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A B S T RA CT

유기물질과 질소·인 등의 영양물질이 고농도로 포함된 축산폐수는

수계의 주요 오염 물질 중 하나다. 본 연구에서는 혐기성 및 호기성 조

건에서 연속식으로 돈분폐수를 처리하고 처리된 방류수의 일부를 축사에

재이용 할 수 있는 순환식 돈분폐수 처리 시스템의 처리기작에 관한 연

구를 수행하였다. 이 시스템은 축사나 처리조에서 발생되는 악취와

BOD를 포함한 기타 오염물질을 효과적으로 제거할 수 있으며, 돼지

1000두 이하의 소규모 농가에 적합한 처리공정 중 하나로 알려져 있다.

시스템내에서 우점종으로 분리된 타가영양박테리아는 호기성 및 혐기성

조건에서 질산화 및 탈질작용에 관여하는 것으로 밝혀진 A lcalig enes

faecalis (T SA - 3)와 B revundim onas dim inuta (T SA - 1), 그리고

A biotrop hia def ectiva (T SA - 2)가 분리되었고, 혐기성 조에서는 유산균

박테리아 MRS - 1 (미동정) 외 2종(S trep tococcus sp. : MRS - 3)이 분리

되었다. 그 중 최우점종은 A lcalig enes faecalis (T SA - 3)로 나타났다.

중합효소 연쇄반응(polymerase chain reaction ; PCR) 등의 분자생물

학적 기법을 이용하여 시스템으로부터 분리된 타가영양박테리아에 의한

암모니아성 질소 제거 기작을 밝혔다. 여기서 암모니아 흡수 및 이용에

관여하는 글루타민 합성효소(glutamine synthetase: GS)유전자의 존재를

확인하였다.

또한 신경회로망을 이용하여 순환식 돈분처리 시스템의 실시간 모니

터링을 궁극적으로 구현할 수 있는 새로운 방법을 제안하였다. 즉 미생

물 군집내의 개체군밀도에 따른 각 처리조(유입수, 발효조, 폭기조, 1차

침전조 및 4차 침전조)에서의 폐수처리 기작에 대한 모델을 시도하였다.

측정 데이터에 대해 우선 주요 요소 해석(principal component analysis :



PCA ) 방법을 적용하여 각 처리조에서의 입력(미생물 밀도와 처리요소)

과 출력간의 상관관계를 파악하고, 각각의 처리조마다 독립된 신경회로

망을 적용하여 폐수처리 과정을 모델링하였다. 신경회로망의 입력으로

현재 탱크에서의 미생물의 개체군밀도를 직접 이용하는 대신 PCA 분석

결과를 이용함으로써, 비교적 적은 수의 데이터로 효과적인 모니터링 시

스템을 구현할 수 있었다. 즉, 각 처리조별로 학습된 신경회로망들을 연

결하여 분석한 결과 2일 동안의 폐수 처리 변화를 비교적 정확히 예측할

수 있었다.
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Ⅰ. INTRODUCTION

   The swine wastes may cause a serious degradation of water quality

such as eutrophication and spread of pathogens in water bodies (i.e.,

lakes, rivers and groundwater as water supply sources) (39).  The

daily volume of livestock wastewater in Korea reached 197,000m3,

and 50% of the volume was generated from dairy farms that were not

target for a legal pollution control.  The amount of wastewater is

relatively small compared with total wastewater including industrial

and domestic wastewater (7% of the total), but contributes

significantly to the pollution of the receiving waters because of its

high organic nutrient concentration (>BOD 20,000 mg/L) (32).

According to the environmental protection law, the large size farms

(more than 1,000 heads) are subjected to regulations for treatment

facilities whereas small or middle size farms (less than 1,000 heads)

are exempt from the regulations.  While an activated sludge system

has been proven to be effective in the treatment of piggery slurry at

large scale farms (more than 1,000 heads), the system may not ensure

the effect in small or middle scale farms (less than 1,000 heads) in

terms of its operation cost.  The number of swine heads under the

regulatory control, therefore, takes only 31% of the total number of

heads (33).

   Recently a cirulating reactor system operated under sequential

oxic and anoxic conditions for the treatment of swine wastewater has

been developed, in which piggery slurry is fermentatively and

aerobically treated and then its effluent recycled to the pigsty (9).
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This system appears to significantly remove offensive smells (at both

pigsty and treatment plant) and BOD, and turns out to be cost

effective in the relatively small scale farms.

   There are several treatment steps in the system.  For its

successful operation, it will necessary to monitor microbial population

density and treatment parameters.  Modeling relationships among

these variables will be useful in predicting treatment effects and

managing the system.  One of the best known models applied for

wastewater treatment system so far is the activated sludge model NO.

1(ASM 1) introduced by International Association for Water Quality

(IAWQ) in 1987 (15).  Application of the model to the field

treatment system, however, may have some limitations because the

model usually requires many operational parameters and has quite

variable kinetic characteristics within the treatment system over time

(25).

   On the other hand, neural network models that imitate the

functions of our human brain have been successfully used to resolve

many engineering problems such as complex pattern classification and

control of highly nonlinear dynamic systems (4, 26, 31, 42).  Those

models have the characteristics of massive parallelism, many degrees

of freedom, and adaptive learning.  It was recently well known that

the multi-layer neural networks can approximate a function in L p

within an arbitrary accuracy (18), and generalize a new data that are

not used in learning process (5).  Recently a progress has been made

in application of neural networks to controlling the biological and

chemical engineering processes.  There has been, however, no report
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dealing with a neural network modeling for biological swine

wastewater treatment system, to the best of our knowledge.

   This study was carried out to elucidate mechanism of the

circulating piggery slurry treatment system using such as variables

population dynamics, activity of heterotrophic bacteria, and treatment

effects based upon suspended solids (SS), ammonia nitrogen (NH4
+-N),

total phosphorus (T-P), ortho-phosphorus (o-P) and chemical oxygen

demand (COD) as input or output variables.  These variables were

used to establish a non-linear model emulator using multi-level neural

networks that could eventually allow real time monitoring and

prediction of the treatment system.  We also tried to elucidate a

mechanism for ammonium removal using molecular biological

techniques.
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Ⅱ . LITERATURE REVIEW

 2.1 Swine Wastewater Pollution and Treatment Technology

  2.1.1 Pollution Status and Characteristics of Swine Wastewater

   The wastes cause a serious degradation of water quality resulted

from spread of pathogenes and a eutrophication in the receiving

waters such as lakes and rivers as water supply sources.  The daily

volume of livestock wastewater in Korea reached 197,000m3, while

50% of this volume was generated from dairy farms that are exempt

from a legal pollution control (Figure 2.1).  The amount of

wastewater is relatively small compared with total wastewater

including industrial and domestic wastewater (7% of the total), but

contributes significantly to the pollution of the receiving waters

because of its high organic nutrient concentration (32).  The degree

of pollution caused by swine wastewater may depend upon the region

of water bodies and sometimes reaches almost 20% of the total

pollution load (33).  In other word, domestic farms of Korea know

almost small or middle size farms are exempt from the regulation.

   Raw wastewater contains substances to give malodorant smells

such as nitrogenous compounds, sulfates, volatile fatty acids,

aldehydes and so forth.  Besides, the wastewater can allow the

growth of health pests so that the living environments would be

degraded and use of agricultural water contaminated by swine

wastewater could reduce harvest of crops.  It has become a target of
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public grievances (12).

   Physical and chemical characteristics of swine wastewater may be

different depending on storage period and treatment brocess, but BOD

concentration may be as high as about 20,000∼60,000 (mg/L).

Nitrogen concentration as TKN can reach the range of

4,000∼6,000mg/L (32).

Table 2.1. Status of the waste, number of heads and percentage rate

of the livestock farms in Korea (Environmental

Management Research Center, 1998)

Criteria
Permit

required

Report

required

No

regulation
Total

Farms
3,743

(0.7%)

24,118

(4.2%)

539,863

(95.1%)

567,724

(100%)

Heads
3,424,000

(34.5%)

3,726,000

(33.1%)

3,211,000

(32.4%)

9,911,000

(100%)

Wastewater

Volume

(m3/d)

46,700

(23.7%)

51,456

(26.1%)

93,861

(50.2%)

197,017

(100%)



-  -6

  2.1.2 Treatment Technologies of Swine Wastewater

   Conventional treatment technologies available so far are activate

sludge treatment, trickling filter, oxidation lagoon, oxidation pond,

percolation, composting, and landfill disposal.  New technologies are

HAF (Hyundai Anaerobic Filer), BIMA, and Bio-Ceramic.  These

treatment technologies, however, are relatively difficult to operate and

have comparatively high running costs.  One of the reasons for this

may be the characteristics of the wastewater itself: its high organic

and nutrient content as well as unbalanced carbon, nitrogen, and

phosphorus ratios (28).

   Treatment plants for swine wastewater using activated sludge and

methane fermentation technologies have been disseminated.  These

methods are effective for removal of BOD and COD but not for

nitrogen and phosphorus (29).  This is because swine wastewater

contains a large amount of nitrogen which corresponding to 20∼40%

of BOD (28).

 2.2 Modeling Using Neural Networks

  2.2.1 Characteristics of Neural Networks and Principal

Component Analysis

   In this study, we used a multi-layer neural network with error back

propagation algorithm to model the complex relationship in the
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circulating system (10).  Artificial Neural Network is a system

loosely modeled on the human brain.  It attempts to simulate within

specialized hardware or sophisticated software, the multiple layers of

simple processing elements called neurons.  Each neuron is linked to

certain of its neighbors with varying coefficients of connectivity that

represent the strengths of these connections.  Learning is

accomplished by adjusting these strengths to cause the overall

network to output appropriate results (14).

   Designing a neural network consist of:

·Arranging neurons in various layers.

·Deciding the type of connections among neurons for different

layers, as well as among the neurons within a layer.

·Deciding the way a neuron receives input and produces output.

·Determining the strength of connection within the network by

allowing the network learn the appropriate values of connection

weights by using a training data set.

The process of designing a neural network is an iterative process; the

figure below describes its basic steps.

   As the figure 2.1 shows, the neurons are grouped into layers.

The input layer consists of neurons that receive input form the

external environment.  The output layer consists of neurons that

communicate the output of the system to the user or external

environment.  There are usually a number of hidden layers between

these two layers; the figure 2.1 shows a simple structure with only one

hidden layer.
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Figure 2.1. Typical structure of a multi-layer neural network

W
i

W
h

Input layer hidden layer Output layer
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   The brain basically learns from experience.  Neural networks are

sometimes called machine learning algorithms, because changing of

its connection weights (training) causes the network to learn the

solution to a problem.  The strength of connection between the

neurons is stored as a weight-value for the specific connection.  The

system learns new knowledge by adjusting these connection weights.

   The learning ability of a neural network is determined by its

architecture and by the algorithmic method chosen for training.

   The training method usually consists of one of three schemes:

Unsupervised learning, Reinforcement learning, Back propagation.

Back propagation method is proven highly successful in training of

multi-layered neural nets (27).  The network is not just given

reinforcement for how it is doing on a task.  Information about errors

is also filtered back through the system and is used to adjust the

connections between the layers, thus improving performance.  A

form of supervised learning (3, 13, 14).

   Principal Component Analysis (PCA) is a technique to find the

directions in which a cloud of data points is stretched most.  These

directions represent most of the information in the data and are thus

important to know.  Knowing these directions allows us to store the

data in a compressed form and later reconstruct the data with a

minimal amount of distortion.  PCA is used in statistics to extract the

main relations in data of high dimensionality.  A common way to

find the Principal Components of a data set is by calculating the

eigenvectors of the data correlation matrix.  These vectors give the

directions in which the data cloud is stretched most.  The projections
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of the data on the eigenvectors are the Principal Components.  The

corresponding eigenvalues give an indication of the amount of

information the respective  Principal Components represent.

Principal Components corresponding to large eigenvalues represent

much information in the data set and thus tell us much about the

relations between the data points (19).
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(A)

(B)

  

Figure 2.2. Data analysis using principal component analysis

(PCA) ((A) measured data and (B) predicted data)
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 2.3 Mechanisms of Biological Nitrogen and Phosphorus

Removal

   Alcaligenes faecalis, commonly found in soil, water, and

wastewater treatment systems, was dominant in piggery slurry

treatment system.  Since denitrifying bacteria were facultative

aerobes, a sufficiently high concentration of DO prevents their use of

NO3-N as the terminal electron acceptor.  In general, Alcaligenes

faecalis was far less sensitive than nitrification bacteria Nitrosomonas

sp. was, reducing or denitrify using nitrate such as electron accepter in

anaerobic conditions.  Alcaligenes faecalis can denitrify both under

anaerobic conditions and nitrify under aerobic condition (2, 35).  The

possibility of aerobic denitrification by Alcaligenes faecalis implied

that inhibition of denitrification by oxygen did not always occur and

hence that nitrification and denitrification may take place

simultaneously under aerobic condition.  This strain has no nitrate

reductases but is able to reduce nitrite to dinitrogen (34).

    Figure 2.3 shows a process of amino acid synthesis and pathway

of ammonium utilization by bacteria.  The amino group of amino

acids is often derived from some inorganic nitrogen source in the

environment, such as ammonia (NH3).  Ammonia is typically

incorporated during the formation of the amino acids glutamate or

glutamine by the enzymes glutamate dehydrogenase and glutamine

synthetase, respectively (Figure 2.3 a, b).  Here the ammonium can

be incorporated into α-ketoglutarate by the transamination reaction

of glutamate dehydrogenase, generating glutamate.  Glutamate is
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subsequently transformed to glutamine by incorporationg ammonium

via glutamine synthetase (30).

   In addition, this ammonium removal mechanism could be more

effective compared with ammonia oxidation bacteria.  Therefore, this

study focuses on the ammonium uptaking and utilizing organisms in

the treatment system and tries to elucidate the ammonium removal

mechanisms using molecular biological techniques.

   Phosphorus removal mechanisms can be affected by oxygen

concentration.  It is typical in the biological phosphorus removal

process that the sludge releases Pi (with concomitant uptake of

wastewater organic carbon) in the anaerobic phase and takes up Pi

rapidly in the aerobic stage (16, 22).  The P removed from

wastewater is accumulated as a form of polyphosphate (poly P) in the

sludge bacteria.  Removal of a portion of the growing biomass

(waste-activated sludge) results in the net removal of P from the

wastewater (7).
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(a)

(b)

(c)

(d)

α-ketoglutarate - NH3

Glutamate + NH3

Glutamate + Oxalacetate

Glutamine + α-ketoglutarate

Glutamate

Glutamine

α-ketoglutarate + Aspartate

2 Glutamate

NADH

NADH

ATP

Glutamate
dehydrogenase

Glutamine synthetase

Transaminase

Glutamate synthase

NH2

NH
2

NH
2

NH2 NH2

NH
2

NH
2

NH
2

NH
2

Figure 2.3. Ammonia incorporation in bacteria. Two major pathways

for NH3 assimilation in bacteria are those catalyzed by the enzymes

(a) glutamate dehydrogenase, and (b) glutamine synthetase. (c)

Transaminase reactions simply transfer an amino group from an

amino acid to an glutamate synthase, two glutamates are formed from

one glutamine and one α-ketoglutarate (30).
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Ⅲ . MATERIALS and METHODS

 3.1 System Overview

   A scheme for the circulating treatment system at a pilot scale is

shown in Figure 3.1.  Detail description of the reactor operation has

been shown in the previous report (41).  Piggery slurry and treated

effluent used as a washing water were collected in tank 1, and this

influent then flows into the fermentation tank (tank 2; 15L).  There is

a channel between tank 2 and an aeration tank (tank 3; 15L) so that the

fermented wastewater can be transported into tank 3 where oxidative

treatment occurs under aeration condition (7.8v/v/m).  The treated

water then goes through sedimentation process at tanks 6 and 7, and

finally is stored at tank 8.  A portion of the effluent was used to wash

the pigsty.

   The wastewater used in this study was collected from a mixing

and storage tank at Kimhae Piggery Slurry Treatment Plant (Kimhae,

Kyungnam, Korea) and carried COD (ca. 4000 mg/L), BOD (ca. 7000

mg/L), T-N (ca. 2100 mg/L), and T-P (ca. 172 mg/L).  The influent

consisted of piggery slurry (33% v/v), effluent (57%) and tap water

(10%) and was supplied every 4 days.  Glucose was added to the

formulated influent to make a C/N ratio as 100:15 (28) and a

microbial agent was also added up to 1 %(w/v).  The hydraulic

retention time of the system was 4 days and it operated for 47 days.
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Figure 3.1. Schematic diagram of the circulating treatment system for

piggery slurry. 1 influent; 2 fermentation tank; 3 aeration tank; 4

blower; 5 antifoaming device; 6 sediment tanks (A, B, C and D); 7

reservoir; 8 storage tank; 9 recycling flow; 10. for fertilizer).

9

1

6

7

8

2 3

4

5

10   

D C B A
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 3.2 Isolation, Identification and Quantification

of Microorganisms

   Heterotrophic bacteria potentially involved in the piggery slurry

treatment within the system were isolated using the appropriate media

(23).  To isolate and grow lactic acid bacteria (LAB), MRS medium

were used.  LAB were grown at least 2 weeks before identification

and counting were performed.  The ingredients of the medium were:

Bacto proteose peptone NO. 3 5g/L, yeast extract 2.5g, dextrose 10g,

Tween 80g, (NH4)2HC6H5O7 1g, CH3COONa3·H2O 4.14g,

MgSO4·7H2O 0.1g, MnSO4·5H2O 0.04g, Na2PO4·12H2O 2.5g,

Beef extract 10g; pH 6.5.  After autoclaving trace amount of

bromophenol blue was added as an indicator.  Other heterotrophs

were grown on TSA (Trypticase Soy Agar, Difco) at least 1 week, and

then identified and counted.

   The bacterial communities in the system were quantitatively

analyzed based on isolation, identification and measuring their colony

forming unit (population density) of dominant populations in each

medium.  Identification of the bacteria was performed based on

cultural, physiological and biochemical characteristic described by

Smibert et al. (40) and Holt et al. (17).  Utilizations of sugar, amino

acids and organic acids by Gram negative bacteria were tested using

API Kit (bio Merieux sa, France) and its accompanied protocol.
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 3.3 Analytical Methods for Piggery Slurry samples from the

Treatment System

   Monitoring parameters such as SS, T-N, NH4
+-N, T-P, o-P and

COD were measured for piggery slurry samples taken daily following

Standard Methods for the Examination of Water and Wastewater (1):

COD by closed reflux, titrimetric method, T-P and ortho-P by

ascorbic acide method, suspended solids by total suspended solids

cride method, and NH4
+-N by indol phenol method.

 3.4 Modeling of the Treatment System Using Neural

Networks

   For an optimal treatment of piggery slurry, it is important to

understand the physiological characteristics of microorganisms and

their relationships, but may be difficult to identify the complicated

relationship by a linear analytical method.  The relation between

population densities of microorganisms and the treatment efficiency

may have a nonlinear dynamic characteristic.  In this study, we used

a multi-layer neural network with error back propagation algorithm to

model the complex relationship in the circulating system.  Since the

multi-layer neural network is able to approximate an arbitrary

nonlinear function with sufficient input and output data, the modeling

of the circulating piggery slurry treatment system can be realized by

the neural network in complex dynamic systems.  For modeling the

circulating system, we considered cause and effect relation in each
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tank that was serially connected.  As independent parameters in each

tank, population densities of heterotrophic microorganisms MRS-1,

TSA-1, TSA-2, and TSA-3 were considered because those could

dominantly affect the piggery slurry treatment efficiency.  Also,

COD, total-P, ortho-P, SS and NH4
+-N were considered as treatment

parameters in each tank.  Thus, we designed multi-layer neural

networks in which the input nodes consisted of 4 independent

parameters in the current tank and 5 treatment results in previous tank,

and the output nodes generated the 5 treatment results in the current

tank.

   For modeling the circulating system, there were two ways to use

the neural network.  One was to use a single neural network for

modeling the characteristic of whole tanks in the circulating system.

The other was to use the neural network for modeling the

characteristic of each tank, and then serial connection of each neural

network that modeled each tank could allow a monitoring of for the

circulating system.  In this study, it was difficult to model the overall

characteristic of whole tanks by a neural network because each tank of

treatment system has different role and characteristic.  Thus, we used

each neural network that was able to model the characteristic of each

tank, and the overall model of the whole treatment system was

obtained the connecting each neural network.  Figure 3.2 showed a

proposed modeling protocol for the circulating system.  We used

principal component analysis (PCA) as a preprocessor of the neural

network.  Input of the neural network was reduced to 3 principal

values from 9 independent variables.  The output values of the neural
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network were COD, total-P (T-P), o-P, SS and NH4
+-N in the current

tank.

   To accomplish a successful modeling, the connectivity within

neural networks in the current tank were adjusted to best predict the

measured values to be obtained at the next treatment step using SS,

NH4
+-N, T-P, o-P and COD as input variables.

Figure 3.2. A schematic diagram describing training strategy for the

neural networks in this study. MRS-1, TSA-1, TSA-2 and TSA-3

denote the population density of the bacterial strains. COD (chemical

oxygen demand), T-P (total phosphorus), o-P (ortho-phosphorus), SS

(suspended solid) and NH4
+-N are parameters for the wastewater

treatment. PCA, D1, D2 and D3 denote principal component analysis

and dimensions obtained after the analysis, respectively.
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 3.5 Ammonium Uptake and Utilization Test

   Ability of the isolated heterotrophs to uptake ammonium (NH4
+)

was measured to understand an ammonium removal mechanism in the

treatment system.  The dominant organisms (TSA-1, TSA-3 and

TSA-4) were grown in the mineral salts medium (21) containing

glucose (0.4% w/v or 3.2% w/v) as a sole carbon source.  Unless the

organisms were grown in the medium, they were subjected to growth

at citrate mineral salts medium (34).  Nitrogen source for these media

was (NH4)2SO4.  The inoculated media were incubated at 26℃ and

under rotary shaking (190rpm), and the growth was measured

spectrophotometrically (525nm).  The ammonium concentrations

before inoculation and at stationary phase were measured and the

ammonium removal efficiency was calculated.

 3.6. Extraction of Total DNA

 

   Cells used for the ammonium removal test were collected by

centrifugation and subjected to total DNA extraction that was

performed according to Maniatis et al (38).  The centrifuged cells

were washed once with phosphate buffer and then resuspended in 0.6

ml of lysing buffer (0.15M NaCl, 0.1M EDTA, and 15 mg of

lysozyme per ml).  After incubation at 37℃ for 3 hr, 0.06 ml of 10%

sodium dodecyl sulfate was added and the mixture was incubated at

65℃ for 10 min, and then -70℃ for 5 min.  The freeze and thawing

procedures were repeated twice.  The mixture was then extracted
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with phenol-chloroform three times and with chloroform once.  The

alcohol precipitated DNA was resuspended in TE buffer containing

RNase A and incubated at 37℃ for 3 hr to remove residual RNA.

 3.7. PCR Amplification of Glutamine synthetase Gene and

Southern Blot Hybridization

   Degenerate oligonucleotide primers (forward primer GS-L and

reverse primer GS-R) targeting glutamine synthetase genes from the

isolated organisms were designed from the conserved GS protein

sequences of Bacillus sp. including Bacillus subtilis 168 (KCTC 1326;

ATCC 33234 Spizizen strain 168).  The protein sequence alignment

and analysis were accomplished using the sequence databases of Gene

Bank and the Blast sequence analysis protocol available at National

Center for Biotechnology Information (National Institute of Health).

Their sequences were custom-synthesized by GenoTech (Taejon,

Korea):

  GS-L: 5  - GTG-AAG-TAT-ATC-CGY-CTT-C-3

GS-R: 5  - ATA-YTG-WTC-GCG-YTC-CCA-3

One to 3.3 ng of the extracted total DNA were used as a template.

Positive control DNA was from Bacillus subtilis 168.  The PCR

procedures for this study were modified based upon the previous

report (36).  Each PCR reaction mixture (20㎕) contained the

following reagents: 10 X Taq buffer, MgCl2 (1.5 mM), dNTPs (250
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M, each), forward primer GS-L (10 pM), reverse primer GS-R (10

pM), Taq polymerase (1.25 U) (Promega).  PCR was performed in a

DNA thermocycler (Perkin Elmer model; GeneAmp PCR System

2400).  The PCR conditions were denaturation (94℃, 5min), 30

cycles of the standard PCR (94℃ 1 min; 50℃ 1 min; 72℃ 1 min),

and a final chase reaction of (72℃ 5min).

   Amplification products were eletrophoresed on 1% agarose gel,

and stained ethidium bromide.  For Southern blots DNA was blotted

from the gels to nylon membranes and cross linked to the membranes

by dry to 80℃, 1 hour.  The expected PCR product (1269bp) from

GS gene of Bacillus subtilis 168 was identified and nonradioactively

labeled using Nonradioactive Labeling and Hybridization Kit

(Boehringer Mannheim, Germany).  A GS gene probe was prepared

by gel-purified 1296bp GS amplification product from Bacillus

subtilis 168 with the Random Primed DNA Labeling Kit (Boehringer

Mannheim, Germany).  Membrane was hybridized overnight at 65℃

in 10% sodium dodecyl sulfate (SDS); 5× SSC; 0.1% N-

laurylsarcosine; 1% blocking Agent and then washed twice for 15min

each time at 65℃ in buffer contained 0.1× SSC; 0.1% SDS.   All

the following Southern hybridization procedures were done according

to the previous report (21) except using CSPD (Disodium 3-(4-

methoxyspiro{1,2-dioxetane-3,2´-(5´-

chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl phosphate) (Boehringer

Mannheim) as a chemiluminescent substrate for the alkaline

phosphatase.
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Ⅳ . RESULTS and DISCUSSION

 4.1. Microbial Identification, and Analyses of the Population

Dynamics and Piggery Slurry Treatment

   The most dominant heterotrophic bacteria in the treatment system

were 4 aerobic bacteria and 3 lactic acid bacteria (LAB).  The

identified organisms were TSA-1 (Brevundimonas diminuta), TSA-2

(Abiotrophia defectiva), TSA-3 (Alcaligenes faecalis) and MRS-3

(Streptococcus sp) (Table 4.1, 4.2).  Population dynamics of isolated

bacteria were shown Figure 4.1, 4.2, 4.3.

   One of the most dominant aerobes was Alcaligenes faecalis TSA-3.

The most dominant species of LAB was strain MRS-1 that was yet to

be characterized.  Population dynamics of the representative aerobic

bacterium Alcaligenes faecalis TSA-3 during the 47-day running

period was shown for each tank (Figure 4.3).  Interestingly, TSA-3

was a predominant species among aerobes in the aeration tank

(107∼108 (c.f.u./ml)) but was also observed in the influent and

fermentation tanks (Figure 4.3).  Thus the strain appeared to survive

and grow under low oxygen tension and anoxic condition.  A

reported species of Alcaligenes faecalis could oxidize ammonia under

aerobic condition and denitrify nitrate ions via NO and N2O gases

under anoxic conditions (2, 35).  Alcaligenes faecalis was found to

accumulate NO2
- during exponential growth (34).  Population of the

strain MRS-1 was more dominant in the influent and fermentation
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tanks than aeration and sedimentation tanks, indicating its facultative

anaerobic characteristics.  The overall population density was in the

range of 104∼107 (c.f.u./ml).
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Table 4.1. Differential characteristics of the gram-negative bacterial species

isolated from circulating treatment system

Characteristic TSA1 Brevundimonas**

diminuta
TSA3 Alcaligenes**

faecalis
 Gram staining -   - - -
 Cell shape rod rod  rod,coccal

 Oxidase - + + +
 Catalase + + + +
 Anaerobic growth - - - -
*Acid from :
   D-Glucose - - - -
   Mannitol - - -
   Inositol - - -
   Salicin - -
   D-Melezitose - -
   L-Fucose - -
   D-Sorbose - -
   L-Arabinose - - -
   D-Ribose - - -
   D-Sucrose - - -
   Rhamnose - - -
   Maltose - -
*Utilization of :
   Valerate + + +
   Citrate - +
   2-Ketogluconate - - -
   3-Hydroxybutyrate + +
   4-Hydroxybenzoate - -
   Itaconate - - -
   Suberate - - -
   Malonate - - + +
   Acetate + +
   DL-Lactate - +
   5-Ketogluconate - -
   3-Hydroxybenzoate - -
   Glycogen - -
*Decomposition of
   Histidine - +
   L-Proline + +
   L-Alanine - +
   L-Serine - -

Symbols: +, 90% or more positive; -, 0-10% positive

 * Tested using API identification program (ID 32 GN: bio Merieux sa, France)
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 ** Data from Bergey's manual of Determinative Bacteriology (Ninth ed.)

Table 4.2. Differential characteristics of the gram-positive bacterial

species isolated from circulating treatment system.

