한국해양대학교

Detailed Information

Metadata Downloads

컨테이너 물동량을 이용한 인공신경망과 ARIMA모형의 예측력 비교에 관한 연구

DC Field Value Language
dc.contributor.author 이지원 -
dc.date.accessioned 2017-02-22T07:08:49Z -
dc.date.available 2017-02-22T07:08:49Z -
dc.date.issued 2008 -
dc.date.submitted 56879-03-02 -
dc.identifier.uri http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002176000 ko_KR
dc.identifier.uri http://repository.kmou.ac.kr/handle/2014.oak/10337 -
dc.description.abstract The forecast of a container traffic has been very important for terminal plan and development. Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. Time series data has trend and seasonality. In this paper, a ANNs methodology that make a consideration of trend and seasonal. The result with terminal traffic data indicate that effectiveness can differ according to the characteristics of terminals. -
dc.description.tableofcontents 제 1 장 서 론 1 1.1 연구의 배경 및 목적 1 1.2 연구의 방법 및 구성 2 제 2 장 선행연구고찰 3 제 3 장 분석기법 5 3.1 인공신경망 5 3.2 ARIMA 11 제 4 장 실증 분석 15 4.1 부두별 데이터 실증 분석 15 4.2 인공신경망모형 분석 19 4.3 ARIMA모형 분석 28 4.4 결과종합 29 제 5 장 결론 및 연구의 한계 31 참고문헌 33 -
dc.language kor -
dc.publisher 한국해양대학교 대학원 -
dc.title 컨테이너 물동량을 이용한 인공신경망과 ARIMA모형의 예측력 비교에 관한 연구 -
dc.title.alternative A Comparative Study on the Container Port Throughput Forecasting using Neural Network and ARIMA Models -
dc.type Thesis -
dc.date.awarded 2008-08 -
dc.contributor.alternativeName Lee -
dc.contributor.alternativeName Ji Won -
Appears in Collections:
동북아물류시스템학과 > Thesis
Files in This Item:
000002176000.pdf Download

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse