한국해양대학교

Detailed Information

Metadata Downloads

정합장처리에서 오정합에 의한 바이어스와 민감도

DC Field Value Language
dc.contributor.author 박재은 -
dc.date.accessioned 2017-02-22T06:59:31Z -
dc.date.available 2017-02-22T06:59:31Z -
dc.date.issued 2002 -
dc.date.submitted 56797-10-27 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002174021 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/10113 -
dc.description.abstract Matched field processing(MFP) is a parameter estimation technique for localizing the range, depth, and bearing of a point source from the signal field propagating in an acoustic waveguide. MFP involves the correlation of the actual acoustic pressure field measured at a receiver array with a predicted field based on a postulated source position and an assumed ocean model. A high degree of correlation between the measured field and the predicted field indicates a likely source location. Thus an increased complexity of the ocean's structure provides a greater variability of the acoustic fields, which aids the estimation procedure. When the environmental data are inaccurate or incomplete, a "mismatch" occurs between the measured data and the predicted pressure field, that causes a degradation in MFP correlation and an appreciable bias. In this thesis, I was concerned with quantitative evaluation of the effects of mismatches arising from inaccuracies in a number of important system and ocean environmental parameters in a shallow water. The motivation for this study is to examine the biases in the source localization and the sensitivities of the matching results from various mismatches. Using a conventional estimator, I have investigated the bias of range and depth estimates caused by perturbations in array position, as well as ocean environmental parameters through the simulation. Replica fields are calculated using the normal mode methods with the exception of bathymetry case. Also this study examined the sensitivity of MFP to geometric, geoacoustic, and ocean sound speed parameters using the genetic algorithm. And this method is applied to measured data to overcome mismatch and accurately estimate source location with limited a priori environmental information by expanding the parameter search space of MFP to include environmental parameters. As a result, significant biases can be introduced into the depth and range localization predictions of a MFP through erroneous estimates of environmental parameters. It can also be concluded that the impact of mismatch, both summer sound speed and sensor position in water layer, is more serious than the geoacoustic parameters. This implies that simulations of mismatch which consider only a few errors will provide very misleading results on source position. Water depth and bottom bathymetry errors can be offset significantly -
dc.description.abstract it shifted progressively farther away and deeper from the actual source location as the true water depth became shallower. Errors in estimates of the sediment attenuation and density, and basement parameters appear to be of relatively minor importance. From an experimental implementation viewpoint, these result should enable resources to be concentrated on obtaining reliable values for those parameters which are important to know accurately, avoiding unnecessary effort to overdetermine relatively unimportant ones. It is also necessary to understand the types of mismatches in MFP that may be introduced by inaccuracies in the various forward modeling parameters, so that specific types of information deficiencies may be identified and attempts can be made to compensate for them. -
dc.description.tableofcontents 목차 Abstract = i 목차 = iii List of Figures = vi List of Tables = viii List of Symbols = ix I. 서론 = 1 1.1 연구 배경 = 1 1.2 연구 목적 = 2 1.3 연구 내용 및 구성 = 4 II. 정합장처리 알고리즘 = 6 2.1 해양에서 음파 전달과 모델링 = 6 2.2 정합장처리의 구성 요소 = 8 2.3 정합장 프로세서 = 10 2.3.1 협대역 프로세서 = 10 2.3.2 광대역 프로세서 = 17 2.4 유전자 알고리즘을 이용한 매개변수 역산 = 24 2.4.1 목적함수 = 26 2.4.2 매개변수 초기화 = 27 2.4.3 유전 연산자 = 28 2.4.4 사후 통계 = 29 III. 매개변수 오정합에 대한 수치실험 및 분석 = 32 3.1 오정합 연구 동향 = 32 3.2 수치실험 환경 = 34 3.3 개별 매개변수 오정합 = 36 3.3.1 시스템 매개변수 오정합 = 36 3.3.1.1 주파수 오정합 = 36 3.3.1.2 배열 수심 오정합 = 38 3.3.1.3 배열 경사 오정합 = 40 3.3.2 수층 매개변수 오정합 = 43 3.3.2.1 음속분포 오정합 = 43 3.3.2.2 수심 오정합 = 50 3.3.2.3 해저면 경사 오정합 = 53 3.3.3 해저퇴적층 매개변수 오정합 = 58 3.3.3.1 해저퇴적층 두께 오정합 = 58 3.3.3.2 해저퇴적층 상부음속 오정합 = 61 3.3.3.3 해저퇴적층 하부음속 오정합 = 61 3.3.3.4 해저퇴적층 밀도 오정합 = 63 3.3.3.5 해저퇴적층 감쇠계수 오정합 = 63 3.3.4 저층 매개변수 오정합 = 66 3.3.4.1 저층 음속 오정합 = 66 3.3.4.2 저층 밀도 오정합 = 67 3.3.4.3 저층 감쇠계수 오정합 = 68 3.4 결합된 매개변수 오정합 = 69 3.4.1 수층 수심과 배열 수심과의 오정합 = 70 3.4.2 수층 수심과 배열 경사와의 오정합 = 70 3.4.3 수층 수심과 해저층 음속과의 오정합 = 73 3.4.4 수층 수심과 해저층 밀도와의 오정합 = 73 3.5 종합된 매개변수 오정합 = 76 IV. 오정합에 대한 매개변수의 민감도 분석 = 81 4.1 연구동향 = 81 4.2 매개변수의 민감도 분석 결과 = 82 V. 실측자료의 매개변수 최적화 및 오정합 영향 = 90 5.1 실험 해역의 환경 및 신호 분석 = 90 5.1.1 실험 해역과 음원의 경로 = 90 5.1.2 수직 선배열과 예인 음원 = 91 5.1.3 실험 환경 = 92 5.1.4 신호의 스펙트로그램 분석 = 94 5.2 매개변수 역산과 음원 위치 추적 = 95 5.3 역산된 실험 자료의 오정합 영향 분석 = 101 VI. 결론 = 106 참고 문헌 = 109 -
dc.publisher 한국해양대학교 -
dc.title 정합장처리에서 오정합에 의한 바이어스와 민감도 -
dc.title.alternative Bias due to Mismatch and its Sensitivity in Matched Field Processing -
dc.type Thesis -
Appears in Collections:
해양개발공학과 > Thesis
Files in This Item:
000002174021.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse