sharing, and confidence.

  I also want to thank my parents and brothers, who taught me the value of hard 

working by their own examples. They are always my strong support during the 

whole difficult time of my research. The acknowledgement would not be complete 

without the mention of my girlfriend who is always with me whenever I fell lonely 

far from home.

Korea Maritime and Ocean University, Pusan, Korea

               July 23th 2015

                 Mai The Vu



2

A Study on the Motions of Underwater Vehicle (UV) with the 

Umbilical Cable Effect

Mai The Vu

Division of Mechanical Engineering

Graduate School of Korea Maritime and Ocean University

Abstract

This thesis presents a series of analyses on the behavior of the underwater 

vehicle (UV) including the umbilical cable (UC) effect. The mathematical 

model for hydrodynamics of UV including the coupled effect of the UC is 

proposed. The corresponding hydrodynamic coefficients on the UV are 

obtained from experiments or referring related papers. With relevant 

hydrodynamic coefficients, the 4th-order Runge–Kutta numerical method is 

used to analyze motion of the UV and the dynamic configuration of the UC. 

The modeling performed of the UC is using the two-end boundary-value 

problem and it is solved by using the multi-step shooting method. Simulations 

on the UV including forward moving, backward, ascending, descending, 

sideward moving and turning motions were performed for the UC and without 

UC effect. The developed hydrodynamic model may serve as a useful tool to 

improve the performance of the UV operated with the effects of UC. The effect

of currents to the UC is also taken into consideration. The present results reveal 

that the UC significantly affects the motion of the UV and should not be 

neglected in the simulation.

Keywords: Remotely operated vehicle; Umbilical cable; Shooting method; 

unmanned marine vehicles; maneuvering.
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Nomenclature

x, y,z Axes of body fixed reference frame

X, Y, Z Axes of earth fixed reference frame

x& Linear velocity along the North-South axis (earth)

y& Linear velocity along the East- West axis (earth)

z& Linear velocity along the vertical axis (earth)

φ Euler angle in North-South axis. Positive sense is clockwise as seen 

from back of the vehicle (earth)

θ Euler angle in pitch plane. Positive sense is clockwise as seen from 

port of the vehicle (earth)

ψ Euler angle in yaw plane. Positive sense is clockwise as seen from 

above (earth)

φ& Roll Euler rate about North-South axis (earth)

θ& Pitch Euler rate about East-West axis (earth)

ψ& Yaw Euler rate about North-South axis (earth)

u Linear velocity along longitudinal axis (body)

v Linear velocity along horizontal plane (body)

w Linear velocity along depth (body)

p Angular velocity component about body longitudinal axis

q Angular velocity component about body lateral axis

r Angular velocity component about body vertical axis

u& Time rate of change of velocity along the body longitudinal axis

v& Time rate of change of velocity along the body lateral axis

w& Time rate of change of velocity along the body vertical axis

p& Time rate of change of body roll angular velocity about the body 

longitudinal axis

q& Time rate of change of body pitch angular velocity about the body 

lateral axis
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r& Time rate of change of body yaw angular velocity about the body 

vertical axis

W Weight of the vehicle

B Buoyancy of the vehicle

L Length of the vehicle. 

g Acceleration due to gravity

ρ Density of fluid

m mass of the vehicle

xxI Mass Moment of Inertia about x-axis

yyI Mass Moment of Inertia about y-axis

zzI Mass Moment of Inertia about z-axis

xyI Cross Product of Inertia about xy-axes

yzI Cross Product of Inertia about yz-axes

xzI Cross Product of Inertia about xz-axes

CG Center of gravity

Gx x Coordinate of CG From Body Fixed Origin

Gy y Coordinate of CG From Body Fixed Origin

Gz z Coordinate of CG From Body Fixed Origin

CB Center of buoyancy

Bx x Coordinate of CB From Body Fixed Origin

By y Coordinate of CB From Body Fixed Origin

Bz z Coordinate of CB From Body Fixed Origin

cW The weight per length of the cable

cD Diameter of cable

cL Length of cable

cE Modulus of elasticity of cable



8

uX & Added mass in surge movement

vY& Added mass in sway movement

wZ &
Added mass in heave movement

pK &
Added mass in roll movement

qM &
Added mass in pitch movement

rN &
Added mass in yaw movement

uX Linear damping in surge movement

vY Linear damping in sway movement

wZ Linear damping in heave movement

pK Linear damping coefficient for roll movement

qM Linear damping coefficient for pitch movement

rN Linear damping coefficient for yaw movement

uuX Quadratic damping in surge movement

vvY Quadratic damping in sway movement

wwZ Quadratic damping in heave movement

ppK Quadratic damping coefficient for roll movement

qqM Quadratic damping coefficient for pitch movement

rrN Quadratic damping coefficient for yaw movement
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Chapter 1   Introduction

In this chapter, a brief information about underwater vehicles, their applications 

and importance and lastly our objectives of thesis are mentioned.

1.1 Underwater Vehicles

The ocean covers approximately 70% of the Earth’s surface and contains numerous 

resources and life forms. Further, natural and mineral resources on land have 

steadily depleted, and hence, considerable attention has now focused on natural 

resources under seas, for example, oil, gas, and minerals under the seabed. 

However, it is not easy to explore and search vast underwater environments in 

traditional ways using manned systems and human divers. Therefore, underwater 

vehicles, especially unmanned systems that can perform difficult missions without 

risking human lives, are becoming popular. The underwater robots can help us 

better understand marine and other environmental issues, protect the ocean 

resources of the Earth from pollution, and efficiently utilize them for human 

welfare, in Fig. 1.1.     

Fig.1.1: Application of underwater robots

Such unmanned underwater vehicles are often classified into two types-remotely 

operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Remotely 
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operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have been 

applied in a wide variety of areas. Recently, there has been a trend to use smaller 

autonomous underwater vehicles, both tethered and untethered, in rivers, lakes and 

oceans.

1.1.1 Autonomous Underwater Vehicles

Autonomous underwater vehicles tend to be very similar to the ROVs. However 

these vehicles are usually battery powered and carry its own computer. This 

onboard computer is the requirement for their autonomous behaviour. Autonomous 

Underwater Vehicles (AUVs) are usually torpedo shaped and as the name suggests 

not reliant on a connection to a surface vessel, and can operate for a prolonged 

period of time on their own. Therefore, their power capabilities and operating times 

are limited, and they cannot be tele-operated in real time. In particular, AUVs are 

designed to require little or no human supervision. They are much more focused on 

speed, energy conservation and hydrodynamic properties than the ROVs, and 

usually have only one main thruster. AUVs are generally used for data collection 

such as acoustic surveying of a seabed or monitoring of the ocean space in military 

operations.

Primarily oceanographic tools, AUVs carry sensors to navigate autonomously and 

map features of the ocean. Typical sensors include compasses, depth sensors, side-

scan and other sonar’s, magnetometers, thermistors and conductivity probes. 

Underwater robots require adequate guidance and control to perform useful tasks. 

Visual information is important to these tasks and visual servo control is one 

method by which guidance can be obtained. A connectionist learning approach can 

replace complex models and control schemes to coordinate and control thrusters. 

Autonomous Underwater Vehicles are a powerful tool for underwater data 

gathering. In military applications, AUVs are also known as Unmanned Undersea 

Vehicles (UUVs). They can operate in water as deep as 6000 meters and with 

recent advances in battery technology, these robotic submarines can travel tens of 

kilometres. The demand for advanced underwater robot technologies is growing 
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and will eventually lead to fully autonomous, specialized, reliable underwater 

robotic vehicles. A typical autonomous underwater vehicle is shown in Fig.1.2.

Fig.1.2: A typical Autonomous Underwater Vehicle

1.1.2 Remote Operated Underwater Vehicles

The use of Remotely Operated Vehicles (ROVs) has increased rapidly in the last 

decade due to widespread demand in the offshore oil and gas industries. They tend 

to be highly specialized for their specific task. Some are designed for scanning 

wide swaths of the ocean floor while others are designed for photography and 

recovery. A number of deep-sea animals and plants have been discovered or 

studied in their natural environment only through the use of ROVs.

  An ROV typically has a low velocity, but is very maneuverable and well fit to 

solve complex tasks in deep water. ROVs are connected to, and controlled from, a 

surface vessel through an umbilical providing power and communications. Most 

ROV have a box-shaped frame, mostly because the slow operating speed and 

nearly unlimited power from the umbilical removes the need for hydrodynamic 

design and maneuverability and compactness is instead prioritized. Most ROVs 

will have thrusters in several directions to allow high precision control. ROVs are 

typically divided into several categories depending on their size, power and 

abilities. The smallest and weakest ROVs are in the micro and mini classes, and 

typically weights between 3 kg (micro) and 15 kg (mini). These ROVs usually 

have very little payload and are mostly used for exploration and surveying. The 

general classes ROVs are larger and can usually carry a small manipulator, have 
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less than 5 hp propulsion and can reach depths of 1000 meters. The two work 

classes are the most common in the subsea oil and gas industry and can carry two 

or more manipulators and usually have significant payload; the light work class 

typically has less than 50 hp propulsion and can dive to 2000 meters, while the 

heavy work class can have as much as 220 hp propulsion and a maximum depth of 

3500 meters. A special class is the trenching/burial ROVs which are designed to 

carry a cable laying sledge and can operate down to 6000 meters with more than 

200 hp propulsion. A typical remotely operated vehicle is shown as Fig.1.3.

Fig.1.3: A typical Remotely Operated Vehicle

1.2 Applications of Underwater Vehicles

With the development of Underwater Vehicles technology, its application areas 

have been expanding gradually. Its main applications include the following fields:

· Science: seafloor mapping; geological sampling; oceanographic monitoring;

· Environment: environmental remediation; inspection of underwater 

structures, including pipelines, dams, etc; long term monitoring (e.g., 

radiation, leakage, pollution)

· Oil and gas industry: ocean survey and resource assessment; construction 

and maintenance of undersea structures

· Military: shallow water mine search and disposal; submarine off-board 

sensors.



18

1.3 Motivation and Contributions of Thesis

Recently, the underwater vehicle (UV) is getting more and more important in 

exploration and exploitation of the underwater environment because it is a 

necessary underwater-technical system for observation and providing complex and 

technical works. There have been many researches about the design and 

development of the underwater vehicles in the world. Deam and Given (1983) 

summarized the researches of ROV and concluded five steps about developing 

ROV. Nomoto and Hattori (1986) made the detailed analysis on the designed 

performance for the deep ocean ROV, JAMSTEC DOPHIN 3 K, whose mission 

was to support the manned submersible, DEEP OCEAN 2000, to investigate the 

operation location under the water depth 3300 m. Their technical analyses were 

also extended to the JAMSTEC KAIKO with the maximum operation depth 11000 

m. Stewart and Auster (1989) submitted a low-cost technology for developing 

ROV which is helpful to the related designers. Multiple AUVs, underwater docking, 

and obstacle avoidance are recent challenging issues in the field of AUV 

technologies.

Fig.1.4: A typical deep-sea-operated vehicle systems

Generally, the deep-sea-operated vehicle systems typically consist of a large 

supported vessel, a winch, umbilical cable and UV, as shown in Fig 1.4. However, 

most of researches on the numerical model of predicting the motion of the UV 

neglect the umbilical cable effect. The main reason is that including the umbilical 

cable effect will cause the numerical model to be very complicated and difficult to 

solve. Therefore, only few authors dealt with such kind of problem. Ablow and 
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Schechter (1983) proposed an implicit finite difference method to simulate an 

underwater cable that has been frequently referenced in the relevant literatures. 

However, their algorithm will become singular if the tension in the cable is lost. 

Burgess (1992) indicated the internal forces generated by the cable curvature could 

avoid the singular behavior of the implicit finite difference scheme, which was

made by implementing three additional rotational equations of motion. Buckham et 

al. (2000) applied the finite-element method to calculate the tension and bending 

force on the slack tether attached to the ROV. Recently Feng and Allen (2004) 

extended the numerical scheme developed by Milinazzo et al. (1987) and presented 

a finite difference method to evaluate the effects of the umbilical cable on an 

underwater flight vehicle, which showed that the numerical scheme was effective 

and provided a means for developing a feed- forward controller to compensate for 

the cable effects. It means that the proposed numerical scheme can handle the 

dynamics of an underwater flight vehicle with cables of non-fixed length.

The hydrodynamic numerical model for simulating the UV maneuvering behavior 

is very important. A general non-linear model for the dynamics of UV can be 

derived either using a Newtonian or a Lagrangian method (Coute and Serranl, 

1996; Fossen, 1994). In order to understand the behavior of the UV maneuvering in 

the ocean, the mathematical model with the umbilical cable effect based on the 

formulas with six degrees of freedom motions (Fossen, 1994) has been derived in 

the paper. The corresponding hydrodynamic coefficients about the maneuvering 

characteristics are obtained from experiments or referring related papers. The 

configuration simulation of the umbilical cable connecting to the UV is calculated 

by using the 4th Runge–Kutta method and the corresponding two-end boundary-

value problem is solved by using the multi-step shooting method which is based on 

the search method developed by Hooke and Jeeves (1961) and Sagatun (2001). The 

4th Runge–Kutta method is also applied to solve the six degrees of freedom 

motions of the UV with the umbilical cable effect. The compact hydrodynamic 

model with six degrees of freedom (DOF) motions and the numerical solution 

technique are described in the following section.



20

Chapter 2   Design Essentials Concepts and Assumption

In order to design any vehicle, it is essential to have background knowledge and 

fundamental concepts about the processes and physical laws governing the vehicle 

in its environment. With regard to an UV, factors such as buoyancy, stability, 

hydrodynamic damping and pressure have to be taken into consideration. This 

chapter introduces some of these fundamental concepts and ideas about underwater 

vehicles, and also examines the general design of these vehicles. The mechanical 

and electrical systems of past UV vehicles are also presented and examined closely 

to gain insight into different designs

2.1 UV Coordinate System

Analogous to flying vehicles, an UV has 6-DOF; three spatial coordinates, x, y and 

z; and three attitude defining Euler angles, roll, φ, pitch, θ, and yaw, ψ are shown in 

Fig.2.1.

Fig.2.1: UV coordinate system.

The x axis points along the forward direction of the vehicle, defining the vehicle’s 

longitudinal translation. The y axis points through the right hand or starboard side 

of the vehicle, defining the vehicle’s lateral translation. The z axis defines the 

vehicle’s vertical translation or depth. Note that the z axis is zero at the surface and 

points downwards; hence, it is positive for increasing depth. This is because the 

UV cannot travel further than the surface of the water.
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The degree of freedom that an UV has allows it to be quite versatile. This high 

range of motion, however, can be problematic as it must be considered during the 

design process how each DOF will be controlled in order to keep the vehicle stable. 

Most UV are designed so as to be able to control as many DOF as possible.

2.2 Factors Affecting an Underwater Vehicle

Several forces act on an underwater vehicle that requires consideration for the 

design process. These include buoyancy, hydrodynamic damping, Coriolis and 

added mass. Buoyancy is one of the most important factors which significantly 

affects the vehicle’s ability to submerge as well as its stability. Stability is also 

affected by external forces. Pressure is another significant factor for underwater 

vehicles that needs to be taken into consideration in the design process.

2.2.1 Buoyancy

The magnitude of the buoyant force, B, exerted on a body, floating or submerged, 

is equal to the weight of the volume of water displaced by that body [15]. The 

ability of an object to float depends on whether or not the magnitude of the weight 

of the body, W, is greater than the buoyant force. Clearly, if B > W, then the body 

will float, while if B < W it will sink (Figure 2.2). If B and W equate, then the body 

remains where it is.

Fig.2.2: Effects of buoyancy and weight on an underwater body.

2.2.2 Hydrodynamic Damping

When a body is moving through the water, the main forces acting in the opposite 

direction to the motion of the body are hydrodynamic damping forces. These 

damping forces are mainly due to drag and lifting forces, as well as lineal skin 
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friction [1]. Damping forces have a significant effect on the dynamics of an 

underwater vehicle which leads to nonlinearity. Lineal skin friction can be 

considered negligible when compared to drag forces, and therefore, it is usually 

sufficient to only take into account the latter when calculating damping forces.

2.2.3 Stability

Assuming no water movement, the stability of a static body underwater is 

predominantly affected by the positions of the centres of mass, MC , and buoyancy, 

BC . The centre of buoyancy is the centroid of the volumetric displacement of the 

body [16]. If MC and BC are not aligned vertically with each other in either the 

longitudinal or lateral directions, then instability will exist due to the creation of a 

nonzero moment (Figure 2.3).

Fig.2.3: a) Stable configuration of underwater body. b) Instability of an underwater 

body through misalignment of centres of mass and buoyancy.

If MC and BC coincide in the same position in space, the vehicle will be very 

susceptible to perturbations. Ideally, the two centroids should be aligned vertically 

some distance apart from each other with MC below BC . This results in an ideal 

bottom-heavy configuration with innate stability.

As seen in Figure 2.4, this configuration produces a righting moment, RM, when 

the vehicle rolls or pitches that is directly proportional to the perpendicular distance 

between MC and BC , as well as to both B and W. This moment is conducive to the 

vehicle’s stability, acting as a passive roll and pitch control system. The moment is 

given by,
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1
( )

2
RM d B W= +

                                                                                                
(2.1)

where d is the perpendicular distance between the acting forces B and W. 

Fig.2.4: Righting moment caused by roll or pitch of vehicle.

The magnitude of RM varies sinusoidally with the angle α that the vehicle rolls or 

pitches. From Figure 2.4, equation 2.1 becomes

1
( )sin

2
RM l B W l= +

                                                                                         
(2.2)

where l, B and W are constants for the vehicle; l being the distance between the 

centers of mass and buoyancy.

In the case of a dynamic underwater body, stability is affected not only by the 

centres of mass and buoyancy, but also by factors such as external forces and 

centres of drag. To increase dynamic stability, the centres of drag, determined by 

the centroids of the effective surface areas of the vehicle, should be aligned with 

the centres of the externally applied forces. In this manner, the vehicle will not tend 

to exhibit undesirable characteristics in its motion.

2.2.4 Coriolis

Coriolis is an inertial force that acts perpendicular to the direction of motion of a 

body. The force is proportional to both the velocity and rotation of the coordinate 

system. The effect of the Coriolis force then, is that the path of the body is deflected. 

In reality, however, the path of the body is not actually deflected, but only appears 

to be. This is due to the motion of the body’s coordinate system [17]. Since the 

coordinate system of an UV rotates with respect to another reference frame, the 
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effect of the Coriolis force is usually taken into account and included in the 

equations of motion.

2.2.5 Added Mass

Another phenomenon that affects UV is added mass. When a body moves 

underwater, the immediate surrounding fluid is accelerated along with the body. 

This affects the dynamics of the vehicle in such a way that the force required to 

accelerate the water can be modeled as an added mass [18]. Added mass is a fairly 

significant effect and is related to the mass and inertial values of the vehicle.

2.2.6 Environmental Forces

Environmental disturbances can affect the motion and stability of a vehicle. This is 

particularly true for an UV where waves, currents and even wind can perturb the 

vehicle. When the vehicle is submerged, the effect of wind and waves can be 

largely ignored. The most significant disturbances then for UV are currents. In a 

controlled environment such as a pool, the effect of these environmental forces is 

minimal.

2.2.7 Pressure

As with air, underwater pressure is caused by the weight of the medium, in this 

case water, acting upon a surface. Pressure is usually measured as an absolute or 

ambient pressure; absolute denoting the total pressure and ambient being of a 

relativistic nature.

At sea level, pressure due to air is 14.7psi or 1atm. For every 10m of depth, 

pressure increases by about 1atm and hence, the absolute pressure at 10m 

underwater is 2atm. Although linear in nature, the increase in pressure as depth 

increases is significant and UV must be structurally capable of withstanding a 

relatively large amount of pressure if they are to survive.

2.3 General Design of an UV

There are several aspects in UV mechanical and electrical design that need to be 

looked at closely. International Submarine Engineering [19] identifies hull design, 

propulsion, submerging and electric power as major design aspects.

  2.3.1 Hull Design
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An UV must provide a pressure hull to house its components in a dry, watertight 

environment. The hull must allow components to be easily accessible and 

maintainable, as well as allowing for modularity in case of future changes or 

additions. As well as being light and strong, the hull should also be corrosion 

resistant as it will be subjected to a harsh saltwater environment.

Spherical hulls offer the best structural integrity, however, the shape inhibits the 

efficient use of the space available as most components and systems are rectangular 

in shape. Cylindrical hulls provide the best alternative, comprising high structural 

integrity and a shape conducive to the housing of electronic components.

  2.3.2 Propulsion

Some sort of propulsion is required on all UV and is usually one of the main 

sources of power consumption. Most UV use motors for propulsion due to the 

scarcity and cost of alternative systems.

The location of the motors affects which DOF can be controlled. The positioning of 

the motors can also affect noise interference with onboard electronic components, 

as well as propeller-to-hull and propeller-to-propeller interactions. Propeller-to-hull 

and propeller-to-propeller interactions can have unwanted effects in the dynamics 

of an UV.

When travelling at a constant speed, the thrust produced by the motors is equal to 

the friction or drag of the vehicle, that is,
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2
DThrust Drag s Acr= =

                                                                                  
(2.3)

Power consumption for the propulsion system increases dramatically as the speed 

of the vehicle increases. This is because the thrust power is equal to the product of 

the thrust and the speed, meaning thrust power is a function of speed cubed,
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2
DThrustpower Thrustxs s Acr= =

                                                                   
(2.4)

Therefore, because of an UV’s limited energy supply, it must travel at a speed that 

does not draw too much power, but at the same time does not take too long to 

complete its mission. Obtaining the ideal speed becomes an optimisation problem.
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  2.3.3 Submerging

In the case of a submersible vehicle, since the volume of the vehicle remains 

constant, in order to dive deeper, it must increase the downward force acting upon 

it to counteract the buoyant force. It can accomplish this either by increasing its 

mass via the use of ballast tanks or by using external thrusters.

Ballasting is the more common approach for submerging. This method is mostly 

mechanical in nature and involves employing pumps and compressed air to take in 

and remove water. The alternative is to use thrusters that point downwards. This is 

a much simpler system, but is quite inefficient in terms of power consumption and 

not really suited at great depths.

To reduce the size of ballast tanks or the force required by thrusters for the process 

of submerging, UV are usually designed so as to have residual buoyancy. That is, 

the weight of the vehicle is made to be more or less equal to the buoyant force.

  2.3.1 Electric Power

Electric power is commonly provided via sealed batteries. The ideal arrangement of 

batteries is to have them connected in parallel with diodes between each one to 

allow even discharge and to prevent current flow between batteries. Fuses or other 

protective devices should also be used to prevent excessive current flow in case of 

short circuits occurring or components malfunctioning.

The restrictive nature of power on UV influences the types of components and 

equipment that can be utilised. Components and equipment should be chosen so as

to draw as little power as possible in order to allow the batteries to provide more 

than enough time for the vehicle to complete its mission.



27

Chapter 3   Mathematical Model of UV

In order to design controllers for dynamical systems, it is important to first model 

system dynamics using mathematical expressions. Hence, the vehicle is assumed to 

have port-starboard symmetry. The state-space representation of the vehicle’s 

dynamics is presented and the hydrodynamic coefficients are estimated using the 

vehicle’s basic parameters and dimensions. Determining the state vector 

representation and the modeling of their motion is the first step to control these 

vehicles.

3.1 General Structures and parameters of UV

The hull of the UV is streamlined for minimization of the effect of ocean currents. 

Four thrusters are symmetrically located at the corner of the hull for robust 

actuation of surge, sway movement, and yaw rotation. In addition to these, three 

vertical thrusters are deployed for heave, pitch movement, and roll rotation.  The 

seven thrusters are deployed at a symmetric angle, suitable for six DOF motion 

control for dynamic positioning and attitude control in the UV mode, as shown in 

Fig.3.1.

                             Fig.3.1: Actuator configuration for the 6 D.O.F
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                                      Fig.3.2: Internal view of the UV
The key components of the hull are largely composed of the body, control housing, 

power housing, battery housing, tether cable, manipulator, thrusters, sensors as in 

the doppler velocity logger (DVL), and ultimate short base line (USBL), as shown  

in Fig.3.2. The architecture of the UV is designed. Its size is designed to have a 

midium size and light weight as possible. The frame is made of an alluminum plate. 

Mechanism specification and parameters for simulation of the UV are given in 

Table 3.1 and Table 3.2. Hydrodynamic coefficients of UV system are shown as in 

Table 3.3.

Table 3.1: Mechanism specification of the UV

Classification UV

Size 560×750×280 mm

Weight 80kgf

Max depth 200m

actuators 300W BLDC motor× 7

Degree of Freedom  (D.O.F) 6

Battery housing 1

Power housing 1

Controller housing 1
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Table 3.2: UV Parameters

Notation Definition Value Unit

HL Length of UV 0.75 m

HB Width of UV 0.56 m

HH Height of UV 0.28 m

Hm Mass of UV 80 kgf

g Gravity Acceleration 9.81 2m / s

ρ Density of water 1025 3kg / m

HW Weight of UV 784.8 N

B Buoyancy force 784.8 N

CB Center of buoyancy ( )0,0, 0.06- m

CG Center of gravity ( )0,0,0 m

xxI Mass Moment of Inertia about x-axis 6.9 2kg.m

yyI Mass Moment of Inertia about y-axis 26.1 2kg.m

zzI Mass Moment of Inertia about z-axis 23.2 2kg.m

xyI Cross Product of Inertia about xy-axes 0 2kg.m

yzI Cross Product of Inertia about yz-axes 0 2kg.m

xzI Cross Product of Inertia about xz-axes 0 2kg.m

Table 3.3: Hydrodynamic coefficients of UV

Notation Definition Value Unit

uX & Added mass in surge movement -18.5 kg

vY& Added mass in sway movement -28.0 kg

wZ &
Added mass in heave movement -46.0 kg
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pK &
Added mass in roll movement -1.3 2kg.m

qM &
Added mass in pitch movement -6.8 2kg.m

rN &
Added mass in yaw movement -5.9 2kg.m

uX Linear damping in surge movement -10 kg / sec

vY Linear damping in sway movement 0 kg / sec

wZ Linear damping in heave movement 0 kg / sec

pK Linear damping coefficient for roll movement -0.223 Nmsec/ rad

qM Linear damping coefficient for pitch movement -1.918 Nmsec/ rad

rN Linear damping coefficient for yaw movement -1.603 Nmsec/ rad

uuX Quadratic damping in surge movement -227.18 kg / m

vvY Quadratic damping in sway movement -405.41 kg / m

wwZ Quadratic damping in heave movement -478.03 kg / m

ppK Quadratic damping coefficient for roll 

movement

-3.212 2 2Nmsec / rad

qqM Quadratic damping coefficient for pitch 

movement

-14.002 2 2Nmsec / rad

rrN Quadratic damping coefficient for yaw 

movement

-12.937 2 2Nmsec / rad

3.2 Basic Assumptions

Generating mathematical model of UV is very challenging because of the nature of 

underwater dynamics mainly due to the non-linear and coupled character of plant 

equations. The challenge also dues to the lack of precise model of UV dynamics 

and parameters, as well as the appearance of environment disturbances. It is 

possible to simplify the number of parameter making the certain assumption related 
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with UV’s construction. The following assertions were made for the dynamics of 

the UV in order to simplify the modeling. These assumptions are:

· UV is away from the free surface, walls and the bottom.

· The mass and distribution mass of the vehicle do not change during its 

operation.

· The UV travels at low speeds, that is, less than 2m/s.

· The UV is considered to be symmetrical about its three planes.

· Disturbances from the water environment on the UV such as currents and 

waves are negligible as it is fully submerged.

· The UV’s degrees of freedom are decoupled.

· UV is a rigid body and is fully submerged once in water.

· Water is assumed to be ideal fluid that is incompressible, inviscid 

(frictionless) and irrotational.

· The earth-fixed frame of reference is inertial.

· The off-diagonal elements of the dynamic model matrices are much smaller 

than their counterparts.

· The hydrodynamic damping coupling is negligible at low speeds

· Hydrodynamic coefficients are not variable.

· The aligning moment ensures horizontal stability.

· The B-frame is positioned at the center of gravity, [ ]0 0 0
T

Gr =

The above assertions not only have important ramifications for the modeling of the 

UV, but also for its control.

3.3 UV Kinematics

3.3.1 Coordinate Frames

To analyze the motion of the UV in 6 DOF, it is convenient to represent its 

coordinate into two frames, body-fixed and earth frame coordinate that depicted at 

Fig.3.3.

UV body axes 0X , 0Y , and 0Z coincide with the axes with the principal axes of 
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inertia. Position and orientation of the UV are suggested to be described relative to 

inertial reference frame XYZ, while the linear and angular velocities to be 

expressed in the body-fixed coordinate system.

The UV motion in 6 DOF are described by vector

1 2,
TT Th h hé ù= ë û       [ ]1 , ,

T
x y zh =     [ ]2 , ,

T
h f q y=

1 2,
TT Tv v vé ù= ë û      [ ]1 , ,

T
v u v w=    [ ]2 , ,

T
v p q r=

                                                     
(3.1)

1 2,
TT Tt t té ù= ë û       [ ]1 , ,

T
X Y Zt =    [ ]2 , ,

T
K M Nt =

h denotes the position and orientation vector of UV with coordinates in the earth-

fixed frame, while v denotes linear and angular velocity state vectors of the vehicle 

with coordinates in the body-fixed frame and τ is forces and moments acting to the 

vehicle in the body-fixed frame.

Fig.3.4: Body-fixed and earth-fixed reference frames.
Table 3.4. Notation used for UV

DOF Motions & Rotations Forces &
Moments

Linear &
Angular Velocities

Positions &
Euler Angles

1 Motions in the x-
direction (surge)

X u x

2 Motions in the y-
direction (sway)

Y v y

3 Motions in the z-
direction (heave)

Z w z

4 Rotation in the x-axis
(roll)

K p f

5 Rotation in the y-axis M q q
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(pitch)
6 Rotation in the z-axis

(yaw)
N r y

3.3.2 Attitude and Euler Angles

In marine and guidance and control systems, orientation is usually represented in 

Euler angle or quaternion. Euler angles define the rotation angle about the three 

Cartesian axes, x, y and z. There are many notations for Euler angles, however, the 

z-y-x form corresponding to rotation angles of yaw (ψ), pitch (θ), and roll (φ), 

respectively, is used here. The order of rotations is very important when converting 

from one coordinate system to another. When converting from body to world 

coordinates, it is conventional in robotics that the first rotation be ψ about the z axis, 

followed by θ about the intermediate y axis, and lastly φ about the second 

intermediate x axis. When converting from world to body coordinates, the reverse 

order is obviously used.

The rotation matrix of frame {B} relative to frame {W} which is the rotation 

matrix for converting from body-fixed to earth-fixed coordinates can be written as

2( ) ( ) ( ) ( ).W
B z y xR R R Rh y q f=

                                                                                 
(3.2)

Where

cos sin 0

( ) sin cos 0

0 0 1

zR

y y

y y y

-é ù
ê ú= ê ú
ê úë û                                                                               

(3.3)

cos 0 sin

( ) 0 1 0

sin 0 cos

yR

q q

q

q q

é ù
ê ú= ê ú
ê ú-ë û                                                                                 

(3.4)

1 0 0

( ) 0 cos sin

0 sin cos

xR f f f

f f

é ù
ê ú= -ê ú
ê úë û                                                                                  

(3.5)

By inserting (3.3-3.5) into (3.2), the rotation matrix can thus be expressed as
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2

cos cos sin sin cos cos sin cos sin cos sin sin

( ) cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

W
B R

q y f q y f y f q y f y

h q y f q y f y f q y f y

f f q f q

- +é ù
ê ú= + -ê ú
ê ú-ë û

                                                                                                                             

(3.6)

Now that 2( )W
B R h has been established, it will be denoted simply as R for the 

remainder of this thesis for convenience. Note that the rotation matrix R is 

orthogonal thus its inverse will equal the transpose of the matrix, which is

1 TR R- =                                                                                                                (3.7)

This is useful for easily converting from earth-fixed to body-fixed coordinates. It is 

important to note that in using Euler angles, R is plagued by singularity problems at 

certain angles. This inhibits the conversion of world to body coordinates. However, 

because the control systems and bottom-heavy configuration of UV typically 

prevent the vehicle from attaining these angles, thus the use of Euler angles become 

sufficient and not resort to other mathematical techniques such as equivalent angle-

axis representations. In general, an UV should be restricted to the following 

rotation angles,

,

/ 2 / 2,

0 2 .

p f p

p f p

f p

- < £

- < <

£ <

3.3.3 State Space Representation of the UV

A state space representation is defined to provide a compact way to model and 

analyze the UV. The vector notation includes the position vector v for the B and 

W-frame; the velocity vectors h& for the B and W-frame, respectively

[ ]
T T

B B B B B Bv x y z u v w p q rf q yé ù= =ë û
& & && & &

                             
(3.8)

And

T

x y zh f q yé ù= ë û
& && && & &

                                                                                 
(3.9)

And the force/torque vectort of the thruster input,

T

x y z f q yt t t t t t té ù= ë û                                                                         
(3.10)
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3.3.4 Velocity Transformation

The linear velocities of the UV in earth-fixed coordinate can be represented as,

1 2 1 1( ) .W
B R v Rvh h= =&

                                                                                           (3.11)

This means

[ ] [ ], , , , .
T T

x y z R u v w=& & &
                                                                                      

(3.12)

And the inverse of the linear velocities transformation will be

1 1 1;
W T
Bv R Rh h= =& &

   [ ] [ ], , , , ;
T TTu v w R x y z= & & &

                                                    
(3.13)

The relation of body-fixed angular velocity vector [ ]2 , ,
T

v p q r= and the Euler angle 

rate vector 2 , ,
T

h f q yé ù= ë û
& && & can be expressed as

2 2 ,W
BWvh =&

                                                                                                         (3.14)

With

1 sin tan cos tan

0 cos sin .

0 sin / cos cos / cos

B
WW W

f q f q

f f

f q f q

é ù
ê ú= = -ê ú
ê úë û                                                        

(3.15)

Since matrix W is not orthogonal, then the inverse transformation can not use its 

transpose value, thus the inverse transformation of the angular velocity from earth-

fixed coordinate to body fixed written as

2 2 ,W
Bv Wh= &

                                                                                                         (3.16)

With

1

1 0 sin

0 cos cos sin

0 sin cos sin

B
WW W

q

f q f

f q f

-

-é ù
ê ú= = ê ú
ê úë û                                                                   

(3.17)

By combining (3.11), (3.15) and (3.17), the velocity transformation from body-

fixed to earth-fixed coordinate can be written as

( , ) .diag R W vh =&                                                                                                 (3.18)

And the velocity transformation from earth-fixed to body-fixed coordinate can be 

written as
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1( , ) .Tv diag R W h-= &                                                                                            (3.19)

3.4 UV Dynamic

The dynamic model presented in this section is based on the underwater robotic 

models proposed by Fossen (1994). UV dynamic model is derived from Newton-

Euler motion equation given by

2( ) ( ) ( ) ,Mv C v v D v v G h t+ + + =&
                                                                        (3.20)

where

M = mass and inertia matrix including added mass,

C (v) = Coriolis and centripetal terms matrix including added mass,

D(v) = hydrodynamic damping matrix,

2( )G h = gravitational and buoyancy vector,

τ = external force and torque input vector,

v = velocity state vector.

3.4.1 Mass and Inertia Matrix

M consists of both a rigid body mass and inertia RBM and a hydrodynamic added 

mass AM , which can be written as

,RB AM M M= +                                                                                                  (3.21)

Assuming that frame {B} is located at the vehicle’s center of 

gravity, [ ]0 0 0
T

Gr = , then RBM can be written as

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
.

0 0 0

0 0 0

0 0 0

RB
x xy xz

yx y yz

zx zy z

m

m

m
M

I I I

I I I

I I I

é ù
ê ú
ê ú
ê ú

= ê ú
- -ê ú

ê ú- -
ê ú

- -ê úë û                                                            

(3.22)

With m is the mass of the UV and I terms represent the inertial tensors of the UV. 

The parameters of the added mass matrix are dependent on the shape of the UV. 

However they are constants when the vehicle is fully submerged. The parameters 

are usually in the vicinity of 10% to 100% of the corresponding parameters in the 
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rigid body mass matrix. The added mass matrix AM , is denoted as

w

w

w

w

w

w

.

u v p q r

u v p q r

u v p q r

A
u v p q r

u v p q r

u v p q r

X X X X X X

Y Y Y Y Y Y

Z Z Z Z Z Z
M

K K K K K K

M M M M M M

N N N N N N

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

& & & & & &

& & & & & &

& & & & & &

& & & & & &

& & & & & &

& & & & & &                                                         

(3.23)

3.4.2 Coriolis and Centripetal Matrix

Similar with M matrix, ( )C v consists of both a rigid body Coriolis ( )RBM v and an 

added mass Coriolis-like ( )AC v , which can be written as

( ) ( ) ( ).RB AC v C v C v= +                                                                                        (3.24)

The value of ( )RBC v and ( )AC v can always be parameterized such that ( )RBC v and 

( )AC v are skew symmetrical. Using assumption that frame {B} is located at the 

vehicle’s center of gravity, [ ]0 0 0
T

Gr = , then ( )RBC v can be written as

0 0 0 0

0 0 0 0

0 0 0 0
( )

0 0

0 0

0 0

RB
yz xz z yz xy y

yz xz z xz xy x

yz xy y xz xy x

mw mv

mw mu

mv mu
C v v

mw mv I q I p I r I r I p I q

mw mu I q I p I r I r I q I p

mv mu I r I p I q I r I q I p

-é ù
ê ú-ê ú
ê ú-

= ê ú
- - - + + -ê ú

ê ú- + - - - +
ê ú

- - - + + -ê úë û

                                                                                                                            

(3.25)

The Coriolis-like matrix induced by added mass ( )AC v can be expressed as

3 2

3 1

2 1

3 2 3 2

3 1 3 1

2 1 2 1

0 0 0 0

0 0 0 0

0 0 0 0
( )

0 0

0 0

0 0

A

a a

a a

a a
C v

a a b b

a a b b

a a b b

-é ù
ê ú-ê ú
ê ú-

= - ê ú
- -ê ú

ê ú- -
ê ú
- -ê úë û                                                    

(3.26)

Where

1 ,u v w p q ra X u X v X w X p X q X r= + + + + +& & & & & &
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2 ,u v w p q ra Y u Y v Y w Y p Y q Y r= + + + + +& & & & & &

3 ,u v w p q ra Z u Z v Z w Z p Z q Z r= + + + + +& & & & & &

1 ,u v w p q rb K u K v K w K p K q K r= + + + + +& & & & & &                                                          
(3.27)

2 ,u v w p q rb M u M v M w M p M q M r= + + + + +& & & & & &

3 ,u v w p q rb N u N v N w N p N q N r= + + + + +& & & & & &

For underwater vehicle that moves in low speed and has three planes of symmetry, 

the contribution of off-diagonal elements in the added mass AM , can be neglected, 

thus ( )AC v can be rewritten as
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0 0 0 0
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(3.28)

3.4.3 Hydrodynamic Damping Matrix

The hydrodynamic damping matrix ( )D v represents the drag and lift forces acting 

on a moving UV that will be highly nonlinear and coupled if vehicle moves at high 

speed. However, for a low-speed UV, the lift forces can be considered negligible 

when compared to the drag forces. These drag forces can be separated into two 

different terms consisting of a linear damping LD and quadratic damping QD

which can be written as,

( ) ,L QD v D D v= +
                                                                                             

(3.29)

Where

{ }, , , , , ,L u v w p q rD diag X Y Z K M N=
                                                                   

(3.30)

{ }, , , , , ,Q u u v v w w p p q q r r
D diag X Y Z K M N=

                                                      
(3.31)
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(3.32)

3.4.4 Gravitational and Buoyancy Vector

The gravitational and buoyancy vector, 2( )G h is defined as

2 2

2

2 2

( ) ( )
( ) ,

( ) ( )

G B

G G B B

f f
G

r f r f

h h
h

h h

+é ù
= - ê ú´ + ´ë û                                                                 

(3.33)

With

[ ]1
2( ) 0,0, ,

T

Bf R Bh -= -
                                                                                     

(3.34)

And

[ ]1
2( ) ,0,0 ,

T

Gf R Wh -=
                                                                                      

(3.35)

where 2( )Bf h is the buoyant force vector and 2( )Gf h is the gravitational force vector. 

While [ ]
T

B B B Br x y z= and [ ]
T

G G G Gr x y z= are center of the buoyancy and 

center of the gravity in frame {B} respectively. With center of the buoyancy 

positioned at [ ]0 0 0
T

Gr = , then 2( )G h can be re written as

2 2

2

2

( ) ( )
( ) ,

( )
G B

B B

f f
G

r f

h h
h

h

+é ù
= - ê ú´ë û                                                                              

(3.36)

By inserting (3.34) and (3.35) into (3.36), 2( )G h will yields
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(3.37)

3.4.5 Forces and Torque Vector

The external force and torque vector produced by the thrusters is defined as

[ ] .
T

X Y Z K M N LUt = =
                                                                

(3.38)

With

[ ]1 2 ... .
T

nU T T T=
                                                                                       

(3.39)

where L is a mapping matrix and U is a thrust vector. U is the vector of thrusts 

produced by the vehicle’s thrusters. The number of thrust values in U depends on 

the number of thrusters on the vehicle. The mapping matrix L is essentially a 6 × n 

matrix that uses U to find the overall forces and moments acting on the vehicle.

3.4.6 Umbilical Cable Forces

Generally, the deep-sea-operated vehicle systems typically consist of a supported 

vessel umbilical cable (UC) and UV. However, most of researches on the 

numerical model of predicting the motion of the UV neglect the UC effect. The 

main reason is that including the UC effect will cause the numerical model to be 

very complicated and difficult to solve. Therefore, only few authors dealt with such 

kind of problem. UC is used for both power supply and communication to UV. The 

cable is treated as a long, thin, flexible circular cylinder. It is assumed that the 

dynamics of a cable are determined by gravity, hydrodynamic loading and inertial 

forces, no bending or torsional stiffness is taken into account in this study. The UC

that connects the UV to the vessel can be affected by many parameters, including 

the motions of either the UV or the vessel, the current along the cable and the total 

length of the cable itself. The UC configuration can be optimized by numerical 

simulations. This is described in more detail in Chapter 4.

3.5 Simplification of UV Dynamic Model
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The dynamic model presented in the previous section is quite complex and needs 

many parameters thus it will be very time consuming and difficult process. 

Therefore, simplification of the model was required. In order to simplify the UV 

dynamic, several assertions below are needed.

· The vehicle travels at low speeds (less than 2m/s).

· The vehicle is considered to be symmetrical about its three planes.

· Disturbances from the water environment on the vehicle such as currents 

and waves are negligible.

· The off-diagonal elements of the dynamic model matrices are much smaller 

than their counterparts,

· The hydrodynamic damping coupling is negligible when the vehicle travels 

at low speed.

If the decoupling is valid thus the Coriolis and centripetal terms matrices become 

negligible and consequently can be eliminated from the dynamic model. The 

dynamic model in (3.20) can be simplified as

2( ) ( ) ,MV D V V G h t+ + =&
                                                                                  (3.40)

3.5.1 Simplifying the Mass and Inertia Matrix 

With the vehicle fixed-body frame is positioned at the center of gravity and since 

the vehicle is assumed fairly symmetrical about all axes, then UV rigid-body mass 

RBM can be simplified to a good approximation to,
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(3.41)

Or { }, , , , , ,RB x y zM diag m m m I I I=
                                                                    

(3.42)

with m is the mass of the UV, xI , yI yI and zI is the inertial force in x, y and z axis 

respectively.
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Since the vehicle travels at low speed, thus added mass from (4.21) can be 

simplified as

0 0 0 0 0
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(3.43)

Or { }, , , , , ,A u u v p q rM diag X Y Z K M N= & & & & & &                   
                                           (3.44)

with uX & , uY& , wZ & , pK & , qM & and rN & are added mass in the surge, sway, heave, roll, pitch 

and yaw movement respectively.

3.5.2 Simplifying the Hydrodynamic Damping Matrix

The matrix ( )D v is the hydrodynamic damping matrix consisting of both linear and 

quadratic terms. This hydrodynamic damping is caused by potential damping due 

to skin friction (linear damping) drag and vortex shedding (quadratic damping). 

The sum of these individual components gives the overall hydrodynamic damping 

effect on the UV. The hydrodynamic damping matrix can be simplified by using 

the following assumptions.

· As the UV is operating at around linear speed of 0.2 m/s (or angular speed 

of 0.2 rad/s), it is well within the linear damping region of maximum 2m/s. 

Hence, the linear hydrodynamic damping is used.

· The off-diagonal elements in ( )D v on an underwater vehicle are small 

compared to the diagonal elements.

Hence the hydrodynamic damping ( )D v from (3.29) also can be simplified as
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(3.45)

or

{ }( ) , , , , , ,u v w p q rD diag X Y Z K M Nn = -
                                                            

(3.46)

3.5.3 Simplifying the Gravitational and Buoyancy Vector 

In designing UV, it is desirable to make the UV neutrally buoyant or slightly 

positive buoyant by adding additional float or balancing mass. With that, the UV 

becomes neutrally buoyant, W = B. The center of gravity is located at 

[ ]0 0 0
T

Gr = , while the center of buoyancy Br was found to be 

[ ]0 0
T

B Br z= for a good approximation, since Bz is not aligned to the center of 

the gravity in z axis. So, the gravitational force from (3.37) that can be simplified 

as

0
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(3.47)

3.6 Thruster Modeling
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Fig.3.4: UV frame reference and torque vector.
The UV model considered in the present study is equipped with seven thrusters as 

shown in Figs.3.4; that is, four horizontal thrusters 1T , 2T , 3T and 4T which are 

installed at the bow and the stern part with inclined angle Tq , are operated to 

control the surge, sway, and yaw motions. While three vertical 

thrusters 5T , 6T and 7T enable the AUV to have 3-DOF behaviors of the heave, roll, 

and pitch motions. Assume ( )
1,2,3,4

, ,ci ci ci i
x y z

=
is the center of the i-th thruster, where 

Tq is set to be 030 in the present study. 

The center of the 1st thruster 1T is 1 0.3cx m= , 1 0.2cy m= - , 1 0cz m= and the moment 

induced by thruster 1T can be obtained by
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(3.48)

The center of the 2nd thruster 2T is 2 0.3cx m= , 2 0.2cy m= , 2 0cz m= and the moment 

induced by thruster 2T can be obtained by
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                                                                                                                            (3.49)

The center of the 3rd thruster 3T is 3 0.3cx m= - , 3 0.2cy m= - , 3 0cz m= and the 

moment induced by thruster 3T can be obtained by

3 3 3 3

3 3 3 3 3 3 3 3 3 3
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The center of the 4-th thruster 4T is 4 0.3cx m= - , 4 0.2cy m= , 4 0cz m= and the 

moment induced by thruster 4T can be obtained by

4 4 4 4
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(3.51)

The center of the 5-th thruster 5T is 5 0.1cx m= , 5 0.18cy m= - , 5 0cz m= and the 

moment induced by thruster 5T can be obtained by

5 5
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(3.52)

The center of the 6-th thruster 6T is 6 0.1cx m= , 6 0.18cy m= , 6 0cz m= and the 

moment induced by thruster 6T can be obtained by
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(3.53)

The center of the 7-th thruster 7T is 7 0.25cx m= - , 7 0cy m= , 7 0cz m= and the 

moment induced by thruster 7T can be obtained by
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(3.54)
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Finally, the corresponding resultant force and moment induced by each thruster can 

be obtained by

1 2 3 4 1 2 3 4 5 6 7( ) cos ( )sin ( )

thrust Tx Ty TzF F i F j F k
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rr r             (3.55)
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(3.56)

In other way, the thruster allocation can be defined as follows

v LU=U                                                                                                             (3.57)

T

v Tx Ty Tz Tx Ty TzF F F M M Mé ù= ë ûU                                                         (3.58)
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U F F F F F F F=                                                                (3.59)
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                        (3.60)

where Uv is the control forces and moments vector acting on the vehicle due to 

seven thrusters and U is the thrust vector; L is the thruster configuration matrix and 

q is the angle between the longitudinal axis and direction of the propeller thrust; lf
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= xc5 = -xc6 and lr = -xc7 are the distance from the center of buoyancy to the vertical 

thruster at the bow and stern respectively and ls= -yc5 = yc6 is the distance from the 

center line to the vertical thrusters; ds= yc2 = yc4= -yc1= - yc3 is the distance from the 

center of buoyancy to the port and starboard thruster, df= xc1 = xc2 and dr= -xc3 = -

xc4 are the distance from the center of buoyancy to the horizontal thruster at the 

bow and stern respectively. 

3.7. Equations of Motion

Now that we have defined the required transformations between the body-fixed and 

earth-fixed coordinate systems for the velocities, orientations, and positions, we 

can detail the equations of motion for this UV. These equations of motion are 

adopted from work done originally by Healey [13] to derive this 6-DOF model. 

The technique used to derive these equations and relationships is founded on the 

Newton-Euler approach.

The following equations fully describe a vehicle’s motion with 6-DOF, which 

include three translational and three rotational all in the body-fixed coordinate 

frame.

Surge

( ) ( ) ( ) ( )u w v u xthruster xcableu u
m X u m Z wq m Y vr X X u u F F- = - + + - + + + +& & &&

       
(3.61)

Or

[( ) ( ) ( ) ] /( )v u xthruster xcable uu uW
u m Z wq m Y vr X X u u F F m X= - + + - + + + + -& & &&

   
(3.62)

Sway

( ) ( ) ( ) ( )v w u v ythruster ycablev v
m Y v wp m Z m X ur Y Y v v F F- = - + - - + + + +& & &&

           
(3.63)

Or

[ ( ) ( ) ( ) ] /( )w u v ythruster ycable vv v
v pw m Z m X ur Y Y v v F F m Y= - + - - + + + + -& & &&

      
(3.64)

Heave

( ) ( ) ( ) ( )w v u w zthruster zcablew w
m Z w vp m Y qu m X Z Z w w F F- = - + + - + + + +& & &&

      
(3.65)

Or

[ ( ) ( ) ( ) ] /( )v u w zthruster z cable ww w
w pv m Y qu m X Z Z w w F F m Z= - + + - + + + + -& & && (3.66)
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Roll
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Or
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Pitch
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Or
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(3.70)

Yaw

( ) ( ) ( ) ( )z r v u q y x p r zthruster zcabler r
I N r uv Y X M I I K qp N N r r M M- = - + - + - + + + +& & & & &&

                                                                                                                            (3.71)

Or

[ ( ) ( ) ( ) ] /( )v u q y x p r zthruster zcable z rr r
r uv Y X M I I K qp N N r r M M I N= - + - + - + + + + -& & & & &&

                                                                                                                            
(3.72)
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Chapter 4   Mathematical Model of Umbilical Cable (UC)

In this chapter an overview of cable modeling approaches is first given, and it is 

shown why catenary equations are the preferred method for cable modeling. Then 

the theory of catenary equations is treated. In addition, a catenary model of cable 

system is performed based on existing equations in the literature. It is also shown 

how the solutions of the static catenary equations are converted to polynomials. 

Shooting method is used to compute the static equilibrium configuration of a 

composite single line with boundary conditions specified at both ends. 

Mathematically the problem is a two point boundary value problem. If all boundary 

conditions are specified at one end, the configuration is uniquely determined. This 

reduces the problem to an initial value problem and the static configuration can be 

found by catenary computations, element by element, starting at the end with all 

boundary conditions specified.

4.1 General Structure of Umbilical Cable 

The UC plays an important role in offering the power supply and communication 

function between the UV and the support vessel (Fig.4.1). However, the 

management and attachment of the cable and the drag relative to the current cause 

some restrictions on maneuverability of the UV. Therefore, the estimation of the 

corresponding effect caused by the UC and the current will be helpful while we are 

doing the analysis on the UV's maneuvering behaviors.

Fig.4.1: Umbilical cable
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Table 4.1: Umbilical cable’s parameters

Notation Definition Value Unit

EA The axial stiffness of the cable 43 10´ N

cW The weight per length of the cable 0.5 N/m

cD Diameter of cable 0.025 m

cL Cable length 100 m

cE Modulus of elasticity 9200 10´ 2N / m

cr Mesh frame of cable 0:0.1:L m

4.2 Basic Assumptions

In the present study, for simplifying the problem, the following assumptions are 

made to solve the corresponding configuration and tension of the UC attached to 

the UV:

· The UC is inextensible

· The UC can only resist tension force, not for bending moment and 

compression force.

· The hydrodynamic force on the UC can be resolved into tangential 

component and normal component.

· The cable’s a long homogeneous linear elastic circular cylinder were small 

diameter compared with its length.

· There are no twisting moments acting on the cable.

· The forces acting on the cable are the self-weight, buoyancy, tangential and 

normal drag forces.

· The cable has no bending stiffness and no torsional stiffness. This means 

that only axial stiffness will be considered, and this simplifies the analysis 

of cables considerable compared to for instance beams.

· The cross-sectional area of the cable, A, will not undergo significant 

changes due to the axial deformation of the cable

4.3 Cable Modeling Approaches

Several methods with different properties exist for this purpose: finite element 

methods (FEM), finite difference methods (FDM), catenary equations (CE), lump-

mass-spring formulations (LMS) and finite segment approaches (FSA). All these 
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methods are based on a particular and generalized mathematical formulation of the 

problem. The basic formulation can then be extended to describe different 

configurations of cables and wires, amongst other mooring cables, towing lines and 

suspended cables.

FEM methods solve complex elasticity and structural problems. In its most basic 

form it is a numerical technique for finding approximate solutions of partial 

differential equations and integral equations. Software packages that solve cable 

equations using FEM methods exist, and the solutions are accurate. The 

computational load is however heavy and it is difficult to incorporate such 

packages into control system designs [20].

Catenary equations provide a static representation of cables [21]. It is easier to gain 

insight into the mechanisms that govern the solution of the catenary equations than 

to understand the FEM representation. In addition, they provide a simple 

representation of the forces acting on the supports where the cable is attached. The 

equations are solved faster than FEM equations and the result is exact. Catenary 

equations are normally solved for two dimensions, but three-dimensional 

approaches also exist [22]. A disadvantage of the catenary approach is that the 

static solution may become inaccurate for deep water applications, because of 

dynamic interactions between the vessel and the cable system. If an exact solution 

is desired for such conditions a FEM method must be utilized.

The LMS formulation has a clear physical interpretation and does not require a 

large amount of computing. Dynamic analyses of three-dimensional cables based 

on the LMS approach are discussed in [23]. The method provides a set of ordinary 

differential equations with boundary conditions that is solved using the FDM 

method. A general LMS formulation allowing static and dynamic analysis of a 

variety of slender structures is presented in [24]. The FSA for cable dynamics is 

discussed in [25]. The cable is modeled as a series of links connected to each other 

by ball-and-sockets joints. The resulting equations are then solved using standard 

integration techniques such as Runge-Kutta.

Catenary equations are selected for cable modeling in this thesis. The simple 
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representation of cable forces and tensions is attractive. The basic theory of 

catenaries is well established and the equations are more suited for implementation 

in a feedback system than FEM approaches.

4.4 Three coordinate systems

To analyse the motion of the cable as well as its effect on the vehicle, it is 

convenient to define three coordinate systems, i.e. the earth-fixed frame (X,Y,Z) 

and the two cable frames along the cable (t, n, b) and the towed body-fixed frame 

(x, y, z).

As shown in Fig.4.2 the earth-fixed frame (X, Y, Z) is selected with k pointing 

vertically downwards. The origins of system (X, Y, Z) and (t, n, b) are coincident. 

The orientation of the local frame is so chosen that t is tangent to the cable in the 

direction of increasing tow cable length coordinate s, b is in the plane of i and j, t 

and n line in a vertical plane. The towed body-fixed frame  ( )x y z is located at 

the mass centre of the towed body, with x   coinciding with the longitudinal axis, 

and y pointing to starboard.

   The relationship between the vehicle-fixed frame and the earth-fixed frame can be 

expressed in terms of Euler angles (Fossen, 1994), i.e.

[ ] [ ] ( , , )x y z X Y Z R f q y=
                                                                      

(4.1)

Fig.4.2: Three coordinates of the system
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With

cos cos sin sin cos cos sin cos sin cos sin sin

( , , ) cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

R

q y f q y f y f q y f y

f q y q y f q y f y f q y f y

q f q f q

- +é ù
ê ú= + -
ê ú
ê ú-ë û

                                                                                                                              

(4.2)

where . cosc = , . sins = and f , q , y are the roll, pitch and heading angle of the 

vehicle, respectively.

The relationship between the local frames and the earth-fixed frame can be 

expressed as follows [2], [3]:

[ ] [ ] ( , )t n b X Y Z W J j=
                                                                         

(4.3)

Where

cos cos cos sin sin

( , ) sin cos sin sin cos

sin cos 0

W

J j J j J

J j J j J j J

j j

-é ù
ê ú= -
ê ú
ê ú- -ë û                                                  

(4.4)

Equation (4.4) represents a rotation through angleJ about the Z axis to bring X 

axis into the plane of t and n, rotation about the new X axis through / 2p to bring 

Z into coincidence with b, and rotation about b through j to bring X and Y into 

coincidence with t and n. The relative position of two coordinate systems is shown 

in Fig. 4.3.

Fig.4.3: The relative position of two coordinate systems.
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In terms of equation (4.1)-(44.), the relationship between the local frames and the 

vehicle-fixed frame can be written as:

[ ] [ ] ( , , ) ( , )Tt n b x y z R Wf q y J j=
                                                         

(4.5)

where the orthogonal property of R has been used.   

4.5 Forces Acting on the Cable

The forces acting on the cable are (a) the tension, (b) its weight, (c) external forces. 

The external forces include fluid related forces such as hydrostatic forces and drag 

forces.

4.5.1 Weight and Buoyancy forces

Fig.4.4: An infinite-small cable segment.

Consider Figure 4.4 which shows a cable segment. The cable’s weight per unit 

length in air is denoted aw mg= , where g is the earth’s gravity and m is the mass 

per length unit. When the cable is submerged a hydrostatic force will appear 

according to

wB gAr=                                                                                                              (4.6)

wr is the density of water and A is the cross-sectional area.

This leads to the following definition of the stretched cable’s weight in water, 1w :

1 aw w B= -                                                                                                            (4.7)

4.5.2 Fluid Hydrodynamic Forces

Consider the current acting on a small cable element dp in Figure 4.5. 
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Fig.4.5: Static hydrodynamic forces acting on an infinite-small cable element.

The drag force has two components, namely, the tangential drag force and the 

normal drag force. From Morison’s equation, the tangential drag force is 

proportional to the square of the tangential 

( ) ( ) ( )
1 1

. . ,
2 2

dt DT w DT w t tdf C d dp v t v t t C d dp v vr r= - = -
                                  

(4.8)

On the other hand, the normal drag force is proportional to the square of the normal 

component of the relative velocity and it is given by:

( ) ( ) ( )
1 1

( . ) ( . ) ,
2 2

dn DN w DT w n ndf C d dp v v t t v v t t C d dp v vr r= - - - = -
               

(4.9)

where wr is the density of water, d is the cable’s diameter, DTC and DNC are 

tangential and normal drag coefficients, t is tangential vector of the cable, 

v, tv and nv are velocity, normal velocity and tangential velocity on the cable on 

vectorial form. Notice that it is common to normalize to the projected area .( )d dp , 

in this kind of hydrodynamic forces. Some refer to dnf as the normal friction force, 

but this is inaccurate. Friction forces are usually normalized to wet surface of the 

body. For a cable in the normal direction this leads to

( ) ( ) ( )( ) ( )
1 1

. . ,
2 2

df DF w DF w n ndf C d dp v v t t v v t t C d dp v vr p r p= - - - = -
        

(4.10)

Where 
1

DF DNC C
p

=
                                                                                          

(4.11)

Hydrodynamic forces may not be handled in the same way as gravity in the 

catenary equations. Gravity acts on each cable segment independently of its 

orientation. This means that the shape and tension may be solved explicitly. 
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Calculation of current forces requires information on the cable segment’s 

orientation, and calculation of orientation requires knowledge of the current forces. 

Consequently, an iteration procedure is needed. The calculation of hydrodynamic 

forces (4.8), (4.9) and (4.10) assumes that the water’s velocity is constant over the 

actual segment. For analytical solutions the hydrodynamic forces have to be 

constant over each segment. 

4.5.3 Tension Force

The tension T acts along the tangent of the average cable configuration, where the 

average cable configuration is defined as the smoothest possible profile of the cable. 

The force on an element with un-stretched length can be written as:

( ) e
e e

e e

Td dt
T t ds t T ds

ds s ds

T T
t n ds

s r

é ù¶
= +ê ú

¶ë û

é¶ ù
= +ê ú¶ë û

uur
r r

r r

                                                                            

(4.12)

Given a cable tension, cT Triantafyllou [26] shows that the effective tension, T may 

be written as

e c eT T p A= +                                                                                                       (4.13)

where ep is the hydrostatic pressure at the specific point of the cable. 

4.6 Dynamic equations of cable

4.6.1 Catenary Equations

The word catenary is derived from the latin word catena, referring to the shape of a 

chain or wire hanging between two points under its own weight. Catenary 

equations are widely used in mooring analysis of anchored bodies. The catenary 

equation theory is extensively covered in the literature. An overview of general 

catenary equations is given in [21]. In [26] the theory is extended to apply for 

submerged cables. Vertical and horizontal forces caused by the cable system will 

act on the UV at the terminal points. However, often only the horizontal forces are 

important for the UV response in the horizontal plane. Along the cable gravity and 

buoyancy forces are assumed to be most important. For this purpose a two-
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dimensional approach is often considered to be sufficient. If varying current in 

space is considered, a three-dimensional approach may be needed.

4.6.2 Static Catenary Analysis

The coordinate system for analyzing the UC is shown in Fig.4.6. The x-axis is 

assumed to coincide with the X-axis. The origin O coincides with the end point of 

the UC. J is the angle between xoz plane and the plane which includes the 

tangential line passing through the point A and perpendicular to xoy plane.j is the 

angle between the tangential line passing through the point A and xoy plane. ti , bi , 

and ni are the unit vector along the cable length s, J and j , respectively, and 

perpendicular to each other. Both ti and ni , are located on the vertical plane.

Fig.4.6: Coordinate for the UC

Fig.4.7: Forces acting on a segment of a cable profile
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Considering the configuration of the UC as shown in Fig.4.6, we can obtain the 

following three linear differential equations.

cos cosdx ds j J= ´ ´                                                                                   (4.14)

cos sindy ds j J= ´ ´                                                                                    (4.15)

sindz ds j= ´                                                                                              (4.16)

Considering the equilibrium state of the external force on the cable as shown in 

Fig.4.6 and Fig.4.7, we can obtain more three linear differential equations.

By balancing the forces of direction of ti a cable segment, we have

1 1
sin ( ) cos( ) cos( )

2 2 2

1 1
( )cos( ) cos( ) 0

2 2 2

t

dT d d
R ds w ds T ds ds

ds ds

dT d d
T ds ds

ds ds

j J
j

j J

- + +

- - =
                                     

(4.17)

Or, the Eq. (4.17) becomes

sin tdT w ds R dsj= -
                                                                                        (4.18)

By balancing the forces of direction of ni a cable segment, we have

( ) sin cos( ) ( )sin cos( ) 0
2 2 2 2 2 2

dT d d dT d d
R ds T TJ

J j J j
j j+ + + + - - =

           
(4.19)

Assuming sin
2 2

d dJ J
» and cos 1

2

dJ
» the Eq. (4.19) can be rewritten as follows

cos

R ds
d

T
JJ

j
= -

                                                                                            
(4.20)

By balancing the forces of direction of bi a cable segment, we have

( cos )R ds w ds
d

T

j j
j

- +
=

                                                                            
(4.21)

Finally, from Eq.(4.14), Eq.(4.15), Eq.(4.16), Eq.(4.18), Eq.(4.20) and Eq.(4.21),

we can obtain the full linear differential equations of cable as follows

cos cos
dx

ds
j J= ´                                                                                                          (4.22)

cos sin
dy

ds
j J= ´

                                                                                       

(4.23)
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sin
dz

ds
j=

                                                                                                  

(4.24)

sin t

dT
w R

ds
j= -                                                                                                           (4.25)

cos

Rd

ds T
JJ

j
= -

                                                                                            
(4.26)

( cos )R wd

ds T

j jj - +
=

                                                                                 
(4.27)

where s is the arc length from the origin to the point A on the cable. T is the tension 

force along the cable. w is the cable weight per unit length in the water. tR , RJ and 

Rj are the forces per unit length due to the current in ti , ni , and bi directions, 

respectively.

4.7 Solution of the Catenary equation in the 3-D case

In this section, a detailed procedure for finding the general elastic catenary 

equations in 3-D is presented. This section is mainly based on Sagatun [22]. 

Consider a cable of length L with one end fixed in space and the other end free. The 

cable may have varying axial stiffness EA along its length. The symbol s represents 

the Lagrangian coordinate along the unstrained cable, whereas the symbol u will 

represent the corresponding point on the cable when it is strained. The force vector 

0 0 0 0

T

x y zf f f fé ù= ë û represents the reaction forces from the cable on its 

termination point. The force vector 
T

i ix iy izf f f fé ù= ë û represents a 

concentrated force acting on an arbitrary point i along the cable, and the distributed 

load vector 
T

i ix iy izp p p pé ù= ë û force per unit length acts on the cable segment 

between points i and i-1. A force vector with all elements set to zero may be used 

to define a point along the cable on which a distributed load or the axial stiffness is 

altered. The proposed method is restricted to handle piecewise constant axial 

stiffness and distributed loads. However, continuously spatially varying stiffness or 

distributed load may be modeled with arbitrary accuracy by using a number of 
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cable segments. The result of the proposed method is an analytical piecewise 

continuous static solution of the form [ ]( ) ( ) ( ) ( )
T

r s x s y s z s= , where s varies 

from 0 to L. The discontinuities occur where a point load acts or where the axial 

stiffness or the distributed load change.

Remember the assumption of no significant reduction of the cable’s cross-sectional 

area when it is stretched. Considering the cable with one-dimensional strain along 

the Lagrangian variable s, Hooke’s law is

1
dp

T EA
ds

æ ö
= -ç ÷

è ø                                                                                                  
(4.28)

Seeking a solution in Cartesian coordinates of the cable as a function of s, the 

identity
dr dr dp

ds dp ds
= will be useful. [ ]

T
r x y z= contains the Cartesian 

coordinates as a function of s or p. This leads to the relation

1
dr dr T

ds dp EA

æ ö
= +ç ÷

è ø                                                                                                
(4.29)

Consider the first segment of a cable with distributed vertical force, zw , a vertical 

concentrated force, 1,zf and axial tension T in the end point. Inspection of Fig.4.8 

gives

1

1 01, ( )oz zz

s s

dz
f T f w s s

dp
=

= + + -

                                                                       

(4.30)

for static equilibrium. is indicates the value of s in node i and ,i kf indicates the 

value of concentrated force in node i and Cartesian direction k
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Fig.4.8: A cable segment with concentrated and distributed loads.

Assume that the cable is terminated in point 0, and that concentrated forces, 

if may act discrete points (cable nodes). Combination of this assumption and 

(4.30) written in vectorial form gives the following equation for the forces acting in 

the cable’s terminating point:

1
1 1

( )
n n

o i i ii
i is L

dr
f T f w s s

dp
-

= ==

= + + -å å
                                                                

(4.31)

where [ ] [ ] [ ]{ }10, , 1, ,k ks L k n s s s-Î ® Î ® Î¡ ¡ . n is the number of cable 

segments and L is the cable’s unstretched length. 
T

i ix iy izw w w wé ù= ë û indicates 

the constant distributed force vector in segment i.

    An investigation of Fig.4.9 may make it easier to keep the indexes of the 

variables right

Fig.4.9: A cable of several segments with concentrated forces, if and distributed 

forces, iw Notice the indexes.
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A constant distributed force along the cable leads to a simplification of (4.31)

( ) 1

n

o i
ip s L

dr
f T f wL

dp ==

= + +å
                                                                             

(4.32)

where w is the constant distributed force along the cable.

   Sagatun [22] gives the following derivation of a differential equation for the cable. 

It is assumed that (4.32) holds. Reordering of (4.32) leads to

( ) 1

n

o i
ip s L

dr
T f f wL

dp ==

= - -å
                                                                              

(4.33)

We want to find the tension vector as a function of s. Assume that ( )s p may be 

found from (4.29). Then the following relation must hold

1

( )
k

o i
i

dr
T s f f ws

dp =

= - -å
                                                                                  

(4.34)

Where [ ] [ ] [ ]{ }10, , 1, ,k ks L k n s s s-Î ® Î ® Î¡ ¡ . We define

( )

dx

dp

dy dr
T p T T

dp dp

dz

dp

é ù
ê ú
ê ú
ê ú

= =ê ú
ê ú
ê ú
ê ú
ë û                                                                                         

(4.35)

2
T

T dr dr
T T T

dp dp
=

                                                                                               
(4.36)

Where 3T Î¡ . The substitution

0
1

k

k i
i

f f f
=

= -å
                                                                                                    

(4.37)

Where [ ] [ ] [ ]{ }10, , 1, ,k kk n s L s s s-Î ® Î ® Î¡ ¡ gives 

( ) ( )
T

s k kT f ws f ws= - -
                                                                                 

(4.38)

Combining (4.37) and (4.34) gives:
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1

( ) ,
k

o ki
i

dr
T s f f ws f ws

dp =

= - - = -å
                                                                 

(4.39)

Use of (4.29)

1
1 1

( ) ,k

dr dr
T s f ws

dp EA T ds

-
æ ö

= + = -ç ÷
è ø                                                                 

(4.40)

Reordering leads to

1 1
( )k

dr
f ws

ds EA T

æ ö
= - +ç ÷

è ø                                                                                    
(4.41)

Remember that kT f ws= - represents the tension in vectorial form. Substituting 

(4.38) gives the final differential equation

( )
( ) ( )

1 1
n T

k k

dr
f ps

ds EAf ps f ps

æ ö
ç ÷= - +
ç ÷- -è ø                                                   

(4.42)

This is an ODE with s as the independent variable. This may be solved directly 

from the rewritten form

( )
( ) ( )1

1 1k

k

s

k n T
s

k k

r f ps ds
EAf ps f ps-

æ ö
ç ÷= - +
ç ÷- -è ø

ò
                                           

(4.43)

where k is the actual cable segment. kr is an expression for the local solution within 

segment k.

   Numerical methods could have been utilized to solve the ODE/IVP, but Sagatun 

[22] gives the following solution to the integral

( ) ( )2

3 2

2

( ) 1
( ) ( ( ( )))

1 1

2

T

k k k k k k k

k i

s
r s f f w w f P f w w f ws f ws

f s ws C
EA

a
b

b b
= - Ä Ä - Ä Ä - - -

æ ö
+ - +ç ÷

è ø

                                                                                                                            (4.44)

where ⊗ denotes component wise multiplication and

2

Tw w wb = =
                                                                                              

(4.45)
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( ) ( )
1

ln
TT

k k ks f w f ws f wsa b
b

æ öæ ö
= - + - -ç ÷ç ÷

è øè ø                                                

(4.46)

0 1 1

1 0 1

1 1 0

P

é ù
ê ú=
ê ú
ê úë û                                                                                                  

(4.47)

Assume that we want segment no.1 of the global solution r(s) to start in the origin. 

We also want to ensure continuity between the segments. The following conditions 

should be fulfilled

(0) 0,r =

                                                                                                             

(4.48)

[ ]{ }( ) ( ) , 1, 1i ir s r s i n- += Î - ®¡                                                                       (4.49)

The integration constants, [ ], 0, 1iC i nÎ - may be calculated from

[ ]
1

1
1 1 1

(0), 1

( ) ( ), 2, , 2k
k k k k

r for k
C

r s r s for k n for n-
- - -

- =ì
= í

- Î ® ³î ¡
                       

(4.50)

If s belongs to a segment with index higher than 1, 1kC - must be calculated 

iteratively before the solution of r(s) can be found. The final global solution may 

now be calculated from

( ) ( )2

3 2

2
1

( ) 1
( ) ( ( ( )))

1 1

2

T

k k k k k k

k k

s
r s f f w w f P f w w f ws f ws

f s ws C
EA

a
b

b b

-

= - Ä Ä - Ä Ä - - -

æ ö
+ - +ç ÷

è ø

                                                                                                                            (4.51)

Where [ ] [ ] [ ]{ }10, , 1, ,k ks L k n s s s-Î ® Î ® Î¡ ¡

4.8 Spatial variation in the distributed load

The solution given above is only valid for constant distributed load along the entire 

cable. However, an extension to different distributed loads for each segment may

be found. Instead of using (4.32), we will assume that the distributed load is 

constant only within each segment. This means that 0f must be calculated from 

(4.31). Eq. (4.39) must be rewritten to
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( ) ( )
1

1 1
1 1

( ) ,
k k

o i i i k ki
i i

dr
T s f f w s s w s s

dp

-

- -
= =

= - - - - -å å
                                        

(4.52)

Where [ ] [ ] [ ]{ }10, , 1, ,k ks L k n s s s-Î ® Î ® Î¡ ¡ . We modify (4.37) to

1

0 1 1
1 1

( )
k k

k i i i i k k
i i

f f f w s s w s
-

- -
= =

= - - - +å å
                                                             

(4.53)

Now the derivation goes just like in the previous section, and we end up with

( )
( ) ( )1

1 1k

k

s

k n k T
s

n k n k

r f w s ds
EAf w s f w s-

æ ö
ç ÷= - +
ç ÷- -è ø

ò
                                        

(4.54)

Continuing on the boundary condition and claiming continuity between segments, 

the integration constants may be calculated as before. The new solution for 

spatially varying distributed loads with the assumptions made above, are given 

from

( ) ( )2

3 2

2
1

( ) 1
( ) ( ( ( )))

1 1

2

T

k k k k k k k k k k k k

k k k

s
r s f f w w f P f w w f w s f w s

f s w s C
EA

a
b

b b

-

= - Ä Ä - Ä Ä - - -

æ ö
+ - +ç ÷

è ø

                                                                                                                            

(4.55)

2

T
k k kw w wb = =

                                                                                           
(4.56)

( ) ( )
1

ln
TT

k k k k k ks f w f w s f w sa b
b

æ öæ ö
= - + - -ç ÷ç ÷

è øè ø                                           

(4.57)

0 1 1

1 0 1

1 1 0

P

é ù
ê ú=
ê ú
ê úë û

                                                                                                  (4.58)

4.9 Boundary Conditions

Boundary conditions must be given at both ends of the cable (upper end and lower 

end). Different types of boundary conditions may occur depending on the types of 

physical conditions at the two ends. As we assume that the vessel motion is fixed 

by using dynamic position control, the first boundary condition is given by fixing 

the position of the surface vessel. At the lower end, cable is connected to the 
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vehicle. So, the second boundary condition of lower end of the cable 0 0 ( )X X t= is 

given as a function of time. These two conditions can be expressed as follows,

0 (0, ) 0x t = , 0 (0, ) 0y t = , 0 (0, ) 0z t =                                                                   (4.59)

And ( , )L Lx L t x= , ( , )L Ly L t y= , ( , )L Lz L t z=                                                      (4.60)

Where Lx Ly and Lz are position of UV during its motion. 

4.10 Cable effect

The tension of the cable at the tow-point, i.e. (0, )T t , results in the additional forces 

and moments that affect the motion of the vehicle. The additional forces can be 

obtained by expressing the cable tension in the vehicle-fixed frame.

(0, )

( ) : ( , , ) ( , ) 0

0

cX

T
c cY

cZ

F T t

F t F R W

F

f q y J j

é ù é ù
ê ú ê ú= = -
ê ú ê ú
ê ú ê úë û ë û                                                    

(4.61)

Where

(0, )( )cXF T t c c c c s c s c s sy q J j y q J j q j= - +                                                  (4.62)

(0, )( )cYF T t c s s s c s c c s s s s c c c s c s c c cq f j f y q J j f y q J j y f J j y f J j= - + - - -

                                                                                                                           (4.63)                                        

(0, )( )cZF T t c c s s s c c s c s c c s c c c s s c c cq f j f y J j f y J j y q f J j y q f J j= - + + + -                               

                                                                                                                            (4.64)

In terms of the position of the tow-point in the vehicle-fixed frame, the cable 

induced moments are

( ) : ( )
cX c cX c cZ c cY

c cY c c c cY c cX c cZ

cZ c cZ c cY c cX

M x F y F z F

M t M r F t y F z F x F

M z F x F y F

-é ù é ù é ù é ù
ê ú ê ú ê ú ê ú= = ´ = ´ = -
ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú-ë û ë û ë û ë û                              

(4.65)

where ( ), ,c c c cr x y z=
ur

is vector from the center of the gravity of UV to the 

connected point between the cable and UV.

4.11Simulation results of umbilical cable

To this point we have considered catenaries as a cable with known properties and 

known loads. The goal has been to achieve a solution for the end point. Let us 
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revert this and try to find the force components when the two end points are known. 

The governing differential equations are still known, see (4.42). The problem has 

now changed from an ODE (Ordinary Differential Equations)/IVP (Initial Value 

Problems) to an ODE/BVP (Boundary Value Problems). An analytical solution to 

this problem could be found if kf was solved from (4.42). Nobody has published 

such analytical solution, and we will have to deal with numerical solutions of the 

problem. The MATLAB’s function bvp4c or e.g. a finite element solution will do if 

the cable’s geometry is of particular interest.

    Sometimes other problems arise when we are dealing with boundary value 

problems. We may for instance know the boundary coordinates, but want to find 

the end force to yield this solution. The ODE/BVP has now increased to include an 

estimation of the parameter 1f . A shooting method based on the accurate analytical 

solution might be applied. Shooting method is used to compute the static 

equilibrium configuration of a composite single cable with boundary conditions 

specified at both ends. Mathematically the problem is a two point boundary value 

problem. If all boundary conditions are specified at one end, the configuration is 

uniquely determined. This reduces the problem to an initial value problem and the 

static configuration can be found by catenary computations, element by element, 

starting at the end with all boundary conditions specified.

We will now give an example where we use MATLAB’s routine to estimate this 

force. A cable of length 100 meters is fastened in [ ] 0 0 0 .The UC is divided 

into 100 equal length elements and the result from one element is propagated into 

next till it reaches the final end point at the UV. The initial guess for the forces in N 

is [ ]4 5 180
T

, cable’s length is 100m, cable’s weight is 0.5 /cW N m= - , 

diameter 0.025cd m= , modulus of elasticity 9 2200 10 /cE N m= ´ , axial stiffness 

43 10EA N= ´ and density 3662.2 /c kg mr = .The inertial reference frame (X, Y, Z) 

is defined at surface of waterline and the first cable’s element is attached to the 

supported vessel. The UC forces in three-dimensional (3D) are computed by the 
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method in Sagatun [22] that uses Catenary equations with end forces estimates. 

MATLAB’s routine bvp4c was applied to these parameters, and an estimate of the 

end force was found. The results are shown in Fig.4.11, Fig.4.12 and Fig.4.13. 

Even if the initial guess for the estimated force deviated from the correct value, the 

routine managed to find very good estimates. The results were dependent on the 

numerical option and the mesh in the variable s. The UC’s parameters for 

simulation are shown in Table 4.1. Figure 4.10 shows profile of 3-D forces acting 

on the UC.

Table 4.2: UC’s parameters for simulation

Cable parameters

Length of cable (m) L=100

3-D forces on cable (N/m) [ ]3 3 5W = -

Diameter of cable (m) 0.025d =

Axial stiffness (N) 43.10EA =

Position of end point (calculated from equation) (m) [ ]86.4 0 45.42pE = -

Guess for end force (we know this guess is wrong) (N) [ ]4 5 10gF =

Fig.4.10: The all forces acting on the UC
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Fig.4.13: The end point forces of UC.

Figure 4.11 shows a cable of length L attached to a blue point and a red point. 

These points are defined as the cable supports and they are fixed in space. Here, as 

in the simulation, the top end or blue point is assumed to be fixed to the support 

ship, the bottom or red point is attached to the UV. Starting from support blue point 

and moving along the cable profile, each point on the cable is described by the 

Lagrangian coordinate s with respect to the origin. s is defined as the un-stretched 

Lagrangian coordinate. And the flow across the cable is determined by the relative 

velocity between UV and current. When the current is turned on, the cable is

pushed to the left and during this motion, under the influence of the side current, 

and provided there is slack in the cable, the umbilical will form a curve. For 
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calculating the position of the red point, Eqs.4.51 was used to determine this point 

and calculated value is [ ]86.4 0 45.42pE m= - . The Eqs.4.42 gives the end 

force equal [ ]endf  = 230.55 -117.94 -27.97
T

N

The dynamic configuration of UC and the end point forces of cable are shown in 

Fig.4.12 and Fig.4.13, respectively. It is observed from Fig.4.12 that the trajectory 

of the red point move backward for about 10m in 10 seconds because the speed of 

red point is 1m/s. The end point forces in 3 dimensions of UC when the red point 

moves backward is shown in Fig.4.13. As we can see from this figure that the end 

point forces increases gradually with increasing in time in three components

, , .x y zF F F
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Chapter 5   Simulation Results and Discussion

In this chapter, a series of analyses on the behavior of UV with the UC are 

analyzed. A simulator is implemented using a model of the underwater robot. For 

the vehilce, a MATLAB-Simulink model was used. The model used MATLAB 

three subsystems for the thruster modeling, cable modeling and underwater 

dynamic modeling. Fig.5.2 is shown block simulation program for UC. And Fig.5.1

illustrates the blocks used in the Matlab and Simulink, which thrusters are modeled 

by first subsystem. Other subsystems model dynamics and kinematics of the 

vehicle. The outputs of the Simulink model are position, orientation and velocity 

vectors in earth refernce frame and linear and angular velocity and acceleration 

vectors in body frame. As we can see in the Fig.5.1, the output of subsystems for 

UV dynamic modeling such as 3-D position x,y,z of UV are also input of 

subsystem for cable dynamic. It mean that to calculate the forces acting on the UV, 

we have to know the position of UV which attached with cable at termination point.

Fig.5.1: Simulation program for UV with UC
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Fig.5.2: Block simulation program for UC

  In the dynamical modeling, UV is regarded as a rigid body of constant mass 

moving in an ideal potential flow and the B-frame is positioned at the center of 

gravity. As well, UV is assumed to be neutrally buoyant. Let the vehicle's linear 

and angular velocities be defined in the vehicle-fixed referenced frame. The 

governing equations for describing the motion of UV in 6-DOF can be expressed as 

follows:
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(5.1)

Note that these equations are written in the body-fixed coordinates. The Runge-

Kutta method is used to solve these six nonlinear differential equations. 

  Consider the equations of motion in (5.1), in which eighteen parameters including 

added mass derivatives uX & vY& wZ & pK & qM & rN & , linear damping uX vY wZ qM pK rN and 

quadratic drag coefficients u u
X

v v
Y

w w
Z

p p
K

q q
M

r r
N are involved.
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  In the present study a commercial UV is adopted as the numerical model for 

calculations. The principal dimension is 0.75 m (length) x 0.56 m (beam) x 0.28 m 

(depth) and all hydrodynamic coefficients about the maneuvering characteristics 

and related variables of the UV can be referred to related papers. The globe 

coordinates of initial position of the connected point to the UV and the other end 

point at the free surface near supported vessel are assumed to be (60, 0, 60)m and 

(0, 0, 0)m, respectively. The length of the UC is set to be 100 m, cable’s weight is

0.5 /cW N m= - , diameter 0.025cd m= , modulus of elasticity 9 2200 10 /cE N m= ´ , 

axial stiffness 43 10EA N= ´ and density 3662.2 /c kg mr = , are also assumed to 

meet the physically correct initial cable conditions which are obtained by using the 

multi-step shooting method once in advance. 

   The effects of the UC on the UV motions with different operations, i.e., forward, 

backward, ascending, descending, sideward and turning, are shown in Figs.5.3–

5.50. 

5.1 Forward Motion

Fig.5.3: Thruster directions of UV in forward motion.

Fig.5.3 shows thruster directions of UV in forward motion. Let us consider the 

dynamic equation for each single-degree-of-freedom motion first. From (3.35) ~ 

(3.36) and (3.61) ~ (3.72), it follows that the dynamical equations of forward 

motion are simplified as:
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Fig.5.4 and 5.5 are the trajectory of the UV in both cases, attached with the UC and 

without UC doing the forward motion. If the UV is steered in surge to keep the 

vehicle moving forward, thus both thrusters 1T and 2T are set to be 10N 

( 1 2 10T T N= = ) and both thrusters 3T and 4T are set to be -10N ( 3 4 10T T N= = - ); 

that is, total thrust/weight = 0.44. All of thrusters 5T , 6T , 7T are set to be 0N 

( 5 6 7 0T T T N= = = ) to make the pure forward motion and initial UV speed is 0m/s. 

Fig.5.6 is the force and moment of thruster system on the UV doing forward 

motion. It is observed from Fig.5.6 that for the forward motion, the force xF keeps

at constant value equal 34.6 N and other components equal zero, 

i.e, 0 .y z x y zF F M M M N= = = = =

The effect of the umbilical cable can be clearly seen by comparing Fig.5.7 with 

Fig.5.8. It is observed from Fig.5.7 that the UV moves forward for about 12 m in 

30 sec with the velocity about 0.38 m/s. The results in Fig.5.8 show that the depth 

of the UV increases and UV will be move slightly leftward while the UV is moving 

forward. Besides, due to the attachment of the cable, the heave velocity appears to 

be oscillatory due to heave force czF of cable effect and so is the pitch motion. UV 

oscillates downward and the heave velocity w and the pitch angle q also regularly 

oscillate. It means that the UV will move forward up and down with varied pitch 

angle. However, the roll and yaw motions are not affected by the cable in this case.

The force and moment of the UC including the current effect with respect to fixed 

body coordinate and Earth coordinate are shown in Fig.5.9 and Fig.5.10 for 

reference. The results show that the oscillatory heave force czF and pitch moment 
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cyM cause the oscillatory heave and pitch motions, respectively. The results in 

Fig.5.9 also reveal that the sway force cyF is negative, that is, leftward, and the 

heave force czF is positive leads to downward heave velocity; therefore, the UV has 

the tendency to descend and leftward while the UV is moving forward.

0
20

40
60

80 -1

-0.5

0

0.5

1

-60

-50

-40

-30

-20

-10

0

z[
m

]

x[m]

y[m] 0

20

40

60

02
46

8

-60

-50

-40

-30

-20

-10

0

x[m]
z
[m

]

y[m]

Fig.5.4: Trajectory of the forward 

motion without UC

Fig.5.5: Trajectory of the forward 

motion with UC
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Fig.5.6: The force and moment of thruster system on the UV doing forward motion.
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Fig.5.7: Simulation of the forward motion without UC.
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Fig.5.8: Simulation of the forward motion with UC.

Fig.5.9: The force and moment of the cable on the UV doing forward motion w.r.t 

fixed body coordinate.

Fig.5.10: The force and moment of the cable on the UV doing forward motion w.r.t 

Earth coordinate.
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5.2 Backward Motion

Fig.5.11: Thruster directions of UV in backward motion.

Let us consider the dynamic equation for each single-degree-of-freedom motion 

first. From (3.35) ~ (3.36) and (3.61) ~ (3.72), it follows that the dynamical 

equations of backward motion are simplified as:
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Fig.5.12 and 5.13 are the trajectory of the UV in both cases, attached with the UC 

and without UC doing the backward motion. If the UV is steered in surge to keep 

the vehicle moving backward as shown in Fig.5.11, thus both thrusters 1T and 2T

are set to be -10N ( 1 2 10T T N= = - ) and both thrusters 3T and 4T are set to be 10N 

( 3 4 10T T N= = ); that is, total thrust/weight = 0.44. All of thrusters 5T , 6T , 7T are 

set to be 0N ( 5 6 7 0T T T N= = = ) to make the pure backward motion and initial UV 

speed is 0m/s. Fig.5.14 is the force and moment of thruster system on the UV doing 

backward motion. It is observed from Fig.5.14 that for the backward motion, the 

force xF keeps at constant value equal -34.6 N and other components equal zero, 

i.e, 0 .y z x y zF F M M M N= = = = =
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The force and moment of the UC including the current effect with respect to fixed 

body coordinate and Earth coordinate are shown in Fig.5.17 and Fig.5.18 for 

reference. The effect of the umbilical cable can be clearly seen by comparing 

Fig.5.15 with Fig.5.16. After comparing with the results in Figs.15 to 18, we can 

see that the effects are generally similar with forward motion case except the UV 

has the tendency to rightward.
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Fig.5.12: Trajectory of the backward 

motion without UC

Fig.5.13: Trajectory of the backward 

motion with UC
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motion.
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Fig.5.15: Simulation of the backward motion without UC.
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Fig.5.16: Simulation of the backward motion with UC.

Fig.5.17: The force and moment of the cable on the UV doing backward motion 

w.r.t fixed body coordinate.

Fig.5.18: The force and moment of the cable on the UV doing backward motion 

w.r.t Earth coordinate.
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5.3 Sideward Motion

Fig.5.19: Thruster directions of UV in sideward motion.

Let us consider the dynamic equation for each single-degree-of-freedom motion 

first. From (3.35) ~ (3.36) and (3.61) ~ (3.72), it follows that the dynamical 

equations of sideward motion are simplified as:
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Fig.5.20 and 5.21 are the trajectory of the UV in both cases, attached with the UC 

and without UC doing the sideward motion. In order to make the UV operate the 

sideward motion as shown in Fig.5.19, both thrusters 1T and 3T are set to be 10N 

( 1 3 10T T N= = ) and both thrusters 2T and 4T are set to be -10N ( 2 4 10T T N= = - ); 

that is, total thrust/weight = 0.25. All of thrusters 5T , 6T , 7T are set to be 0N 

( 5 6 7 0T T T N= = = ) to make the pure sideward motion and initial UV speed is 0m/s. 

Fig.5.22 is the force and moment of thruster system on the UV doing sideward 

motion. It is observed from Fig.5.22 that for the sideward motion, the force yF

keeps at constant value equal 20 N and other components equal zero, 
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i.e, 0 .x z x y zF F M M M N= = = = = The effect of the umbilical cable can be clearly 

seen by comparing Fig.5.23 with Fig.5.24. It is observed from Fig.5.23 that the UV 

moves rightward for about 6.5 m in 30 sec with the velocity about 0.23 m/s. The 

results in Fig.5.24 show that the depth of the UV decreases and UV will be move a 

little bit forward while the UV is moving sideward. Due to the attachment of the 

cable, the heave velocity appears to be oscillatory due to heave force czF of cable 

effect and so is the pitch motion. UV oscillates upward and the heave velocity w 

and the pitch angle q also regularly oscillate. It means that the UV will move 

sideward up and down with varied pitch angle. Besides, we can see that the effect 

of the cable on the roll motion seems not quite significant. Finally, the yaw motion 

is not affected by the cable in this case.

The force and moment of the UC including the current effect with respect to fixed 

body coordinate and Earth coordinate are shown in Fig.5.25 and Fig.5.26 for 

reference. The results show that the oscillatory heave force czF and pitch moment 

cyM cause the oscillatory heave and pitch motions, respectively. The results in 

Fig.5.25 also reveal that the sway force cyF is positive, that is, rightward, and the 

heave force czF is negative leads to upward heave velocity; therefore, the UV has 

the tendency to ascend and rightward while the UV is moving sideward. Besides, 

the surge force cxF is positive which decreases initially and then increases gradually,

and pitch moment cxM causes the roll motion.
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Fig.5.20: Trajectory of the sideward 

motion without UC

Fig.5.21: Trajectory of the sideward 

motion with UC
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Fig.5.22: The force and moment of thruster system on the UV doing sideward 

motion.
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Fig.5.23: Simulation of the sideward motion without UC.
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Fig.5.24: Simulation of the sideward motion with UC.

Fig.5.25: The force and moment of the cable on the UV doing sideward motion 

w.r.t fixed body coordinate.
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Fig.5.26: The force and moment of the cable on the UV doing sideward motion 

w.r.t Earth coordinate.

5.4 Ascending Motion

Fig.5.27: Thruster directions of UV in ascending motion.

Let us consider the dynamic equation for each single-degree-of-freedom motion 

first. From (3.35) ~ (3.36) and (3.61) ~ (3.72), it follows that the dynamical 

equations of ascending motion are simplified as:

/( )

/( )

[( ) ] /( )

/( )

/( )

/( )

xcable u

ycable v

w z zcable ww w

xcable x p

ycable y q

zcable z r

u F m X

v F m Y

w Z Z w w F F m Z

p M I K

q M I M

r M I N

= -ì
ï = -ï
ï = + + + -ï
í

= -ï
ï = -
ï

= -ïî

&

&

&

&

&

&

&

&

&

&

&

&
                                                      

(5.5)



87

Figs.5.28 and 5.29 are the trajectories of the  UV  doing  the ascending motion,  

either  with  or without  the  umbilical  cable,  respectively. In order to make the 

UV operate the ascending motion as shown in Fig.5.27, both thrusters 5T and 6T

are set to be -15N ( 5 6 15T T N= = - ) and thruster 7T is set to be -12N ( 7 12T N= - ); 

that is, total thrust/weight = 0.53. All of thrusters 1T , 2T , 3T and 4T are set to be 0N 

( 1 2 3 4 0T T T T N= = = = ) to make the pure ascending motion and initial UV speed is 

0m/s. Fig.5.30 is the force and moment of thruster system on the UV doing 

ascending motion. It is observed from Fig.5.30 that for the ascending motion, the 

force zF keeps at constant value equal -42 N and other components equal zero, 

i.e, 0 .x y x y zF F M M M N= = = = = The effect of the umbilical cable can be clearly 

seen by comparing Fig.5.31 with Fig.5.32. It is observed from Fig.5.31 that the UV 

moves upward for about 9 m in 30 sec with the heave velocity about 0.3 m/s. While 

the umbilical cable is attached, we can see that the effect of the cable on the 

motions seems not significant except the heave velocity, Fig.5.32. The results show 

that the heave motion is slower due to the cable effect. The force and moment of 

the UC including the current effect with respect to fixed body coordinate and Earth 

coordinate are shown in Fig.5.33 and Fig.5.34 for reference. The results in Fig.5.34 

also reveal that the heave force czF is negative leads to upward heave velocity; 

therefore, the UV has the tendency to upward.
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motion without UC motion with UC
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Fig.5.30: The force and moment of thruster system on the UV doing ascending 

motion.
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Fig.5.31: Simulation of the ascending motion without UC.
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Fig.5.32: Simulation of the ascending motion with UC.

Fig.5.33: The force and moment of the cable on the UV doing ascending motion 

w.r.t fixed body coordinate.
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Fig.5.34: The force and moment of the cable on the UV doing ascending motion 

w.r.t Earth coordinate.

5.5 Descending Motion

Fig.5.35: Thruster directions of UV in descending motion.

Let us consider the dynamic equation for each single-degree-of-freedom motion 

first. From (3.35) ~ (3.36) and (3.61) ~ (3.72), it follows that the dynamical 

equations of descending motion are simplified as:
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Figs.5.36 and 5.37 are the trajectories of the  UV  doing  the descending motion,  

either  with  or without  the  umbilical  cable,  respectively. In order to make the 

UV operate the descending motion as shown in Fig.5.35, both thrusters 5T and 6T

are set to be 15N ( 5 6 15T T N= = ) and thruster 7T is set to be 12N ( 7 12T N= ); that 

is, total thrust/weight = 0.53. All of thrusters 1T , 2T , 3T and 4T are set to be 0N 

( 1 2 3 4 0T T T T N= = = = ) to make the pure descending motion and initial UV speed 

is 0m/s. Fig.5.38 is the force and moment of thruster system on the UV doing 

descending motion. It is observed from Fig.5.38 that for the descending motion, the 

force zF keeps at constant value equal 42N and other components equal zero, 

i.e, 0 .x y x y zF F M M M N= = = = = The effect of the umbilical cable can be clearly 

seen by comparing Fig.5.39 with Fig.5.40. The force and moment of the UC 

including the current effect with respect to fixed body coordinate and Earth 

coordinate are shown in Fig.5.41 and Fig.5.42 for reference. The results show that

the similar conclusion with ascending motion can be applied to the case for 

descending motion except the heave force czF is positive.
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Fig.5.37: Trajectory of the descending 

motion with UC
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Fig.5.38: The force and moment of thruster system on the UV doing descending 

motion.
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Fig.5.39: Simulation of the descending motion without UC.



93

Fig.5.40: Simulation of the descending motion with UC.

Fig.5.41: The force and moment of the cable on the UV doing descending motion 

w.r.t fixed body coordinate.
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Fig.5.42: The force and moment of the cable on the UV doing descending motion 

w.r.t Earth coordinate.

5.6 Turning Motion

Fig.5.43: Thruster directions of UV in turning motion.

Fig.5.43 shows thruster directions of UV in turning motion. Let us consider the 

dynamic equation for each single-degree-of-freedom motion first. From (3.35) ~ 

(3.36) and (3.61) ~ (3.72), it follows that the dynamical equations of turning 

motion are simplified as:
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Figs.5.44 and 5.45 are the trajectory of the UV in both cases, attached with the UC 

and without UC doing the turning motion. In order to simulate the turning motion, 

the counterclockwise rotating forces 10 N and 9.5N are set for the thrusters T2 and 

T1, respectively and -10 N and -9.5N are set for the thrusters T4 and T3, 

respectively. All of thrusters T5, T6, T7 ( 5 6 7 0T T T N= = = ) are set to be 0N to 

make the pure turning motion and initial UV surge speed is 0.3 m/s. Fig.5.46 is the 

force and moment of thruster system on the UV doing turning motion. It is 

observed from Fig.5.46 that for the turning motion, the surge force xF and yaw 

moment zM keep at constant value equal 33.8 N and -0.33Nm , respectively while 

other components equal zero, i.e, 0 .y z x yF F M M N= = = =

The effect of the umbilical cable can be clearly seen by comparing Fig.5.47 with 

Fig.5.48. It is observed from Fig.5.47 that the UV initially moves forward, then 

moves rightward and finally moves backward. The results also reveal that the surge 

speed increases at the beginning and then decreases to a constant speed and the 

sway speed also increases from 0 m/s to a positive small constant speed. When the 

cable is considered in the turning motion, all motions are significantly affected as 

shown in Fig.5.48. With the cable effect, the depth, heave velocity, roll motion and 

pitch motion of the UV varies with time. 

The depth of the UV decreases initially and then slightly increases to a steady value. 

Besides, due to the attachment of the cable, the heave velocity appears to be 

oscillatory due to heave force czF of cable effect and the roll angle q also regularly 

oscillate. The surge and sway motions are also slightly different from those without 

umbilical cable. Besides, the pitch motion is also accompanied because of the 

umbilical cable. The cable makes the pitch motion initially increases positively and 

then decreases, even to the negative. However, yaw motion is not affected by the 

cable in this case.

The force and moment of the UC including the current effect with respect to fixed 

body coordinate and Earth coordinate are shown in Fig.5.49 and Fig.5.50 for 
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reference. The results show that the oscillatory heave force czF and roll moment 

cxM cause the oscillatory heave velocity and roll motions, respectively. The results 

in Fig.5.49 also reveal that the surge force cxF initially decreases positively and 

then increases. The sway force cyF increases at the beginning and then decreases to 

negative value after about half time history. 
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Fig.5.44: Trajectory of the turning 

motion without UC

Fig.5.45: Trajectory of the turning 

motion with UC
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Fig.5.46: The force and moment of thruster system on the UV doing turning motion.



97

0 5 10 15 20 25 30
0.2

0.3

0.4

Time [sec]

u
 [
m

/s
]

0 5 10 15 20 25 30
0

0.1

0.2

Time [sec]

v
 [
m

/s
]

0 5 10 15 20 25 30
-1

0

1

Time [sec]

w
 [
m

/s
]

0 5 10 15 20 25 30
-1

0

1

Time [sec]

f
 [
d

e
g

]

0 5 10 15 20 25 30
-1

0

1

Time [sec]

q
 [
d

e
g

]

0 5 10 15 20 25 30
-400

-200

0

Time [sec]

y
 [
d

e
g

]

0 5 10 15 20 25 30
60

65

70

Time [sec]

X
 [

m
]

0 5 10 15 20 25 30

-4

-2

0

Time [sec]

Y
 [

m
]

0 5 10 15 20 25 30
59

60

61

Time [sec]

Z
 [

m
]

Fig.5.47: Simulation of the turning motion without UC.



98

Fig.5.48: Simulation of the turning motion with UC.

Fig.5.49: The force and moment of the cable on the UV doing turning motion w.r.t 

fixed body coordinate.

Fig.5.50: The force and moment of the cable on the UV doing turning motion w.r.t 

Earth coordinate.
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Chapter 6   Conclusions

In this thesis, a series of analysis for the motion behavior of a UV with umbilical 

cable in the ocean has been done. The maneuvering behaviors of the UV including 

forward motion, backward motion, ascending motion, descending motion, sideward 

motion and turning motion have been studied and discussed. From the present 

overall results, the following conclusions can be drawn:

(1) The 4th Runge–Kutta method is also applied to solve the six degrees of 

freedom motions of the UV with the umbilical cable effect. The compact 

hydrodynamic model with six degrees of freedom motions and the numerical 

solution technique are described in the following section.

(2) The configuration simulation of the umbilical cable connecting to the UV is 

calculated by using the catenary equation and the corresponding two-end 

boundary-value problem is solved by using the multi-step shooting method 

which is based on the search method developed by Sagatun (2001).

(3) The effect of the current force on the umbilical cable will simultaneously 

affect UV motions because the umbilical cable is connected to the UV. 

Conclusively, the present results clearly reveal that the umbilical cable can 

affect significantly motions behaviors of the UV while it is operated in 

forward motion, backward motion, sideward motion and turning motion. 

Therefore, it must be carefully handled in these cases. Otherwise, when the 

UV is operated to do the ascending motion and descending motion in uniform 

current, we can see that the effect of the cable on the motions seems not 

significant except the heave velocity.

(4) Based on suitable assumptions, the numerical model developed in the thesis

can numerically well simulate the motions of the UV with the umbilical cable 

in a uniform current at sea. Several comparisons have been made for 

discussion and some useful conclusions are drawn in this thesis. It believed 

that the results shown here can offer some important information about the 
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interaction effects between the UV and cable for the designers of the related 

field.
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