컨테이너 물동량을 이용한 인공신경망과 ARIMA모형의 예측력 비교에 관한 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 이지원 | - |
dc.date.accessioned | 2017-02-22T07:08:49Z | - |
dc.date.available | 2017-02-22T07:08:49Z | - |
dc.date.issued | 2008 | - |
dc.date.submitted | 56879-03-02 | - |
dc.identifier.uri | http://kmou.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002176000 | ko_KR |
dc.identifier.uri | http://repository.kmou.ac.kr/handle/2014.oak/10337 | - |
dc.description.abstract | The forecast of a container traffic has been very important for terminal plan and development. Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. Time series data has trend and seasonality. In this paper, a ANNs methodology that make a consideration of trend and seasonal. The result with terminal traffic data indicate that effectiveness can differ according to the characteristics of terminals. | - |
dc.description.tableofcontents | 제 1 장 서 론 1 1.1 연구의 배경 및 목적 1 1.2 연구의 방법 및 구성 2 제 2 장 선행연구고찰 3 제 3 장 분석기법 5 3.1 인공신경망 5 3.2 ARIMA 11 제 4 장 실증 분석 15 4.1 부두별 데이터 실증 분석 15 4.2 인공신경망모형 분석 19 4.3 ARIMA모형 분석 28 4.4 결과종합 29 제 5 장 결론 및 연구의 한계 31 참고문헌 33 | - |
dc.language | kor | - |
dc.publisher | 한국해양대학교 대학원 | - |
dc.title | 컨테이너 물동량을 이용한 인공신경망과 ARIMA모형의 예측력 비교에 관한 연구 | - |
dc.title.alternative | A Comparative Study on the Container Port Throughput Forecasting using Neural Network and ARIMA Models | - |
dc.type | Thesis | - |
dc.date.awarded | 2008-08 | - |
dc.contributor.alternativeName | Lee | - |
dc.contributor.alternativeName | Ji Won | - |
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.