Characteristic TSA2
Abiotrophia

defectiva**
MRS3

Enterococcus

gallinarum**

 Gram staining + + + +
 Cell shape coccus coccus coccus coccus

 Oxidase + + + +

 Catalase - - - -

 Anaerobic growth + + + +
 Motile - - + +

 Hemolysis α α - α,β
 Growth at

   10℃ + ND + +

   45℃ - ND + +
   pH9.6 + ND + +

   6.5% NaCl - ND + +

 Voges-Proskauer - ND - ND

 Acid from

   Xylose + +
   Lactose - d + +

   Sucrose + +

   Rhamnose - -

   Melezitose - -

   Adonitol - -
   Glycerol + +

   Raffinose + d - +

   Sorbitol - - - -

   Salicin + +

   Trehalose + +
   Mannitol - - + +

  Symbols: +, 90% or more of strains are positive; -, 90% or more of strains are

negative; α, usually α-hemolytic; α,β,may be α- or β- hemolytic; d, 21-

79% of strains are positive; ND, not determined.
** Data from Bergey's manual of Determinative Bacteriology (Ninth ed.)
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Figure 4.1. Population dynamics of a heterotrophic bacterium

(Brevundimonas diminuta) in the circulating treatment system (•-

Influent tank; ο- Fermentation tank; ▼- Aeration tank; ▽-

Sedimentation tank A; �- Sedimentation tank D)
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Figure 4.2. Population dynamics of a heterotrophic bacterium

(Abiotrophia defectiva) in the circulating treatment system (•- Influent

tank; ο- Fermentation tank; ▼- Aeration tank; ▽- Sedimentation tank

A; �- Sedimentation tank D)
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Figure 4.3. Population dynamics of a heterotrophic bacterium

(Alcaligenes faecalis) in the circulating treatment system (•- Influent

tank; ο- Fermentation tank; ▼- Aeration tank; ▽- Sedimentation tank

A; �- Sedimentation tank D)
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 4.2 Wastewater Treatment Efficiency of the Treatment

System

   The ammonium removal during the extent of the experiment is

shown, for tank, in Figure 4.4.  The ammonium removal efficiency

reached 41% as a maximum (Table 4.3).  The reason for this rather

low efficiency was not clear but unbalanced (presumably, lower) C/N

ratio would be one of the causes.  Here, however, offensive smells

appeared to be significantly reduced for the effluent.

   The COD removal during the extent of the experiment is shown,

for tank, in Figure 4.5.  The overall COD treatment efficiency was

about 54% (Table 4.3).  The COD removal may be mostly

accomplished by biological oxidation or absorption (or uptake) of

organic compounds derived from livestock feeds that carried abundant

carbonaceous, nitrogenous and phosphorus materials, since livestock

wastewater contains generally little recalcitrant compounds.

   The ortho or total phosphorus removal during the extent of the

experiment is shown, for tank, in Figure 4.6, 4.7.  The ortho or total

phosphorus removal effect was also obvious in the aeration and

sedimentation tanks (at least 40%).  The possible mechanism for the

phosphorus removal would be an uptake of phosphorus by cells under

aerobic condition and a subsequent sedimentation of the cells.

Surplus phosphorus to be uptaken may be transformed to poly-

phosphorus as a storage material within the cells (21).  A discharge

of phosphorus is known to occur under anaerobic conditions (7, 37).
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   In this study the best removal effect of suspended solids (SS)

(63%) was first observed in the aeration tank.  This seemed to be due

to a transport hole between fermentation and aeration tanks, which

screened out most of the sedimented solids.  The suspended solids

(SS) removal during the extent of the experiment is shown, for tank, in

Figure 4.8.

Table 4.3. Wastewater treatment efficiency of the piggery slurry

treatment system

Efficiency for 40 days

Parameter
Efficiency

(%)

Influent

(㎖/ℓ)

Fermentation

tank %

(㎖/ℓ)

Aeration

tank %

(㎖/ℓ)

Sedim.

tank-1 %

(㎖/ℓ)

Sedim.

tank-4 %

(㎖/ℓ)

COD 54 3341
18.5

(2723.76)

45.5

(1819.5)

51.1

(1634.2)

56

(1461)

SS 65.5 0.54
25.9

(0.4)

63

(0.2)

63

(0.2)

63

(0.2)

T-P 42 45.24
17.5

(37.3)

45.2

(24.8)

46.3

(24.3)

46

(24.5)

Ortho-P 33 43
18.8

(34.9)

39.5

(26)

39.1

(26.2)

38

(26.8)

NH4
+-N 39 1431

26.4

(0.4)

33.5

(952)

37.8

(890)

41

(848)
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Figure 4.4. Dynamics of ammonium removal in the circulating

treatment system (•- Influent tank; ο- Fermentation tank; ▼- Aeration

tank; ▽- Sedimentation tank A; �- Sedimentation tank D)
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Figure 4.5. Dynamics of chemical oxygen demand (COD) removal in

the circulating treatment system (•- Influent tank; ο- Fermentation

tank; ▼- Aeration tank; ▽- Sedimentation tank A; �-

Sedimentation tank D)
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Figure 4.6. Dynamics of ortho-phosphorus removal in the circulating

treatment system (•- Influent tank; ο- Fermentation tank; ▼- Aeration

tank; ▽- Sedimentation tank A; �- Sedimentation tank D)
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Figure 4.7. Dynamics of total phosphorus removal in the circulating

treatment system (•- Influent tank; ο- Fermentation tank; ▼- Aeration

tank; ▽- Sedimentation tank A; �- Sedimentation tank D)
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Figure 4.8 Dynamics of suspended solid removal in the circulating

treatment system (•- Influent tank; ο- Fermentation tank; ▼- Aeration

tank; ▽- Sedimentation tank A; �- Sedimentation tank D)
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 4.3 Principal Component Analysis of Input Data

   The neural networks can estimate output about the ignorant input

data that were not used to learning neural network.  This is called the

generalization capability and important characteristic of neural

networks.  For the effective generalization, the number of training

data must be more than 100 times the number of input dimension, at

least.  But it was rather difficult to obtain enough training data

because the biological process by microorganisms usually takes long

time to reach the stable treatment efficiency.  Moreover, the input

and output dimensions of the neural networks was 9 and 5,

respectively.  Training data measured for 47 days, were not enough

to figure out the complex correlation between input and output in each

tank, and also it was a little hard to expect a generalization. Moreover,

there were some noises in data due to a measuring error or unstable

bioprocess.  In order to reduce the input and output dimensions and

also remove the noisy data, we first used the principal component

analysis (PCA) method to analyze the training data.  PCA projects

high dimensional data onto low dimensional coordinates that consist

of principal component axes.  In other words, PCA finds the first

component that can best express variation for high dimensional data

and other orthogonal component of first component and represents

high dimensional data on the new orthogonal coordinates with low

dimensional ones by projection.  PCA method is applied to analysis

statistical data because the projected data on 2 or 3 dimensional

coordinates are visual and can be classified easily.
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   To find new orthogonal coordinates for the measured data, we

should get eigenvalues from correlation matrix of the measured data,

and then selects a few eigenvalues after ordering in magnitude.

Finally the new orthogonal coordinates become eigenvectors for the

selected eigenvalues.  Appearing the values to be represented by

eigenvectors on planes makes easy to understand the correlation of

each high dimensional data.  If N dimension of the training data can

be expressed by vector X and also C, N×N correlation matrix is

given as following.

                             (1)

Where X is N dimension input vector and < > means expectation.

The eigenvalue and eigenvector of this correlation matrix C can be

obtained by following equations.

                               (2)

                            (3)

Where λis eigenvalue and X means eigenvector of C corresponding

to λ.  Principal components are obtained by taking eigenvectors of

a few eigenvalues whose magnitudes are more than any other

eigenvalues and the projected data onto the low dimension coordinates

>=< XXC T

XCX λ=

0)det( =− CIλ
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are given by inner production with these eigenvectors.

   In this study, we used three axes as orthogonal coordinates.

These axes were obtained by analysis of the PCA analysis to remove

the data with one-to-many mapping that gives different output of the

same inputs.  Figure 4.9 showed the PCA results for the measured

data in aeration tank.  The X-axis denoted the mapping result by the

first eigenvector, and Y-axis denoted the result by the second

eigenvector.  The number of each point in Figure 4.9 (A) indicates

the passage from starting day.  Figure 4.9 (B) showed the PCA

results for target data measured in sedimentation tank 1, and each axis

was same with that of Figure 4.9 (A).  As shown in Figure 4.9, there

were several data with one-to-many mapping property but we

removed these values in the training process.
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Figure 4.9. Principal component analysis of input (A) output (B) of

aeration tank data during the 47 days' running period
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 4.4 Modeling of Treatment System by Neural Networks

   Among 47 training data, we reversed the 6th, 11th, 16th, 21st, 26th,

31st, 36th, 41st, 46th, 47th data for training phase, which were

randomly selected and used as test data to evaluate the generalization

performance of the neural network.  The neural network has one

hidden layer with 30 nodes that were determined by an ad hoc method

and nonlinear function of each layer except that input layer has a

sigmoid.  The weight values were adjusted by error back-propagation

algorithm.

   Through computational experiment we could assure that the

learned neural network successfully imitated each tank of treatment

system and approximated the target values of the input pattern well.

Figure 4.10 showed the graphic estimations of COD, NH4
+-N, o-P and

SS values based upon the neural network analysis.  The X-axis

represented the tanks from 46th days influent tank to 47th days

sedimentation tank 2.  As shown in Figure 4.10, the proposed neural

network could successfully monitor the treatment results according to

the population densities of microorganisms.  A dramatic increase of

the measured SS in the influent at 47th day (Figure 4.10 D) was an

outlier due to a sampling error.
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Figure 4.10. Perdiction of various treatment parameters COD (A),

NH4
+-N (B), ortho-P (C) and SS (D) by the neural network modeling.

COD and NH4
+-N data were dited from reference 25. The serial

numbers in X-axis indicate samples taken from tanks of influent,

fermentation, aeration, sedimentation-1 and sedimentation-4 at 46 and

47 day's running in order, respectively.
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 4.5 Molecular Analysis of Ammonium Removal

   The isolated heterotrophs TSA-1 (Brevundimonas diminuta),

TSA-3 (Alcaligenes faecalis), TSA-4 (not identified) were tested for

their ammonium uptake.  These three strains could utilize (NH4)2SO4

as a sole nitrogen source for their growth.  Ammonium appeared to

be almost utilized since little ammonium was detected at the stationary

phase.  Phosphorus removal efficiency was observed up to 60%.

NH4
+-N and ortho-phosphorus utilization rates appeared to be species

or strain specific.  This indicates a direct utilization of NH4
+ by a

heterotroph and hence removal of nitrogen from the system by

circumventing nitrification process that is energy and oxygen

consuming pathway.  It, therefore, appeared that the ammonium

uptake and utilization could contribute to the nitrogen removal in the

treatment system (particularly aeration tank).

   Amplifications of GS gene with the GS-L and GS-R primers from

the isolated heterotrophic bacteria were performed.  The GS gene

product amplified from Bacillus subtilis 168 could hybridize with one

of the PCR products from the isolated bacteria (Figure 4.11).

Therefore, the presence of ability of ammonium utilization and GS

gene in the heterotrophs isolated from the treatment system indicates

the possibility that ammonium removal in the system occurs via GS

system of these organisms being involved in amino acid synthesis.
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 (A)                          (B)

         D  1  2  3   4             D  1  2   3   4
         

Figure 4.11. Amplification of glutamine synthetase (GS) gene using

GS-L and GS-R primers from the total DNA of heterotrophic bacteria

(A) and southern hybridization with the PCR products using the

putative GS gene product (1269 bp indicated by arrow heads) of

Bacillus subtilis 168 (B) as a DNA probe. Hybridization and washing

were done under a stringent condition (65℃). D: DNA 1kb ladder; 1

Bacillus subtilis 168; 2 Alcaligenes faecalis TSA-3; 3 Brevundimonas

diminuta TSA-1; 4 TSA-4
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Ⅴ . Conclusion

   In this study a novel monitoring system of piggery slurry

circulating treatment system has been proposed.  Multi-layer neural

networks combined with PCA successfully modeled the tank

characteristics.  It was possible to train the neural network with the

given data by reducing the input dimension with minimal loss of

information and removing the noisy data with one-to-many mapping

property.  The proposed model may be useful to develop a reverse

neural network model that could be used to determine optimal

microbial densities critical for a desired quality level of the treated

wastewater.

   The following conclusions can be drawn based on the results from

this study:

1. Alcaligenes faecalis appeared to survive and grow under low

oxygen tension and anoxic condition and may oxidize ammonia under

aerobic condition resulting in the ammonium removal.

2. LAB were dominantly observed in anoxic condition, indicating the

BOD removal under anaerobic condition.

3. Multi-layer neural network combined with PCA successfully

modeled the treatment system using relatively small amount of data.

4. The proposed model may be useful to develop a reverse neural

network model that could be used to determine optimal microbial
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densities critical for a desired quality level of the treated wastewater.

5. A significant removal of ammonium may be attributed to an uptake

by glutamine synthetase.
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Ⅵ . FUTURE RESEARCH

The following needs to be considered for a further research:

1. The C/N ratio could be adjusted to increase the treatment

efficiency.

2. The application of reverse neural network modeling to the system

will allow an elucidation of optimal microbial species and

population densities to optimize the treatment system.

3. Biosensors and chemical sensors will be highly useful for the

collection and analysis of data.

4. Molecular sensors such as gene chips for heterotrophic and

autotrophic ammonium oxidizers and other degraders will be quite

useful for a rapid and sensitive monitoring of the treatment

system.

5. Transformation of nitrate to ammonium and its removal under

anoxic condition.
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A CKN OW LED GEM EN T

길게만 느껴졌던 2년이란 시간이 어느새 흘러 그 결실을 거두게 되었

습니다. 지난 시간들을 돌이켜 생각해 보니, 조금 더 열심히 하지 못한

것이 아쉽기만 합니다. 대학원 생활을 하는 동안 많은 실험과 다양한 분

야를 경험해 보았지만 아직도 제 자신은 부족하기만 합니다. 그러나 시

작이 반이라는 말처럼, 지금부터 시작이라는 생각으로 더 넓은 세상에서

제 자신을 발전시켜 나아가겠습니다.

2년의 대학원 생활동안 도와주신 많은 분들께 감사 드립니다. 석사

과정동안 돌봐주시고 학문적으로 많은 조언과 충고를 아끼지 않으셨던

고성철 지도 교수님께 감사 드립니다. 교수님께서 일깨워 주신 맡은 일

에 대한 책임감과 시간 관리의 소중함은 학교를 떠나더라도 제 자신에게

유용한 재산이 될 것입니다. 그리고 바쁘신 와중에도 관심을 보여 주시

고 학부때부터 석사과정에 이르기까지 자상하게 지도해 주신 박상윤 교

수님, 김인수 교수님, 송영채 교수님께도 감사드립니다. 학교를 마치고

이제 새로운 환경을 접하게 되는 저에게 교수님들의 가르침은 큰 힘이

될 것입니다.

이 논문이 완전한 모양새를 갖출 수 있도록 균주를 동정해주신 경상

대학교 미생물학과의 정영륜 교수님과 양현숙님, 그리고 신경회로망 모

델링을 도와주신 경북대 센서공학과 이민호 교수님, 손준일님께도 깊은

감사의 마음을 전합니다.

아울러, 환경 미생물 실험실 가족들에게도 감사 드립니다. 궂은 일도

마다 않고 함께 실험을 도와 준 후배 향이, 권숙, 상조, 그리고 저에게

많은 도움과 조언을 준, 병혁이를 비롯한 환경공학과 95동기들에게 고마



움을 전하며 저마다 앞으로 하고자 하는 일에 많은 발전이 있길 진심으

로 바랍니다. 학부동기이자 대학원 후배인 경자도 열심히 연구하여 좋은

논문으로 잘 마무리하길 바랍니다. 그리고, 환경공학과 석사과정에 함께

입문한 성우오빠, 성진오빠, 진석, 미경, 함께 한 2년동안 정도 많이 쌓이

고 즐거웠던 일들, 힘들었던 일들이 많았지만 자기 일처럼 아껴주고 큰

힘이 되어준 동기분들께 감사 드리며, 학교에 남아있는 동기분들은 열심

히 연구하셔서 원하는 성과를 이루고, 특히 저에게 든든한 힘이 되어준

미경이도 희망하는 분야에서 뜻하는 바를 꼭 이룰 수 있기 바랍니다. 그

리고 제가 힘들고 지칠 때 언제나 아낌없는 사랑과 조언을 해준 헌희에

게 감사와 애정을 드립니다. 앞으로의 대학원 생활을 끝까지 잘 마무리

할 수 있도록 충실히 임하고, 즐거운 마음으로 학문을 탐구하는 아름다

운 모습을 늘 간직해주길 바랍니다.

무엇보다도 이 결실을 사랑하는 부모님과 동생들에게 바칩니다. 타지

에서 공부하는 하나 뿐인 딸에 대한 그리움으로 가슴 저려 애태우시던

아버님, 어머님께 자랑스러운 딸로 설 수 있도록 어려운 시기에도 사랑

과 정성을 아끼지 않고 저를 돌봐주신 은혜에 감사드립니다. 그리고 이

제는 어른이 되어 오히려 저를 걱정하여 뒷바라지도 마다 않겠다는 동생

정진이와 정환이에게 고마움을 전하며, 항상 건강하기를 바랍니다.
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