한국해양대학교

Detailed Information

Metadata Downloads

진동형 히트파이프를 이용한 LED 방폭등의 방열 기술 연구

DC Field Value Language
dc.contributor.author 김형탁 -
dc.date.accessioned 2017-02-22T07:05:26Z -
dc.date.available 2017-02-22T07:05:26Z -
dc.date.issued 2012 -
dc.date.submitted 56987-11-06 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002175923 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/10253 -
dc.description.abstract Recent global issues, including environmental problem of carbon dioxide induced global warming and high oil price, have led to a strong demand for high efficiency energy systems for the industries to continue to grow. In lighting industry, the high-efficiency LEDs (Light Emitting Diodes) are expected to replace the conventional lighting systems. Insufficient dissipation of the heat produced in the LEDs (typically ~90% of the power consumed) could cause a reduction of the LED lifetime as well as the luminance. Therefore, the first thing to consider for the LED lighting system is to develop an efficient cooling system. In this study, an efficient cooling system for the imposed thermal boundary conditions of explosion-proof LED lightings was investigated. An explosion-proof lighting is a sealed lamp that can be used safely in a flammable environment of various industrial sites where a risk of flammable gas explosion exists. The purpose of this study is to develop a cooling system of explosion-proof LED lightings that can provide an efficient cooling as well as to use them free of installation alignment angle. To achieve these goals, a special technology, Pulsating Heat Pipes (PHP), was applied to this cooling system. A PHP, one class of heat pipes, is made of bent capillary tubes and charged with a working fluid in a part of the internal volume. When a sufficient temperature difference exists between the heating part and the cooling part of the device, a pulsating two-phase flow of vapor and liquid slugs is induced by the vapor pressure difference corresponding to the temperature difference. Evaporation and condensation inside the capillary tube reduces substantially the thermal resistance between the heating and cooling parts. Two experiments were conducted to develop an optimum design of the PHP for the boundary conditions of explosion-proof LED lightings. The first experimental PHP was made of copper tubes of internal diameter of 2.1 mm and the number of tube turns was 8. Five working fluids of ethanol, FC-72, water, acetone, and R-123 were chosen for comparison. The experimental results showed that an optimum range of charging ratio (liquid fluid volume to total volume) exists for high cooling performance -
dc.description.abstract 50% for most of the fluids. The second experimental PHP with an increased number of turns from 8 to 26 was made of copper tubes of same diameter. The effects of the PHP alignment angle (top heated or bottom heated) and the PHP types (looped or unlooped) were investigated for three working fluids of FC-72, water, and R-123. Optimum design requirements for the cooling of an explosion-proof LED lighting were established based on the results of the two experiments. These optimum design requirements include: i) a minimum number of tube turns for a PHP operable in top heat mode, ii) the use of R-123 as working fluid with 50 % charging ratio, and iii) an unlooped type PHP. These design requirements were applied to the design and construction of a cooling system for a 30 W explosion-proof LED lighting. The performance test of this cooling system showed an efficient cooling. With the progress achieved so far, the cooling system of an explosion-proof LED lighting developed in this study will be able to find many industrial applications. -
dc.description.tableofcontents 제 1 장 서론 1 1.1 연구배경 1 1.2 연구목적 2 제 2 장 진동형 히트파이프 선행 연구 9 2.1 기존 히트파이프와의 차이점 9 2.2 진동형 히트파이프의 구조 및 작동원리 12 2.3 진동형 히트파이프의 유동 특성 13 2.4 설계에 필요한 주요 물리적 변수 15 2.4.1 관경의 영향 15 2.4.2 적용 온도 / 입력 열유속의 영향 16 2.4.3 작동 유체 및 주입율의 영향 16 2.4.4 경사각 및 Turn 수의 영향 18 2.4.5 가열부 및 단열부 길이의 영향 19 2.4.6 해결되지 않은 문제점 19 제 3 장 방열 휜 방열 성능 해석 37 3.1 평판 베이스, 사각 휜 성능 37 3.1.1 수직 베이스, 옆 방향 휜 상관식 37 3.1.2 수평 베이스, 윗방향 휜 상관식 39 3.1.3 수평 베이스, 아랫방향 휜 상관식 40 3.1.4 휜 성능 예측 및 선정 41 3.2 원통형 베이스, 사각 휜 성능 예측 43 제 4 장 진동형 히트파이프 특성 실험 54 4.1 장치 구성 및 측정 방법 54 4.2 진동형 히트파이프 특성 실험 변수 57 4.3 실험 결과 58 4.3.1 열전달량 계산 및 에너지 평형 58 4.3.2 작동유체와 주입율에 따른 영향 59 4.3.3 유동 특성 59 4.3.4 유동 속도와 열전달량의 관계 62 4.3.5 물 유량에 따른 영향 63 4.3.6 열저항 분석 63 4.3.7 가열부 위치에 따른 영향 65 제 5 장 LED 방폭등 적용을 위한 성능실험 83 5.1 장치 구성 및 측정 방법 83 5.2 진동형 히트파이프 방열 실험 변수 84 5.3 실험 결과 85 5.3.1 전도 열량 계산과 실험 열량 비교 85 5.3.2 가열부 위치와 진동형 히트파이프 타입에 따른 영향 86 5.3.3 최적 설계 조건 87 5.3.4 전도 열전달과의 성능 비교 87 5.4 30 W LED 방폭등 적용 88 5.4.1 설계를 위한 열저항 예측 89 5.4.2 성능 실험을 통한 검증 90 5.4.3 PHP turn 수에 따른 열저항 예측 90 제 6 장 결론 107 참고문헌 109 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.title 진동형 히트파이프를 이용한 LED 방폭등의 방열 기술 연구 -
dc.title.alternative A Study on the Cooling of Explosion-Proof LED Lightings using Pulsating Heat Pipes -
dc.type Thesis -
dc.date.awarded 2012-02 -
dc.contributor.alternativeName Kim -
dc.contributor.alternativeName Hyung-Tak -
Appears in Collections:
냉동공조공학과 > Thesis
Files in This Item:
000002175923.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse